JP2014190717A - Strip line resonator - Google Patents

Strip line resonator Download PDF

Info

Publication number
JP2014190717A
JP2014190717A JP2013063751A JP2013063751A JP2014190717A JP 2014190717 A JP2014190717 A JP 2014190717A JP 2013063751 A JP2013063751 A JP 2013063751A JP 2013063751 A JP2013063751 A JP 2013063751A JP 2014190717 A JP2014190717 A JP 2014190717A
Authority
JP
Japan
Prior art keywords
substrate
strip line
resonance
resonance pattern
stripline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013063751A
Other languages
Japanese (ja)
Inventor
Kenichi Shirota
健一 城田
Takahiro Yagi
貴弘 八木
Yutaka Iinaga
裕 飯長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Printed Circuits Co Ltd
Original Assignee
Oki Printed Circuits Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Printed Circuits Co Ltd filed Critical Oki Printed Circuits Co Ltd
Priority to JP2013063751A priority Critical patent/JP2014190717A/en
Publication of JP2014190717A publication Critical patent/JP2014190717A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a strip line resonator capable of measuring a specific dielectric constant of a copper-plated laminate sheet of which the thickness is less than 0.6 mm, over a wide frequency range, without requiring any special jig, at low cost, according to a simple method and with high reproducibility.SOLUTION: A strip line resonator is formed by overlapping two printed circuit boards and used for measuring a specific dielectric constant of a dielectric substance in accordance with a strip line resonance method using a vector network analyzer. The strip line resonator has a strip line structure formed by overlapping a first substrate formed from a ground plane provided on one surface and a linear resonance pattern provided on an opposite surface, and a second substrate comprising a ground plane on one surface. On a side of the opposite surface of the first substrate, the second substrate is overlapped which is set to such a shape that both end portions of the resonance pattern on the first substrate are exposed.

Description

本発明は、例えば厚さ0.6mm未満の薄型銅張積層板の比誘電率を測定するために用いられるストリップライン共振器に関するものである。   The present invention relates to a stripline resonator used for measuring the relative dielectric constant of a thin copper clad laminate having a thickness of less than 0.6 mm, for example.

通信機器に使用されるプリント配線板に搭載されるLSIの信号動作速度は年々向上しており、信号伝送レートが25Gbps以上のLSIが登場しはじめている。このような高速LSIの動作に対応したプリント配線板では高速信号を伝送するために基材の伝送特性の確保が重要な要素となり、その特性を左右する基材の比誘電率、誘電正接においても高周波まで正確に測定する事が求められている。同時に、これらプリント配線板は高密度化および高多層化が進んでおり、使用される銅張積層板の厚みは通信機器のバックプレーンでは0.2mm以下が主流となっている。   The signal operating speed of LSIs mounted on printed wiring boards used in communication equipment is improving year by year, and LSIs with a signal transmission rate of 25 Gbps or more are beginning to appear. In such a printed wiring board that supports high-speed LSI operation, it is important to ensure the transmission characteristics of the base material in order to transmit high-speed signals, and the relative permittivity and dielectric loss tangent of the base material that affect the characteristics are also important. There is a demand for accurate measurement up to high frequencies. At the same time, these printed wiring boards are increasing in density and multi-layer, and the thickness of the copper-clad laminate used is 0.2 mm or less in the backplane of communication equipment.

一般的なプリント配線板用の基材の比誘電率測定法には、容量法、トリプレートストリップライン共振法、空洞共振器法などがあげられる。以下にそれぞれについて説明する。   Examples of a method for measuring the relative dielectric constant of a general substrate for a printed wiring board include a capacitance method, a triplate stripline resonance method, and a cavity resonator method. Each will be described below.

第1の容量法は、2つの電極間に試料を充填し、電極間の静電容量を測定する方法である。集中定数として扱える周波数である必要があるため、試料の大きさから通常kHz帯からMHz帯で用いられる。インピーダンスマテリアルアナライザを使用した容量法でも測定周波数は1MHzから1.8GHzとなる(非特許文献1)。   The first capacitance method is a method of filling a sample between two electrodes and measuring the capacitance between the electrodes. Since the frequency needs to be handled as a lumped constant, it is usually used in the kHz band to the MHz band because of the size of the sample. Even in the capacitance method using an impedance material analyzer, the measurement frequency is 1 MHz to 1.8 GHz (Non-Patent Document 1).

第2のトリプレートストリップライン共振法は、ストリップライン構造の共振器の共振周波数から比誘電率を算出する測定手法であり、MHz帯から14GHz程度で用いられる測定法である。測定試料は2枚の基板を重ね合わせ密着させるため専用の治具を用いて隙間が出来ない様一定の圧力をかけて固定する必要がある。トリプレートストリップライン共振法は構造が簡易であり、実際のプリント配線板の伝送線路の形態に近い条件での測定が可能である(非特許文献2、非特許文献3)。   The second triplate stripline resonance method is a measurement method for calculating a relative permittivity from the resonance frequency of a resonator having a stripline structure, and is a measurement method used from the MHz band to about 14 GHz. The measurement sample needs to be fixed by applying a certain pressure so that there is no gap using a dedicated jig in order to overlap and adhere the two substrates. The triplate stripline resonance method has a simple structure and can be measured under conditions close to the form of the transmission line of an actual printed wiring board (Non-patent Documents 2 and 3).

第3の空洞共振法は、共振器内に試料を挿入する事で起こされる共振周波数およびQ値から比誘電率を算出する測定手法である。空洞共振器法では薄い基材の測定も可能であり、測定周波数は20GHz以上の高周波まで対応しているが周波数毎に共振器が必要となりコストがかかるため簡易的とは言えない。   The third cavity resonance method is a measurement technique for calculating the relative dielectric constant from the resonance frequency and Q value caused by inserting a sample into the resonator. With the cavity resonator method, a thin substrate can be measured, and the measurement frequency corresponds to a high frequency of 20 GHz or more, but it is not simple because a resonator is required for each frequency and costs are increased.

また、これら比誘電率測定方法における共通の課題として、第1に資料の厚みが測定方法により限定される、第2に測定方法により測定対応周波数が異なるなどがある。   Further, common problems in these relative dielectric constant measurement methods include, firstly, the thickness of the material is limited by the measurement method, and secondly, the measurement corresponding frequency varies depending on the measurement method.

例えば、非特許文献3は簡易的な治具で測定可能であり、比誘電率の算出も簡単であるためプリント配線板の比誘電率測定には適していると言えるが、測定対象の基材厚が0.6mm〜1.6mm以上とされている。この測定方法を0.6mm未満の薄い基材に適用した場合、共振パターンと上下グランドプレーンの距離が近すぎることにより信号エネルギーが効率よく給電できず共振特性が得られないという問題が生じる。   For example, Non-Patent Document 3 can be measured with a simple jig, and the relative permittivity can be easily calculated, so it can be said that it is suitable for measuring the relative permittivity of a printed wiring board. The thickness is 0.6 mm to 1.6 mm or more. When this measurement method is applied to a thin base material of less than 0.6 mm, the distance between the resonance pattern and the upper and lower ground planes is too short, so that there is a problem that signal energy cannot be supplied efficiently and resonance characteristics cannot be obtained.

Permittivity and Loss Tangent, Parallel Plate, 1MHz to 1.5GHz,IPC-TM-650 2.5.5.9Permittivity and Loss Tangent, Parallel Plate, 1MHz to 1.5GHz, IPC-TM-650 2.5.5.9 Stripline Test for Permittivity and Loss Tangent at X-Band,IPC-TM-650 2.5.5.5Stripline Test for Permittivity and Loss Tangent at X-Band, IPC-TM-650 2.5.5.5 プリント配線板用銅張積層板試験方法 非誘電率および誘電正接 JPCA-TM001,社団法人 日本電子回路工業会Copper-clad laminate test method for printed wiring boards Non-dielectric constant and dielectric loss tangent JPCA-TM001, Japan Electronic Circuits Association

本発明は、上述のような問題点を解決したもので、測定方法により規定される試料厚みではなく実際の多層基板で使用する銅張積層板と同じ厚みである0.6mm未満の銅張積層板の比誘電率を広い周波数範囲にわたり、特別な治具を必要とせず低コストで、簡単な方法で再現性よく測定することが可能な極めて実用性に優れたストリップライン共振器を提供することを目的としている。   The present invention solves the above-mentioned problems, and is not a sample thickness specified by a measurement method, but a copper-clad laminate of less than 0.6 mm, which is the same thickness as a copper-clad laminate used in an actual multilayer substrate To provide a stripline resonator with excellent practicality that can measure the relative dielectric constant of a plate over a wide frequency range, without requiring a special jig, at low cost and with a simple method with good reproducibility. It is an object.

本発明の要旨を説明する。   The gist of the present invention will be described.

2枚のプリント基板を重ね合わせて構成されベクトルネットワークアナライザを用いてストリップライン共振法により誘電体の比誘電率を測定するために用いるストリップライン共振器であって、片面に設けられるグランドプレーン及び反対面に設けられる線状の共振パターンから成る第1の基板と、片面にグランドプレーンを設けた第2の基板とを重ね合わせて形成されるストリップライン構造を具備し、前記第1の基板の前記反対面側に、前記第1の基板の前記共振パターンの両端部が露出する形状に設定した前記第2の基板を重ね合わせて構成し、測定に際し、前記第1の基板の前記共振パターンの露出する両端部を、前記ベクトルネットワークアナライザの同軸コネクタが電磁結合により信号を入出力可能な給電電極に設定したことを特徴とするストリップライン共振器に係るものである。   A stripline resonator which is configured by superposing two printed circuit boards and used for measuring the relative dielectric constant of a dielectric by a stripline resonance method using a vector network analyzer, which is a ground plane provided on one side and the opposite side A strip line structure formed by superimposing a first substrate having a linear resonance pattern provided on a surface and a second substrate having a ground plane on one side; and The second substrate set in a shape in which both ends of the resonance pattern of the first substrate are exposed is overlapped on the opposite surface side, and the resonance pattern of the first substrate is exposed during measurement. Both ends are set to feed electrodes that allow the vector network analyzer coaxial connector to input and output signals by electromagnetic coupling. Those of the stripline resonator according to claim.

また、前記第1の基板と前記第2の基板とを積層プレスにより一体化し3層基板として構成したことを特徴とする請求項1記載のストリップライン共振器に係るものである。   2. The stripline resonator according to claim 1, wherein the first substrate and the second substrate are integrated by a lamination press to form a three-layer substrate.

また、前記第1の基板及び前記第2の基板の厚さは0.6mm未満であることを特徴とする請求項1,2のいずれか1項に記載のストリップライン共振器に係るものである。   The stripline resonator according to any one of claims 1 and 2, wherein the thicknesses of the first substrate and the second substrate are less than 0.6 mm. .

また、前記共振パターンの両端部の露出長は前記第1の基板及び前記第2の基板の厚さの5〜8倍に設定したことを特徴とする請求項1〜3のいずれか1項に記載のストリップライン共振器に係るものである。   The exposed length of both ends of the resonance pattern is set to 5 to 8 times the thickness of the first substrate and the second substrate. This relates to the described stripline resonator.

本発明は上述のように構成したから、厚さ0.6mm未満の銅張積層板の比誘電率を広い周波数範囲にわたり、特別な治具を必要とせず低コストで、簡単な方法で再現性よく測定することが可能な極めて実用性に優れたストリップライン共振器となる。   Since the present invention is configured as described above, the relative permittivity of a copper-clad laminate having a thickness of less than 0.6 mm covers a wide frequency range, does not require a special jig, and is inexpensive and reproducible. The stripline resonator can be measured well and has excellent practicality.

本実施例の概略説明斜視図である。It is a schematic explanatory perspective view of a present Example. 本実施例の分解説明斜視図である。It is a disassembled explanatory perspective view of a present Example. 本実施例の要部の概略説明図である。It is a schematic explanatory drawing of the principal part of a present Example. 本実施例の使用状態を説明する概略説明図である。It is a schematic explanatory drawing explaining the use condition of a present Example. ベクトルネットワークアナライザで測定した共振周波数測定例を示すグラフである。It is a graph which shows the resonant frequency measurement example measured with the vector network analyzer. 比誘電率算出例を示すグラフである。It is a graph which shows the relative dielectric constant calculation example.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

プリント基板(銅張積層板)の誘電体(絶縁基板)の比誘電率をべクトルネットワークアナライザを用いてストリップライン共振法により測定するに際し、第1の基板上の共振パターンの両端部を意図的に露出させることで構成した給電電極に、同軸コネクタを介して非接触の電磁結合により信号を入出力することで、第1の基板及び第2の基板の誘電体の比誘電率の測定を行うことができる。   When measuring the relative permittivity of the dielectric (insulating substrate) of the printed circuit board (copper-clad laminate) by the stripline resonance method using a vector network analyzer, both ends of the resonance pattern on the first substrate are intentionally The dielectric constants of the dielectrics of the first substrate and the second substrate are measured by inputting / outputting signals to / from the power supply electrodes formed by exposing them to each other by non-contact electromagnetic coupling via a coaxial connector. be able to.

通常の手法、即ち、薄い基板で共振パターンを露出させない場合には、同軸コネクタは共振パターンよりもグランドプレーンと強く結合してしまい、十分な信号エネルギーを共振パターンに給電することができない。   If the resonance pattern is not exposed with a normal method, that is, a thin substrate, the coaxial connector is more strongly coupled to the ground plane than the resonance pattern, and sufficient signal energy cannot be supplied to the resonance pattern.

一方、共振パターン端部を露出させ給電電極を設けると、同軸コネクタと共振パターンの結合を自在に制御することができる。このような理由から、本発明は、薄型銅張積層板について効率よく信号エネルギーが給電可能となり、厚さ0.6mm未満の薄型銅張積層板においても比誘電率の測定が簡単に測定でき、再現性よく測定ができる。さらに、このような給電電極形状は、構造が簡単であり容易に作製出来る利点がある。   On the other hand, when the end portion of the resonance pattern is exposed and the power supply electrode is provided, the coupling between the coaxial connector and the resonance pattern can be freely controlled. For this reason, the present invention can efficiently supply signal energy for a thin copper clad laminate, and the relative dielectric constant can be easily measured even in a thin copper clad laminate having a thickness of less than 0.6 mm. Measurements can be made with good reproducibility. Further, such a power supply electrode shape has an advantage that the structure is simple and can be easily manufactured.

また、ストリップライン共振器を用いた比誘電率の測定に際しては、ベクトルネットワークアナライザで測定した共振周波数より比誘電率を算出するため、共振モード以外の無用な周波数変動は極力抑制する必要があり、例えば、共振パターンの露出長を、基板の厚さの5〜8倍程度と短く設定することで、安定した比誘電率を得ることが可能となる。   Also, when measuring the relative permittivity using a stripline resonator, the relative permittivity is calculated from the resonant frequency measured with the vector network analyzer, so it is necessary to suppress unnecessary frequency fluctuations other than the resonance mode as much as possible. For example, it is possible to obtain a stable relative dielectric constant by setting the exposure length of the resonance pattern as short as about 5 to 8 times the thickness of the substrate.

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、2枚のプリント基板を重ね合わせて構成されベクトルネットワークアナライザを用いてストリップライン共振法により誘電体の比誘電率を測定するために用いるストリップライン共振器であって、片面に設けられるグランドプレーン及び反対面に設けられる共振パターンから成るマイクロストリップライン構造を備えた第1の基板と、片面にグランドプレーンを設けた第2の基板とを重ね合わせて形成されるストリップライン構造を具備し、前記第1の基板の前記反対面側に、前記第1の基板の前記共振パターンの両端部が露出する形状に設定した前記第2の基板を重ね合わせて構成し、測定に際し、前記第1の基板の前記共振パターンの露出する両端部を、前記ベクトルネットワークアナライザの同軸コネクタが電磁結合により信号を入出力可能な給電電極に設定したものである。   This embodiment is a stripline resonator that is configured by superposing two printed circuit boards and is used to measure the dielectric constant of a dielectric by a stripline resonance method using a vector network analyzer, and is provided on one side. A strip line structure formed by superimposing a first substrate having a microstrip line structure including a ground plane and a resonance pattern provided on the opposite surface, and a second substrate having a ground plane on one side. Then, the second substrate set to a shape in which both end portions of the resonance pattern of the first substrate are exposed is overlapped on the opposite surface side of the first substrate. The coaxial connectors of the vector network analyzer are connected by electromagnetic coupling between the exposed ends of the resonance pattern of one substrate. Is obtained by setting the signal to the input and output can be powered electrode.

具体的には、本実施例(ストリップライン共振器10)は、図2に示すマクロストリップライン基板20(第1の基板)及び片面グランド基板30(第2の基板)を重ね合わせて構成している。   Specifically, the present embodiment (stripline resonator 10) is configured by superposing the macrostripline substrate 20 (first substrate) and the single-sided ground substrate 30 (second substrate) shown in FIG. Yes.

マイクロストリップライン基板20は、グランドプレーン21、誘電体22(絶縁基板)、共振パターン23(信号配線)とで構成され、片面グランド基板30はグランドプレーン31、誘電体32(絶縁基板)とで構成される。このマイクロストリップライン基板20と片面グランド基板30はエッチングのみで形成可能でありメッキや積層行程が不要であり簡易に作製できる。また、グランドプレーン21・31は誘電体22・32の片面全面に設けられる。また、2枚の基板20・30の誘電体22・32は同素材で構成し、誘電体22・32の厚さは同厚に設定する。なお、本実施例では共振パターン23は基板端まで形成しているが、基板端まで伸ばさない構成としても良い。また、共振パターン23は直線状に限らず、途中で曲がる形状等に自由に設定できる。   The microstrip line substrate 20 includes a ground plane 21, a dielectric 22 (insulating substrate), and a resonance pattern 23 (signal wiring). The single-sided ground substrate 30 includes a ground plane 31 and a dielectric 32 (insulating substrate). Is done. The microstrip line substrate 20 and the single-sided ground substrate 30 can be formed only by etching, and no plating or laminating process is required and can be easily manufactured. The ground planes 21 and 31 are provided on the entire surface of one side of the dielectrics 22 and 32. The dielectrics 22 and 32 of the two substrates 20 and 30 are made of the same material, and the thicknesses of the dielectrics 22 and 32 are set to the same thickness. In this embodiment, the resonance pattern 23 is formed up to the substrate end, but it may be configured not to extend to the substrate end. Further, the resonance pattern 23 is not limited to a linear shape, and can be freely set to a shape that bends in the middle.

片面グランド基板30の寸法は、マイクロストリップライン基板20よりも短くなるように設定し、重ね合わせた際に露出する両端部の共振パターン23の一部が給電電極11・12となる。この共振パターン23の両端部の露出長は長すぎると共振特性に影響をあたえ、短すぎると信号が給電出来なくなるため基材厚と測定周波数に応じて適宜設定する。例えば、共振パターン23の両端部の露出長は前記基板20・30の厚さの5〜8倍に設定する。なお、共振パターン23の給電電極11・12となる部位以外の残余の部位は片面グランド基板30により覆われるように構成する。   The dimension of the single-sided ground substrate 30 is set to be shorter than that of the microstrip line substrate 20, and a part of the resonance pattern 23 at both ends exposed when they are overlapped becomes the feeding electrodes 11 and 12. If the exposed length of both ends of the resonance pattern 23 is too long, the resonance characteristics are affected. If the exposure length is too short, the signal cannot be fed. For example, the exposed length of both ends of the resonance pattern 23 is set to 5 to 8 times the thickness of the substrates 20 and 30. It should be noted that the remaining portions other than the portions to be the feeding electrodes 11 and 12 of the resonance pattern 23 are configured to be covered with the single-sided ground substrate 30.

また、共振器として形成する共振パターン23の配線幅と配線長さは、誘電体22・32の比誘電率と厚さとにより所望の周波数で共振するように設定する。信号配線長さは測定する周波数により複数種類用意する。   The wiring width and wiring length of the resonance pattern 23 formed as a resonator are set so as to resonate at a desired frequency depending on the relative permittivity and thickness of the dielectrics 22 and 32. Plural types of signal wiring lengths are prepared according to the frequency to be measured.

図3に給電電極部の詳細構造例を示す。給電電極11に同軸コネクタ41の中心導体を近接させて非接触の電磁結合により信号の入出力を行う。   FIG. 3 shows an example of the detailed structure of the feeding electrode portion. The central conductor of the coaxial connector 41 is brought close to the power supply electrode 11 to input / output signals by non-contact electromagnetic coupling.

図4に比誘電率測定例を示す。ベクトルネットワークアナライザ100には、同軸ケーブル101・102、同軸コネクタ41・42が設けられている。また、ストリップライン共振器10はアルミ板51・52で上下から挟み、固定ネジ53で密着させた状態で測定を行う。なお、両基板を積層プレスにより一体化して3層基板として構成した場合等には、アルミ板51・52で挟まなくても良い。   FIG. 4 shows an example of relative permittivity measurement. The vector network analyzer 100 is provided with coaxial cables 101 and 102 and coaxial connectors 41 and 42. The stripline resonator 10 is measured while being sandwiched from above and below by the aluminum plates 51 and 52 and in close contact with the fixing screw 53. When both substrates are integrated by a lamination press to form a three-layer substrate, the aluminum plates 51 and 52 need not be sandwiched.

例えば、誘電体22・32の厚みを夫々0.2mm、配線幅を1.0mm、配線長を85mm、162mmの2種類、給電電極長(共振パターン23の両端部の各露出長)を1.0mmとすることで、20GHzまで安定した共振特性を得ることができる。   For example, the thicknesses of the dielectrics 22 and 32 are 0.2 mm, the wiring width is 1.0 mm, the wiring length is 85 mm, and 162 mm, respectively, and the feeding electrode length (each exposed length at both ends of the resonance pattern 23) is 1. By setting it to 0 mm, it is possible to obtain stable resonance characteristics up to 20 GHz.

以上の条件でのネットワークアナライザにより測定した共振周波数の測定例を図5示す。図5の共振周波数から導出した比誘電率の例を図6に示す。
比誘電率は下式数1により算出する。
FIG. 5 shows a measurement example of the resonance frequency measured by the network analyzer under the above conditions. An example of the relative permittivity derived from the resonance frequency of FIG. 5 is shown in FIG.
The relative dielectric constant is calculated by the following equation (1).

Figure 2014190717
Figure 2014190717

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.

Claims (4)

2枚のプリント基板を重ね合わせて構成されベクトルネットワークアナライザを用いてストリップライン共振法により誘電体の比誘電率を測定するために用いるストリップライン共振器であって、片面に設けられるグランドプレーン及び反対面に設けられる線状の共振パターンから成る第1の基板と、片面にグランドプレーンを設けた第2の基板とを重ね合わせて形成されるストリップライン構造を具備し、前記第1の基板の前記反対面側に、前記第1の基板の前記共振パターンの両端部が露出する形状に設定した前記第2の基板を重ね合わせて構成し、測定に際し、前記第1の基板の前記共振パターンの露出する両端部を、前記ベクトルネットワークアナライザの同軸コネクタが電磁結合により信号を入出力可能な給電電極に設定したことを特徴とするストリップライン共振器。   A stripline resonator which is configured by superposing two printed circuit boards and used for measuring the relative dielectric constant of a dielectric by a stripline resonance method using a vector network analyzer, which is a ground plane provided on one side and the opposite side A strip line structure formed by superimposing a first substrate having a linear resonance pattern provided on a surface and a second substrate having a ground plane on one side; and The second substrate set in a shape in which both ends of the resonance pattern of the first substrate are exposed is overlapped on the opposite surface side, and the resonance pattern of the first substrate is exposed during measurement. Both ends are set to feed electrodes that allow the vector network analyzer coaxial connector to input and output signals by electromagnetic coupling. Strip line resonator, characterized. 前記第1の基板と前記第2の基板とを積層プレスにより一体化し3層基板として構成したことを特徴とする請求項1記載のストリップライン共振器。   The stripline resonator according to claim 1, wherein the first substrate and the second substrate are integrated by a lamination press to form a three-layer substrate. 前記第1の基板及び前記第2の基板の厚さは0.6mm未満であることを特徴とする請求項1,2のいずれか1項に記載のストリップライン共振器。   The stripline resonator according to any one of claims 1 and 2, wherein the thicknesses of the first substrate and the second substrate are less than 0.6 mm. 前記共振パターンの両端部の露出長は前記第1の基板及び前記第2の基板の厚さの5〜8倍に設定したことを特徴とする請求項1〜3のいずれか1項に記載のストリップライン共振器。   The exposed length of both ends of the resonance pattern is set to 5 to 8 times the thickness of the first substrate and the second substrate. Stripline resonator.
JP2013063751A 2013-03-26 2013-03-26 Strip line resonator Pending JP2014190717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013063751A JP2014190717A (en) 2013-03-26 2013-03-26 Strip line resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013063751A JP2014190717A (en) 2013-03-26 2013-03-26 Strip line resonator

Publications (1)

Publication Number Publication Date
JP2014190717A true JP2014190717A (en) 2014-10-06

Family

ID=51837123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013063751A Pending JP2014190717A (en) 2013-03-26 2013-03-26 Strip line resonator

Country Status (1)

Country Link
JP (1) JP2014190717A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950184A (en) * 2015-06-04 2015-09-30 电子科技大学 Wideband variable-temperature dielectric constant testing system for solid and powder materials
CN108717143A (en) * 2018-07-06 2018-10-30 中国电子科技集团公司第四十六研究所 A method of testing baseplate material dielectric properties parameter automatically using strip-line test methods
CN111257370A (en) * 2020-03-05 2020-06-09 西北工业大学 Device and method for measuring dielectric constant and metal conductivity of copper-clad plate
KR102124032B1 (en) * 2019-02-28 2020-06-17 대구대학교 산학협력단 Microwave Sensor
CN114252751A (en) * 2021-12-21 2022-03-29 无锡江南计算技术研究所 Strip line resonator testing system for complex dielectric constant of high-frequency printed board substrate
WO2022085441A1 (en) * 2020-10-23 2022-04-28 国立大学法人東北大学 Measurement device and measurement method for measuring magnetic permeability and dielectric constant
CN115224461A (en) * 2022-07-26 2022-10-21 广州添利电子科技有限公司 Open stub resonator and method for screening PCB antenna board finished product

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950184A (en) * 2015-06-04 2015-09-30 电子科技大学 Wideband variable-temperature dielectric constant testing system for solid and powder materials
CN108717143A (en) * 2018-07-06 2018-10-30 中国电子科技集团公司第四十六研究所 A method of testing baseplate material dielectric properties parameter automatically using strip-line test methods
CN108717143B (en) * 2018-07-06 2020-09-22 中国电子科技集团公司第四十六研究所 Method for automatically testing dielectric property parameters of substrate material by adopting strip line method
KR102124032B1 (en) * 2019-02-28 2020-06-17 대구대학교 산학협력단 Microwave Sensor
CN111257370A (en) * 2020-03-05 2020-06-09 西北工业大学 Device and method for measuring dielectric constant and metal conductivity of copper-clad plate
WO2022085441A1 (en) * 2020-10-23 2022-04-28 国立大学法人東北大学 Measurement device and measurement method for measuring magnetic permeability and dielectric constant
CN114252751A (en) * 2021-12-21 2022-03-29 无锡江南计算技术研究所 Strip line resonator testing system for complex dielectric constant of high-frequency printed board substrate
CN114252751B (en) * 2021-12-21 2023-10-13 无锡江南计算技术研究所 Strip line resonator test system for complex dielectric constant of high-frequency printed board substrate
CN115224461A (en) * 2022-07-26 2022-10-21 广州添利电子科技有限公司 Open stub resonator and method for screening PCB antenna board finished product

Similar Documents

Publication Publication Date Title
JP2014190717A (en) Strip line resonator
US8248183B2 (en) Circuit board pad having impedance matched to a transmission line and method for providing same
US20130057365A1 (en) Electromagnetic field coupling structure, multi-layer transmission-line plate, method of manufacturing electromagnetic field coupling structure, and method of manufacturing multi-layer transmission-line plate
US9490768B2 (en) High frequency band pass filter with coupled surface mount transition
CN108184306B (en) Electric field passive probe
CN108152606B (en) Electric field passive probe
US9806474B2 (en) Printed circuit board having high-speed or high-frequency signal connector
US9123979B1 (en) Printed waveguide transmission line having layers with through-holes having alternating greater/lesser widths in adjacent layers
CN111308221A (en) Characterization method for extracting broadband continuous dielectric characteristics of microwave dielectric substrate
Chen et al. Analytical model for the rectangular power-ground structure including radiation loss
CN205941705U (en) Compound dielectric constant measurement element
US20170187098A1 (en) Transmission apparatus, wireless communication apparatus, and wireless communication system
Curran et al. Dielectric material characterization of high frequency printed circuit board laminates and an analysis of their transmission line high frequency losses
Kamrul et al. Broadband insertion loss measurement of flexible copper clad laminate with direct metallization
JP2008045949A (en) Electromagnetic characteristics measurement tool and measuring method therefor
JP2014174156A (en) Dielectric property measuring device
Lotfi et al. Study of flexible printed transmission lines realized by direct-write printing technology
Urbanavičius et al. Simulation of the meander delay line using the hybrid method
Op't Land et al. Printed circuit board permittivity measurement using waveguide and resonator rings
Gazizov et al. Reduction of high-speed signal distortions in double-layered dielectric PCB interconnects
JP2007157553A (en) Anisotropic conductive film, and electrode structure of connecting object
Yoshioka et al. A Study of Millimeter Wave Transmission Between Two Grounded Coplanar Lines with U-shaped Slot
Velasquez et al. A novel method for measuring permittivity using transmission line analysis at microwave frequencies
Grady et al. Improved Bandwidth using a 3D Printed Quasi-Ideal Grounded Coplanar Waveguide Transmission Line
Dalmia et al. Characterization of thin film organic materials at high frequency