JP2014190569A - Water heating device - Google Patents

Water heating device Download PDF

Info

Publication number
JP2014190569A
JP2014190569A JP2013064343A JP2013064343A JP2014190569A JP 2014190569 A JP2014190569 A JP 2014190569A JP 2013064343 A JP2013064343 A JP 2013064343A JP 2013064343 A JP2013064343 A JP 2013064343A JP 2014190569 A JP2014190569 A JP 2014190569A
Authority
JP
Japan
Prior art keywords
hot water
heat
heat exchanger
pipe
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013064343A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yamamoto
伸幸 山本
Masahiko Shimazu
政彦 嶋津
Umi Matsubara
海 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2013064343A priority Critical patent/JP2014190569A/en
Publication of JP2014190569A publication Critical patent/JP2014190569A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a water heating device including a latent-heat-collection auxiliary heat source machine and having a simple, low-cost structure capable of suppressing vibration noise derived from a booster pump.SOLUTION: A water heating device 1 includes: a latent-heat-collection heat exchanger 3d; an auxiliary-heat-source outgoing passage portion 12b (supply water passage) connected to this latent-heat-collection heat exchanger 3d; and a booster pump 20 installed in this auxiliary-heat-source outgoing passage portion 12b, and supplying hot water to the latent-heat-collection heat exchanger 3d. The auxiliary-heat-source outgoing passage portion 12b includes a pipe portion 21 ranging from the booster pump 20 to the latent-heat-collection heat exchanger 3d. A part of the pipe portion 21 is constituted by an enlarged pipe portion 22 having a larger inner diameter than that of the other part of the piping portion 21, and an orifice portion 26 is provided between the booster pump 20 and the enlarged portion 22 in the piping portion 21.

Description

本発明は温水装置に関し、特に熱源機へ加圧ポンプを駆動して湯水を送る際に発生する振動音を低減可能な構造を備えたものに関する。   The present invention relates to a hot water apparatus, and more particularly to an apparatus having a structure capable of reducing vibration noise generated when a hot water is fed by driving a pressure pump to a heat source device.

従来から、貯湯、給湯、床暖房パネル等の温水暖房端末への温水の供給、風呂への給湯及び追い焚き等の機能を備えた温水装置が広く一般に普及している。この温水装置は、外部熱源機により加熱された湯水を貯留する貯湯タンク、貯湯タンクに低温の上水を供給する給水通路、貯湯タンクに貯留された湯水を給湯栓等の所望の給湯先に供給する給湯通路、暖房水を床暖房パネル等の温水暖房機器に供給する温水暖房回路、風呂への給湯及び追い焚きを行う風呂給湯追焚回路、温水暖房回路や風呂給湯追焚回路を加熱する熱利用循環回路等を備えている。   2. Description of the Related Art Conventionally, hot water apparatuses having functions such as hot water supply to hot water heating terminals such as hot water storage, hot water supply, floor heating panels, hot water supply to a bath, and reheating are widely used. This hot water device is a hot water storage tank that stores hot water heated by an external heat source device, a water supply passage that supplies low-temperature clean water to the hot water storage tank, and hot water stored in the hot water storage tank is supplied to a desired hot water supply destination such as a hot water tap. Heating passage for heating, hot water heating circuit for supplying heating water to hot water heating equipment such as floor heating panels, bath hot water supply circuit for hot water supply and reheating, heat for heating hot water heating circuit and bath hot water supply circuit A use circuit is provided.

上記の温水装置において、各種の通路及び各種の回路を構成する配管内に気泡を含んだ湯水が流れる場合があり、この場合、通水音により騒音が発生するという問題がある。このような問題を解決するため、以下に示すような騒音を抑制した構造を備えたものが種々の文献に開示されている。   In the hot water apparatus described above, hot water containing bubbles may flow in the pipes constituting various passages and various circuits, and in this case, there is a problem that noise is generated due to the water flow sound. In order to solve such a problem, various literatures having a structure that suppresses noise as described below are disclosed.

例えば、特許文献1には、温水暖房回路に温水暖房機器をバイパスするバイパス配管が設置された構造が開示され、このバイパス配管に発生する通水音を抑制するため、バイパス配管の途中部に、その両端部に設けられた流入部の内径よりも大きな内径を有する拡大部を設けた構造が開示されている。この構造によれば、拡大部により湯水の流速が低減し、湯水に含まれる気泡同士がくっついて成長し、気泡同士の衝突頻度を低減することで通水音を低減することができる。   For example, Patent Document 1 discloses a structure in which a bypass pipe for bypassing a hot water heating device is installed in a hot water heating circuit, and in order to suppress a water flow noise generated in the bypass pipe, A structure is disclosed in which enlarged portions having an inner diameter larger than the inner diameter of the inflow portion provided at both ends are provided. According to this structure, the flow rate of the hot water is reduced by the enlarged portion, the bubbles contained in the hot water are brought together and grow, and the water flow noise can be reduced by reducing the collision frequency of the bubbles.

ところで、上記の温水装置においては、貯湯タンク内の湯水の温度が低い場合に湯水を再加熱する補助熱源機を備えたものも実用化されている。この温水装置に組み込まれた補助熱源機は、燃焼ガスの顕熱を利用する熱交換器を備えたものだけでなく、顕熱回収後の燃焼排気ガスの潜熱を利用して熱効率の向上を図った潜熱回収型の熱交換器を備えたものも適用される。   By the way, in said hot water apparatus, what was equipped with the auxiliary heat source machine which reheats hot water when the temperature of the hot water in a hot water storage tank is low is also put in practical use. The auxiliary heat source unit incorporated in this hot water system is not only equipped with a heat exchanger that uses sensible heat of combustion gas, but also uses the latent heat of combustion exhaust gas after sensible heat recovery to improve thermal efficiency. Also provided are those equipped with a latent heat recovery type heat exchanger.

上記の補助熱源機を稼動する場合には、貯湯タンクに過度の入水圧が作用しないように従来から給水通路に減圧装置が設置されている構造上、補助熱源機へ供給される湯水の流量が減圧装置によって少量になる虞がある。このため、補助熱源機に接続された供給水路に加圧ポンプを設置して、この加圧ポンプによって湯水を加圧して補助熱源機へ送る必要が生じる。   When operating the above auxiliary heat source unit, the flow rate of hot water supplied to the auxiliary heat source unit has been reduced due to the structure in which a pressure reducing device is conventionally installed in the water supply passage so that excessive water pressure does not act on the hot water storage tank. There is a risk of a small amount depending on the decompression device. For this reason, it is necessary to install a pressurizing pump in the supply water channel connected to the auxiliary heat source unit, pressurize the hot water with this pressurizing pump, and send it to the auxiliary heat source unit.

特開平8−285296号公報JP-A-8-285296

しかし、補助熱源機へ湯水を加圧ポンプによって圧送すると、加圧ポンプの振動が供給水路を構成する配管や配管内の湯水を伝播して、補助熱源機の熱交換器へ直接伝播されてしまう。   However, when hot water is pumped to the auxiliary heat source machine by the pressurizing pump, the vibration of the pressurizing pump propagates through the piping constituting the supply water channel and the hot water in the pipe and is directly propagated to the heat exchanger of the auxiliary heat source machine. .

このため、補助熱源機が潜熱回収型の熱交換器を備えた構造である場合、潜熱回収型の熱交換器は、一般的に、硬い材質であるステンレスで形成されているため、加圧ポンプの振動に同期して潜熱回収型の熱交換器が振動してしまい、この振動が排気口から外部に騒音として漏れるという問題が生じる。   For this reason, when the auxiliary heat source unit has a structure including a latent heat recovery type heat exchanger, the latent heat recovery type heat exchanger is generally formed of stainless steel, which is a hard material. The latent heat recovery type heat exchanger vibrates in synchronism with this vibration, which causes a problem that the vibration leaks to the outside from the exhaust port.

本発明の目的は、潜熱回収型の補助熱源機を備えた温水装置において、容易な構造で且つ低コストで加圧ポンプに起因する振動音を抑制可能な構造を備えたもの、等を提供することである。   An object of the present invention is to provide a hot water apparatus equipped with a latent heat recovery type auxiliary heat source machine, which has an easy structure and a structure capable of suppressing vibration noise caused by a pressure pump at a low cost, and the like. That is.

請求項1の温水装置は、潜熱回収型の熱交換器と、この熱交換器に接続された供給水路と、この供給水路に設置され且つ前記熱交換器へ湯水を送る為の加圧ポンプとを備えた温水装置において、前記供給水路は、前記加圧ポンプから前記熱交換器に至る配管部分を有し、前記配管部分の一部が、その他の配管部分の内径よりも内径が拡大された拡管部で構成されたことを特徴としている。   The hot water apparatus according to claim 1 is a latent heat recovery type heat exchanger, a supply water channel connected to the heat exchanger, a pressure pump installed in the supply water channel and for sending hot water to the heat exchanger, In the hot water apparatus, the supply water channel has a pipe part extending from the pressurizing pump to the heat exchanger, and a part of the pipe part has an inner diameter larger than the inner diameters of the other pipe parts. It is characterized by the fact that it is composed of an expanded section.

請求項2の温水装置は、請求項1の発明において、前記配管部分における前記加圧ポンプと前記拡管部との間にオリフィス部が設けられたことを特徴としている。   The hot water device according to claim 2 is characterized in that, in the invention according to claim 1, an orifice portion is provided between the pressurizing pump and the pipe expanding portion in the pipe portion.

請求項3の温水装置は、請求項1又は2の発明において、前記拡管部に少なくとも1つの屈曲部が設けられたことを特徴としている。   According to a third aspect of the present invention, there is provided the hot water device according to the first or second aspect, wherein at least one bent portion is provided in the expanded pipe portion.

請求項1の発明によれば、供給水路は、加圧ポンプから熱交換器に至る配管部分を有し、配管部分の一部が、その他の配管部分の内径よりも内径が拡大された拡管部で構成されたので、内径が拡大された拡管部によって、加圧ポンプから吐出された湯水の流速が低下し、湯水の水圧を低減させることができる。   According to the first aspect of the present invention, the supply water channel has a pipe part extending from the pressurizing pump to the heat exchanger, and a part of the pipe part has a larger inner diameter than the inner diameters of the other pipe parts. Therefore, the flow rate of the hot water discharged from the pressurizing pump is reduced by the expanded pipe portion having an enlarged inner diameter, and the water pressure of the hot water can be reduced.

従って、拡管部によって、加圧ポンプから吐出された湯水の流速を低下させ、水圧を低減させることで、加圧ポンプから湯水に伝播した振動の振動エネルギを減衰させることができ、加圧ポンプから湯水に伝播した振動が潜熱回収型の熱交換器を介して外部に漏れるのを極力防止することができ、故に、加圧ポンプに起因する振動音の抑制を容易な構造で且つ低コストで実現できる。   Therefore, by reducing the flow rate of the hot water discharged from the pressurizing pump and reducing the water pressure, the vibration energy of the vibration propagated from the pressurizing pump to the hot water can be attenuated. Vibration transmitted to the hot water can be prevented from leaking outside through the latent heat recovery type heat exchanger as much as possible. Therefore, vibration noise caused by the pressurizing pump can be suppressed easily and at low cost. it can.

請求項2の発明によれば、配管部分における加圧ポンプと拡管部との間にオリフィス部が設けられたので、加圧ポンプから吐出された湯水の振動をオリフィス部によって減衰させることができ、故に、振動エネルギの減衰効果が一層向上し、加圧ポンプに起因する振動音の抑制効果が向上する。   According to invention of Claim 2, since the orifice part was provided between the pressurization pump and pipe expansion part in a piping part, the vibration of the hot water discharged from the pressurization pump can be attenuated by an orifice part, Therefore, the vibration energy attenuation effect is further improved, and the vibration noise suppression effect due to the pressure pump is improved.

請求項3の発明によれば、拡管部に少なくとも1つの屈曲部が設けられたので、屈曲部による湯水の流れ方向の変更によって振動エネルギの減衰効果がより向上し、加圧ポンプに起因する振動音の抑制効果がより一層向上する。   According to the invention of claim 3, since at least one bent portion is provided in the expanded portion, the vibration energy attenuation effect is further improved by changing the flow direction of the hot water by the bent portion, and vibration caused by the pressurizing pump. The sound suppression effect is further improved.

温水装置の概略構成図である。It is a schematic block diagram of a hot water device. 補助熱源機と加圧ポンプと配管部分の斜視図である。It is a perspective view of an auxiliary heat source machine, a pressure pump, and a piping part. 図2の配管部分から断熱材を取り外した状態の斜視図である。It is a perspective view of the state which removed the heat insulating material from the piping part of FIG. 補助熱源機と加圧ポンプと断熱材を取り外した状態の配管部分の側面図である。It is a side view of the piping part of the state which removed the auxiliary heat source machine, the pressurization pump, and the heat insulating material. 継手部材の断面図である。It is sectional drawing of a coupling member. オリフィス管部材の断面図である。It is sectional drawing of an orifice pipe member.

以下、本発明を実施するための形態について実施例に基づいて説明する。   Hereinafter, modes for carrying out the present invention will be described based on examples.

次に、本発明の温水装置1の全体構成について説明する。
図1に示すように、温水装置1は、貯湯、給湯、床暖房パネル等の温水暖房端末への温水の供給、風呂への給湯及び追い焚き等の機能を有するものであり、貯湯タンク2、補助熱源機3、第1,第2熱交換器4,5、給水通路6、給湯通路7、加熱循環回路8、風呂給湯追焚回路9、温水暖房回路11、熱利用循環回路12、制御ユニット13等を備え、これら大部分は外装ケース14内に一体的に収納されて構成されている。
Next, the whole structure of the hot water device 1 of the present invention will be described.
As shown in FIG. 1, the hot water apparatus 1 has functions such as hot water storage, hot water supply, hot water supply to hot water heating terminals such as a floor heating panel, hot water supply to a bath, reheating, etc. Auxiliary heat source unit 3, first and second heat exchangers 4, 5, water supply passage 6, hot water supply passage 7, heating circulation circuit 8, bath hot water supply circuit 9, hot water heating circuit 11, heat utilization circulation circuit 12, control unit 13 and the like, and most of them are integrally stored in the outer case 14.

尚、この温水装置1は、外部熱源機として熱交換器による貯湯タンク2内の湯水を加熱可能な燃料電池発電装置の排熱回収熱交換器と、この燃料電池発電装置と温水装置1との間に湯水を循環させる為の加熱循環回路8等と組み合わせることで燃料電池コージェネレーションシステムが構成されるが、温水装置1以外の構成の詳細な説明は省略する。   The hot water apparatus 1 includes an exhaust heat recovery heat exchanger of a fuel cell power generator capable of heating hot water in the hot water storage tank 2 by a heat exchanger as an external heat source device, and the fuel cell power generator and the hot water apparatus 1. A fuel cell cogeneration system is configured by combining with a heating circulation circuit 8 or the like for circulating hot water between them, but a detailed description of the configuration other than the hot water device 1 is omitted.

次に、貯湯タンク2について説明する。
図1に示すように、貯湯タンク2は、外部熱源機で加熱された高温の温水(例えば、80〜90℃)を貯留可能な密閉タンクで構成され、貯留された湯水の放熱を防ぐ為にタンク周囲は断熱材で覆われている。
Next, the hot water storage tank 2 will be described.
As shown in FIG. 1, the hot water storage tank 2 is composed of a sealed tank capable of storing high-temperature hot water (for example, 80 to 90 ° C.) heated by an external heat source device, and prevents heat dissipation of the stored hot water. The tank is covered with insulation.

次に、補助熱源機3について説明する。
図1に示すように、補助熱源機3は、熱利用循環回路12に設けられ、燃料ガスを燃焼して湯水の加熱を行う公知のガス給湯器で構成されている。補助熱源機3は、燃焼用空気を供給する為の送風ファン3aと、燃料ガスを燃焼させるバーナーユニット3bと、燃焼ガスの主として顕熱を回収する顕熱回収用熱交換器3cと、顕熱回収後の燃焼排気ガスの主として潜熱を回収する潜熱回収用熱交換器3d等を備えている。
Next, the auxiliary heat source unit 3 will be described.
As shown in FIG. 1, the auxiliary heat source unit 3 is provided in a heat utilization circuit 12 and is configured by a known gas water heater that burns fuel gas and heats hot water. The auxiliary heat source unit 3 includes a blower fan 3a for supplying combustion air, a burner unit 3b for burning fuel gas, a sensible heat recovery heat exchanger 3c for recovering mainly sensible heat of the combustion gas, and sensible heat A latent heat recovery heat exchanger 3d for recovering mainly latent heat of the recovered combustion exhaust gas is provided.

補助熱源機3は、貯湯タンク2内の湯水温度が設定温度以下の場合や熱利用循環回路12を循環する湯水の温度が不足する等の特別な場合に限り、主制御ユニット13から指令が送信されて燃焼作動され、熱利用循環回路12を流れる湯水を再加熱するものである。補助熱源機3に供給された湯水は、潜熱回収用熱交換器3dにおいて燃焼排気ガスの潜熱により加熱された後、顕熱回収用熱交換器3cに供給され、その顕熱回収用熱交換器3cにより加熱された後、熱利用循環回路12に供給される。   The auxiliary heat source unit 3 transmits a command from the main control unit 13 only in a special case such as when the temperature of the hot water in the hot water storage tank 2 is lower than the set temperature or the temperature of the hot water circulating in the heat utilization circulation circuit 12 is insufficient. The hot water flowing through the heat utilization circulation circuit 12 is reheated and reheated. The hot water supplied to the auxiliary heat source unit 3 is heated by the latent heat of the combustion exhaust gas in the latent heat recovery heat exchanger 3d, and then supplied to the sensible heat recovery heat exchanger 3c. After being heated by 3c, it is supplied to the heat utilization circuit 12.

次に、第1,第2熱交換器4,5について説明する。
第1熱交換器4は、風呂給湯追焚回路9を流れる風呂のお湯を加熱するものであり、熱利用循環回路12の一部となる熱交換通路部4a、風呂給湯追焚回路9の一部となる内部通路部4bを有している。第1熱交換器4において、熱利用循環回路12を流れる高温の湯水と風呂給湯追焚回路9を流れる風呂のお湯との間で熱交換され、風呂のお湯は加熱され、湯水は冷却される。
Next, the first and second heat exchangers 4 and 5 will be described.
The first heat exchanger 4 heats the hot water in the bath flowing through the bath hot water supply memorial circuit 9. The first heat exchanger 4 is a part of the heat utilization circulation circuit 12. It has an internal passage part 4b which becomes a part. In the first heat exchanger 4, heat is exchanged between the hot water flowing in the heat utilization circuit 12 and the hot water in the bath flowing in the bath hot water supply circuit 9, the hot water in the bath is heated, and the hot water is cooled. .

第2熱交換器5は、温水暖房回路11を流れる暖房水を加熱するものであり、熱利用循環回路12の一部となる熱交換通路部5a、温水暖房回路11の一部となる熱交換通路部5bを有している。第2熱交換器5において、熱利用循環回路12を流れる高温の湯水と温水暖房回路11を流れる暖房水との間で熱交換され、暖房水が加熱され、湯水は冷却される。   The 2nd heat exchanger 5 heats the heating water which flows through the hot water heating circuit 11, and heat exchange passage part 5a which becomes a part of heat utilization circulation circuit 12, and heat exchange which becomes a part of the hot water heating circuit 11 It has a passage 5b. In the 2nd heat exchanger 5, heat exchange is carried out between the hot hot water which flows through the heat utilization circulation circuit 12, and the heating water which flows through the hot water heating circuit 11, heating water is heated, and hot water is cooled.

次に、加熱循環回路8について説明する。
図1に示すように、加熱循環回路8は、貯湯タンク2と外部熱源機との間に湯水を循環させる閉回路であり、往き側循環通路部8a、戻り側循環通路部8bを有し、貯湯タンク2の下部に上流端が接続され、外部熱源機を経由して、貯湯タンク2の上部に下流端が接続されている。往き側循環通路部8aから戻り側循環通路部8bに接続するバイパス通路部8cが分岐され、この分岐部には、貯湯切換弁8dが設置されている。
Next, the heating circulation circuit 8 will be described.
As shown in FIG. 1, the heating circulation circuit 8 is a closed circuit for circulating hot water between the hot water storage tank 2 and the external heat source machine, and has a forward circulation passage 8a and a return circulation passage 8b. The upstream end is connected to the lower part of the hot water storage tank 2, and the downstream end is connected to the upper part of the hot water storage tank 2 via an external heat source machine. A bypass passage portion 8c connected to the return-side circulation passage portion 8b is branched from the forward-side circulation passage portion 8a, and a hot water storage switching valve 8d is installed at this branch portion.

通常の加熱循環運転では、図1に示すように、貯湯切換弁8dはバイパス通路部8cを遮断する側に切り換えられ、貯湯タンク2から循環ポンプ(図示略)を介して湯水が、往き側循環通路部8aを通り、外部熱源機に送られ加熱され、加熱された湯水は、戻り側循環通路部8bを通って貯湯タンク2に戻される。   In the normal heating circulation operation, as shown in FIG. 1, the hot water switching valve 8d is switched to the side that shuts off the bypass passage portion 8c, and hot water is circulated from the hot water storage tank 2 via a circulation pump (not shown). The hot and cold hot water supplied to the external heat source machine through the passage portion 8a and heated is returned to the hot water storage tank 2 through the return side circulation passage portion 8b.

次に、給水通路6と給湯通路7について説明する。
給水通路6は、上水源から低温の上水を貯湯タンク2に供給するものであり、上流給水通路部6a、中間給水通路部6b、下流給水通路部6cを有し、上水源に上流端が接続され、貯湯タンク2の下部に下流端が接続されている。上流給水通路部6aには、減圧弁6d(減圧装置)が設置され、中間給水通路部6bには、逆止弁6eが設置されている。
Next, the water supply passage 6 and the hot water supply passage 7 will be described.
The water supply passage 6 supplies low temperature clean water from a water supply source to the hot water storage tank 2, and has an upstream water supply passage portion 6a, an intermediate water supply passage portion 6b, and a downstream water supply passage portion 6c. The downstream end is connected to the lower part of the hot water storage tank 2. A pressure reducing valve 6d (pressure reducing device) is installed in the upstream water supply passage 6a, and a check valve 6e is installed in the intermediate water supply passage 6b.

給水通路6において、中間給水通路部6bと下流給水通路部6cとの間から熱利用循環回路12に接続するバイパス通路部16が分岐され、この分岐部には、蓄熱切換弁6gが設置されている。このバイパス通路部16により、低温の上水を熱利用循環回路12に供給することができ、また逆に、熱利用循環回路12から湯水を貯湯タンク2に戻すことができる。   In the water supply passage 6, a bypass passage portion 16 connected to the heat utilization circulation circuit 12 is branched from between the intermediate water supply passage portion 6b and the downstream water supply passage portion 6c, and a heat storage switching valve 6g is installed in this branch portion. Yes. By this bypass passage 16, low temperature clean water can be supplied to the heat utilization circuit 12, and conversely, hot water can be returned from the heat utilization circuit 12 to the hot water storage tank 2.

給湯通路7は、貯湯タンク2内に貯湯された湯水を風呂等の所望の給湯先に供給するものであり、高温の湯水が流れる上流給湯通路部7a、混合湯水が流れる下流給湯通路部7bを有し、貯湯タンク2の上部に上流端が接続され、給湯栓に下流端が接続されている。上流給湯通路部7aと下流給湯通路部7bとの間には、混合弁7cが設置され、この混合弁7cに上流給水通路部6aから分岐したバイパス通路部17が接続されている。バイパス通路部17には、逆止弁17aが設置されている。   The hot water supply passage 7 supplies hot water stored in the hot water storage tank 2 to a desired hot water supply destination such as a bath, and includes an upstream hot water supply passage portion 7a through which high-temperature hot water flows and a downstream hot water supply passage portion 7b through which mixed hot water flows. The upstream end is connected to the upper part of the hot water storage tank 2, and the downstream end is connected to the hot water tap. A mixing valve 7c is installed between the upstream hot water supply passage 7a and the downstream hot water supply passage 7b, and a bypass passage 17 branched from the upstream water supply passage 6a is connected to the mixing valve 7c. A check valve 17 a is installed in the bypass passage portion 17.

バイパス通路部17から混合弁7cを介さずに下流給湯通路部7bへ直接接続するバイパス通路部18が分岐され、このバイパス通路部18には、高温回避電磁弁18aが設置されている。このバイパス通路部18によって、下流給湯通路部7bに上水源から低温の上水を直接供給することができる。下流給湯通路部7bの途中部には、出湯水比例弁19aが設置され、この出湯水比例弁19aの下流側から風呂給湯追焚回路9へ接続する風呂出湯通路19が分岐されている。風呂出湯通路19には、注湯電磁弁19b、逆止弁19c等が順に一体的に設置されている。   A bypass passage portion 18 is connected from the bypass passage portion 17 directly to the downstream hot water supply passage portion 7b without passing through the mixing valve 7c, and a high temperature avoidance electromagnetic valve 18a is installed in the bypass passage portion 18. By this bypass passage 18, low-temperature clean water can be directly supplied from the clean water source to the downstream hot water supply passage 7 b. In the middle of the downstream hot water supply passage 7b, a hot water proportional valve 19a is installed, and a bath hot water passage 19 connected to the bath hot water supply circuit 9 is branched from the downstream side of the hot water proportional valve 19a. A pouring solenoid valve 19b, a check valve 19c, and the like are integrally installed in the bath outlet passage 19 in order.

次に、風呂給湯追焚回路9と温水暖房回路11について説明する。
図1に示すように、風呂給湯追焚回路9は、風呂のお湯を追い焚きする回路であり、風呂戻り通路部9a、風呂往き通路部9bを有している。風呂戻り通路部9aと風呂往き通路部9bとの間には、第1熱交換器4の内部通路部4bが接続され、風呂戻り通路部9aには、風呂循環ポンプ9cが設置されている。
Next, the bath hot water supply circuit 9 and the hot water heating circuit 11 will be described.
As shown in FIG. 1, the bath hot water supply circuit 9 is a circuit for scooping hot water in the bath, and has a bath return passage portion 9a and a bath return passage portion 9b. An internal passage portion 4b of the first heat exchanger 4 is connected between the bath return passage portion 9a and the bath return passage portion 9b, and a bath circulation pump 9c is installed in the bath return passage portion 9a.

温水暖房回路11は、床暖房パネルや浴室乾燥機等の温水暖房端末に供給される暖房水を循環させる回路であり、暖房戻り通路部11a、暖房高温往き通路部11b、暖房低温往き通路部11cを有している。暖房戻り通路部11aには、膨張タンク11dと暖房循環ポンプ11eとが設置されている。暖房高温往き通路部11bには、第2熱交換器5の熱交換通路部5bが介装されている。   The hot water heating circuit 11 is a circuit that circulates heating water supplied to a hot water heating terminal such as a floor heating panel or a bathroom dryer. have. An expansion tank 11d and a heating circulation pump 11e are installed in the heating return passage portion 11a. A heat exchange passage portion 5b of the second heat exchanger 5 is interposed in the heating high temperature going passage portion 11b.

次に、熱利用循環回路12について説明する。
熱利用循環回路12は、湯水を循環させて温水暖房回路11や風呂給湯追焚回路9との間で熱交換を行う閉回路であり、湯水往き通路部12a、補助熱源機往き通路部12b(供給水路に相当する)、熱交換器往き通路部12c、湯水戻り通路部12dを有している。
Next, the heat utilization circulation circuit 12 will be described.
The heat utilization circulation circuit 12 is a closed circuit that circulates hot and cold water and exchanges heat with the hot water heating circuit 11 and the bath hot water supply circuit 9. Corresponding to a supply water channel), a heat exchanger forward passage portion 12c, and a hot water return passage portion 12d.

湯水往き通路部12aの上流端が貯湯タンク2の上部に接続され、湯水往き通路部12aの下流端と補助熱源機往き通路部12bの上流端と湯水戻り通路部12dの下流端との合流部には、三方弁12eが設置されている。湯水往き通路部12aには、逆止弁12fが設置され、補助熱源機往き通路部12bには、潜熱回収用熱交換器3dへ湯水を送る為の加圧ポンプ20と流量センサ12gが設置されている。   The upstream end of the hot water going-out passage portion 12a is connected to the upper part of the hot water storage tank 2, and the junction between the downstream end of the hot-water going-up passage portion 12a, the upstream end of the auxiliary heat source unit going-out passage portion 12b, and the downstream end of the hot water return passage portion 12d. Is provided with a three-way valve 12e. A check valve 12f is installed in the hot water going-out passage portion 12a, and a pressurizing pump 20 and a flow rate sensor 12g for sending hot water to the latent heat recovery heat exchanger 3d are installed in the auxiliary heat source device going-out passage portion 12b. ing.

補助熱源機往き通路部12bと熱交換器往き通路部12cとの間に、補助熱源機3の潜熱回収用熱交換器3dと顕熱回収用熱交換器3cとが接続されている。熱交換器往き通路部12cの下流側部分の1対の分岐通路と湯水戻り通路部12dの上流側部分の1対の分岐通路との間に、第1,第2熱交換器4,5の熱交換通路部4a,5aが夫々接続されている。湯水戻り通路部12dの1対の分岐通路に風呂熱交出口電磁弁12hと暖房熱交出口電磁弁12iが夫々設置されている。   A latent heat recovery heat exchanger 3d and a sensible heat recovery heat exchanger 3c of the auxiliary heat source unit 3 are connected between the auxiliary heat source unit forward passage 12b and the heat exchanger forward passage 12c. Between the pair of branch passages in the downstream portion of the heat exchanger forward passage portion 12c and the pair of branch passages in the upstream portion of the hot water return passage portion 12d, the first and second heat exchangers 4 and 5 The heat exchange passages 4a and 5a are connected to each other. A bath heat exchange outlet solenoid valve 12h and a heating heat exchange outlet solenoid valve 12i are respectively installed in a pair of branch passages of the hot water return passage portion 12d.

熱交換器往き通路部12cから給湯通路7に接続する出湯通路部12jが分岐され、出湯通路部12jには、タンク水比例弁12kが設置されている。この出湯通路部12jによって、貯湯タンク2内で温度が低下した湯水や、給水通路6からバイパス通路部16を介して導入された低温の上水を補助熱源機3で加熱し、高温の湯水として給湯通路7に供給することができる。   A hot water passage portion 12j connected to the hot water supply passage 7 is branched from the heat exchanger forward passage portion 12c, and a tank water proportional valve 12k is installed in the hot water passage portion 12j. The hot water having a lowered temperature in the hot water storage tank 2 or the low-temperature water introduced from the water supply passage 6 through the bypass passage portion 16 is heated by the auxiliary heat source unit 3 by the hot water passage portion 12j to obtain hot hot water. The hot water supply passage 7 can be supplied.

次に、本発明に係る補助熱源機往き通路部12bの具体的構造について説明する。
図2〜図4に示すように、補助熱源機往き通路部12bは、加圧ポンプ20から潜熱回収用熱交換器3dに至る配管部分21を有している。この配管部分21の一部は、その他の配管部分21の内径よりも内径が拡大された拡管部22で構成されている。
Next, a specific structure of the auxiliary heat source unit forward passage portion 12b according to the present invention will be described.
As shown in FIGS. 2 to 4, the auxiliary heat source unit forward passage portion 12 b has a pipe portion 21 extending from the pressurizing pump 20 to the latent heat recovery heat exchanger 3 d. A part of the pipe part 21 is constituted by a pipe expansion part 22 whose inner diameter is larger than the inner diameters of the other pipe parts 21.

つまり、補助熱源機往き通路部12bの配管部分21は、加圧ポンプ20の接続部20aに接続される上流側小径管部21a、この上流側小径管部21aの下流端部に接続される拡管部22、この拡管部22の下流端部に接続され且つ潜熱回収用熱交換器3dに接続される下流側小径管部21bから構成されている。   That is, the pipe portion 21 of the auxiliary heat source unit forward passage portion 12b is connected to the upstream small-diameter pipe portion 21a connected to the connection portion 20a of the pressurizing pump 20, and to the downstream end portion of the upstream small-diameter pipe portion 21a. Part 22 and a downstream small-diameter pipe part 21b connected to the downstream end part of the pipe expansion part 22 and connected to the latent heat recovery heat exchanger 3d.

拡管部22を構成する配管の内径Rは、上流側及び下流側小径管部21bを構成する配管の内径rよりも大径に構成されている。例えば、拡管部22を、内径20mm(外径22.0mm)の配管で構成し、上流側及び下流側の小径管部21a,21bを、内径11.5mm(外径12.7mm)の配管で構成している。   The inner diameter R of the pipe constituting the expanded pipe part 22 is configured to be larger than the inner diameter r of the pipe constituting the upstream side and downstream side small diameter pipe part 21b. For example, the expanded tube portion 22 is constituted by a pipe having an inner diameter of 20 mm (outer diameter 22.0 mm), and the upstream and downstream small-diameter pipe portions 21a and 21b are formed by a pipe having an inner diameter of 11.5 mm (outer diameter 12.7 mm). It is composed.

図2〜図4に示すように、拡管部22には、少なくとも1つの屈曲部22aが設けられている。つまり、拡管部22を構成する配管の途中部分は屈曲され、この屈曲部22aの角度は、直角となるように設定されているが、特にこの角度に限定する必要はない。   As shown in FIGS. 2 to 4, at least one bent portion 22 a is provided in the pipe expansion portion 22. That is, an intermediate portion of the pipe constituting the expanded pipe portion 22 is bent, and the angle of the bent portion 22a is set to be a right angle, but it is not particularly limited to this angle.

上流側及び下流側の小径管部21a,21b及び拡管部22を構成する配管の周囲は、流れる湯水の放熱を防ぐ為に断熱材23で覆われている(図2参照)。上流側小径管部21aの途中部には、温水装置1の外部に湯水を排出可能な水抜き栓12lが設けられている。下流側小径管部21bの途中部には、流量センサ12gが設置されている。   The circumferences of the pipes constituting the upstream and downstream small-diameter pipe portions 21a and 21b and the expanded pipe portion 22 are covered with a heat insulating material 23 to prevent heat dissipation from flowing hot water (see FIG. 2). In the middle of the upstream small-diameter pipe portion 21a, a drain plug 12l capable of discharging hot water is provided outside the hot water apparatus 1. A flow rate sensor 12g is installed in the middle of the downstream side small diameter pipe portion 21b.

次に、拡管部22と上流側及び下流側の小径管部21a,21bとを接続する1対の継手部材24について説明する。
図5に示すように、拡管部22の両端部は、上流側小径管部21aの下流端部及び下流側小径管部21bの上流端部と継手部材24を介して夫々接続されている。これら継手部材24は、金属製(例えば、真鍮製)の略円筒形状に夫々形成され、外径の異なる配管同士を接続可能に構成されている。1対の継手部材24は、夫々同じ構造のものであるので、以下では、上流側の継手部材24について説明する。
Next, a pair of joint members 24 that connect the expanded pipe portion 22 and the upstream and downstream small-diameter pipe portions 21a and 21b will be described.
As shown in FIG. 5, both end portions of the tube expansion portion 22 are connected to the downstream end portion of the upstream small diameter tube portion 21 a and the upstream end portion of the downstream small diameter tube portion 21 b via the joint member 24, respectively. These joint members 24 are each formed in a substantially cylindrical shape made of metal (for example, brass), and are configured to be able to connect pipes having different outer diameters. Since the pair of joint members 24 have the same structure, the upstream joint member 24 will be described below.

継手部材24の内部には、上流側から下流側に向けて順に、小径管部21a,21bと略同じ外径を有する小径装着孔24a、この小径装着孔24aの端部に連通し且つ小径管部21a,21bと略同じ内径を有する円筒孔24b、この円筒孔24bの端部に連通し且つ下流側ほど大径化するテーパ孔24c、このテーパ孔24cの端部に連通し且つ拡管部22と略同じ外径を有する大径装着孔24dとが形成されている。   Inside the joint member 24, in order from the upstream side toward the downstream side, a small diameter mounting hole 24a having substantially the same outer diameter as the small diameter pipe portions 21a, 21b, and a small diameter pipe communicating with the end of the small diameter mounting hole 24a. A cylindrical hole 24b having substantially the same inner diameter as the portions 21a and 21b, a tapered hole 24c that communicates with the end of the cylindrical hole 24b and increases in diameter toward the downstream side, communicates with an end of the tapered hole 24c and expands the tube portion 22 And a large-diameter mounting hole 24d having substantially the same outer diameter.

この継手部材24を介して拡管部22と上流側小径管部21aの下流端部とを接続する場合、継手部材24の小径装着孔24aに上流側小径管部21aの下流端部を嵌入し、大径装着孔24dに拡管部22の上流端部を嵌入し、継手部材24と小径管部21aとの隙間及び継手部材24と拡管部22との隙間をロウ付けにより夫々接合することで、継手部材24を介して小径管部21a及び拡管部22とを接続する。拡管部22と下流側小径管部21bの上流端部との接続も同様である。   When connecting the expanded pipe portion 22 and the downstream end portion of the upstream small diameter pipe portion 21a via the joint member 24, the downstream end portion of the upstream small diameter tube portion 21a is inserted into the small diameter mounting hole 24a of the joint member 24, By fitting the upstream end portion of the expanded pipe portion 22 into the large diameter mounting hole 24d and joining the gap between the joint member 24 and the small diameter pipe portion 21a and the gap between the joint member 24 and the expanded pipe portion 22 by brazing, respectively, The small diameter pipe portion 21 a and the pipe expansion portion 22 are connected via the member 24. The connection between the expanded pipe part 22 and the upstream end of the downstream small diameter pipe part 21b is the same.

次に、オリフィス管部材25について説明する。
図2〜図4に示すように、補助熱源機往き通路部12bの配管部分21における加圧ポンプ20と拡管部22との間に、加圧ポンプ20から吐出された湯水の水圧を上昇させる為のオリフィス部26を備えたオリフィス管部材25が設けられている。
Next, the orifice pipe member 25 will be described.
As shown in FIGS. 2 to 4, in order to increase the water pressure of hot water discharged from the pressurization pump 20 between the pressurization pump 20 and the expanded pipe portion 22 in the pipe portion 21 of the auxiliary heat source unit forward passage section 12 b. An orifice pipe member 25 having an orifice portion 26 is provided.

図6に示すように、オリフィス管部材25は、金属製(例えば、真鍮製)の略円筒形状に形成され、加圧ポンプ20の吐出口と一体形成された接続部20aと上流側小径管部21aの上流端部とを接続可能に構成されている。   As shown in FIG. 6, the orifice tube member 25 is formed in a substantially cylindrical shape made of metal (for example, brass), and is integrally formed with a discharge port of the pressure pump 20 and an upstream small-diameter tube portion. It is configured to be connectable to the upstream end of 21a.

オリフィス管部材25は、加圧ポンプ20の接続部20aが外嵌される小径筒部25a、この小径筒部25aの端部に形成された環状突部25b、この環状突部25bの端部から下流側に向って延びる大径筒部25cとから一体的に形成されている。小径筒部25aの外周部には環状溝25dが形成され、この環状溝25dに合成樹脂製のOリング27が装着されている。   The orifice pipe member 25 includes a small-diameter cylindrical portion 25a to which the connecting portion 20a of the pressurizing pump 20 is fitted, an annular protrusion 25b formed at the end of the small-diameter cylindrical portion 25a, and an end of the annular protrusion 25b. The large-diameter cylindrical portion 25c extending toward the downstream side is integrally formed. An annular groove 25d is formed in the outer peripheral portion of the small-diameter cylindrical portion 25a, and a synthetic resin O-ring 27 is attached to the annular groove 25d.

オリフィス管部材25の内周側には、上流側から下流側に向って、オリフィス部26と、このオリフィス部26の端部に連なり且つ上流側小径管部21aの上流端部が収納される収容孔25eが形成されている。オリフィス部26は、下流側に向って軸心側へ移行するように傾斜した環状テーパ孔26a、この環状テーパ孔26aの端部に連なる円筒孔26b、この円筒孔26bの端部に連なり且つ環状テーパ孔26aと逆方向に緩やかに傾斜した環状テーパ孔26cにより形成されている。   On the inner peripheral side of the orifice pipe member 25, the orifice part 26 and the upstream end part of the upstream small-diameter pipe part 21a are accommodated from the upstream side toward the downstream side. A hole 25e is formed. The orifice portion 26 has an annular tapered hole 26a inclined so as to move toward the axial center toward the downstream side, a cylindrical hole 26b connected to an end portion of the annular tapered hole 26a, and an annular portion connected to an end portion of the cylindrical hole 26b. It is formed by an annular tapered hole 26c gently inclined in the opposite direction to the tapered hole 26a.

このオリフィス管部材25を介して加圧ポンプ20と上流側小径管部21aの上流端部とを接続する場合、加圧ポンプ20の接続部20aに対して、オリフィス管部材25の小径筒部25aを環状突部25bが接続部20aの先端鍔部20bに当接するまで嵌入し、オリフィス管部材25の収容孔25eに上流側小径管部21aの上流端部を嵌入し、環状突部25bと先端鍔部20bを挟持するように固定部材28(所謂、クイックファスナー)を装着し、オリフィス管部材25と上流側小径管部21aとの隙間をロウ付けにより接合することで、オリフィス管部材25を介して加圧ポンプ20と上流側小径管部21aとを接続する。   When connecting the pressurizing pump 20 and the upstream end of the upstream small-diameter pipe portion 21a via the orifice pipe member 25, the small-diameter cylindrical portion 25a of the orifice pipe member 25 is connected to the connecting portion 20a of the pressurizing pump 20. Until the annular projection 25b contacts the distal end flange 20b of the connecting portion 20a, and the upstream end of the upstream small-diameter pipe portion 21a is fitted into the accommodation hole 25e of the orifice tube member 25, and the annular projection 25b and the distal end are fitted. A fixing member 28 (so-called quick fastener) is attached so as to sandwich the flange portion 20b, and the gap between the orifice pipe member 25 and the upstream small-diameter pipe portion 21a is joined by brazing so that the orifice pipe member 25 is interposed. Then, the pressurizing pump 20 and the upstream side small diameter pipe portion 21a are connected.

次に、本発明に温水装置1の作用及び効果について説明する。
熱利用循環回路12において、加圧ポンプ20の駆動を介して、湯水が補助熱源機往き通路部12bから補助熱源機3に送られ必要に応じて再加熱され、補助熱源機3を通った湯水は、熱交換器往き通路部12cを通って第1,第2熱交換器4,5に送られ、この第1,第2熱交換器4,5で熱交換された湯水は、湯水戻り通路部12dを通って補助熱源機往き通路部12bに戻される循環流が形成される。
Next, the operation and effect of the hot water device 1 will be described.
In the heat utilization circulation circuit 12, hot water is sent from the auxiliary heat source unit forward passage section 12 b to the auxiliary heat source unit 3 through the drive of the pressurizing pump 20, reheated as necessary, and hot water passing through the auxiliary heat source unit 3. Is sent to the first and second heat exchangers 4 and 5 through the heat exchanger forward passage portion 12c, and the hot water exchanged in the first and second heat exchangers 4 and 5 is the hot water return passage. A circulating flow is formed that returns to the auxiliary heat source unit forward passage section 12b through the section 12d.

このとき、補助熱源機往き通路部12bにおいては、加圧ポンプ20が駆動されると、加圧ポンプ20の接続部20aから吐出された湯水は、オリフィス部26を通過する際に水圧が上昇されると共に加圧ポンプ20に起因する振動エネルギが減衰され、上流側小径管部21aを経由して拡管部22に流入する。拡管部22に流入した湯水は、流速が低下して湯水の水圧が低減することで振動エネルギが減衰する。拡管部22から送り出された湯水は、下流側小径管部21bを経由して潜熱回収用熱交換器3dへ送り込まれる。   At this time, when the pressurizing pump 20 is driven in the auxiliary heat source unit forward passage section 12b, the hot water discharged from the connecting section 20a of the pressurizing pump 20 is increased in water pressure when passing through the orifice section 26. At the same time, the vibration energy caused by the pressurizing pump 20 is attenuated and flows into the expanded pipe portion 22 via the upstream side small diameter pipe portion 21a. The hot water that has flowed into the expanded pipe portion 22 is attenuated in vibration energy due to a decrease in the flow velocity and a decrease in the water pressure of the hot water. The hot water sent out from the expanded pipe part 22 is sent into the latent heat recovery heat exchanger 3d via the downstream small diameter pipe part 21b.

以上説明したように、補助熱源機往き通路部12b(供給水路)は、加圧ポンプ20から潜熱回収用熱交換器3dに至る配管部分21を有し、配管部分21の一部が、その他の配管部分21(小径管部21a,21b)の内径よりも内径が拡大された拡管部22で構成されたので、内径が拡大された拡管部22によって、加圧ポンプ20から吐出された湯水の流速が低下し、湯水の水圧を低減させることができる。   As described above, the auxiliary heat source unit forward passage portion 12b (supply water passage) has the piping portion 21 from the pressurizing pump 20 to the latent heat recovery heat exchanger 3d, and a portion of the piping portion 21 is the other portion. Since the pipe portion 21 (small-diameter pipe portions 21a and 21b) is constituted by the expanded pipe portion 22 whose inner diameter is larger than the inner diameter, the flow rate of the hot water discharged from the pressurizing pump 20 by the expanded pipe portion 22 having an enlarged inner diameter. Can be reduced, and the water pressure of hot water can be reduced.

従って、拡管部22によって、加圧ポンプ20から吐出された湯水の流速を低下させ、水圧を低減させることで、加圧ポンプ20から湯水に伝播した振動の振動エネルギを減衰させることができ、加圧ポンプ20から湯水に伝播した振動が潜熱回収用熱交換器3dを介して外部に漏れるのを極力防止することができ、故に、加圧ポンプ20に起因する振動音の抑制を容易な構造で且つ低コストで実現できる。   Therefore, by reducing the flow rate of the hot water discharged from the pressurizing pump 20 and reducing the water pressure by the pipe expansion part 22, the vibration energy of the vibration transmitted from the pressurizing pump 20 to the hot water can be attenuated. The vibration propagated from the pressure pump 20 to the hot water can be prevented from leaking to the outside via the latent heat recovery heat exchanger 3d as much as possible. Therefore, the vibration noise caused by the pressure pump 20 can be easily suppressed. And it can be realized at low cost.

また、配管部分21における加圧ポンプ20と拡管部22との間にオリフィス部26が設けられたので、加圧ポンプ20から吐出された湯水の振動をオリフィス部26によって減衰させることができ、故に、振動エネルギの減衰効果が一層向上し、加圧ポンプ20に起因する振動音の抑制効果が向上する。   Moreover, since the orifice part 26 is provided between the pressurization pump 20 and the pipe expansion part 22 in the piping part 21, the vibration of the hot water discharged from the pressurization pump 20 can be attenuated by the orifice part 26. The damping effect of vibration energy is further improved, and the effect of suppressing vibration noise caused by the pressurizing pump 20 is improved.

さらに、拡管部22に少なくとも1つの屈曲部22aが設けられたので、屈曲部22aによる湯水の流れ方向の変更によって振動エネルギの減衰効果がより向上し、加圧ポンプ20に起因する振動音の抑制効果がより一層向上する。   Further, since at least one bent portion 22a is provided in the pipe expanding portion 22, the vibration energy attenuation effect is further improved by changing the flowing direction of the hot water by the bent portion 22a, and the vibration noise caused by the pressurizing pump 20 is suppressed. The effect is further improved.

次に、前記実施例を部分的に変更した形態について説明する。
[1]前記実施例において、外部熱源機として、燃料電池発電装置の排熱回収熱交換器について説明したが、これに限定する必要はなく、ヒートポンプ式加熱装置、ガスエンジン等を採用しても良いし、これら以外にも種々の公知なものを採用可能である。
Next, a mode in which the above embodiment is partially changed will be described.
[1] In the above-described embodiment, the exhaust heat recovery heat exchanger of the fuel cell power generation device has been described as the external heat source device. However, the present invention is not limited to this, and a heat pump heating device, a gas engine, or the like may be adopted. In addition to these, various known ones can be employed.

[2]前記実施例において、拡管部22には、1つの屈曲部22aが設けられた構造について説明したが、特に屈曲部22aは1つに限定する必要はなく、複数の屈曲部22aが設けられた構造であっても良い。 [2] In the above-described embodiment, the structure in which the bent portion 22 is provided with one bent portion 22a has been described. However, the bent portion 22a is not particularly limited to one, and a plurality of bent portions 22a are provided. It may be a structured.

[3]その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態を包含するものである。 [3] In addition, those skilled in the art can implement the present invention in various forms with various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. It is.

1 温水装置
3 補助熱源機
3d 潜熱回収用熱交換器
12 熱利用循環回路
12b 補助熱源機往き通路部
20 加圧ポンプ
21 配管部分
22 拡管部
22a 屈曲部
26 オリフィス部
DESCRIPTION OF SYMBOLS 1 Hot water apparatus 3 Auxiliary heat source machine 3d Heat exchanger 12 for latent heat collection | recovery 12 Heat utilization circulation circuit 12b Auxiliary heat source machine going path part 20 Pressure pump 21 Pipe part 22 Expanded part 22a Bending part 26 Orifice part

Claims (3)

潜熱回収型の熱交換器と、この熱交換器に接続された供給水路と、この供給水路に設置され且つ前記熱交換器へ湯水を送る為の加圧ポンプとを備えた温水装置において、
前記供給水路は、前記加圧ポンプから前記熱交換器に至る配管部分を有し、
前記配管部分の一部が、その他の配管部分の内径よりも内径が拡大された拡管部で構成されたことを特徴とする温水装置。
In a hot water apparatus comprising a latent heat recovery type heat exchanger, a supply water channel connected to the heat exchanger, and a pressure pump installed in the supply water channel and for sending hot water to the heat exchanger,
The supply water channel has a piping portion from the pressure pump to the heat exchanger,
A part of said piping part was comprised by the expanded pipe part by which the internal diameter was expanded rather than the internal diameter of another piping part, The hot water apparatus characterized by the above-mentioned.
前記配管部分における前記加圧ポンプと前記拡管部との間にオリフィス部が設けられたことを特徴とする請求項1に記載の温水装置。   The hot water device according to claim 1, wherein an orifice portion is provided between the pressurizing pump and the expansion portion in the pipe portion. 前記拡管部に少なくとも1つの屈曲部が設けられたことを特徴とする請求項1又は2に記載の温水装置。
The hot water device according to claim 1, wherein at least one bent portion is provided in the expanded pipe portion.
JP2013064343A 2013-03-26 2013-03-26 Water heating device Pending JP2014190569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064343A JP2014190569A (en) 2013-03-26 2013-03-26 Water heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064343A JP2014190569A (en) 2013-03-26 2013-03-26 Water heating device

Publications (1)

Publication Number Publication Date
JP2014190569A true JP2014190569A (en) 2014-10-06

Family

ID=51837006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064343A Pending JP2014190569A (en) 2013-03-26 2013-03-26 Water heating device

Country Status (1)

Country Link
JP (1) JP2014190569A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084395A (en) * 2016-11-25 2018-05-31 株式会社ノーリツ Heating water heater
JP2019219098A (en) * 2018-06-19 2019-12-26 伸和コントロールズ株式会社 Refrigerant-type cooling device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330516U (en) * 1976-08-23 1978-03-16
JPS5330515U (en) * 1976-08-23 1978-03-16
JPS5323527B2 (en) * 1973-02-23 1978-07-15
JPS5443207B2 (en) * 1976-10-06 1979-12-19
JPS62169000A (en) * 1986-01-20 1987-07-25 Kubota Ltd Muffling device for submersible pump
JPH026257U (en) * 1988-06-27 1990-01-16
JPH03129819U (en) * 1990-04-12 1991-12-26
JPH0529598Y2 (en) * 1987-08-29 1993-07-28
JPH0614685U (en) * 1992-07-29 1994-02-25 三菱重工業株式会社 Silencer and air conditioner
JPH0633918B2 (en) * 1987-10-20 1994-05-02 三菱電機株式会社 refrigerator
JPH08285296A (en) * 1995-04-10 1996-11-01 Sanyo Electric Co Ltd Heat source equipment
JPH09257186A (en) * 1996-03-21 1997-09-30 Tokai Rubber Ind Ltd Joint for pipe with orifice
JPH09257185A (en) * 1996-03-21 1997-09-30 Tokai Rubber Ind Ltd Tube with orifice
JP2003214588A (en) * 2002-01-18 2003-07-30 Denso Corp Piping structure
JP2010071525A (en) * 2008-09-17 2010-04-02 Osaka Gas Co Ltd Method of operating bath system and the bath system

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323527B2 (en) * 1973-02-23 1978-07-15
JPS5330515U (en) * 1976-08-23 1978-03-16
JPS5330516U (en) * 1976-08-23 1978-03-16
JPS5443207B2 (en) * 1976-10-06 1979-12-19
JPS62169000A (en) * 1986-01-20 1987-07-25 Kubota Ltd Muffling device for submersible pump
JPH0529598Y2 (en) * 1987-08-29 1993-07-28
JPH0633918B2 (en) * 1987-10-20 1994-05-02 三菱電機株式会社 refrigerator
JPH026257U (en) * 1988-06-27 1990-01-16
JPH03129819U (en) * 1990-04-12 1991-12-26
JPH0614685U (en) * 1992-07-29 1994-02-25 三菱重工業株式会社 Silencer and air conditioner
JPH08285296A (en) * 1995-04-10 1996-11-01 Sanyo Electric Co Ltd Heat source equipment
JPH09257186A (en) * 1996-03-21 1997-09-30 Tokai Rubber Ind Ltd Joint for pipe with orifice
JPH09257185A (en) * 1996-03-21 1997-09-30 Tokai Rubber Ind Ltd Tube with orifice
JP2003214588A (en) * 2002-01-18 2003-07-30 Denso Corp Piping structure
JP2010071525A (en) * 2008-09-17 2010-04-02 Osaka Gas Co Ltd Method of operating bath system and the bath system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084395A (en) * 2016-11-25 2018-05-31 株式会社ノーリツ Heating water heater
JP2019219098A (en) * 2018-06-19 2019-12-26 伸和コントロールズ株式会社 Refrigerant-type cooling device

Similar Documents

Publication Publication Date Title
JP5769948B2 (en) Hot water heating system
JP2009516819A (en) Boiler hot water supply system with double pipe heat exchanger
JP2014190569A (en) Water heating device
JP5547664B2 (en) Hot water heating system
JP6111861B2 (en) Hot water storage system
JP6331461B2 (en) Hot water heater
JP5575184B2 (en) Heating system
JP4269168B2 (en) Heat source machine for hot water heating system
JP6376389B2 (en) Hot water storage system
JP2007247940A (en) Hot water branching unit
JP6009797B2 (en) Heating system
JP4850118B2 (en) Hot water supply piping heat insulation operation method in hot water storage type hot water supply system
JP6171722B2 (en) Hot water storage hot water heater
CN113124559A (en) Wall-hanging stove control system convenient to bathing and heating move simultaneously
JP2015102285A (en) Hot water storage and supply device
JP6268984B2 (en) Heat source machine
CN107620999A (en) A kind of central water heating device integrated with domestic hot-water that heats
JP2003120887A (en) Piping structure reducing noise in hot-water supply system
JP5860276B2 (en) Thermal insulation device for hybrid water heater
KR200210525Y1 (en) Bypass pipe for gas boilers
JP2008107080A (en) Floor heating system
CN211290524U (en) Gas water heater and heating system
JP2015194330A (en) heat distribution unit for heating circulation circuit
JP4779571B2 (en) Water heater
JP2019095095A (en) Heat carrier circulation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170704