JP2014189425A5 - - Google Patents

Download PDF

Info

Publication number
JP2014189425A5
JP2014189425A5 JP2013064539A JP2013064539A JP2014189425A5 JP 2014189425 A5 JP2014189425 A5 JP 2014189425A5 JP 2013064539 A JP2013064539 A JP 2013064539A JP 2013064539 A JP2013064539 A JP 2013064539A JP 2014189425 A5 JP2014189425 A5 JP 2014189425A5
Authority
JP
Japan
Prior art keywords
crucible
single crystal
growing
sapphire single
sapphire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013064539A
Other languages
Japanese (ja)
Other versions
JP2014189425A (en
JP5949622B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2013064539A priority Critical patent/JP5949622B2/en
Priority claimed from JP2013064539A external-priority patent/JP5949622B2/en
Publication of JP2014189425A publication Critical patent/JP2014189425A/en
Publication of JP2014189425A5 publication Critical patent/JP2014189425A5/ja
Application granted granted Critical
Publication of JP5949622B2 publication Critical patent/JP5949622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

このような事情から、ブリッジマン法やVGF法によるサファイア単結晶の育成に用いる坩堝の材料としては、高融点金属のうち、比較的低価格であり、サファイア単結晶の熱膨張係数より小さい、タングステン(W)やモリブデン(Mo)が着目されている。たとえば、特開2011−42560号公報において、坩堝の線膨張係数とサファイア単結晶の成長軸(c軸)に垂直な方向の線膨張係数との相違に着目して、タングステン、モリブデン、あるいはこれらの合金からなる坩堝が提案されている。なお、この坩堝では、内周面が底面から開口に向けて拡径しており、かつ、内周面のテーパ角を1.2°〜2°としている。 Under these circumstances, as a crucible material used for growing a sapphire single crystal by the Bridgman method or the VGF method, tungsten is a relatively low price among refractory metals and is smaller than the thermal expansion coefficient of the sapphire single crystal. Attention has been focused on (W) and molybdenum (Mo). For example, JP-in 2011- 0 42560 discloses, by focusing on differences from the linear expansion coefficient and the growth axis (c-axis) perpendicular to the direction of the linear expansion coefficient of the sapphire single crystal of the crucible, tungsten, molybdenum, or their A crucible made of the above alloy has been proposed. In this crucible, the inner peripheral surface is enlarged in diameter from the bottom surface toward the opening, and the taper angle of the inner peripheral surface is set to 1.2 ° to 2 °.

前記坩堝の内周面のテーパ角は、1.0°〜3.0°であることが好ましく、また、前記鏡面部の表面粗さが、算術平均粗さRaで0.2μm以下であることが好ましい。 The taper angle of the inner peripheral surface of the crucible is preferably 1.0 ° to 3.0 ° , and the surface roughness of the mirror surface portion is 0.2 μm or less in terms of arithmetic average roughness Ra. Is preferred.

一方、タンタル(Ta、融点:3017℃)、イリジウム(Ir、融点:2466℃)、レニウム(Re、融点:3186℃)などの高融点金属は、その熱膨張係数がサファイアよりも大きいため、これら坩堝本体の主たる材料とすることはできないが、坩堝の用途や大きさに応じて、これらの高融点金属を、坩堝本体の熱膨張係数が前記所定値を上回らない範囲で添加することは可能である。また、サファイアよりも融点が低い、ロジウム(Rh、融点:1964℃)、白金(Pt、融点:1768℃)、パラジウム(Pd、融点:1555℃)などの貴金属は、サファイア原料融液との反応性が低いため、同様に、坩堝本体の熱膨張係数が前記所定値を上回らない範囲で添加することは可能である。これらの金属の含有許容量は、その種類に応じて異なるが、通常、坩堝全体の材料の総質量に対して、30質量%以下、好ましくは、20質量%以下である。 On the other hand, refractory metals such as tantalum (Ta, melting point: 3017 ° C.), iridium (Ir, melting point: 2466 ° C.), rhenium (Re, melting point: 3186 ° C.) have a larger thermal expansion coefficient than sapphire. Although it cannot be used as the main material of the crucible body, it is possible to add these refractory metals within the range where the thermal expansion coefficient of the crucible body does not exceed the predetermined value, depending on the application and size of the crucible. is there. Moreover, noble metals such as rhodium (Rh, melting point: 1964 ° C.), platinum (Pt, melting point: 1768 ° C.), palladium (Pd, melting point: 1555 ° C.), which have a lower melting point than sapphire, react with the sapphire raw material melt. Similarly, it is possible to add in a range where the thermal expansion coefficient of the crucible main body does not exceed the predetermined value. The allowable content of these metals varies depending on the type, but is usually 30% by mass or less, preferably 20% by mass or less, based on the total mass of the material of the entire crucible.

Claims (6)

タングステン、または、タングステンとモリブデンとの合金からなり、底面と内周面と開口とを備え、前記内周面は、前記底面側から前記開口側に向けて拡径する、0.8°〜3.0°のテーパ角を有し、かつ、前記内周面のうち、少なくともサファイア原料融液の上端部と接触する部分に、表面粗さが、算術平均粗さRaで0.5μm以下である鏡面部が設けられている、サファイア単結晶育成用坩堝。   It is made of tungsten or an alloy of tungsten and molybdenum, and includes a bottom surface, an inner peripheral surface, and an opening, and the inner peripheral surface expands from the bottom surface side toward the opening side, 0.8 ° to 3 °. The surface roughness is 0.5 μm or less in terms of arithmetic average roughness Ra at a portion having a taper angle of 0 ° and in contact with at least the upper end portion of the sapphire raw material melt in the inner peripheral surface. A crucible for growing a sapphire single crystal provided with a mirror surface portion. 前記タングステンとモリブデンからなる合金における、タングステンの含有率が30質量%以上である、請求項に記載のサファイア単結晶育成用坩堝。 The crucible for growing a sapphire single crystal according to claim 1 , wherein the tungsten content in the alloy of tungsten and molybdenum is 30% by mass or more. 前記坩堝の内周面のテーパ角が1.0°〜3.0°である、請求項1〜のいずれかに記載のサファイア単結晶育成用坩堝。 The crucible for growing a sapphire single crystal according to any one of claims 1 to 2 , wherein a taper angle of an inner peripheral surface of the crucible is 1.0 ° to 3.0 °. 前記鏡面部の表面粗さが、算術平均粗さRaで0.2μm以下である、請求項1〜のいずれかに記載のサファイア単結晶育成用坩堝。 The crucible for growing a sapphire single crystal according to any one of claims 1 to 3 , wherein the surface roughness of the mirror surface portion is 0.2 µm or less in terms of arithmetic average roughness Ra. 前記鏡面部が、バフ研磨および/または電解研磨により鏡面加工されたものである、請求項1〜のいずれかに記載のサファイア単結晶育成用坩堝。 The crucible for growing a sapphire single crystal according to any one of claims 1 to 4 , wherein the mirror surface portion is mirror-finished by buffing and / or electrolytic polishing. 請求項1〜のいずれかに記載のサファイア単結晶育成用坩堝を使用して、垂直温度勾配凝固法または垂直式温度傾斜凝固法により、サファイア原料を融解し、サファイア単結晶を固化させる、サファイア単結晶の製造方法。 The sapphire single crystal growing crucible according to any one of claims 1 to 5 , wherein the sapphire single crystal is solidified by melting a sapphire raw material by a vertical temperature gradient solidification method or a vertical temperature gradient solidification method. A method for producing a single crystal.
JP2013064539A 2013-03-26 2013-03-26 Crucible for growing sapphire single crystals Expired - Fee Related JP5949622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064539A JP5949622B2 (en) 2013-03-26 2013-03-26 Crucible for growing sapphire single crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064539A JP5949622B2 (en) 2013-03-26 2013-03-26 Crucible for growing sapphire single crystals

Publications (3)

Publication Number Publication Date
JP2014189425A JP2014189425A (en) 2014-10-06
JP2014189425A5 true JP2014189425A5 (en) 2015-12-03
JP5949622B2 JP5949622B2 (en) 2016-07-13

Family

ID=51836067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064539A Expired - Fee Related JP5949622B2 (en) 2013-03-26 2013-03-26 Crucible for growing sapphire single crystals

Country Status (1)

Country Link
JP (1) JP5949622B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102136442B1 (en) * 2013-03-21 2020-07-21 가부시끼가이샤 아라이도 마테리아루 Crucible for growing sapphire single crystal and method for growing sapphire single crystal
JP6834618B2 (en) * 2017-03-09 2021-02-24 住友金属鉱山株式会社 Crucible for single crystal growth and single crystal growth method
CN109722633B (en) * 2017-10-31 2021-07-06 上海和辉光电股份有限公司 Crucible and evaporation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI519685B (en) * 2009-07-22 2016-02-01 國立大學法人信州大學 Method & equipment for producing sapphire single crystal
JP5689598B2 (en) * 2009-12-15 2015-03-25 株式会社東芝 Method for producing crucible made of tungsten molybdenum alloy

Similar Documents

Publication Publication Date Title
El-Daly et al. Microstructural evolution and tensile properties of Sn–5Sb solder alloy containing small amount of Ag and Cu
Milenkovic et al. Constitutional and microstructural investigation of the pseudobinary NiAl–W system
Li et al. Influence of impurity elements on the nucleation and growth of Si in high purity melt-spun Al–Si-based alloys
TW201126031A (en) Crystal growth methods and systems
BR112015009882B1 (en) processes for producing a nickel-titanium rolled product
JP2014189425A5 (en)
CN106132589B (en) Metal wire rod comprising iridium or iridium alloy
TW201100595A (en) Methods of making an unsupported article of semiconducting material by controlled undercooling
JP6358609B2 (en) Copper alloy and manufacturing method thereof
Pan et al. Microstructure and transformation temperatures in rapid solidified Ni–Ti alloys. Part I: The effect of cooling rate
Dahmen¶ et al. Observations of interface premelting at grain-boundary precipitates of Pb in Al
JPWO2019073754A1 (en) Ti-Ni alloy, wire rod using it, energizing actuator and temperature sensor, and manufacturing method of Ti-Ni alloy
JP2012193423A (en) Cu-Ga ALLOY MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP5949622B2 (en) Crucible for growing sapphire single crystals
JP2015189616A (en) Manufacturing method of sapphire single crystal
JP2010214387A (en) Mold flux for continuous casting, and continuous casting method
JP2010000514A (en) Method for producing magnesium alloy member
JP5201446B2 (en) Target material and manufacturing method thereof
JP5218934B2 (en) Metallic silicon and its manufacturing method
Yamashita et al. In situ observation of nonmetallic inclusion formation in NiTi alloys
JP5714436B2 (en) Method for producing magnesium alloy material and magnesium alloy material produced thereby
US20130233456A1 (en) Metallic Material With An Elasticity Gradient
Jiarong et al. Solidification simulation of investment castings of single crystal hollow turbine blade
JP5283522B2 (en) Temperature-sensitive material and method for manufacturing the same, thermal fuse, circuit protection element
Sadrnezhaad et al. Effect of microstructure on rolling behavior of NiTi memory alloy