JP2014189054A - Vehicle impact absorption member - Google Patents

Vehicle impact absorption member Download PDF

Info

Publication number
JP2014189054A
JP2014189054A JP2013064116A JP2013064116A JP2014189054A JP 2014189054 A JP2014189054 A JP 2014189054A JP 2013064116 A JP2013064116 A JP 2013064116A JP 2013064116 A JP2013064116 A JP 2013064116A JP 2014189054 A JP2014189054 A JP 2014189054A
Authority
JP
Japan
Prior art keywords
vehicle
flange
half side
thickness
absorbing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013064116A
Other languages
Japanese (ja)
Other versions
JP5997085B2 (en
Inventor
Hiroaki Hosoi
寛哲 細井
Toru Hashimura
徹 橋村
Keisuke Akazaki
圭輔 赤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013064116A priority Critical patent/JP5997085B2/en
Publication of JP2014189054A publication Critical patent/JP2014189054A/en
Application granted granted Critical
Publication of JP5997085B2 publication Critical patent/JP5997085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle impact absorption member that has increased section modulus and plastic section modulus without sacrificing weight saving, and to provide a design method thereof.SOLUTION: Of flanges 2 and 3, and webs 4 and 5 that constitute a rectangular hollow section of a specific size, a thickness of a lower half side 2a of the front flange 2 and an upper half side 3b of the rear flange 3 is caused to be partially larger than the thickness of an upper half side 2b of the front flange 2 and a lower half side 3a of the rear flange 3 by a specific amount. Section modulus and plastic section modulus are increased without sacrificing weight saving even when an aluminum alloy vehicle impact absorption member is rotated around the axis in the vehicle width direction and is tilted by an impact of a collision.

Description

本発明は、アルミニウム合金製車両衝撃吸収部材に関するものである。   The present invention relates to an aluminum alloy vehicle impact absorbing member.

自動車やトラックなどの車両の、バンパリーンフォースメント(以下、バンパーR/Fともいう)やアンダーランプロテクタなどの車両衝撃吸収部材は、取り付けられた車両の衝突において、その衝突エネルギを吸収する。そして、これによって、乗員や車体あるいは背面に置かれている機器類(ラジエータ、オルタネータなど)を保護するために、車両の前端および後端などに各々設けられている。   Vehicle impact absorbing members such as bumper reinforcement (hereinafter also referred to as bumper R / F) and under-run protectors of vehicles such as automobiles and trucks absorb the collision energy in the collision of the mounted vehicle. Thus, in order to protect the occupant, the vehicle body or the devices (radiator, alternator, etc.) placed on the rear surface, they are provided at the front end and the rear end of the vehicle, respectively.

これら車両衝撃吸収部材は、鋼板をプレス成形したものに代えて、軽量でかつ前記衝突エネルギの吸収性能が高い、押出形材などのアルミニウム合金製のものが用いられるようになっている。これらアルミニウム合金製の車両衝撃吸収部材は、矩形中空断面形状である口型断面のほか、これに補強用の中リブを設けた、日型断面、目型断面、田型断面などの種類がある。   These vehicle impact absorbing members are made of aluminum alloys such as extruded profiles that are lightweight and have high impact energy absorption performance, instead of press-molding steel plates. These aluminum alloy vehicle impact absorbing members have a rectangular cross section, a mouth section, a middle section, an eye section, a pad section, etc., provided with a medium rib for reinforcement. .

以下は、これら矩形断面形状のアルミニウム合金押出形材製バンパーR/Fを例として説明する。ここで、バンパーR/Fのうち、車両の前後方向に互いに間隔をあけて平行に立設する2枚の平板状の壁をフランジという。また、車両の上下方向に互いに間隔をあけて車両の前後方向に平行に延在して、前記フランジ同士をつなぐ、2枚の平板状の壁をウエブという。   In the following, the bumper R / F made of extruded aluminum alloy having a rectangular cross section will be described as an example. Here, of the bumper R / F, the two flat plate-like walls standing in parallel with an interval in the front-rear direction of the vehicle are called flanges. Further, two flat walls that extend in parallel in the vehicle front-rear direction and are spaced apart from each other in the vertical direction of the vehicle to connect the flanges together are called webs.

従来から、バンパーR/Fに対しては、他車が衝突することで生じる車両上下軸まわりの曲げモーメントおよび車両前後方向の圧壊荷重に対して、できるだけ軽化した少ない重量、少ない断面積で、必要な強度を持つような断面の設計がなされてきた。   Conventionally, the bumper R / F has a light weight and a small cross-sectional area as light as possible with respect to a bending moment around the vehicle vertical axis and a crushing load in the vehicle front-rear direction caused by the collision of another vehicle. Cross sections have been designed to have the required strength.

このため、バンパーR/Fにおける、断面の車両前後方向の幅を確保する、フランジの肉厚ないし板厚を厚くする、などの車両上下軸まわりの曲げモーメントに対する、バンパーR/Fの断面2次モーメント、断面係数や塑性断面係数が効率的に確保されるように設計がなされてきた。例えば、高い曲げ強度が要求される部位に限定して補強部材を溶接する方法なども考案されている(特許文献1)。   Therefore, in the bumper R / F, the secondary section of the bumper R / F with respect to the bending moment around the vertical axis of the vehicle, such as securing the width of the cross section in the vehicle front-rear direction and increasing the thickness of the flange or the plate thickness. The design has been made so that the moment, section modulus and plastic section modulus can be efficiently secured. For example, a method of welding a reinforcing member limited to a portion where high bending strength is required has been devised (Patent Document 1).

車両前後方向の圧壊荷重に対しては、ウエブの本数およぴ配置、板厚または肉厚を適正化することが行われてきた。例えば、高い圧壊強度が要求される部位に限定して、ウエブを補強する部材を挿入するなどの方法も提案されている(特許文献2)。また、圧壊強度と曲げ強度を同時に向上させるため、バンパーR/Fの矩形断面において、ウエブとフランジの交差点である4隅を厚肉とする手法も提案されている(特許文献3)。更に、バンパーR/Fの曲げ強度向上と軽量化とを両立できる断面形状として、ウエブの曲げ中立軸より圧縮フランジ側の肉厚を引張フランジ側の肉厚より厚肉とする、場合によっては圧縮フランジ側に行く程厚肉になるようにテーパー状とする手法も提案されている(特許文献4)。   For the crushing load in the longitudinal direction of the vehicle, it has been carried out to optimize the number and arrangement of webs, the plate thickness or the wall thickness. For example, a method of inserting a member that reinforces the web is also proposed (Patent Document 2), limiting to a portion that requires high crushing strength. In order to improve the crushing strength and bending strength at the same time, a method has been proposed in which the four corners at the intersection of the web and the flange are thick in the rectangular cross section of the bumper R / F (Patent Document 3). Furthermore, as a cross-sectional shape that can achieve both improved bending strength and lighter weight for the bumper R / F, the thickness of the compression flange side from the bending neutral axis of the web is thicker than the thickness of the tension flange side. There has also been proposed a method of forming a taper so as to become thicker toward the flange side (Patent Document 4).

特開2004−20306号公報JP 2004-20306 A 特開2006−1446号公報JP 2006-1446 A 特開平11−170935号公報JP-A-11-170935 特開平11−59296号公報JP 11-59296 A

車両同士の衝突における、車両の前面や後面同士あるいは前面と後面との衝突において、衝突の状況や衝突する車両同士の車種の違いなどによって、衝突するバンパーR/F同士の、互いの車両上下方向の位置がずれ、しかも、このずれが大きくなる場合が当然起こりうる。   In the collision between vehicles, in the collision between the front and rear surfaces of the vehicles or between the front and rear surfaces, the bumper R / Fs colliding with each other due to the situation of the collision or the vehicle types of the vehicles colliding with each other, Of course, there may be a case where the position of the position is shifted and this shift becomes large.

この現象を説明するために、図15、16に、車両の前側(フロント)に設けた自車側のバンパーR/F40が、他車側のバンパーR/F41に衝突するときの状況を模式的に示す。図15は、車両前側の矩形中空断面形状のバンパーR/F40が、他車側の同じ矩形中空断面形状のバンパーR/F41よりも、取り付けられた車高(位置)が低い場合を示している。この場合、自車側バンパーR/F40には、車両高さ方向にオフセットした入力荷重(衝突荷重)が伝達されるため、図15の上下方向となる車幅方向を軸とした、右回りの矢印で示す「ねじりモーメント」が生じる。この結果、自車側バンパーR/F40は、車幅方向の軸まわりに右回りの矢印で示すように回転し、その上側が車両後方側へ倒れながら(傾きながら)変形することになる。   In order to explain this phenomenon, FIGS. 15 and 16 schematically show the situation when the bumper R / F 40 on the vehicle side provided on the front side (front) of the vehicle collides with the bumper R / F 41 on the other vehicle side. Shown in FIG. 15 shows a case where the bumper R / F 40 having a rectangular hollow cross section on the front side of the vehicle has a lower vehicle height (position) than the bumper R / F 41 having the same rectangular hollow cross section on the other vehicle side. . In this case, an input load (collision load) that is offset in the vehicle height direction is transmitted to the vehicle-side bumper R / F 40, and therefore, a clockwise rotation with the vehicle width direction as the vertical direction in FIG. A “torsional moment” indicated by an arrow occurs. As a result, the vehicle-side bumper R / F 40 rotates around the vehicle width direction as indicated by a clockwise arrow, and the upper side of the bumper R / F 40 is deformed while being tilted (tilted) toward the vehicle rear side.

図16は、車両のレイアウトやデザイン上の制約などによって、車両前側のバンパーR/Fの衝突面(前面側フランジ、以下前フランジと言う)が、車両上下方向の軸に対して、例えば下方側が部分的に傾斜して幅狭となっている断面形状の場合を示す。この場合には、たとえ他車側のバンパーR/F41と取り付けられた車高(位置)が同じでも、自社バンパーR/F40の衝突面には、他車バンパーR/F41による衝突荷重が均等に伝わらない。このため、図15と同じく、図の上下方向となる車幅方向を軸とした、右回りの矢印で示す「ねじりモーメント」が生じる。この結果、自車側バンパーR/F40は、やはり車幅方向の軸まわりに、前記右回りの矢印で示すように回転し、その上側が車両後方側へ倒れながら変形することになる。   FIG. 16 shows that the collision surface of the bumper R / F on the front side of the vehicle (front side flange, hereinafter referred to as the front flange) is, for example, below the axis in the vertical direction of the vehicle due to vehicle layout and design restrictions. The case of a cross-sectional shape that is partially inclined and narrowed is shown. In this case, even if the bumper R / F41 on the other vehicle side and the mounted vehicle height (position) are the same, the collision load of the bumper R / F41 on the other vehicle is evenly applied to the collision surface of the own bumper R / F40. Not transmitted Therefore, as in FIG. 15, a “torsional moment” indicated by a clockwise arrow with the vehicle width direction as the vertical direction in the figure as an axis is generated. As a result, the vehicle-side bumper R / F 40 rotates around the vehicle width direction as indicated by the clockwise arrow, and the upper side of the bumper R / F 40 is deformed while falling toward the vehicle rear side.

また、車両の衝突安全性を評価する衝突試験でも、このような回転変形は起こりえる。すなわち、このような衝突試験では、車両に衝突させるバリアの形状、衝突位置、衝突速度など自体は法規等により予め定められている。しかし、これらバリアと、試験体であるバンパーR/Fの車両上下方向の位置のずれ、あるいはバンパーR/Fの衝突面(前面側フランジ)に前記図16のような傾斜がある場合、上記した理由によってバンパーR/Fは、前記車幅方向の軸まわりに、右回りの矢印で示すように回転し、その上側が車両後方側へ倒れながら変形することが多い。   Such a rotational deformation can also occur in a collision test for evaluating the collision safety of a vehicle. That is, in such a collision test, the shape of the barrier that collides with the vehicle, the collision position, the collision speed, and the like are determined in advance according to laws and regulations. However, when these barriers and the bumper R / F as a test body are displaced in the vertical direction of the vehicle, or when the collision surface (front side flange) of the bumper R / F has an inclination as shown in FIG. For some reason, the bumper R / F often rotates around the vehicle width axis as indicated by a clockwise arrow, and the upper side of the bumper R / F is deformed while falling to the rear side of the vehicle.

このように、車両衝突の衝撃によって、車両の前方側に設けられた車両衝撃吸収部材が車幅方向の軸まわりに回転した場合には、図17に示すように、本来、車両上下方向に垂直な、矩形中空断面形状の車両衝撃吸収部材の曲げ中立軸C0が、車両前後方の後方側か、前方側かのいずれかの側に向かって傾斜する。前記図15、図16のように、バンパーR/Fがバリアよりも下方に位置する衝突の場合には、図17の右上側に示すように、自車側の矩形中空断面形状のバンパーR/F40が、車幅方向の軸まわりに前記右回りの矢印で示すように回転する。このため、車両衝撃吸収部材は車両後方側に向かって傾斜し、曲げ中立軸はC1のように車両前方側に向かって傾斜することが多い。一方、この反対に、図17の右下側に示すように、バンパーR/Fがバリアよりも上方に位置する衝突の場合は、自車側の矩形中空断面形状のバンパーR/F40が、車幅方向の軸まわりに前記左回りの矢印で示すように回転する。このため、車両衝撃吸収部材は車両前方側に向かって傾斜し、曲げ中立軸はC2のように車両後方側に向かって傾斜することが多い。   As described above, when the vehicle impact absorbing member provided on the front side of the vehicle rotates around the vehicle width direction axis due to the impact of the vehicle collision, as shown in FIG. In addition, the bending neutral axis C0 of the vehicle impact absorbing member having a rectangular hollow cross-sectional shape is inclined toward either the rear side in front of the vehicle or the front side. As shown in FIGS. 15 and 16, in the case of a collision in which the bumper R / F is located below the barrier, as shown in the upper right side of FIG. F40 rotates around the vehicle width direction axis as indicated by the clockwise arrow. For this reason, the vehicle impact absorbing member is inclined toward the vehicle rear side, and the bending neutral axis is often inclined toward the vehicle front side like C1. On the other hand, as shown in the lower right side of FIG. 17, in the case of a collision in which the bumper R / F is positioned above the barrier, the bumper R / F 40 having a rectangular hollow cross section on the vehicle side is It rotates as shown by the counterclockwise arrow about the axis in the width direction. For this reason, the vehicle impact absorbing member is inclined toward the vehicle front side, and the bending neutral axis is often inclined toward the vehicle rear side like C2.

したがって、矩形中空断面形状の車両衝撃吸収部材がそのエネルギ吸収機能を発揮するためには、衝突荷重による車両衝撃吸収部材の車幅方向の軸まわりの回転によって、その曲げ中立軸が車両前方側に向かって傾斜し、その上側が車両後方側へ倒れながら変形するような傾斜状態においても、前記車両衝撃吸収部材の車両上下方向の軸まわりの曲げに対する断面係数およぴ塑性断面係数を高める必要がある。しかし、これまで、特にバンパーR/Fなどの車両衝撃吸収部材について、このような車幅方向の軸まわりの回転を考慮した断面の設計は、これまであまり無かったのが実状である。   Therefore, in order for the vehicle impact absorbing member having a rectangular hollow cross-section to exhibit its energy absorbing function, the bending neutral axis is moved forward of the vehicle by rotation of the vehicle impact absorbing member around the vehicle width direction due to a collision load. Even in an inclined state in which the vehicle impact absorbing member is deformed while being inclined toward the rear side of the vehicle, it is necessary to increase the section modulus and the plastic section coefficient with respect to the bending of the vehicle impact absorbing member about the vehicle vertical axis. is there. However, in the past, particularly for vehicle impact absorbing members such as the bumper R / F, there has been so far no design of a cross-section considering the rotation around the axis in the vehicle width direction.

前記特許文献3などのように、バンパーR/Fの矩形断面において、ウエブとフランジの交差点である4隅を厚肉とすれば、前記傾斜状態において、前記車両衝撃吸収部材の車両上下方向の軸まわりの曲げに対する断面係数およぴ塑性断面係数を高めることが結果的にできる。しかし、充分にこの効果を発揮するために厚肉化した場合、その分重量が増加して軽量化が犠牲になり、アルミニウム合金製車両衝撃吸収部材を鋼製に代えて用いる利点自体が損なわれる。   In the rectangular cross section of the bumper R / F, as in Patent Document 3, if the four corners that are the intersections of the web and the flange are thick, the vehicle impact absorbing member in the vehicle up-down direction shaft in the inclined state. As a result, it is possible to increase the section modulus and the plastic section modulus for the surrounding bending. However, if the thickness is increased in order to sufficiently exhibit this effect, the weight increases and the weight reduction is sacrificed, and the advantage itself of using the aluminum alloy vehicle impact absorbing member instead of steel is impaired. .

本発明は、このような問題に鑑みてなされたもので、衝突荷重による車両衝撃吸収部材の車幅方向の軸まわりの回転によって、その曲げ中立軸が車両前方側に向かって傾斜し、その上側が車両後方側へ倒れながら変形するような傾斜状態においても、車両上下方向の軸まわりの曲げに対する断面係数およぴ塑性断面係数を、軽量化を犠牲にせずに、高めた車両衝撃吸収部材を提供することである。   The present invention has been made in view of such a problem, and the bending neutral shaft is inclined toward the vehicle front side due to the rotation of the vehicle impact absorbing member around the vehicle width direction due to the collision load, Even in an inclined state in which the side is deformed while falling to the rear side of the vehicle, a vehicle impact absorbing member with an increased section modulus and plastic section modulus for bending around an axis in the vertical direction of the vehicle can be obtained without sacrificing weight reduction. Is to provide.

上記目的達成のために、本発明車両衝撃吸収部材の要旨は、車両の前後方向に互いに間隔をあけて立設する2枚の平板状のフランジ(2、3)と、これら前後のフランジ(2、3)同士を車両の上下方向に互いに間隔をあけるとともに車両の前後方向に延在してつなぐ2枚の平板状の上下のウエブ(4、5)とで、矩形中空断面を構成し、前後のフランジ(2、3)の車両上下方向の長さHが100〜200mm の範囲であるとともに、上下のウエブ(4、5)の車両前後方向の長さWが50〜100mm の範囲であるアルミニウム合金製衝撃吸収部材において、前記矩形中空断面を車両の前後方向と高さ方向とで各々等分に区切って4等分に分割した際の、車両の前側に位置する前フランジの下半分側(2a)と下ウエブの前半分側(5a)との合計面積(S1)と、車両の後ろ側に位置する後フランジの上半分側(3b)と上ウエブの後半分側(4b)との合計面積(S4)との面積の和(S1+S4)か、あるいは前フランジの上半分側(2b)と上ウエブの前半分側(4a)との合計面積(S2)と、後フランジの下半分側(3a)と下ウエブの後ろ半分側(5b)との合計面積(S3)との面積の和(S2+S3)かの、どちらかの面積の和が他方の面積の和よりも、1.5倍〜3.5倍の範囲で大きくなるように、前フランジの下半分側(2a)と後フランジの上半分側(3b)との肉厚か、 前フランジの上半分側(2b)と後フランジの下半分側(3a)との肉厚かのいずれかを、各フランジの他方の上下半分側の肉厚よりも、部分的に厚くしたことである。   In order to achieve the above-mentioned object, the gist of the vehicle impact absorbing member of the present invention is that two flat flanges (2, 3) erected at intervals in the front-rear direction of the vehicle, and the front and rear flanges (2 3) A rectangular hollow section is formed by two flat upper and lower webs (4, 5) that are connected to each other in the vertical direction of the vehicle and extending in the longitudinal direction of the vehicle. The length H in the vehicle vertical direction of the flanges (2, 3) is in the range of 100 to 200 mm, and the length W in the vehicle longitudinal direction of the upper and lower webs (4, 5) is in the range of 50 to 100 mm. In the alloy shock absorbing member, the lower half side of the front flange located on the front side of the vehicle when the rectangular hollow cross section is divided into four equal parts by dividing the rectangular hollow cross section into the front and rear direction and the height direction of the vehicle ( 2a) and the front half of the lower web (5a) Of the total area (S1) and the total area (S4) of the upper half side (3b) of the rear flange located on the rear side of the vehicle and the rear half side (4b) of the upper web (S1 +) S4), or the total area (S2) of the upper half side (2b) of the front flange and the front half side (4a) of the upper web, the lower half side (3a) of the rear flange and the rear half side of the lower web ( 5b) and the total area (S3) and the sum of the areas (S2 + S3), the sum of either area is larger than the sum of the other areas in the range of 1.5 to 3.5 times The thickness of the lower half side (2a) of the front flange and the upper half side (3b) of the rear flange, or the upper half side (2b) of the front flange and the lower half side (3a) of the rear flange One of the wall thicknesses is partially thicker than the wall thickness of the other upper and lower half side of each flange.

本発明によれば、車両衝突の荷重(衝撃)によって車両衝撃吸収部材が前記車幅方向の軸まわりに回転することを予め考慮した設計思想とする。すなわち、衝突荷重による車両衝撃吸収部材の車幅方向の軸まわりの回転によって、その曲げ中立軸が車両前方側あるいは後方側に向かって傾斜する場合を想定して設計する。言い換えると、車両衝撃吸収部材の上側が車両後方側へ倒れながら(その下側が車両前方側へ倒れながら)、あるいは、車両衝撃吸収部材の上側が車両前方側へ倒れながら(その下側が車両後方側へ倒れながら)、変形するような傾斜状態を想定して設計している。これによって、車両衝撃吸収部材が車幅方向の軸まわりに回転するような場合においても、車両衝撃吸収部材の車両上下方向の軸まわりの曲げに対する、断面係数およぴ塑性断面係数を高める設計とする。   According to the present invention, the design philosophy takes into account that the vehicle impact absorbing member rotates around the vehicle width direction axis by the load (impact) of the vehicle collision. In other words, the design is made assuming that the bending neutral shaft is inclined toward the front side or the rear side of the vehicle due to the rotation of the vehicle impact absorbing member around the vehicle width direction due to the collision load. In other words, while the upper side of the vehicle impact absorbing member falls to the rear side of the vehicle (the lower side falls to the front side of the vehicle), or the upper side of the vehicle impact absorbing member falls to the front side of the vehicle (the lower side is the rear side of the vehicle). It is designed assuming an inclined state that deforms. As a result, even when the vehicle impact absorbing member rotates about an axis in the vehicle width direction, it is designed to increase the section modulus and the plastic section modulus with respect to the bending of the vehicle impact absorbing member about the vehicle vertical axis. To do.

このために、本発明では、その曲げ中立軸が車両前方側に向かって傾斜した状態での仮想曲げ中立軸を選択し、この仮想曲げ中立軸からの距離が最も離れた前記フランジの部位の肉厚を、特定範囲で、それ以外のフランジの部位の肉厚よりも各々部分的に厚くするような設計思想としている。   For this purpose, in the present invention, a virtual bending neutral axis is selected in a state where the bending neutral axis is inclined toward the vehicle front side, and the meat of the flange portion farthest from the virtual bending neutral axis is selected. The design philosophy is such that the thickness is partially greater than the thickness of other flange portions within a specific range.

その一方で、それ以外のフランジの部位の肉厚を、特定範囲で薄くして、前記厚肉化した場合の断面積の増加率を、全てのフランジが均一な厚みの元の車両衝撃吸収部材に比して、5%以下に抑制する。これによって、部分的にせよ、単純な厚肉化による重量増加を極力抑えて、アルミニウム合金製車両衝撃吸収部材を鋼製に代えて用いる、軽量化の利点を維持する。   On the other hand, the thickness of the other flange portions is reduced in a specific range, and the increase rate of the cross-sectional area when the thickness is increased is the same as the vehicle impact absorbing member of the original thickness where all the flanges have a uniform thickness. As compared with the above, it is suppressed to 5% or less. In this way, at least in part, an increase in weight due to a simple thickening is suppressed as much as possible, and the advantage of reducing the weight by using an aluminum alloy vehicle impact absorbing member instead of steel is maintained.

この結果、本発明は、軽量化を犠牲にせずに、前記した、上側が車両後方側へ倒れながら、あるいは上側が車両前方側へ倒れながら、変形するような各々の傾斜状態においても、車両上下方向の軸まわりの曲げに対する断面係数およぴ塑性断面係数を高めた車両衝撃吸収部材を提供できる。   As a result, the present invention does not sacrifice weight, and the above-described vehicle up-and-down movement is possible even in each inclined state where the upper side is tilted toward the rear of the vehicle or the upper side is tilted toward the front of the vehicle. It is possible to provide a vehicle impact absorbing member having an increased section modulus and plastic section modulus with respect to bending around a direction axis.

本発明車両衝撃吸収部材の一態様を示す断面図である。It is sectional drawing which shows the one aspect | mode of this invention vehicle impact-absorbing member. 図1の設計方法(設計原理)を示す模式図である。It is a schematic diagram which shows the design method (design principle) of FIG. 本発明車両衝撃吸収部材の他の態様を示す断面図である。It is sectional drawing which shows the other aspect of this invention vehicle impact-absorbing member. 図3の設計方法(設計原理)を示す模式図である。It is a schematic diagram which shows the design method (design principle) of FIG. 本発明車両衝撃吸収部材の他の態様を示す断面図である。It is sectional drawing which shows the other aspect of this invention vehicle impact-absorbing member. 本発明車両衝撃吸収部材の他の態様を示す断面図である。It is sectional drawing which shows the other aspect of this invention vehicle impact-absorbing member. 比較例あるいは従来例の車両衝撃吸収部材の態様を示す断面図である。It is sectional drawing which shows the aspect of the vehicle impact-absorbing member of a comparative example or a prior art example. 図7の設計方法(設計原理)を示す模式図である。It is a schematic diagram which shows the design method (design principle) of FIG. 本発明実施例の解析条件を示す断面図である。It is sectional drawing which shows the analysis conditions of this invention Example. 図9の車両衝撃吸収部材の断面積や変位を示す説明図である。It is explanatory drawing which shows the cross-sectional area and displacement of the vehicle impact-absorbing member of FIG. 図9の試験条件を示す模式図である。It is a schematic diagram which shows the test conditions of FIG. 実施例の試験結果を示す説明図である。It is explanatory drawing which shows the test result of an Example. 実施例の試験結果を示す説明図である。It is explanatory drawing which shows the test result of an Example. 実施例の試験結果を示す説明図である。It is explanatory drawing which shows the test result of an Example. 従来の車両衝撃吸収部材の一衝突形態を示す模式図である。It is a schematic diagram which shows the collision form of the conventional vehicle impact-absorbing member. 従来の車両衝撃吸収部材の他の衝突形態を示す模式図である。It is a schematic diagram which shows the other collision form of the conventional vehicle impact-absorbing member. 図16、17の車両衝撃吸収部材の回転状態を示す模式図である。It is a schematic diagram which shows the rotation state of the vehicle impact absorption member of FIG.

以下に図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

車両衝撃吸収部材の基本構造:
図1〜図6、図9に本発明の車両衝撃吸収部材の実施形態を各々示す。また図7、8に比較例の車両衝撃吸収部材の実施形態を示す。
Basic structure of vehicle impact absorbing member:
1 to 6 and 9 show embodiments of the vehicle impact absorbing member of the present invention. 7 and 8 show an embodiment of a vehicle impact absorbing member of a comparative example.

これらの図は、車両衝撃吸収部材が車両前方(フロント)側のバンパーR/Fとして取り付けられて使用される態様を示している。また、図中の矢印Fが図の左側の車両前方(フロント)側からの衝突の荷重方向を示している。したがって、図の右側が車両前方(フロント)側、左側が車両後方(リア)側を共通して示している。但し、本発明は車両後方(リア)側でも使用されて良く、その場合は、前後のフランジ2、3を、車両後方に向かっての前後側と読みかえる。   These drawings show a mode in which the vehicle impact absorbing member is attached and used as a bumper R / F on the front (front) side of the vehicle. Further, an arrow F in the figure indicates a load direction of a collision from the front (front) side of the vehicle on the left side of the figure. Accordingly, the right side of the figure shows the vehicle front (front) side and the left side shows the vehicle rear (rear) side in common. However, the present invention may also be used on the rear (rear) side of the vehicle. In this case, the front and rear flanges 2 and 3 are read as the front and rear sides toward the rear of the vehicle.

先ず、図1の例を用いて説明するが、本発明のアルミニウム合金製の車両衝撃吸収部材1は、自動車やトラックなどのバンパーR/Fやアンダーランプロテクタなどの車両衝撃吸収部材を意図した、矩形中空断面構造(矩形断面中空構造)を有する。図1〜5はアルミニウム合金押出形材からなる車両衝撃吸収部材を示しており、この押出形材を用いる場合、車両衝撃吸収部材の矩形中空断面形状は、口型断面のほか、これに補強用の中リブを設けた、日型断面、目型断面、田型断面などが自由に選択あるいは適用できる。   First, although described using the example of FIG. 1, the vehicle impact absorbing member 1 made of an aluminum alloy of the present invention is intended for a vehicle impact absorbing member such as a bumper R / F such as an automobile or a truck or an underlamp protector. It has a rectangular hollow cross-section structure (rectangular cross-section hollow structure). FIGS. 1 to 5 show a vehicle impact absorbing member made of an aluminum alloy extruded shape. When this extruded shape is used, the rectangular hollow cross-sectional shape of the vehicle impact absorbing member is not only a mouth-shaped cross section but also a reinforcing shape. A daily cross section, eye cross section, paddy cross section, or the like provided with a middle rib can be freely selected or applied.

図1において、この矩形中空断面構造は、車両の前後方向に互いに間隔をあけて立設する2枚の平板状の壁である車両前面(前方)側の前フランジ2と、車両後面(後方)側の後フランジ3とを有する。これらフランジ2、3同士は、車両の上下方向に互いに間隔をあけて車両の前後方向に延在する2枚の平板状の壁である、図の上側の上ウエブ4と、図の下側の下ウエブ5とで互いに車両の上下方向の各端部同士がつながっている(接続されている)。   In FIG. 1, this rectangular hollow cross-sectional structure includes a front flange 2 on the front side (front side) of the vehicle, which is two flat walls standing in the front-rear direction of the vehicle, and a rear side (rear side) of the vehicle. And a rear flange 3 on the side. The flanges 2 and 3 are two flat walls extending in the longitudinal direction of the vehicle and spaced apart from each other in the vertical direction of the vehicle. The ends of the vehicle in the vertical direction are connected to (connected to) the lower web 5.

そして、これらの壁で、車両の上下方向に延びる垂直な曲げ中立軸C0を中央部に有する、矩形中空断面構造を構成する。そして、断面の中央部には補強用の中リブ6をフランジ2、3の間で水平に設けた日型断面形状を有する。   These walls constitute a rectangular hollow cross-sectional structure having a vertical bending neutral axis C0 extending in the vertical direction of the vehicle at the center. And in the center part of a cross section, it has the daily cross-sectional shape which provided the middle rib 6 for reinforcement horizontally between the flanges 2 and 3. FIG.

ここで、フランジ2、3の長さが各々100〜200mmの範囲であるとともに、ウエブ4、5の長さが各々50〜100mmの範囲とする。車両衝撃吸収部材はこの範囲内で設計、使用される。このため、これらの寸法未満や、これらの寸法を超えても意味がなく、また、これらの寸法を逸脱した範囲で本発明が有効かどうかも不明である。   Here, the lengths of the flanges 2 and 3 are each in the range of 100 to 200 mm, and the lengths of the webs 4 and 5 are in the range of 50 to 100 mm. The vehicle impact absorbing member is designed and used within this range. For this reason, it is meaningless even if it is less than these dimensions or exceeds these dimensions, and it is unclear whether the present invention is effective in a range that deviates from these dimensions.

なお、フランジ2、3同士の長さ、ウエブ4、5同士の長さは必ずしも同じとする必要はなく、車両(車体)の設計や車両衝撃吸収部材の取り付け空間(スペース)に応じて、互いに変えても良い。同様に、矩形中空断面構造も、完全な矩形(四角形、長方形)でなくとも良く、フランジ2、3やウエブ4、5も平坦な直線状あるいは互いに平行でなくても、互いに傾斜や湾曲あるいは凹凸を設けてもよい。更に、前記各壁の交点となる隅角部(コーナー部)7、8、9、10の外側や内側は図示する直角となる交点にならずとも、Rを設けた円弧(曲線)状として良い。   The lengths of the flanges 2 and 3 and the lengths of the webs 4 and 5 do not necessarily have to be the same, depending on the design of the vehicle (vehicle body) and the installation space (space) of the vehicle impact absorbing member. You can change it. Similarly, the rectangular hollow cross-sectional structure does not have to be a perfect rectangle (rectangle, rectangle), and the flanges 2, 3 and the webs 4, 5 are not flat, straight, or parallel to each other. May be provided. Furthermore, the outer and inner sides of the corners (corner portions) 7, 8, 9, and 10 that are the intersections of the walls may be in the shape of an arc (curve) provided with R, even if they are not perpendicular intersections as illustrated. .

矩形中空断面の等分化によるフランジ部分厚肉化の目安:
以上の使用態様や矩形中空断面を前提として、図1におけるアルミニウム合金製衝撃吸収部材1における部分的な厚肉部位を明確に規定するために、先ず、その矩形中空断面を車両の前後方向と高さ方向とで各々等分に区切って4等分に分割したとする。より具体的には、その矩形中空断面を、車両の前後方向(図の左右方向)の最大長さ(幅)と、高さ方向(図の上下方向)の最大長さとを、各々等分(2等分)して区切った4等分に分割(4分割)する。
Guideline for thickening flange parts by equalizing rectangular hollow cross section:
In order to clearly define a partial thick wall portion in the aluminum alloy shock absorbing member 1 in FIG. It is assumed that each is divided into four equal parts by dividing each into the same direction. More specifically, the rectangular hollow cross section is divided equally into the maximum length (width) in the vehicle front-rear direction (left-right direction in the figure) and the maximum length in the height direction (up-down direction in the figure) ( Divide into 4 equal parts (divide into 4 parts).

これによって、Fの衝突荷重方向に対する前(前側)フランジ2が、下半分側2aと、上半分側2bとに二等分される。同様に、Fの衝突荷重方向に対する後(後側)フランジ3が、上半分側3bと、下半分側3aとに二等分される。また、下(下側)ウエブ5が、前半分側5aと、後ろ半分側5bとに二等分される。更に、上(上側)ウエブ4が、前半分側4aと、後半分側4bとに二等分される。   Thereby, the front (front side) flange 2 with respect to the collision load direction of F is divided into two equal parts, the lower half side 2a and the upper half side 2b. Similarly, the rear (rear) flange 3 with respect to the collision load direction of F is equally divided into an upper half side 3b and a lower half side 3a. Further, the lower (lower) web 5 is divided into two equal parts, a front half side 5a and a rear half side 5b. Further, the upper (upper) web 4 is divided into two equal parts, a front half side 4a and a rear half side 4b.

ちなみに、図1では、矩形中空断面を高さ方向で等分した点線(横線)が、補強用の中リブ6の中央部に沿って走っているが、これは中リブ6がたまたま矩形中空断面の中央部にあるからである。これに対して、中リブ6が矩形中空断面の中央部に無い場合は、当然ながら、このように等分した点線は中リブ6の中央部から上下にずれることとなる。   Incidentally, in FIG. 1, a dotted line (horizontal line) obtained by equally dividing the rectangular hollow section in the height direction runs along the central portion of the reinforcing middle rib 6, which happens to be a rectangular hollow section. It is because it is in the central part of. On the other hand, when the middle rib 6 is not in the central portion of the rectangular hollow cross section, the dotted line divided in this way is shifted up and down from the middle portion of the middle rib 6 as a matter of course.

図1において、4等分された矩形中空断面の面積のうち、前フランジ2の下半分側2aと、下ウエブ5の前半分側5aとの合計面積をS1とする。後フランジ3の上半分側3bと上ウエブ4の後半分側4bとの合計面積をS4とする。前フランジ2の上半分側2bと上ウエブ4の前半分側4aとの合計面積をS2とする。後フランジ3の下半分側3aと下ウエブ5の後ろ半分側5bとの合計面積をS3とする。これは後の図2〜7でも共通する。 但し、これらの面積に、補強用の中リブの面積は含まず、全て中リブが無い口形断面として扱って上記各面積を算定する。これは図1、3、6の日型断面での横1本の中リブ6でも、目型断面の上下2本の中リブ、田型断面の縦横2本の中リブでも同じとする。   In FIG. 1, the total area of the lower half side 2a of the front flange 2 and the front half side 5a of the lower web 5 out of the area of the rectangular hollow section divided into four equal parts is S1. The total area of the upper half side 3b of the rear flange 3 and the rear half side 4b of the upper web 4 is defined as S4. The total area of the upper half side 2b of the front flange 2 and the front half side 4a of the upper web 4 is S2. The total area of the lower half side 3a of the rear flange 3 and the rear half side 5b of the lower web 5 is defined as S3. This also applies to FIGS. However, these areas do not include the area of the reinforcing intermediate ribs, and all the above-mentioned areas are calculated by treating them as a mouth-shaped cross section having no intermediate ribs. This is the same for one horizontal rib 6 in the cross section of the mold shown in FIGS. 1, 3 and 6, two medium ribs at the top and bottom of the cross section of the eye-shaped cross section, and two medium ribs in the vertical and horizontal form of the cross section.

この前提にもとづき、本発明では、これらの4等分された矩形中空断面の面積のうち、車両の前側に位置する前フランジの下半分側(2a)と下ウエブの前半分側(5a)との合計面積(S1)と、車両の後ろ側に位置する後フランジの上半分側(3b)と上ウエブの後半分側(4b)との合計面積(S4)との面積の和(S1+S4)か、あるいは前フランジの上半分側(2b)と上ウエブの前半分側(4a)との合計面積(S2)と、後フランジの下半分側(3a)と下ウエブの後ろ半分側(5b)との合計面積(S3)との面積の和(S2+S3)かの、どちらかの面積の和(S1+S4)か(S2+S3)かが、他方の面積の和よりも、1.5倍〜3.5倍の範囲で大きくなるようにする。   Based on this premise, in the present invention, among these four equally divided rectangular hollow cross-sectional areas, the lower half side (2a) of the front flange located on the front side of the vehicle and the front half side (5a) of the lower web Of the total area (S1) and the total area (S4) of the upper half side (3b) of the rear flange located on the rear side of the vehicle and the rear half side (4b) of the upper web (S1 + S4) ) Or the total area (S2) of the upper half side (2b) of the front flange and the front half side (4a) of the upper web, the lower half side (3a) of the rear flange and the rear half side (5b of the lower web) ) And the total area (S3) and the sum of the areas (S2 + S3), either the sum of the areas (S1 + S4) or (S2 + S3) is greater than the sum of the other areas. Increase in the range of 5 times to 3.5 times.

そして、このために、前フランジの下半分側(2a)と後フランジの上半分側(3b)との肉厚か、 前フランジの上半分側(2b)と後フランジの下半分側(3a)との肉厚かのいずれかを、各フランジの他方の上下半分側の肉厚よりも、部分的に厚くする。   For this purpose, the thickness of the lower half side (2a) of the front flange and the upper half side (3b) of the rear flange, or the upper half side (2b) of the front flange and the lower half side (3a) of the rear flange Is made partially thicker than the thickness of the other upper and lower half side of each flange.

図1では、車両衝撃吸収部材1の(図1の)右側からの車両衝突の衝撃によって、前記図15、16や図17の右上側の場合のように、車両衝撃吸収部材1が図2の通り車幅方向の軸まわりに右回りの矢印で示すように回転すると予め想定している。これは、前記図15、16のように、バンパーR/Fがバリアよりも下方に位置する衝突の場合を想定しており、車両衝撃吸収部材1が車両後方側に向かって傾斜し、曲げ中立軸がC1のように車両前方側に向かって傾斜するとの想定に基づき設計している。   In FIG. 1, due to the impact of the vehicle collision from the right side (in FIG. 1) of the vehicle impact absorbing member 1, the vehicle impact absorbing member 1 is shown in FIG. It is preliminarily assumed to rotate as indicated by a clockwise arrow around the vehicle width direction axis. This assumes the case where the bumper R / F is located below the barrier as shown in FIGS. 15 and 16, and the vehicle impact absorbing member 1 is inclined toward the rear side of the vehicle and is being bent. The design is based on the assumption that the vertical axis is inclined toward the front side of the vehicle like C1.

このため、前記合計面積S1と合計面積S4との和が、前記合計面積S2と合計面積S3との和よりも、1.5倍〜3.5倍の範囲で大きくするようにしている。すなわち、衝突荷重方向に対する前フランジ2の下半分側2aと下ウエブ5の前半分側5aとの合計面積(S1)と、衝突荷重方向に対する後フランジ3の上半分側3bと上ウエブ4の後半分側4bとの合計面積(S4)との面積の和を、前フランジ2の上半分側2bと上ウエブ4の前半分側4aとの合計面積(S2)と、後フランジ3の下半分側3aと下ウエブ5の後ろ半分側5bとの合計面積(S3)との面積の和よりも、1.5倍〜3.5倍の範囲で大きくする。
そして、この面積比(面積関係)となるように、この面積関係となるように、前フランジ2の下半分側2aと後フランジ3の上半分側3bとの肉厚を、 前フランジ2の上半分側2bと後フランジ3の下半分側3aとの肉厚よりも、後述する範囲で部分的に厚くしている。
For this reason, the sum of the total area S1 and the total area S4 is made larger in a range of 1.5 to 3.5 times than the sum of the total area S2 and the total area S3. That is, the total area (S1) of the lower half 2a of the front flange 2 and the front half 5a of the lower web 5 with respect to the collision load direction, and the rear half of the upper half 3b and the upper web 4 of the rear flange 3 with respect to the collision load direction. The sum of the total area (S4) with the dividing side 4b is the total area (S2) of the upper half side 2b of the front flange 2 and the front half side 4a of the upper web 4 and the lower half side of the rear flange 3 The total area (S3) of 3a and the rear half side 5b of the lower web 5 is made larger in a range of 1.5 times to 3.5 times.
Then, the thickness of the lower half side 2a of the front flange 2 and the upper half side 3b of the rear flange 3 is set to be larger than that of the front flange 2 so that this area relationship is obtained. The thickness of the half side 2b and the lower half side 3a of the rear flange 3 is partially increased within the range described later.

図1では、このように、前記合計面積S1と合計面積S4との和が、前記合計面積S2と合計面積S3との和よりも1.5倍以上大きくすることによって、衝突時に車両衝撃吸収部材1が回転して元の曲げ中立軸C0が傾斜しても、この傾斜した曲げ中立軸C1からの距離が最も離れたフランジの肉厚、すなわち、前フランジ2の下半分側2aおよび後フランジ3の上半分側3bの肉厚を 、部分的に厚肉化する。このため、衝突荷重による車両衝撃吸収部材の車幅方向の軸まわりの回転によって、その曲げ中立軸が車両前方側に向かって傾斜し、その上側が車両後方側へ倒れながら変形するような傾斜状態においても、衝突エネルギ吸収性能を高めることができる。すなわち、車両衝撃吸収部材の車両上下方向の軸まわりの曲げに対する、断面係数およぴ塑性断面係数を高めて、断面のつぶれ変形や長手方向(車幅方向)の曲げ変形による、衝突エネルギ吸収性能を高めることができる。   In FIG. 1, the sum of the total area S1 and the total area S4 is made 1.5 times or more larger than the sum of the total area S2 and the total area S3, so that the vehicle impact absorbing member at the time of collision is obtained. Even if 1 is rotated and the original bending neutral axis C0 is inclined, the thickness of the flange that is farthest from the inclined bending neutral axis C1, that is, the lower half side 2a of the front flange 2 and the rear flange 3 The thickness of the upper half side 3b is partially increased. For this reason, an inclined state in which the bending neutral shaft inclines toward the vehicle front side due to the rotation of the vehicle impact absorbing member around the vehicle width direction due to the collision load, and the upper side of the vehicle impact absorbing member is deformed while falling toward the vehicle rear side. Also, the collision energy absorption performance can be improved. In other words, the impact energy absorption performance is improved by increasing the section modulus and plastic section modulus of the vehicle impact absorbing member around the vehicle vertical axis and by deforming the cross section and bending the longitudinal direction (vehicle width direction). Can be increased.

この点、4等分された矩形中空断面の面積のうち、前記合計面積(S1)と前記合計面積(S4)との和が、前記合計面積(S2)と合計面積(S3)との面積の和よりも1.5倍未満では、前フランジ2や後フランジ3の部分的な厚肉化が不足して、この効果が得られない。一方、4等分された矩形中空断面の面積のうち、前記合計面積(S1)と前記合計面積(S4)との和が、前記合計面積(S2)と合計面積(S3)との面積の和の3.5倍を超えた場合、前フランジ2や後フランジ3の部分的な厚肉化が大きすぎる。このため、前厚肉化した場合の断面積の増加率を、フランジが均一な厚みの元の車両衝撃吸収部材に比して、5%以下に抑制することができず、車両衝撃吸収部材1の軽量化が犠牲になる。   In this respect, the sum of the total area (S1) and the total area (S4) among the areas of the rectangular hollow cross section divided into four equal parts is the area of the total area (S2) and the total area (S3). If it is less than 1.5 times the sum, partial thickening of the front flange 2 and the rear flange 3 is insufficient, and this effect cannot be obtained. On the other hand, the sum of the total area (S1) and the total area (S4) is the sum of the areas of the total area (S2) and the total area (S3) among the areas of the rectangular hollow cross section divided into four equal parts. If it exceeds 3.5 times, the partial thickness increase of the front flange 2 and the rear flange 3 is too large. For this reason, the rate of increase in the cross-sectional area when the thickness is increased in front cannot be suppressed to 5% or less as compared with the original vehicle impact absorbing member having a uniform flange thickness. The weight savings are sacrificed.

これに対して、前記図17の右下側のように、バンパーR/Fがバリアよりも上方に位置する衝突の場合には、図の右側からの車両衝突の衝撃によって、車両衝撃吸収部材1が車幅方向の軸まわりに左回りの矢印で示すように回転すると予め想定し、この想定に基づき設計する必要がある。このため、前記図1、3とは全く逆に、前記合計面積S2と合計面積S3との和が、前記合計面積S1と合計面積S4との和よりも、1.5倍〜3.5倍の範囲で大きくするようにする。そして、この面積比(面積関係)となるように、前フランジ2の上半分側2bおよび後フランジ3の下半分側3aの肉厚を、図1、3とは全く逆に、前フランジ2の下半分側2aと、後フランジ3の上半分側3bの肉厚よりも、部分的に厚肉化する。   On the other hand, in the case of a collision in which the bumper R / F is located above the barrier as in the lower right side of FIG. 17, the vehicle impact absorbing member 1 is caused by the impact of the vehicle collision from the right side of the figure. It is necessary to design in advance based on the assumption that the motor rotates as shown by the counterclockwise arrow around the vehicle width direction axis. Therefore, contrary to FIGS. 1 and 3, the sum of the total area S2 and the total area S3 is 1.5 to 3.5 times the sum of the total area S1 and the total area S4. Try to make it larger within the range. The thicknesses of the upper half side 2b of the front flange 2 and the lower half side 3a of the rear flange 3 are set to be opposite to those shown in FIGS. The thickness of the lower half side 2a and the thickness of the upper half side 3b of the rear flange 3 are partially increased.

曲げ中立軸の考慮:
これら衝突エネルギ吸収性能の向上と軽量化とを兼備させるために、好ましくは、前記した車両衝撃吸収部材の曲げ中立軸を考慮した、フランジの厚肉化の設計とする。言い換えると、前記合計面積S1と合計面積S4との和を、前記合計面積S2と合計面積S3との和よりも1.5倍〜3.5倍の範囲で大きくするために、車両衝撃吸収部材の曲げ中立軸を考慮した、フランジの部分的な厚肉化設計とする。
Bending neutral axis considerations:
In order to combine the improvement of the collision energy absorption performance and the weight reduction, the flange is preferably designed to be thick in consideration of the bending neutral axis of the vehicle impact absorbing member. In other words, in order to make the sum of the total area S1 and the total area S4 larger in a range of 1.5 times to 3.5 times than the sum of the total area S2 and the total area S3, the vehicle impact absorbing member The flange is designed to be partially thickened in consideration of the bending neutral axis.

この車両衝撃吸収部材の曲げ中立軸を考慮したフランジを厚くする部位の設計方法では、垂直方向から傾斜させた仮想曲げ中立軸を基準とする。この際、車両衝突の衝撃によって車両衝撃吸収部材が前記車幅方向の軸まわりに回転する場合に、車両上下方向に垂直な、矩形中空断面形状の車両衝撃吸収部材1の元の曲げ中立軸C0が、車両前方側に向かって傾斜するか、車両後方側に向かって傾斜するかを選択する。   In the design method of the portion where the flange is thickened in consideration of the bending neutral axis of the vehicle impact absorbing member, the virtual bending neutral axis inclined from the vertical direction is used as a reference. At this time, when the vehicle impact absorbing member rotates around the vehicle width direction axis due to the impact of the vehicle collision, the original bending neutral axis C0 of the vehicle impact absorbing member 1 having a rectangular hollow cross section perpendicular to the vehicle vertical direction is provided. Selects whether the vehicle is inclined toward the vehicle front side or the vehicle rear side.

図2は、この垂直方向から傾斜させた仮想曲げ中立軸に基づく設計方法を示している。図2の右側の車両衝撃吸収部材1は、図1と同じ図2の右側からの車両衝突の衝撃によって、前記図15や図17の右上側の場合と同様に、車幅方向の軸まわりに右回りの矢印で示すように回転すると想定(設計)している。この図2の場合は、元の取り付け状態では、矩形中空断面形状の中央部にあり、車両上下方向に垂直な曲げ中立軸C0が、図2の右側の車両衝撃吸収部材1のように、仮想曲げ中立軸C1として、車両前方側に向かって傾斜すると想定している。すなわち、衝突荷重による車両衝撃吸収部材の車幅方向の軸まわりの回転によって、その上側が車両後方側へ倒れながら変形するような傾斜状態においては、その曲げ中立軸が車両前方側に向かって傾斜すると想定している。図1の厚肉化はこの設計思想に基づく。   FIG. 2 shows a design method based on a virtual bending neutral axis inclined from the vertical direction. The vehicle impact absorbing member 1 on the right side of FIG. 2 is moved around the axis in the vehicle width direction by the impact of the vehicle collision from the right side of FIG. 2 as in FIG. 1, as in the case of the upper right side of FIG. It is assumed (designed) to rotate as indicated by the clockwise arrow. In the case of FIG. 2, in the original attached state, the bending neutral axis C0 that is in the center of the rectangular hollow cross-sectional shape and is perpendicular to the vehicle vertical direction is virtually the same as the vehicle impact absorbing member 1 on the right side of FIG. It is assumed that the vehicle is inclined toward the vehicle front side as the bending neutral axis C1. That is, in a tilted state where the upper side of the vehicle impact absorbing member rotates due to a collision load around the axis in the vehicle width direction and the upper side of the vehicle collapses toward the rear side of the vehicle, the neutral neutral axis is inclined toward the front side of the vehicle. I assume that. The thickening of FIG. 1 is based on this design concept.

この逆に、車両衝撃吸収部材1が、車幅方向の軸まわりに左回りに回転した場合は、曲げ中立軸は、前記図17のC2のように、車両後方側に向かって傾斜する。この場合は、前記した通り、前記図1、3とは逆に、前記合計面積S2と合計面積S3との和を、前記合計面積S1と合計面積S4との和よりも1.5倍以上大きくする。そして、この面積比(面積関係)となるように、図1とは逆に、前フランジ2の上半分側2bおよび後フランジ3の下半分側3aの肉厚を、前フランジ2の下半分側2aと、後フランジ3の上半分側3bの肉厚よりも、部分的に厚肉化することとなる。   Conversely, when the vehicle impact absorbing member 1 rotates counterclockwise around an axis in the vehicle width direction, the bending neutral axis is inclined toward the vehicle rear side as indicated by C2 in FIG. In this case, as described above, contrary to FIGS. 1 and 3, the sum of the total area S2 and the total area S3 is 1.5 times larger than the sum of the total area S1 and the total area S4. To do. In order to obtain this area ratio (area relationship), the thickness of the upper half side 2b of the front flange 2 and the lower half side 3a of the rear flange 3 is set to the lower half side of the front flange 2 in reverse to FIG. 2a and the thickness of the upper half side 3b of the rear flange 3 are partially thickened.

この仮想曲げ中立軸C1が傾く方向や傾き角度は、車両衝撃吸収部材の断面形状や取り付け位置や取り付け条件と、衝突条件との兼ね合いから決定(設計)される。すなわち、車両衝撃吸収部材1が、その正面から受ける衝突の衝撃に対して、前記図17の右側の上下いずれの衝突形態となるのか、いずれの仮想曲げ中立軸となって傾斜するのか、予測して決定する。言い換えると、車両衝撃吸収部材1を、前記図17の右側の上下いずれの衝突形態とするのか設計して、そうなるように取りつけ位置や取り付け方を設計する。   The direction in which the virtual bending neutral axis C1 tilts and the tilt angle are determined (designed) based on the balance between the cross-sectional shape, mounting position, mounting conditions, and collision conditions of the vehicle impact absorbing member. That is, it is predicted whether the vehicle impact absorbing member 1 is in the upper or lower collision form on the right side of FIG. 17 or which virtual bending neutral axis is inclined with respect to the impact of the collision received from the front. To decide. In other words, the vehicle impact absorbing member 1 is designed to be either the upper or lower collision form on the right side of FIG. 17, and the mounting position and the attachment method are designed to be so.

ここで、仮想曲げ中立軸C1の傾斜角度は、垂直な曲げ中立軸C0からの傾斜角度が45度以下の角度のうちから、特定の一つの角度の仮想曲げ中立軸C1を選択する。そして、この選択された特定の一つの仮想曲げ中立軸C1に対して、この仮想曲げ中立軸C1からの距離が最も離れたフランジ2、3と、これに伴うウエブ4、5の前記領域の部位の肉厚を厚くする。仮想曲げ中立軸C1の傾斜角度は、90度以下の角度であれば、選択する傾斜角度が何度であっても、仮想曲げ中立軸C1から距離が最も離れたフランジ2、3と、ウエブ4、5の部位は同じとなる。したがって仮想曲げ中立軸C1の傾斜角度は、90度以下の傾斜角度を適宜選択すれば良い。ただ、あまり車両衝撃吸収部材が回転して傾斜しすぎた衝突形態自体起こりにくく、仮に起こった場合は、衝撃エネルギの車両衝撃吸収部材の断面への伝わり方がいびつとなって、本来の衝撃エネルギ吸収性能が発揮できなくなるので、そのような回転を起こす取り付け方などの問題の方が大きい。したがって、45度を超える傾斜角度は考慮しなくても良いため、本発明では前記垂直な曲げ中立軸C0からの仮想曲げ中立軸C1の傾斜角度(傾き)を45度以下の角度と規定する。   Here, as the inclination angle of the virtual bending neutral axis C1, the virtual bending neutral axis C1 having one specific angle is selected from the angles where the inclination angle from the vertical bending neutral axis C0 is 45 degrees or less. The flanges 2 and 3 that are farthest from the virtual bending neutral axis C1 with respect to the selected one virtual bending neutral axis C1 and the portions of the regions of the webs 4 and 5 that accompany this flange 2 and 3 Increase the wall thickness. If the inclination angle of the virtual bending neutral axis C1 is 90 degrees or less, the flanges 2 and 3 that are farthest from the virtual bending neutral axis C1 and the web 4 can be selected any number of inclination angles. 5 parts are the same. Therefore, the inclination angle of the virtual bending neutral axis C1 may be appropriately selected as an inclination angle of 90 degrees or less. However, when the vehicle impact absorbing member rotates too much and tilts too much, the collision mode itself is unlikely to occur. If this happens, the way the impact energy is transmitted to the cross section of the vehicle impact absorbing member becomes distorted, and the original impact energy is lost. Since the absorption performance cannot be exhibited, problems such as mounting that cause such rotation are greater. Therefore, since it is not necessary to consider the inclination angle exceeding 45 degrees, in the present invention, the inclination angle (inclination) of the virtual bending neutral axis C1 from the perpendicular bending neutral axis C0 is defined as an angle of 45 degrees or less.

このような仮想曲げ中立軸C1からの距離が最も離れたフランジ2、3と、これに交わるウエブ4、5の部位の、部分的な厚肉化によって、衝突荷重による車両衝撃吸収部材1の車幅方向の軸まわりの回転によって、その上側が車両後方側へ倒れながら変形するような傾斜状態においても、車両衝撃吸収部材1の車両上下方向の軸まわりの曲げに対する断面係数およぴ塑性断面係数を高めることができる。断面係数や塑性断面係数は、車両衝撃吸収部材1の断面全体の面積のうち、前記した曲げ中立軸から離れたフランジ2、3と、これに交わるウエブ4、5の部位(領域)の面積を大きくする(大きく設計する)ことで効率的に高めることができる。   By partially thickening the flanges 2 and 3 farthest away from the virtual bending neutral axis C1 and the portions of the webs 4 and 5 that intersect with the flanges 2 and 3, the vehicle of the vehicle impact absorbing member 1 due to a collision load is obtained. The section modulus and the plastic section modulus for bending the vehicle impact absorbing member 1 about the axis in the vertical direction of the vehicle, even in an inclined state in which the upper side of the vehicle is deformed while being tilted to the rear side of the vehicle due to the rotation about the axis in the width direction Can be increased. The section modulus and the plastic section modulus are the areas of the flanges 2 and 3 away from the bending neutral axis and the portions (regions) of the webs 4 and 5 that intersect with the flanges 2 and 3 away from the bending neutral axis. Increasing (designing larger) can increase the efficiency efficiently.

勿論、車両の衝突形態や衝突条件は千差万別であるので、必ず予測した衝突形態になるとは限らず、予測した仮想曲げ中立軸通りになるとは限らない。しかし、本発明は、例え予測とは逆の衝突形態や仮想曲げ中立軸の傾斜方向となっても、矩形中空断面形状の車両衝撃吸収部材1の、従来レベルでの車両上下方向の軸まわりの曲げに対する断面係数およぴ塑性断面係数は維持されており、エネルギ吸収性能も維持されるため、何ら支障はない。   Of course, since the vehicle collision modes and collision conditions vary widely, the vehicle does not always have the predicted collision mode and does not always follow the predicted virtual bending neutral axis. However, the present invention provides a vehicle impact absorbing member 1 having a rectangular hollow cross-sectional shape around the axis in the vertical direction of the vehicle at the conventional level, even if the collision mode is opposite to the prediction or the inclination direction of the virtual bending neutral axis. Since the section modulus and the plastic section modulus for bending are maintained and the energy absorption performance is also maintained, there is no problem.

厚肉化する部位:
車両に取り付けた状態での図2の左側の車両衝撃吸収部材1では、矩形中空断面形状の中央部に、車両上下方向に垂直な曲げ中立軸C0に対して、この曲げ中立軸C0からの距離が最も離れたフランジ2、3とウエブ4、5の部位は、AとB、CとDの点線で囲む左右二つの領域となる。すなわち、広がりとしては、フランジ2、3の車両上下方向の全高さ部分とコーナー部7、8および9、10を含む領域である。
Thickening part:
In the vehicle impact absorbing member 1 on the left side of FIG. 2 in a state where it is attached to the vehicle, a distance from the bending neutral axis C0 to the bending neutral axis C0 perpendicular to the vehicle vertical direction at the center of the rectangular hollow cross-sectional shape. The portions of the flanges 2 and 3 and the webs 4 and 5 that are farthest from each other are two regions on the left and right sides surrounded by dotted lines A and B and C and D. That is, the expansion is a region including the entire height portion of the flanges 2 and 3 in the vehicle vertical direction and the corner portions 7, 8, 9 and 10.

これに対して、図2の右側の車両衝撃吸収部材1のように、図の右側からの車両衝突の衝撃によって、車幅方向の軸まわりに右回りの矢印で示すように回転した状態での車両衝撃吸収部材1では、この回転した車両衝撃吸収部材1の中央部における曲げ中立軸は仮想曲げ中立軸C1となる。そして、この仮想曲げ中立軸C1からの距離が最も離れたフランジ2、3とウエブ4、5の部位は、AとDとの点線で囲む左右二つの領域に変化する。すなわち、広がりとしては、対角線となるコーナー部7と10とを中心として、フランジ2、3やウエブ4、5のコーナー寄りの一部を含む領域のみとなる。   On the other hand, like the vehicle impact absorbing member 1 on the right side of FIG. 2, the vehicle is rotated as shown by the clockwise arrow around the vehicle width axis due to the impact of the vehicle collision from the right side of the diagram. In the vehicle impact absorbing member 1, the bending neutral axis at the center of the rotated vehicle impact absorbing member 1 is the virtual bending neutral axis C1. Then, the portions of the flanges 2 and 3 and the webs 4 and 5 that are farthest from the virtual bending neutral axis C1 are changed into two left and right regions surrounded by dotted lines A and D. That is, the spread is only a region including a portion near the corners of the flanges 2 and 3 and the webs 4 and 5 with the corners 7 and 10 serving as diagonal lines as the center.

前記図1では、この仮想曲げ中立軸C1からの距離が最も離れたAとDとの点線で囲む左右二つの領域が、前フランジ2の下半分側2aおよび後フランジ3の上半分側3b、およびこれに交わるウエブ4、5の部位4b、5aの一部に対応している。   In FIG. 1, the left and right two regions surrounded by the dotted lines A and D that are the farthest from the virtual bending neutral axis C1 are the lower half side 2a of the front flange 2 and the upper half side 3b of the rear flange 3. It corresponds to a part of the portions 4b and 5a of the webs 4 and 5 that intersect with this.

本発明では、このような仮想曲げ中立軸C1からの距離が最も離れた領域である、Dの点線で囲むフランジ2の下部領域12と、Aの点線で囲むフランジ2の上部領域11との左右二つの領域を部分的に厚肉化する。具体的には、前記図1における、これらAとDとの点線で囲む左右二つの領域に対応する、前フランジ2の下半分側2aおよび後フランジ3の上半分側3bと、これに交わるウエブ4、5の部位4b、5aの一部を厚肉化する。 この逆に、車両衝撃吸収部材1が、車幅方向の軸まわりに左回りに回転した場合は、このような仮想曲げ中立軸からの距離が最も離れた領域である、Cの点線で囲む前フランジ2の上部領域と、Bの点線で囲む後フランジ3の下部領域との左右二つの領域を部分的に厚肉化する。具体的には、図1の、前フランジ2の上半分側2bおよび後フランジ3の下半分側3aの肉厚を、前フランジ2の下半分側2aおよび後フランジ3の上半分側3bにおける肉厚 よりも部分的に厚肉化する。   In the present invention, the right and left of the lower region 12 of the flange 2 surrounded by the dotted line D and the upper region 11 of the flange 2 surrounded by the dotted line A, which are regions farthest from the virtual bending neutral axis C1. The two areas are partially thickened. Specifically, the lower half side 2a of the front flange 2 and the upper half side 3b of the rear flange 3 corresponding to the two left and right regions surrounded by the dotted lines A and D in FIG. A part of 4 and 5 part 4b, 5a is thickened. On the contrary, when the vehicle impact absorbing member 1 rotates counterclockwise around an axis in the vehicle width direction, it is a region before such a distance from the virtual bending neutral axis is surrounded by a dotted line C. The two left and right regions of the upper region of the flange 2 and the lower region of the rear flange 3 surrounded by the dotted line B are partially thickened. Specifically, the thickness of the upper half side 2b of the front flange 2 and the lower half side 3a of the rear flange 3 in FIG. It becomes thicker partially than the thickness.

これに伴い、これら厚肉化されたフランジ2a、3bの部位に、各コーナー部(隅角部)で各々交わる(接続される)ウエブ4、5の部位4b、5aの各肉厚も、部分的に厚くすることが好ましい。これは、この接続部分での急激な肉厚の変化を避けて、この急激な肉厚の変化による作りにくさや強度低下を避けるためであって、厚肉化されたフランジ2a、3bの部位の肉厚に応じて、適宜の範囲の長さ(領域)だけで部分的に厚くすることが好ましい。   Accordingly, the thicknesses of the portions 4b and 5a of the webs 4 and 5 that intersect (connect) to the thickened flanges 2a and 3b at the respective corners (corner corners) are also partially It is preferable to make it thick. This is to avoid a sudden change in thickness at the connecting portion, and to avoid difficulty in making and a decrease in strength due to this sudden change in thickness. The thickness of the flanges 2a and 3b is increased. Depending on the wall thickness, it is preferable that the thickness is partially increased only by a length (region) in an appropriate range.

この肉厚を厚くする範囲(断面で言うと厚くする壁の長さの範囲)は、仮想曲げ中立軸C1からの距離が最も離れた、AとDとの点線で囲む左右二つの領域、あるいは、これらに対応する前フランジ2の下半分側2aおよび後フランジ3の上半分側3b、およびこれに交わるウエブ4、5の部位4b、5aの領域の範囲で適宜選択される。言い換えると、フランジ(場合によってはウエブ)の他の薄肉化する部位の各肉厚(厚肉化する肉厚)や範囲(断面で言う壁の長さ)との関係で、前記傾斜状態においても、車両衝撃吸収部材の車両上下方向の軸まわりの曲げに対する断面係数およぴ塑性断面係数を高めることができ、エネルギ吸収機能を発揮できるように適宜決定される。   The range in which the thickness is increased (in the cross section, the range of the length of the wall to be increased) is the two left and right regions surrounded by dotted lines A and D, which are the farthest from the virtual bending neutral axis C1, or The lower half side 2a of the front flange 2 and the upper half side 3b of the rear flange 3 corresponding to these and the regions 4b and 5a of the webs 4 and 5 intersecting therewith are appropriately selected. In other words, in relation to each thickness (thickening thickness) and range (wall length in cross section) of other thinned portions of the flange (in some cases, the web), even in the inclined state, The section modulus and the plastic section modulus with respect to the bending of the vehicle impact absorbing member about the axis in the vehicle vertical direction can be increased and appropriately determined so that the energy absorbing function can be exhibited.

厚肉化する部位の厚さ:
このような特性発揮のためには、前記厚肉化する側の各フランジの上下いずれか半分側の肉厚を3.5〜12mmの 範囲とする一方で、前記薄肉化する各フランジの他方の上下半分側の肉厚を1〜4mmの範囲とする 。すなわち、厚肉化する部位の範囲とともに、仮想曲げ中立軸からの距離が最も離れた部位の肉厚を厚肉化する。
Thickness of thickened part:
In order to exhibit such characteristics, the thickness of the upper or lower half of each flange on the side to be thickened is set to a range of 3.5 to 12 mm, while the other thickness of each flange to be thinned is set. The thickness of the upper and lower half sides is in the range of 1 to 4 mm. That is, the thickness of the part farthest from the virtual bending neutral axis is increased along with the range of the part to be thickened.

図1、2の、車両衝撃吸収部材1が車幅方向の軸まわりに右回りに回転すると想定して設計する場合には、仮想曲げ中立軸C1からの距離が最も離れた部位として、厚肉化される部位A、Dの領域の肉厚を厚肉化するために決定する。
この逆に、図17の右下側の図のように、車両衝撃吸収部材1が車幅方向の軸まわりに左回りに回転した場合は、仮想曲げ中立軸C2からの距離が最も離れた部位として、厚肉化される部位B、Cの領域の肉厚を厚肉化するために決定する。
以下に、図1、2の場合の厚肉化や薄肉化などの実施形態につき、詳細に説明するが、この逆の前記図17の右下側の場合のように、車両衝撃吸収部材1が車幅方向の軸まわりに左回りに回転すると想定して設計する場合には、厚肉化する部位を、前記B、Cの領域である、前フランジ2の上半分側2bおよび後フランジ3の下半分側3aや、下ウエブ5の部位5b、上ウエブ4の部位4aなどに置き換えて設計する。また、薄肉化する部位を、前記A、D領域である、前フランジ2の下半分側2aおよび後フランジ3の上半分側3bと、これに交わるウエブ4、5の部位4b、5aなどに置き換えて設計する。
1 and 2, assuming that the vehicle impact absorbing member 1 rotates clockwise around an axis in the vehicle width direction, the thickest wall is defined as the part farthest from the virtual bending neutral axis C1. The thickness of the regions A and D to be changed is determined in order to increase the thickness.
Conversely, when the vehicle impact absorbing member 1 rotates counterclockwise around an axis in the vehicle width direction, as shown in the lower right side of FIG. 17, the part farthest from the virtual bending neutral axis C2 As described above, the thickness of the regions B and C to be thickened is determined in order to increase the thickness.
In the following, embodiments such as thickening and thinning in the case of FIGS. 1 and 2 will be described in detail. However, as in the case of the lower right side of FIG. When designing on the assumption that it rotates counterclockwise around an axis in the vehicle width direction, the thickened portions are the areas of the upper flange 2b of the front flange 2 and the rear flange 3 which are the regions B and C described above. The lower half side 3a, the part 5b of the lower web 5, the part 4a of the upper web 4 and the like are designed. Further, the thinned portion is replaced with the lower half side 2a of the front flange 2 and the upper half side 3b of the rear flange 3 and the portions 4b and 5a of the webs 4 and 5 that intersect with the lower half side 2a of the front flange 2 and the like. Design.

図1、2の場合には、このA、Dに含まれる領域として、前フランジ2の下半分側2aおよび後フランジ3の上半分側3bと、これに交わるウエブ4、5の部位4b、5aの一部における肉厚を 、前フランジ2の上半分側2bおよび後フランジ3の下半分側3aの肉厚よりも、各々部分的に厚くして、その厚みの範囲を3.5〜12mm とすることが好ましい。これは以下の図3〜図6などの本発明例でも共通する。
ちなみに、図1では、点線で囲むDの領域の、前フランジ2の下半分側2aおよびこれに交わる下ウエブ5の部位5aの一部と、点線で囲むAの領域の後フランジ3の上半分側3bおよびこれに交わる上ウエブ4の部位4bの一部とが、前記矩形中空断面の中心に対して互いに点対称となるよう、テーパ状に厚肉化している。
In the case of FIGS. 1 and 2, the regions included in A and D include the lower half side 2a of the front flange 2 and the upper half side 3b of the rear flange 3, and portions 4b and 5a of the webs 4 and 5 that intersect with the lower half side 2a. Is partially thicker than the thickness of the upper half side 2b of the front flange 2 and the lower half side 3a of the rear flange 3, and the thickness ranges from 3.5 to 12 mm. It is preferable to do. This also applies to the present invention examples such as FIGS.
Incidentally, in FIG. 1, the lower half side 2a of the front flange 2 and a part of the portion 5a of the lower web 5 intersecting with the lower flange side 2a of the area D surrounded by the dotted line, and the upper half of the rear flange 3 of the area A surrounded by the dotted line The side 3b and a part of the portion 4b of the upper web 4 intersecting with the side 3b are thickened in a tapered shape so as to be point-symmetric with respect to the center of the rectangular hollow cross section.

より具体的に、フランジ2の下部2aのうちのDの点線で囲む部分的な厚肉部12の厚み(板厚)をt2、フランジ3の上部3bのうちのAの点線で囲む部分的な厚肉部11の厚み(板厚)をt3とする。一方、フランジ2の上部2bのうちのCの点線で囲む部分的な薄肉部の厚み(板厚)をt1、同じくフランジ3下部3aのBの点線で囲む部分的な薄肉部の厚み(板厚)をt4とする。更に、上側のウエブ4の厚み(板厚)をt5、下側のウエブ5の厚み(板厚)をt6とする。   More specifically, the thickness (plate thickness) of the partial thick portion 12 surrounded by the dotted line D in the lower portion 2a of the flange 2 is t2, and the partial thickness surrounded by the dotted line A in the upper portion 3b of the flange 3 The thickness (plate thickness) of the thick part 11 is set to t3. On the other hand, the thickness (plate thickness) of the partial thin portion surrounded by the dotted line C in the upper portion 2b of the flange 2 is t1, and the thickness (plate thickness) of the partial thin portion surrounded by the dotted line B of the flange 3 lower portion 3a. ) Is t4. Furthermore, the thickness (plate thickness) of the upper web 4 is t5, and the thickness (plate thickness) of the lower web 5 is t6.

図1、2において、仮想曲げ中立軸C1(C2)からの距離が最も離れた、厚肉化される部位A、Dの領域内での厚肉化する部位は、前フランジ2の下半分側2aのうちの厚肉化部分12のt2、後フランジ3の上半分側3bのうちの厚肉化部分11のt3である。 そして、仮想曲げ中立軸C1(C2)からの距離が最も離れた部位が、コーナー部7、10に交わる、これらコーナー部近傍のウエブ4、5の部位にも及ぶ場合には、これらコーナー部7、10近傍の上ウエブ4の後半分側4b、下ウエブ5の前半分側5aの厚みt5、t6も部分的に厚くする。   In FIGS. 1 and 2, the thickened portion in the region of the thickened portions A and D, which is the farthest from the virtual bending neutral axis C <b> 1 (C <b> 2), is the lower half side of the front flange 2. These are t2 of the thickened portion 12 in 2a and t3 of the thickened portion 11 in the upper half side 3b of the rear flange 3. When the part farthest from the virtual bending neutral axis C1 (C2) extends to the parts of the webs 4 and 5 in the vicinity of the corners 7 and 10 that intersect the corners 7 and 10, these corners 7 The thicknesses t5 and t6 of the rear half 4b of the upper web 4 near 10 and the front half 5a of the lower web 5 are also partially increased.

そして、これらの厚肉化する部位の厚み(板厚)t2、t3、場合によってはt5、t6を3.5〜12mmの範囲から選択して、それ以外の(薄肉化する)フランジとウエブの部位の各肉厚よりも、各々部分的に厚くする。この厚くする方法は、それ以外の(薄肉化する)フランジとウエブの部位と、板厚の段差を設けてフランジやウエブの壁の延在方向に均一に厚くしてもよく、図1のように、傾斜状(テーパ状)に厚みを順次連続的あるいは段階的に(階段状に)増加あるいは減少させてもよい。   Then, the thickness (plate thickness) t2, t3, and in some cases t5, t6 of these thickening portions are selected from the range of 3.5 to 12 mm, and the other (thinning) flanges and webs Each part is thicker than the thickness of each part. In this thickening method, the thickness of the other flange (thinning) flange and web, and the plate thickness step may be provided to increase the thickness uniformly in the extending direction of the flange or web wall, as shown in FIG. In addition, the thickness may be increased or decreased sequentially or stepwise (stepwise) in an inclined manner (tapered).

ここで、厚肉化する部位のt2、t3などの肉厚が3.5mm未満では、厚肉化が不足して、傾斜状態における車両衝撃吸収部材の車両上下方向の軸まわりの曲げに対する断面係数およぴ塑性断面係数を高めることができず、エネルギ吸収機能を高めることができない。   Here, if the thickness of the portion to be thickened, such as t2, t3, is less than 3.5 mm, the thickening is insufficient, and the section modulus with respect to the bending of the vehicle impact absorbing member about the vehicle vertical axis in the inclined state In addition, the plastic section modulus cannot be increased, and the energy absorption function cannot be enhanced.

一方、厚肉化する部位のt2、t3などの肉厚が12mmを超えて厚肉化しても、前記エネルギ吸収機能はさして向上せず、後述する他の部位の薄肉化にも限界があるため、厚肉化による断面積と重量の増加分を補うことができない。このため、フランジが均一な厚みの元の車両衝撃吸収部材に比して、断面積の増加率を5%以下に抑制できなくなる。   On the other hand, even if the thickness of the part to be thickened such as t2, t3 exceeds 12 mm, the energy absorption function is not improved, and there is a limit to the thinning of other parts to be described later. The increase in cross-sectional area and weight due to thickening cannot be compensated. For this reason, the increase rate of the cross-sectional area cannot be suppressed to 5% or less as compared with the original vehicle impact absorbing member having a uniform flange thickness.

ちなみに、これらフランジ2、3の部位の肉厚を3.5〜12mmの範囲で、それ以外のフランジとウエブの部位の各肉厚よりも、各々部分的に厚くした例は、従来でも存在する。しかし、これらは後述する他の部位の薄肉化を行っておらず、フランジが均一な厚みの元の車両衝撃吸収部材に比して、断面積の増加率を5%以下には抑制できていない。また、通常も(従来も)、フランジ2、3の部位の肉厚は2〜12mmの範囲から選択されるが、前記した補強のために部分的に肉厚化する場合を除いて、当然ながら、各々の壁の長手方向で均一な厚みとしている。   By the way, there is an example in which the thickness of the flanges 2 and 3 is in the range of 3.5 to 12 mm and is partially thicker than the thicknesses of the other flanges and webs. . However, these do not reduce the thickness of other parts, which will be described later, and the increase rate of the cross-sectional area cannot be suppressed to 5% or less compared to the original vehicle impact absorbing member having a uniform flange thickness. . In addition, the wall thickness of the flanges 2 and 3 is usually selected from the range of 2 to 12 mm as usual (except for the case where the wall thickness is partially increased for the above-described reinforcement). The thickness of each wall is uniform in the longitudinal direction.

薄肉化する部位の厚さ:
一方で、前記厚肉化する以外のフランジ2、3とウエブ4、5の部位の各肉厚は1〜4mmの範囲で各々薄くすることが好ましい。図1では、前フランジ2の上半分側2bおよび後フランジ3の下半分側3aの肉厚を、前フランジ2の下半分側2aおよび後フランジ3の上半分側3bにおける肉厚 よりも、前記した1〜4mm の範囲に各々部分的に薄くすることが好ましい。これは以下の図3〜図6などの本発明例でも共通する。
Thinning part thickness:
On the other hand, it is preferable that the thicknesses of the flanges 2 and 3 and the webs 4 and 5 other than the thickening are made thinner in the range of 1 to 4 mm. In FIG. 1, the thickness of the upper half side 2 b of the front flange 2 and the lower half side 3 a of the rear flange 3 is set to be larger than the thickness of the lower half side 2 a of the front flange 2 and the upper half side 3 b of the rear flange 3. It is preferable to make each partially thin in the range of 1 to 4 mm. This also applies to the present invention examples such as FIGS.

図1、2で具体的に言うと、このように薄肉化するのは、前記厚肉化する以外のその他の部位として、フランジ2上部の点線で囲むC領域を含む部位(前フランジ2の上半分側2b)から、前記厚肉化する領域D(前フランジ2の下半分側2a)に至るまでの領域の厚み(板厚)t1である。そして、フランジ3下部の点線で囲むB領域を含む部位(後フランジ3の下半分側3aと下ウエブ5の後ろ半分側5b)から、前記厚肉化する領域A(後フランジ3の上半分側3b)に至るまでの領域の厚み(板厚)t4である。そして、更に、前記コーナー部7の近傍で厚肉化する領域以外の、コーナー部9に至るまでの領域(壁長さあるいは壁幅)の上ウエブ4の後半分側4bや前半分側4aの厚み(板厚)t5、同じく前記コーナー部10の近傍で厚肉化する領域以外の、コーナー部8に至るまでの領域(壁長さあるいは壁幅)の下ウエブ5の後ろ半分側5bや前半分側5aの厚み(板厚)t6である。   Specifically, in FIGS. 1 and 2, the thinning is performed as a part other than the thickening part including a C region surrounded by a dotted line above the flange 2 (on the front flange 2. The thickness (plate thickness) t1 of the region from the half side 2b) to the thickened region D (the lower half side 2a of the front flange 2). Then, the region A (the upper half side of the rear flange 3) is increased from the region including the B region surrounded by the dotted line below the flange 3 (the lower half side 3a of the rear flange 3 and the rear half side 5b of the lower web 5). It is the thickness (plate thickness) t4 of the region up to 3b). Further, in the region (wall length or wall width) up to the corner portion 9 other than the region thickened in the vicinity of the corner portion 7, the rear half side 4b and the front half side 4a of the upper web 4 are arranged. Thickness (plate thickness) t5, the rear half side 5b and the front half of the lower web 5 in the region (wall length or wall width) up to the corner portion 8 other than the region where the thickness is increased in the vicinity of the corner portion 10 This is the thickness (plate thickness) t6 of the minute side 5a.

このように、前記したフランジの薄肉化部分に加えて、前フランジ2の上半分側2bおよび後フランジ3の下半分側3aに各コーナー部(隅角部)で各々交わるウエブ4、5の部位4a、5bの各肉厚も薄くすることが好ましい。これは、勿論、前記したフランジの部分的な厚肉化に伴う重量増加を抑えるためであって、この接続部分での急激な肉厚の変化による作りにくさや強度低下を避けるためでもある。したがって、薄肉化された前フランジ2の上半分側2bおよび後フランジ3の下半分側3aの部位の肉厚に応じて、適宜の範囲の長さ(領域)だけ部分的に薄くすることが好ましい。   Thus, in addition to the thinned portion of the flange described above, the portions of the webs 4 and 5 that intersect the upper half side 2b of the front flange 2 and the lower half side 3a of the rear flange 3 at the respective corner portions (corner corner portions). It is preferable to reduce the thickness of each of 4a and 5b. This is, of course, to suppress an increase in weight due to the partial thickening of the flange described above, and also to avoid difficulty in making and a decrease in strength due to a sudden change in the thickness at the connecting portion. Therefore, it is preferable that the thickness of the upper half side 2b of the thinned front flange 2 and the thickness of the lower half side 3a of the rear flange 3 be partially thinned by an appropriate range of length (region). .

図1、2において、逆に、車両衝撃吸収部材1が、車幅方向の軸まわりに左回りに回転した場合は、前記図1における、これらAとDとの点線で囲む左右二つの領域に対応する、前フランジ2の下半分側2aおよび後フランジ3の上半分側3bと、これに交わるウエブ4、5の部位4b、5aを同様に薄肉化する。   1 and 2, conversely, when the vehicle impact absorbing member 1 rotates counterclockwise around an axis in the vehicle width direction, the left and right regions surrounded by the dotted lines A and D in FIG. Correspondingly, the lower half side 2a of the front flange 2 and the upper half side 3b of the rear flange 3 and the portions 4b and 5a of the webs 4 and 5 intersecting with this are similarly thinned.

ここで、薄肉化するフランジとウエブの部位の各肉厚t1、t4、t5、t6が1mm未満では、これらの部位の強度、剛性が低下して、前記衝撃を受けた際に破断しやすくなり、傾斜するしないを問わず、車両衝撃吸収部材としてのエネルギ吸収機能を発揮できない。また、これらの肉厚が4mmを超えた場合には、前記厚肉化部位による断面積と重量の増加分を補うことができないくなり、フランジが均一な厚みの元の車両衝撃吸収部材に比して、断面積の増加率を5%以下に抑制できなくなる。   Here, if the thicknesses t1, t4, t5, and t6 of the flange and web portions to be thinned are less than 1 mm, the strength and rigidity of these portions are reduced, and are easily broken when subjected to the impact. The energy absorbing function as a vehicle impact absorbing member cannot be exhibited regardless of whether the vehicle is inclined. In addition, when the thickness exceeds 4 mm, it becomes impossible to compensate for the increase in the cross-sectional area and weight due to the thickened portion, and the flange has a uniform thickness compared to the original vehicle impact absorbing member. Thus, the increase rate of the cross-sectional area cannot be suppressed to 5% or less.

これら薄肉化する部位の厚み(板厚)t1、t4も、この薄くする方法は、前記厚肉化する場合と同様に、(厚肉化する)フランジとウエブの部位と、板厚の段差を設けてフランジやウエブの壁の延在方向に均一に薄くしてもよく、図1のように、傾斜状(テーパ状)に厚みを順次連続的あるいは段階的に(階段状に)増加あるいは減少させてもよい。   As for the thickness (plate thickness) t1 and t4 of these thinned portions, the thinning method is similar to the above thickening in that the thickness of the flange and the web portion (thickening) and the thickness difference between the thicknesses are reduced. It may be provided to make it evenly thin in the extending direction of the flange or web wall. As shown in FIG. 1, the thickness is increased or decreased sequentially or stepwise (stepwise) in an inclined manner (tapered shape). You may let them.

断面積増加率の基準とする「フランジが均一な厚みの元の車両衝撃吸収部材」とは、前記フランジの厚みが部位によらず、本発明の最大厚肉部と最小薄肉部との平均値として均一な、同じ大きさ(形状)の矩形中空断面構造である。   “The original vehicle impact absorbing member having a uniform flange thickness” as a reference for the rate of increase in cross-sectional area is the average value of the maximum thickness portion and the minimum thickness portion of the present invention, regardless of the thickness of the flange. And a rectangular hollow cross-sectional structure of the same size (shape).

車両衝撃吸収部材のその他の例:
図3、4:
図3、4は、前記図1の日型断面の変形例であり、前記図16と同じ断面を有している。すなわち、車両のレイアウトやデザイン上の制約などによって、車両衝撃吸収部材1の衝突面である、前面側フランジ2が、車両上下方向の軸に対して、例えば下方側12が下方にいくほど傾斜して順次幅狭となっている(ウエブ5が最も幅狭となっている)断面形状を示す。図3も、図1と同じアルミニウム合金押出形材からなる車両衝撃吸収部材を示している。
Other examples of vehicle impact absorbing members:
Figures 3 and 4:
3 and 4 are modified examples of the cross-section of the daily shape of FIG. 1, and have the same cross section as FIG. That is, the front side flange 2 that is the collision surface of the vehicle impact absorbing member 1 is inclined with respect to an axis in the vertical direction of the vehicle, for example, as the lower side 12 goes downward due to vehicle layout or design restrictions. The cross-sectional shape is gradually narrowed (the web 5 is the narrowest). FIG. 3 also shows a vehicle impact absorbing member made of the same aluminum alloy extruded shape as in FIG.

この場合も、他車側の車両衝撃吸収部材と取り付けられた車高(位置)が同じでも、車両衝撃吸収部材1の衝突面には、他車車両衝撃吸収部材による衝突荷重が均等に伝わらない。このため、前記図15と同じく、図の上下方向となる車幅方向を軸とした、右回りの矢印で示す「ねじりモーメント」が生じる。この結果、車両衝撃吸収部材1は、やはり車幅方向の軸まわりに、前記右回りの矢印で示すように回転しながら変形することになる。   Also in this case, even if the vehicle impact absorbing member on the other vehicle side and the attached vehicle height (position) are the same, the collision load of the other vehicle impact absorbing member is not uniformly transmitted to the collision surface of the vehicle impact absorbing member 1. . Therefore, as in FIG. 15, a “torsional moment” indicated by a clockwise arrow with the vehicle width direction as the vertical direction in the figure as an axis is generated. As a result, the vehicle impact absorbing member 1 is also deformed while rotating around an axis in the vehicle width direction as indicated by the clockwise arrow.

この図3、4において、車両の前側に向かって傾斜すると想定している仮想曲げ中立軸C1からの距離が最も離れた厚肉化する部位は、点線で囲む領域Eの前フランジ2の中央部14のt2、点線で囲む領域Aの後フランジ3上部13のt3である。すなわち、前フランジ2の下半分側2aと上半分側2bとに亘る中央部の、点線で囲む領域Eの前フランジ2の中央部14のt2と、後フランジ3の上半分側3bの点線で囲む領域Aの後フランジ3上部13のt3とを厚肉化する。   3 and 4, the thickened portion that is most distant from the virtual bending neutral axis C <b> 1 that is assumed to be inclined toward the front side of the vehicle is the central portion of the front flange 2 in the region E surrounded by the dotted line. T2 of 14, and t3 of the upper portion 13 of the rear flange 3 of the region A surrounded by the dotted line. That is, t2 of the center portion 14 of the front flange 2 in the region E surrounded by the dotted line at the center portion between the lower half side 2a and the upper half side 2b of the front flange 2 and the dotted line of the upper half side 3b of the rear flange 3 The rear flange 3 upper part 13 of the surrounding area A is thickened.

このうち、厚肉化する部位である、後フランジ3上部13のt3は、前記図1の厚肉化する部位7と同じである。これに対して、前フランジ2中央部14のt2は、前記図1の厚肉化する前フランジ2の下部の部位12とは異なる。これは、図3、4の断面形状が、特に前フランジ2の下部の形状が幅狭な部分で、図1、2の断面形状と異なるために、必然的に、この前フランジ2の仮想曲げ中立軸C1からの距離が最も離れた部位(厚肉化する部位)が異なるためである。これに対して、図3、4の断面形状が図1、2の断面形状と同じ後フランジ3では、必然的に、この後フランジ3の仮想曲げ中立軸C1からの距離が最も離れた部位(厚肉化する部位)は同じとなる。   Among these, t3 of the upper part 13 of the rear flange 3, which is a thickened portion, is the same as the thickened portion 7 in FIG. On the other hand, t2 of the center part 14 of the front flange 2 is different from the lower part 12 of the front flange 2 to be thickened in FIG. This is because the cross-sectional shape of FIGS. 3 and 4 is different from the cross-sectional shape of FIGS. This is because the part farthest away from the neutral axis C1 (the part to be thickened) is different. On the other hand, in the rear flange 3 in which the cross-sectional shape of FIGS. 3 and 4 is the same as the cross-sectional shape of FIGS. 1 and 2, the distance from the virtual bending neutral axis C1 of the rear flange 3 is inevitably farthest ( The thickening part) is the same.

すなわち、この図3では、点線で囲む領域Aの後フランジ3の上部13と、点線で囲む領域Eの前フランジ2中央部14との左右二つの領域を、テーパ状に厚肉化している。そして、これらの厚肉化する部位の厚み(板厚)t2、t3、場合によってはt5、t6を、3.5〜12mmの範囲から選択して、それ以外の(薄肉化する)フランジとウエブの部位の各肉厚よりも、各々部分的に厚くする。   That is, in FIG. 3, the two left and right regions of the upper portion 13 of the rear flange 3 of the region A surrounded by the dotted line and the center portion 14 of the front flange 2 of the region E surrounded by the dotted line are thickened in a tapered shape. Then, the thickness (plate thickness) t2, t3, and in some cases t5, t6 of these thickening portions are selected from the range of 3.5 to 12 mm, and the other flanges (thinning) and web Each part is thicker than the thickness of each part.

その一方で、図3、4において薄肉化するのは、前記厚肉化する以外のその他の部位として、前フランジ2上部の点線で囲むC領域から前記厚肉化する点線で囲む領域Eに至るまでの前フランジ2の上半分側2b領域の厚み(板厚)t1と、前フランジ2の下部の点線で囲むD領域から前記厚肉化する領域Eに至るまでの前フランジ2の下半分側2a領域の厚み(板厚)t1である。そして、後フランジ3下部の点線で囲むB領域を含む後フランジ3の下半分側3a領域から、前記厚肉化する領域Aに至るまでの領域の後フランジ3の上半分側3bの厚み(板厚)t4である。そして、更に、前記コーナー部7の近傍で厚肉化する領域以外の、コーナー部9に至るまでの領域(壁長さあるいは壁幅)の上ウエブ4(4a、4b)の厚み(板厚)t5、同じく前記コーナー部10からコーナー部8に至るまでの領域(壁長さあるいは壁幅)の下のウエブ5(5a、5b)の厚み(板厚)t6である。   On the other hand, the thinning in FIGS. 3 and 4 is from the region C surrounded by the dotted line at the top of the front flange 2 to the region E surrounded by the thickening dotted line as other portions other than the thickening. The lower half side of the front flange 2 from the region D surrounded by the dotted line below the front flange 2 to the region E to be thickened 2a region thickness (plate thickness) t1. The thickness (plate) of the upper half side 3b of the rear flange 3 in the region from the lower half side 3a region of the rear flange 3 including the B region surrounded by the dotted line below the rear flange 3 to the region A to be thickened. Thickness) t4. Furthermore, the thickness (plate thickness) of the upper web 4 (4a, 4b) in the region (wall length or wall width) up to the corner portion 9 other than the region thickened in the vicinity of the corner portion 7. t5 is also the thickness (plate thickness) t6 of the web 5 (5a, 5b) under the region (wall length or wall width) from the corner portion 10 to the corner portion 8.

図5の例:
図5(a)、(b)、(c)は、共通して、車両衝撃吸収部材1の矩形中空断面構造が、補強用の中リブ6が無い、口型断面の例である。図5も、図1と同じアルミニウム合金押出形材からなる車両衝撃吸収部材を示している。
Example of FIG.
5A, 5B, and 5C are examples of a mouth-shaped cross section in which the rectangular hollow cross-sectional structure of the vehicle impact absorbing member 1 has no reinforcing middle rib 6 in common. FIG. 5 also shows a vehicle impact absorbing member made of the same aluminum alloy extruded shape as FIG.

この図5においても、仮想曲げ中立軸C1は、前記図1や図3と同様に、車両の前方側に向かって傾斜すると想定している。そして、この仮想曲げ中立軸C1からの距離が最も離れた部位として、対角線上の部位A、Dの領域の肉厚を前記特定範囲の厚肉化する。   In FIG. 5 as well, the virtual bending neutral axis C1 is assumed to be inclined toward the front side of the vehicle, as in FIGS. And the thickness of the area | region of the site | parts A and D on a diagonal line is thickened in the said specific range as a site | part with the longest distance from this virtual bending neutral axis C1.

図5(a)、図5(b)は、各々Dの点線で囲む厚肉化するフランジ2下部の16、18およびAの点線で囲むフランジ3上部の15、17の厚み(板厚)を前記特定範囲で、図5(a)は段差状に、図5(b)はテーパ状に、互いに点対称になるように厚肉化している。そして、仮想曲げ中立軸C1からの距離が最も離れた部位がコーナー部7、10に交わる、これらコーナー部近傍のウエブ4、5の部位の厚みも前記特定範囲で厚くする。すなわち、これらAとDとの点線で囲む左右二つの領域に対応する、前フランジ2の下半分側2aおよび後フランジ3の上半分側3bと、これに交わるウエブ4、5の部位4b、5aの一部を厚肉化する。   5 (a) and 5 (b) show the thicknesses (plate thicknesses) of the flanges 16 and 18 below the flange 2 to be thickened surrounded by the dotted line D and the flanges 15 and 17 surrounded by the dotted line A, respectively. Within the specific range, FIG. 5 (a) is stepped, and FIG. 5 (b) is tapered so as to be point-symmetric with each other. Then, the portions of the webs 4 and 5 in the vicinity of the corner portions 7 and 10 where the portion farthest from the virtual bending neutral axis C1 intersects the corner portions 7 and 10 are also increased in the specific range. That is, the lower half side 2a of the front flange 2 and the upper half side 3b of the rear flange 3 corresponding to the two left and right regions surrounded by the dotted lines A and D, and the portions 4b and 5a of the webs 4 and 5 that intersect with the lower half side 2a. Thicken part of the wall.

そして、その他の部位として、フランジ2上部の点線で囲むC領域を含む部位、フランジ3下部の点線で囲むB領域を含む部位、上側のウエブ4や下側のウエブ5などの厚み(板厚)を、前記厚みを厚くした領域に至るまでの領域で薄肉化する。すなわち、これらCとBとの点線で囲む左右二つの領域に対応する、前フランジ2の上半分側2bおよび後フランジ3の下半分側3aと、これに交わるウエブ4、5の部位4a、5bを薄肉化する。   Further, as other parts, the thickness (plate thickness) of the part including the C region surrounded by the dotted line above the flange 2, the part including the B region surrounded by the dotted line below the flange 3, the upper web 4 and the lower web 5 etc. Is thinned in a region up to the region where the thickness is increased. That is, the upper half side 2b of the front flange 2 and the lower half side 3a of the rear flange 3 corresponding to the two left and right regions surrounded by the dotted lines C and B, and the portions 4a and 5b of the webs 4 and 5 that intersect with the upper half side 2b. Reduce the thickness.

図5(c)は、前記図3と同じ断面形状を有しており、車両の前側に向かって傾斜すると想定している仮想曲げ中立軸C1からの距離が最も離れた厚肉化する部位は、点線で囲む領域Eのフランジ2の中央部20と、点線で囲む領域Aのフランジ3上部19である。すなわち、前フランジ2の下半分側2aと上半分側2bとに亘る中央部の、点線で囲む領域Eの前フランジ2の中央部14(t2)と、後フランジ3の上半分側3bの点線で囲む領域Aの後フランジ3上部13(t3)とを厚肉化する。   FIG. 5 (c) has the same cross-sectional shape as FIG. 3, and the thickened part that is the most distant from the virtual bending neutral axis C1 that is assumed to be inclined toward the front side of the vehicle is shown in FIG. The center part 20 of the flange 2 in the area E surrounded by the dotted line and the flange 3 upper part 19 in the area A surrounded by the dotted line. That is, the center part 14 (t2) of the front flange 2 in the region E surrounded by the dotted line at the center part between the lower half side 2a and the upper half side 2b of the front flange 2 and the dotted line on the upper half side 3b of the rear flange 3 The rear flange 3 upper part 13 (t3) of the area A surrounded by is thickened.

そして、図5(c)において薄肉化する部位は、前記図3、4と同じであり、前記厚肉化する以外のその他の部位として、フランジ2上部の点線で囲むC領域から前記厚肉化する点線で囲む領域Eに至るまでの領域と、フランジ2下部の点線で囲むD領域から前記厚肉化する領域Eに至るまでの領域の厚み(板厚)である。そして、フランジ2下部の点線で囲むB領域を含む部位から、前記厚肉化する領域Aに至るまでの領域の厚み(板厚)である。そして、更に、前記コーナー部7の近傍で厚肉化する領域以外の、コーナー部9に至るまでの領域の上側のウエブ4の厚み(板厚)、同じく前記コーナー部10からコーナー部8に至るまでの領域の下側のウエブ5の厚み(板厚)である。   5 (c) is the same as that shown in FIGS. 3 and 4 except that the thickness is increased from the region C surrounded by the dotted line above the flange 2. The thickness (plate thickness) of the region from the region E surrounded by the dotted line to the region E and the region D surrounded by the dotted line below the flange 2 to the region E to be thickened. And it is the thickness (plate | board thickness) of the area | region from the site | part containing B area | region enclosed with the dotted line of the flange 2 lower part to the area | region A to be thickened. Further, the thickness (plate thickness) of the web 4 on the upper side of the region up to the corner portion 9 other than the region thickened in the vicinity of the corner portion 7, also from the corner portion 10 to the corner portion 8. This is the thickness (plate thickness) of the web 5 on the lower side of the region.

図6の例:
図6(a)、(b)、(c)は、共通して、車両衝撃吸収部材1の矩形中空断面構造が補強用の中リブ6がある日型断面の例であるが、アルミニウム合金板からなる例である。 すなわち、圧延、調質されたアルミニウム合金板を、曲げ加工などの成形によって矩形中空断面構造とし、端部同士を溶接接合して、矩形中空断面構造したものである。そして、別途平板な中リブ6を中空内に取り付けて溶接などで接合している。なお、図6(d)だけは、同じくアルミニウム合金板を成形したものではあるが、口型断面を示している。
Example of FIG. 6:
6 (a), 6 (b), and 6 (c) are common examples in which the rectangular hollow cross-sectional structure of the vehicle impact absorbing member 1 is a daily cross section having a reinforcing middle rib 6, an aluminum alloy plate. It is an example consisting of. That is, a rolled and tempered aluminum alloy plate is formed into a rectangular hollow cross-sectional structure by forming such as bending, and the ends are welded to form a rectangular hollow cross-sectional structure. A separate flat middle rib 6 is attached in the hollow and joined by welding or the like. Note that FIG. 6 (d) shows a mouth-shaped cross section, which is also formed from an aluminum alloy plate.

この図6も、仮想曲げ中立軸C1は、前記図1や図3と同様に、車両の前方側に向かって傾斜すると想定している。そして、この仮想曲げ中立軸C1からの距離が最も離れた部位として、前記図1や図3と同様に、対角線上の部位A、Dの領域の肉厚を前記特定範囲の厚肉化する。すなわち、これらAとDとの点線で囲む左右二つの領域に対応する、前フランジ2の下半分側2aおよび後フランジ3の上半分側3bを厚肉化する。   6 also assumes that the virtual bending neutral axis C1 is inclined toward the front side of the vehicle, as in FIGS. Then, as the portion farthest from the virtual bending neutral axis C1, the thickness of the regions A and D on the diagonal line is increased in the specific range, as in FIGS. That is, the lower half side 2a of the front flange 2 and the upper half side 3b of the rear flange 3 corresponding to the two left and right regions surrounded by the dotted lines A and D are thickened.

また、その他の部位を薄肉化する。すなわち、これらCとBとの点線で囲む左右二つの領域に対応する、前フランジ2の上半分側2bおよび後フランジ3の下半分側3を薄肉化する。この厚肉化や薄肉化の領域や厚みの設計は前記図1や図3と同様に行うものである。   In addition, the other parts are thinned. That is, the upper half side 2b of the front flange 2 and the lower half side 3 of the rear flange 3 corresponding to the two left and right regions surrounded by the dotted lines of C and B are thinned. The thickening and thinning regions and thickness are designed in the same manner as in FIGS.

ただ、この図6は板の成形材であるので、前記押出材のように、厚肉部や薄肉部の厚みや断面形状を自由に選択、設計して製造できない。このため、A、Dの領域の肉厚の前記特定範囲の厚肉化は、別の(別に準備した)アルミニウム合金板の接合(貼り合わせ)によって行っている。   However, since this FIG. 6 is a molding material of a plate, it cannot be manufactured by selecting and designing the thickness and the cross-sectional shape of the thick part and the thin part freely like the extruded material. For this reason, thickening of the specific range of the thicknesses of the regions A and D is performed by joining (bonding) of another (separately prepared) aluminum alloy plates.

図6(a)は、一枚のアルミニウム合金板を成形し、両端部同士をコーナー部7で溶接して一体化した矩形中空断面構造を示している。そして、A、Dの点線で囲む厚肉化するフランジ2、3の各部位に、別の平板21、22を、溶接あるいは接着剤などによって貼り合わせている。そして、これらA、Dの厚肉化領域が互いに点対称になるように厚肉化している。   FIG. 6A shows a rectangular hollow cross-section structure in which one aluminum alloy plate is formed and both end portions are welded together at the corner portion 7 to be integrated. Then, separate flat plates 21 and 22 are bonded to the portions of the flanges 2 and 3 that are thickened surrounded by dotted lines A and D by welding or an adhesive. The thickened areas A and D are thickened so that they are point-symmetric with each other.

図6(b)は、フランジ2とウエブ4、フランジ3とウエブ5とからなる2枚の別々に成形されたアルミニウム合金同士を、その両端部同士で互いに溶接して一体化した矩形中空断面構造を示している。そして、この両端部同士での互いの溶接を、A、Dの点線で囲む厚肉化するフランジ2、3に相当する部位において行い、L字状の突起(張出フランジ)23、24を中空内に張り出させて、この突起同士を溶接あるいは接着剤などによって貼り合わせて厚肉部としている。そして、これらA、Dの厚肉化領域が互いに点対称になるように厚肉化している。   FIG. 6B shows a rectangular hollow cross-sectional structure in which two separately formed aluminum alloys composed of the flange 2 and the web 4 and the flange 3 and the web 5 are integrated with each other by welding at both ends. Is shown. The two end portions are welded to each other at portions corresponding to the thickened flanges 2 and 3 surrounded by dotted lines A and D, and the L-shaped projections (projecting flanges) 23 and 24 are hollow. The projections are projected inward and the projections are bonded together by welding or an adhesive to form a thick portion. The thickened areas A and D are thickened so that they are point-symmetric with each other.

図6(c)は、一枚のアルミニウム合金板を成形し、両端部同士をコーナー部7で溶接して一体化した矩形中空断面構造を示している。但し、これらアルミニウム合金板の部位同士を部分的に重ね合わせるように成形(曲げ加工)して、A、Dの点線で囲む厚肉化するフランジ2、3に相当する部位を形成している。また、中リブ6自体もこの同じアルミニウム合金板を成形して形成している。   FIG. 6C shows a rectangular hollow cross-sectional structure in which one aluminum alloy plate is formed and both end portions are welded and integrated at the corner portions 7. However, these aluminum alloy plates are formed (bent) so as to partially overlap each other, thereby forming thickened flanges 2 and 3 surrounded by dotted lines A and D. The middle rib 6 itself is also formed by molding the same aluminum alloy plate.

図6(d)は、フランジ2とウエブ4、フランジ3とウエブ5とからなる2枚の別々に成形されたアルミニウム合金板同士を、その両端部同士で互いに溶接して一体化した矩形中空断面構造である点は、前記図6(b)と同じである。ただ、これらアルミニウム合金板の一方の端部を折り曲げて重ね合わせ、A、Dの点線で囲む厚肉化するフランジ2、3に相当するものとしている。そして、これらA、Dの厚肉化領域が互いに点対称になるように厚肉化している。   FIG. 6 (d) shows a rectangular hollow cross section in which two separately formed aluminum alloy plates composed of the flange 2 and the web 4, and the flange 3 and the web 5 are integrated with each other by welding at both ends. The structure is the same as FIG. 6B. However, one end portion of these aluminum alloy plates is folded and overlapped, and corresponds to the flanges 2 and 3 that are thickened and surrounded by dotted lines A and D. The thickened areas A and D are thickened so that they are point-symmetric with each other.

この図6の場合、微小な圧延クラウン以外は板幅方向や長手方向に板厚の差がつかない圧延板を用いているので、板の部位によらず均一な板厚とならざるを得ない。すなわち、アルミニウム合金圧延板の板厚を部位によって異ならせることは、特殊な圧延板以外はできない。したがって、前記厚肉化する以外の部位の薄肉化は、素材アルミニウム合金圧延板の板厚を予め薄肉化しておかざるを得ず、前記厚肉化も圧延板の重ね合わせや張り合わせの枚数によって調節せざるを得ない。   In the case of FIG. 6, since a rolled plate that does not have a difference in plate thickness in the plate width direction or the longitudinal direction is used except for a minute rolled crown, the plate thickness must be uniform regardless of the portion of the plate. . That is, the thickness of the aluminum alloy rolled sheet can be varied depending on the part, except for a special rolled sheet. Therefore, in order to reduce the thickness of the portion other than the thickness increase, the thickness of the material aluminum alloy rolled plate must be reduced in advance, and the thickness increase is adjusted by the number of the rolled plates stacked or bonded. I have to.

比較例:
図7、8は比較例を示しており、アルミニウム合金製車両衝撃吸収部材1において、前記垂直な曲げ中立軸C0を車両の前方側に向かって傾斜させた仮想曲げ中立軸C1と、車両の後方側に向かって傾斜させた仮想曲げ中立軸C2のいずれか一つではなく、これら両方を共に選択している。すなわち、本発明のように、特定の一つの仮想曲げ中立軸ではなく、前記二つの仮想曲げ中立軸C1、C2に対して、これら仮想曲げ中立軸C1とC2からの距離が最も離れた前記フランジ2、3と、ウエブ4、5の部位の肉厚を共に厚くしている。
Comparative example:
7 and 8 show a comparative example. In the aluminum alloy vehicle impact absorbing member 1, a virtual bending neutral axis C1 in which the vertical bending neutral axis C0 is inclined toward the front side of the vehicle, and the rear side of the vehicle. Both of these are selected together instead of any one of the virtual bending neutral axes C2 inclined toward the side. That is, as in the present invention, the flange having the farthest distance from the virtual bending neutral axes C1 and C2 with respect to the two virtual bending neutral axes C1 and C2 instead of one specific virtual bending neutral axis. The thicknesses of portions 2 and 3 and webs 4 and 5 are both increased.

この比較例では、車両衝撃吸収部材1が、車両衝突の衝撃によって、前記図17の右上側の車幅方向の軸まわりに右回りの矢印で示すように回転する場合だけでなく、前記図17の右下側の車幅方向の軸まわりに左回りの矢印で示すように回転する場合も考慮している。本発明では、前記いずれの仮想曲げ中立軸C1、C2とするかを、車両衝撃吸収部材1が、その正面から受ける衝突の衝撃に対して、前記図17の右側の上下いずれの衝突形態となるのか、いずれの仮想曲げ中立軸となって傾斜するのか、予測して決定する。しかし、車両衝撃吸収部材1を、前記図17の右側の上下いずれの衝突形態とするのか設計して、そうなるように取りつけ位置や取り付け方を設計したとしても、実際の衝突では、予測とは逆の場合となることもあり得る。   In this comparative example, the vehicle impact absorbing member 1 is not only rotated by the impact of the vehicle collision as shown by a clockwise arrow around the vehicle width direction axis on the upper right side of FIG. The case of rotating around the axis in the vehicle width direction on the lower right side as indicated by the counterclockwise arrow is also considered. In the present invention, which of the virtual bending neutral axes C1 and C2 is used is the collision form on the right side of FIG. Which of the virtual bending neutral axes to incline is predicted and determined. However, even if the vehicle impact absorbing member 1 is designed to be either the upper or lower collision type on the right side of FIG. 17 and the mounting position and the mounting method are designed to be so, in an actual collision, the prediction is The reverse case is also possible.

したがって、この比較例では、車両衝撃吸収部材1が車両衝突の衝撃によって、前記図17の右上側の場合や右下側の場合のいずれに回転してもいいように、仮想曲げ中立軸C1からの距離が最も離れた、フランジ2、3とウエブ4、5の、AとDとの点線で囲む左右二つの領域と、仮想曲げ中立軸C2からの距離が最も離れた、フランジ2、3とウエブ4、5のBとCとの点線で囲む左右二つの領域をともに厚肉化している。図7(a)は4つのコーナー部(四隅)をともに前記図1の場合と同じテーパ状に厚肉化し、図7(a)は4つのコーナー部(四隅)をともに前記図5の場合と同じ段差状に厚肉化している。   Therefore, in this comparative example, from the virtual bending neutral axis C1 so that the vehicle impact absorbing member 1 may rotate in the case of the upper right side or the lower right side of FIG. Of the flanges 2 and 3 and the webs 4 and 5 which are the farthest away from each other and surrounded by dotted lines A and D, and the flanges 2 and 3 which are farthest from the virtual bending neutral axis C2 The two left and right regions surrounded by the dotted lines B and C of the webs 4 and 5 are both thickened. FIG. 7A shows that the four corners (four corners) are both thickened in the same taper shape as in FIG. 1, and FIG. 7A shows that the four corners (four corners) are both in the case of FIG. Thickened to the same step.

しかし、この比較例のように、二つの仮想曲げ中立軸C1、C2からの距離が最も離れたフランジ2、3とウエブ4、5の部位、AとD、BとCを各々全て厚肉化した場合には、この厚肉化する肉厚と領域とを最小限にとどめ、他の部位を強度の限界まで薄肉化しても、前記厚肉化部位による断面積と重量の増加分を補うことができなくなり、フランジが均一な厚みの元の車両衝撃吸収部材に比して、断面積の増加率を、5%以下に抑制できなくなる。したがって、この点で幾ら衝撃吸収効果が高くても、アルミニウム合金化による軽量化が犠牲となって実用化の利点が失われる。   However, as in this comparative example, the flanges 2 and 3 and the webs 4 and 5 and the parts A and D and B and C that are the farthest from the two virtual bending neutral axes C1 and C2 are all thickened. In such a case, the thickness and the area to be thickened are kept to a minimum, and even if the other part is thinned to the limit of strength, the increase in cross-sectional area and weight due to the thickened part should be compensated. As a result, the rate of increase in cross-sectional area cannot be suppressed to 5% or less as compared with the original vehicle impact absorbing member having a uniform flange thickness. Therefore, no matter how high the impact absorbing effect is in this respect, the advantage of practical use is lost at the expense of weight reduction due to aluminum alloying.

使用アルミニウム合金:
本発明で車両衝撃吸収部材として使用するアルミニウム合金は、高強度と押出や圧延、更には曲げなどの車両衝撃吸収部材への加工性からして、AA乃至JIS規格に規定される5000系、6000系などのアルミニウム合金が好ましく、溶体化および焼入れ処理、時効処理などの調質条件を適宜選択して使用する。
Aluminum alloy used:
The aluminum alloy used as a vehicle impact absorbing member in the present invention is a 5000 series or 6000 specified in AA or JIS standards because of its high strength and workability to a vehicle impact absorbing member such as extrusion, rolling, and bending. An aluminum alloy such as a system is preferable, and tempering conditions such as solution treatment, quenching treatment, and aging treatment are appropriately selected and used.

次に本発明の実施例を説明する。本発明の効果をセンターバリア衝突試験を用いた有限要素解析によって確認した。図9に解析に用いた車両衝撃吸収部材としてのバンパーR/Fの矩形中空断面構造の断面形状と数値条件とを示す。また、この解析結果を図12、13、14に示す。   Next, examples of the present invention will be described. The effect of the present invention was confirmed by finite element analysis using a center barrier collision test. FIG. 9 shows a sectional shape and numerical conditions of a rectangular hollow sectional structure of a bumper R / F as a vehicle impact absorbing member used for analysis. The analysis results are shown in FIGS.

図9(a)は、フランジとウエブとの各長さや断面構造が本発明矩形中空断面構造と同じで、これらフランジとウエブとの厚みが各々の部位によらず均一で、前記フランジの厚みが4mmである、本発明でいう前記した「仮想矩形中空断面構造」である。すなわち、車幅方向の軸まわりの回転を考慮せずに設計した、フランジ2、3の厚みが各々の部位によらず4mmと均一で、図9(b)の本発明のバンパーR/Fと同じフランジとウエブの長さ(同じ大きさ)を有する、従来例のバンパーR/Fを示す。厚肉化される部位A、Dの領域の肉厚を特定の範囲とする。この比較例では、図9(a)に示す通り、フランジ2、3の厚み(板厚)t1、t4をともに4mmと部位によらず均一としている。また、ウエブ4、5のt5、t6も2mmと部位によらず均一とした。また、中リブ6の位置や長さ、そして厚みも2mmで共通している。   In FIG. 9 (a), the length and the cross-sectional structure of the flange and the web are the same as the rectangular hollow cross-sectional structure of the present invention, and the thickness of the flange and the web is uniform regardless of each part. The above-mentioned “virtual rectangular hollow cross-sectional structure” in the present invention, which is 4 mm. That is, the thickness of the flanges 2 and 3 designed without considering the rotation around the axis in the vehicle width direction is as uniform as 4 mm regardless of each part, and the bumper R / F of the present invention shown in FIG. A bumper R / F of a conventional example having the same flange and web length (same size) is shown. The thickness of the regions A and D to be thickened is set to a specific range. In this comparative example, as shown in FIG. 9A, the thicknesses (plate thicknesses) t1 and t4 of the flanges 2 and 3 are both 4 mm and uniform regardless of the part. Further, t5 and t6 of the webs 4 and 5 were 2 mm, which was uniform regardless of the part. Further, the position, length, and thickness of the middle rib 6 are also common at 2 mm.

図9(b)は、前記図1と同じく、図1において点線で囲むDの領域のフランジ2の下部12と、点線で囲むAの領域のフランジ3の上部11との左右二つの領域を、互いに点対称となるようにテーパ状に厚肉化している本発明例を示す。本発明例では、図9(b)に示す通り、厚肉化したフランジ2下部12の厚み(板厚)t2と、フランジ3上部11の厚み(板厚)t3を、最も厚いウエブ4、5との交点(コーナー部)で8mm、最も薄い中リブ6との交点で4mmとするテーパ状(傾斜状)の厚み分布とした。一方、薄肉化した部位として、フランジ2上部(図1でいうC領域)のt2、フランジ3下部(図1のB領域)のt4を各々2mmとした。また、ウエブ4、5のt5、t6は、前記コーナー部でフランジとともに厚肉化した部位(厚み=長さ=8mm)を除いて、2mmと薄肉化しているが、こちらは前記図9(a)の従来例と同じ厚みである。図9(a)、(b)ともに、車両上下方向の高さHは120mm、車両前後方向の幅は60mmと同じとした。   FIG. 9 (b) shows the left and right two regions of the lower portion 12 of the flange 2 in the region D surrounded by the dotted line and the upper portion 11 of the flange 3 in the region A surrounded by the dotted line in FIG. An example of the present invention in which the thickness is increased in a tapered shape so as to be point-symmetric with each other will be described. In the example of the present invention, as shown in FIG. 9B, the thickness (plate thickness) t2 of the thickened flange 2 lower portion 12 and the thickness (plate thickness) t3 of the flange 3 upper portion 11 are set to the thickest webs 4, 5 The thickness distribution is 8 mm at the intersection (corner portion) and 4 mm at the intersection with the thinnest middle rib 6. On the other hand, as the thinned portion, t2 at the upper part of the flange 2 (C region in FIG. 1) and t4 at the lower part of the flange 3 (B region in FIG. 1) were each 2 mm. Further, t5 and t6 of the webs 4 and 5 are thinned to 2 mm except for a portion (thickness = length = 8 mm) which is thickened together with the flange at the corner portion. ) Of the same thickness as the conventional example. 9A and 9B, the height H in the vehicle vertical direction is 120 mm, and the width in the vehicle front-rear direction is the same as 60 mm.

これら同じ断面積としたバンパーR/Fについて、図11に模式的に示す、IIHS(米国道路安全保険協会)のセンターバリア衝突試験を実施したと想定して解析を行った。このセンターバリア衝突試験においては、図11の右側のバリア下端と、左側のバンパーR/F上下端との車両上下方向のずれは60mmあり、図11の右側のバリアが左側のバンパーR/Fの上部に矢印のように衝突する。このため、前記図2あるいは前記図17の右上側のように、車幅方向の軸まわりに右回りの矢印で示すように回転する。したがって、図9(a)、(b)ともに、矩形中空断面形状の中央部にある車両上下方向に垂直な曲げ中立軸C0は、前記図2の右側の車両衝撃吸収部材1のように、仮想曲げ中立軸C1として、車両前方側に向かって10度傾斜する。   These bumper R / Fs having the same cross-sectional area were analyzed on the assumption that a center barrier collision test of IIHS (American Road Safety Insurance Association) schematically shown in FIG. 11 was conducted. In this center barrier crash test, the vehicle vertical displacement between the lower barrier end on the right side of FIG. 11 and the upper and lower ends of the left bumper R / F is 60 mm, and the right barrier in FIG. Collide like an arrow at the top. Therefore, as shown in the upper right side of FIG. 2 or FIG. 17, the vehicle rotates as indicated by a clockwise arrow around the vehicle width direction axis. 9 (a) and 9 (b), the bending neutral axis C0 perpendicular to the vehicle vertical direction at the center of the rectangular hollow cross-sectional shape is virtually the same as the vehicle impact absorbing member 1 on the right side of FIG. The bending neutral axis C1 is inclined 10 degrees toward the vehicle front side.

この解析結果として、先ず図10に、図9(a)の従来例(断面A)、図9(b)の発明例(断面B)の断面積(mm)とバリアの最大変位(/mm)を示す。図10の通り、断面積が互いに同じでも、バリアの最大変位は従来例(断面A)の方が4%大きくなっており、発明例(断面B)の方が、前記曲げ中立軸Cが傾斜するような状態での衝突エネルギの吸収能が高いことが分かる。 As a result of this analysis, first, FIG. 10 shows the sectional area (mm 2 ) and the maximum displacement (/ mm) of the conventional example (cross section A) in FIG. 9A and the invention example (cross section B) in FIG. 9B. ). As shown in FIG. 10, even when the cross-sectional areas are the same, the maximum displacement of the barrier is 4% larger in the conventional example (cross section A), and the bending neutral axis C is inclined in the inventive example (cross section B). It can be seen that the ability to absorb the collision energy in such a state is high.

これは、図12のバリアの反力と変位の関係からも裏付けられる。図12において、太線の従来例(断面A)と細線の発明例(断面B)とは、衝突の前半では両者のバリア反力に有意な差は認められない。しかし、衝突の中盤から後半にかけては、細線の発明例(断面B)のバリア反力は、太線の従来例(断面A)のバリア反力 に比べて、最大で約10%高くなり、その結果として、バリア最大変位は6mm程度、約4%程度抑制できることが分かる。   This is supported by the relationship between the reaction force and displacement of the barrier in FIG. In FIG. 12, there is no significant difference in the barrier reaction force between the thick line conventional example (cross section A) and the thin line invention example (cross section B) in the first half of the collision. However, from the middle to the second half of the collision, the barrier reaction force of the thin line invention example (cross section B) is about 10% higher than that of the thick line conventional example (cross section A). It can be seen that the maximum barrier displacement can be suppressed by about 6 mm, about 4%.

車両上下方向からのバンパーR/F乃至仮想曲げ中立軸C1の車両前方側への回転角(傾斜角)と車体上下軸まわりの断面係数との関係を図13に示す。また、同じく、これらの回転角(傾斜角)と車体上下軸まわりの塑性断面係数との関係を図14に示す。図14、15において、白四角印を細線でつないだ発明例(断面B)は、白丸印を太線でつないだ従来例(断面A)に比べて、回転角によらず、一定して、車体上下軸まわりの断面係数と、車体上下軸まわりの塑性断面係数とが各々高いことが分かる。そして、これは、図13の車体上下軸まわりの断面係数で約3%、図14の車体上下軸まわりの塑性断面係数で約2%発明例(断面B)の方が高くなっている。これらの結果として、前記図11のバリアの最大変位は、6mm、約4%、従来例(断面A)よりも抑制できる。   FIG. 13 shows the relationship between the rotation angle (tilt angle) of the bumper R / F or the virtual bending neutral axis C1 from the vehicle vertical direction to the vehicle front side and the section coefficient around the vehicle vertical axis. Similarly, FIG. 14 shows the relationship between these rotation angles (tilt angles) and the plastic section modulus around the vertical axis of the vehicle body. 14 and 15, the invention example (cross section B) in which the white square marks are connected with thin lines is consistently independent of the rotation angle as compared to the conventional example (section A) in which the white circle marks are connected with thick lines. It can be seen that the section modulus around the vertical axis and the plastic section modulus around the vertical axis of the vehicle body are high. This is about 3% higher in the section modulus around the vertical axis of the vehicle body in FIG. 13, and about 2% higher in the plastic section modulus around the vertical axis of the vehicle body in FIG. As a result of these, the maximum displacement of the barrier shown in FIG. 11 is 6 mm, about 4%, which can be suppressed as compared with the conventional example (cross section A).

以上、本発明車両衝撃吸収部材は、本発明は、衝突荷重による車両衝撃吸収部材の車幅方向の軸まわりの回転によって、その曲げ中立軸が車両前方側に向かって傾斜し、その上側が車両後方側へ倒れながら変形するような傾斜状態においても、車両上下方向の軸まわりの曲げに対する断面係数およぴ塑性断面係数を、軽量化を犠牲にせずに、高めた車両衝撃吸収部材を提供できる。このため、自動車やトラックなどのバンパリーンフォースメントやアンダーランプロテクタなどの車両衝撃吸収部材等に好適に使用することができる。   As described above, the vehicle impact absorbing member according to the present invention is configured such that the neutral axis of the bend is inclined toward the front side of the vehicle due to the rotation of the vehicle impact absorbing member around the vehicle width direction due to the collision load, and the upper side is the vehicle Even in an inclined state in which the vehicle is deformed while tilting backward, the vehicle impact absorbing member can be provided with an increased section modulus and plastic section modulus for bending around an axis in the vertical direction of the vehicle without sacrificing weight reduction. . For this reason, it can be suitably used for a vehicle impact absorbing member such as a bumper reinforcement such as an automobile or a truck or an underrun protector.

1:車両衝撃吸収部材、2、3:フランジ、4、5:ウエブ、6:中リブ、7、8、9、10:コーナー部(隅角部)、11〜29:厚肉部、A、B、C、D:厚肉化または薄肉化領域、C0、C1、C2:曲げ中立軸 1: vehicle impact absorbing member, 2, 3: flange, 4, 5: web, 6: middle rib, 7, 8, 9, 10: corner portion (corner portion), 11-29: thick portion, A, B, C, D: Thickening or thinning region, C0, C1, C2: Bending neutral axis

Claims (5)

車両の前後方向に互いに間隔をあけて立設する2枚の平板状のフランジ(2、3)と、これら前後のフランジ(2、3)同士を車両の上下方向に互いに間隔をあけるとともに車両の前後方向に延在してつなぐ2枚の平板状の上下のウエブ(4、5)とで、矩形中空断面を構成し、前後のフランジ(2、3)の車両上下方向の長さHが100〜200mm の範囲であるとともに、上下のウエブ(4、5)の車両前後方向の長さWが50〜100mm の範囲であるアルミニウム合金製衝撃吸収部材において、前記矩形中空断面を車両の前後方向と高さ方向とで各々等分に区切って4等分に分割した際の、車両の前側に位置する前フランジの下半分側(2a)と下ウエブの前半分側(5a)との合計面積(S1)と、車両の後ろ側に位置する後フランジの上半分側(3b)と上ウエブの後半分側(4b)との合計面積(S4)との面積の和(S1+S4)か、あるいは前フランジの上半分側(2b)と上ウエブの前半分側(4a)との合計面積(S2)と、後フランジの下半分側(3a)と下ウエブの後ろ半分側(5b)との合計面積(S3)との面積の和(S2+S3)かの、どちらかの面積の和が他方の面積の和よりも、1.5倍〜3.5倍の範囲で大きくなるように、前フランジの下半分側(2a)と後フランジの上半分側(3b)との肉厚か、 前フランジの上半分側(2b)と後フランジの下半分側(3a)との肉厚かのいずれかを、各フランジの他方の上下半分側の肉厚よりも、部分的に厚くしたことを特徴とする車両衝撃吸収部材。   Two flat flanges (2, 3) standing up and down in the longitudinal direction of the vehicle and the front and rear flanges (2, 3) are spaced apart from each other in the vertical direction of the vehicle and Two flat plate-like upper and lower webs (4, 5) extending in the front-rear direction form a rectangular hollow cross section, and the length H in the vehicle vertical direction of the front and rear flanges (2, 3) is 100. In the aluminum alloy shock absorbing member having a range of ˜200 mm and a length W of the upper and lower webs (4, 5) in the vehicle longitudinal direction of 50-100 mm, the rectangular hollow cross section is defined as the vehicle longitudinal direction. Total area of the lower half side (2a) of the front flange located on the front side of the vehicle and the front half side (5a) of the lower web when divided into four equal parts in the height direction ( S1) and the rear franc located behind the vehicle The total area (S1 + S4) of the upper half side (3b) of the die and the rear half side (4b) of the upper web (S4), or the upper half side (2b) of the front flange and the upper web Of the total area (S2) of the front half side (4a) and the total area (S3) of the lower half side (3a) of the rear flange and the rear half side (5b) of the lower web (S2 +) S3) The lower half side (2a) of the front flange and the rear flange so that the sum of the areas of either one is larger than the sum of the other areas in the range of 1.5 to 3.5 times. Either the thickness of the upper half (3b) or the thickness of the upper half (2b) of the front flange and the lower half (3a) of the rear flange A vehicle impact absorbing member characterized in that it is partially thickened rather than thick. 前記前フランジの下半分側(2a)と下ウエブの前半分側(5a)との合計面積(S1)と、前記後フランジの上半分側(3b)と上ウエブの後半分側(4b)との合計面積(S4)との面積の和(S1+S4)が、前記前フランジの上半分側(2b)と上ウエブの前半分側(4a)との合計面積(S2)と、前記後フランジの下半分側(3a)と下ウエブの後ろ半分側(5b)との合計面積(S3)との面積の和(S2+S3)よりも、1.5倍〜3.5倍の範囲で大きくなるように、前記前フランジの下半分側(2a)と後フランジの上半分側(3b)との肉厚を、 前記前フランジの上半分側(2b)と後フランジの下半分側(3a)との肉厚よりも、部分的に厚くした請求項1に記載の車両衝撃吸収部材。   The total area (S1) of the lower half side (2a) of the front flange and the front half side (5a) of the lower web, the upper half side (3b) of the rear flange, and the rear half side (4b) of the upper web The sum (S1 + S4) of the total area (S4) and the total area (S2) of the front flange is the total area (S2) of the upper half side (2b) of the front flange and the front half side (4a) of the upper web, and the rear flange Larger in the range of 1.5 times to 3.5 times the sum (S2 + S3) of the total area (S3) of the lower half side (3a) and the rear half side (5b) of the lower web (S3) The thickness of the lower half side (2a) of the front flange and the upper half side (3b) of the rear flange is determined so that the upper half side (2b) of the front flange and the lower half side (3a) of the rear flange The vehicle impact absorbing member according to claim 1, wherein the vehicle impact absorbing member is partially thicker than the thickness of the vehicle. 前記厚肉化する側の各フランジの上下いずれか半分側の肉厚を3.5〜12mmの 範囲とする一方で、前記薄肉化する各フランジの他方の上下半分側の肉厚を1〜4mmの範囲とする 請求項1または2に記載の車両衝撃吸収部材。   While the thickness on the upper or lower half side of each flange on the side to be thickened is in the range of 3.5 to 12 mm, the thickness on the other upper and lower half side of each flange to be thinned is 1 to 4 mm. The vehicle impact absorbing member according to claim 1 or 2. 前記車両衝撃吸収部材が垂直な曲げ中立軸(C0)を前記矩形中空断面の中央部に有するものであり、この曲げ中立軸(C0)を車両の前方側に向かって傾斜させた仮想曲げ中立軸(C1)からの距離が最も離れた、前フランジ2と後フランジ3との上下いずれか半分側の肉厚を、 前フランジ2と後フランジ3との他方の上下半分側の肉厚よりも、部分的に厚くする請求項1乃至3のいずれか1項に記載の車両衝撃吸収部材。   The vehicle impact absorbing member has a vertical bending neutral axis (C0) at the center of the rectangular hollow cross section, and a virtual bending neutral axis in which the bending neutral axis (C0) is inclined toward the front side of the vehicle. The wall thickness on the upper or lower half side of the front flange 2 and the rear flange 3 that is the farthest from (C1) is larger than the wall thickness on the other upper and lower half side of the front flange 2 and the rear flange 3. The vehicle impact absorbing member according to any one of claims 1 to 3, wherein the vehicle impact absorbing member is partially thickened. 前記車両衝撃吸収部材がアルミニウム合金押出形材からなる請求項1乃至4のいずれか1項に記載の車両衝撃吸収部材。
The vehicle impact absorbing member according to claim 1, wherein the vehicle impact absorbing member is made of an aluminum alloy extruded profile.
JP2013064116A 2013-03-26 2013-03-26 Vehicle shock absorbing member Active JP5997085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064116A JP5997085B2 (en) 2013-03-26 2013-03-26 Vehicle shock absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064116A JP5997085B2 (en) 2013-03-26 2013-03-26 Vehicle shock absorbing member

Publications (2)

Publication Number Publication Date
JP2014189054A true JP2014189054A (en) 2014-10-06
JP5997085B2 JP5997085B2 (en) 2016-09-21

Family

ID=51835790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064116A Active JP5997085B2 (en) 2013-03-26 2013-03-26 Vehicle shock absorbing member

Country Status (1)

Country Link
JP (1) JP5997085B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226266A (en) * 2016-06-21 2017-12-28 三菱アルミニウム株式会社 Exterior beam for vehicle
JP2018154233A (en) * 2017-03-17 2018-10-04 いすゞ自動車株式会社 Underrun protector
WO2019065273A1 (en) * 2017-09-29 2019-04-04 ダイムラー・アクチェンゲゼルシャフト Vehicular protector member
WO2019065272A1 (en) * 2017-09-29 2019-04-04 ダイムラー・アクチェンゲゼルシャフト Vehicular protector member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004262300A (en) * 2003-02-28 2004-09-24 Kobe Steel Ltd Bumper reinforcement
JP2008068849A (en) * 2006-09-16 2008-03-27 Kobe Steel Ltd Bumper structure
JP2011152859A (en) * 2010-01-27 2011-08-11 Sumitomo Light Metal Ind Ltd Shock absorbing member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004262300A (en) * 2003-02-28 2004-09-24 Kobe Steel Ltd Bumper reinforcement
JP2008068849A (en) * 2006-09-16 2008-03-27 Kobe Steel Ltd Bumper structure
JP2011152859A (en) * 2010-01-27 2011-08-11 Sumitomo Light Metal Ind Ltd Shock absorbing member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226266A (en) * 2016-06-21 2017-12-28 三菱アルミニウム株式会社 Exterior beam for vehicle
JP2018154233A (en) * 2017-03-17 2018-10-04 いすゞ自動車株式会社 Underrun protector
WO2019065273A1 (en) * 2017-09-29 2019-04-04 ダイムラー・アクチェンゲゼルシャフト Vehicular protector member
WO2019065272A1 (en) * 2017-09-29 2019-04-04 ダイムラー・アクチェンゲゼルシャフト Vehicular protector member
JP2019064418A (en) * 2017-09-29 2019-04-25 ダイムラー・アクチェンゲゼルシャフトDaimler AG Vehicular protector member

Also Published As

Publication number Publication date
JP5997085B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
KR101685857B1 (en) Crash box and automobile body
JP4733702B2 (en) Vehicle crash box
JP4059187B2 (en) Vehicle hood structure
JP4371059B2 (en) Shock absorbing member
JP5997085B2 (en) Vehicle shock absorbing member
JP4787728B2 (en) Body bumper beam and body shock absorber
JP5795332B2 (en) Vehicle underrun protector
JP5147003B2 (en) Side member
JP2010018047A (en) Bumper system of vehicle
JP2006335241A (en) Bumper stay and bumper device
JP5311762B2 (en) Energy absorbing member
JP5235007B2 (en) Crash box
JP2008179174A (en) Collision reinforcing material for vehicle
JP2009090936A (en) Vehicular inner panel
JP4766422B2 (en) Crash box
JP5723258B2 (en) Energy absorbing member and cross-sectional deformation control method of energy absorbing member
JP4473537B2 (en) Energy absorber for personal protection
JP5875449B2 (en) Bumper member for vehicles
JP4303659B2 (en) Shock absorption structure of automobile
JP2012030624A (en) Automobile bumper
JP6747928B2 (en) Shock absorber
JP2010006278A (en) Underrun protector of vehicle
JP4203376B2 (en) Crew protection member
CN110475706B (en) Impact absorbing member and side member for automobile
JP5291432B2 (en) Knee bracket and car occupant knee protection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160714

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160825

R150 Certificate of patent or registration of utility model

Ref document number: 5997085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150