JP2014188507A - Adsorption tower and gas separator - Google Patents

Adsorption tower and gas separator Download PDF

Info

Publication number
JP2014188507A
JP2014188507A JP2013069659A JP2013069659A JP2014188507A JP 2014188507 A JP2014188507 A JP 2014188507A JP 2013069659 A JP2013069659 A JP 2013069659A JP 2013069659 A JP2013069659 A JP 2013069659A JP 2014188507 A JP2014188507 A JP 2014188507A
Authority
JP
Japan
Prior art keywords
gas
adsorption
adsorption tower
adsorbent
gas separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013069659A
Other languages
Japanese (ja)
Other versions
JP5858948B2 (en
Inventor
Takashi Haraoka
たかし 原岡
Yoshinori Takada
吉則 高田
Masakuni Miyake
正訓 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Sumitomo Seika Chemicals Co Ltd
Original Assignee
JFE Steel Corp
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Sumitomo Seika Chemicals Co Ltd filed Critical JFE Steel Corp
Priority to JP2013069659A priority Critical patent/JP5858948B2/en
Publication of JP2014188507A publication Critical patent/JP2014188507A/en
Application granted granted Critical
Publication of JP5858948B2 publication Critical patent/JP5858948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adsorption tower and a gas separator which can efficiently separate a target gas composition which is a gas composition contained a mixed gas and is to be used.SOLUTION: An adsorption tower 1 for separating a target gas composition from a mixed gas by pressure swing adsorption has plural adjacent gas separation chambers 14a to 14d, the adjacent gas separation chambers having airtightness and being partitioned by a partition member 12 for conduction of heat between the adjacent gas separation chambers, and adsorbent layers for adsorbing the target gas composition on both sides of the partition member 12. The tower has two circuits of gas passages, in which among two kinds of gasses comprising the mixed gas supplied in an adsorption process and a desorption gases comprising the target gas composition desorbed in a desorption process, one gas is flown in one gas separation chamber and the other gas is flown in another gas separation chamber adjacent to said one gas separation chamber.

Description

本発明は、吸着塔およびガス分離装置に関し、特に、混合ガスに含まれる利用対象のガス成分(以下、「目的ガス成分」と称する)を効率的に分離することができる吸着塔およびガス分離装置に関するものである。   The present invention relates to an adsorption tower and a gas separation device, and in particular, an adsorption tower and a gas separation device capable of efficiently separating a gas component to be used (hereinafter referred to as “target gas component”) contained in a mixed gas. It is about.

複数のガス成分を有する混合ガスから目的ガス成分を分離する場合、混合ガスを吸着剤(数mmφの球形状あるいは数mmφ×数mm長のペレット状であることが多い)が充填された容器(以下、「吸着塔」と称する)に流通させる操作が行われる。その際、例えば混合ガスが成分Aおよび成分Bの二成分からなり、目的ガス成分をAとすると、ガス成分Aを吸着剤に吸着させる場合と、目的ガス成分ではないガス成分Bを吸着剤に吸着させる場合がありうる(以下、吸着剤に吸着させるガス成分を「吸着ガス成分」と称する)。   When a target gas component is separated from a mixed gas having a plurality of gas components, the mixed gas is filled with an adsorbent (often in the form of a sphere of several mmφ or a pellet of several mmφ × several mm length) ( Hereinafter, an operation of circulating the gas to an “adsorption tower” is performed. At that time, for example, when the mixed gas is composed of two components, component A and component B, and the target gas component is A, the gas component A is adsorbed on the adsorbent, and the gas component B that is not the target gas component is used as the adsorbent. In some cases, the gas component is adsorbed by the adsorbent (hereinafter referred to as “adsorbed gas component”).

いずれの場合においても、吸着塔に混合ガスを流通させ続けると、吸着剤は吸着ガス成分で飽和して分離能力を失う。そのため、混合ガスの流通を一旦停止し、吸着剤を新しいものに交換するか、何らかの方法により吸着剤から吸着ガス成分を脱着させて、吸着剤の吸着能力を回復(「再生」とも呼ぶ)させる操作が必要となる。   In either case, if the mixed gas continues to flow through the adsorption tower, the adsorbent is saturated with the adsorbed gas component and loses the separation ability. Therefore, temporarily stop the flow of the mixed gas and replace the adsorbent with a new one, or desorb the adsorbed gas component from the adsorbent by some method to restore the adsorption capacity of the adsorbent (also called “regeneration”). Operation is required.

ここで、吸着ガス成分が利用対象ではないガス成分Bであって、混合ガスに含まれる成分Bの量が利用対象のガス成分Aに比べて相対的に微量(ppmオーダー)である場合には、吸着剤に吸着する量が少ないため、例えば1年以上の長期に亘って吸着剤を使用することが可能である。そのような場合には、吸着剤を交換することにより対処できる。   Here, when the adsorbed gas component is a gas component B that is not a utilization target and the amount of the component B contained in the mixed gas is relatively small (ppm order) as compared with the gas component A that is the utilization target. Since the amount adsorbed on the adsorbent is small, it is possible to use the adsorbent over a long period of, for example, one year or longer. Such a case can be dealt with by replacing the adsorbent.

一方、ガス成分AおよびBの双方ともに数体積%〜数十体積%の濃度を有する場合には、吸着剤に吸着するガス成分の量が双方ともに多いため、吸着剤の交換による再生では、吸着剤の交換を頻繁に行う必要があり、吸着剤のコストも大きくなる。よって、吸着剤の交換とは別の再生操作が必要となる。   On the other hand, when both the gas components A and B have a concentration of several volume% to several tens volume%, the amount of the gas component adsorbed on the adsorbent is both large. It is necessary to frequently change the adsorbent, and the cost of the adsorbent increases. Therefore, a regeneration operation different from the replacement of the adsorbent is required.

そのため、混合ガスから目的ガス成分を分離する際には、吸着剤に吸着ガス成分を吸着させる操作(以下、「吸着工程」と称する)と、吸着剤から吸着ガス成分を脱着させて吸着剤を再生する操作(以下、「脱着工程」と称する)とを繰り返し行う。こうして混合ガスから目的ガス成分を分離する方法として、吸着剤の温度変化で行う温度スイング吸着法(Temperature Swing Adsorption Method,TSA法)、ガスの圧力変化で行う圧力スイング吸着法(Pressure Swing Adsorption Method,PSA法)、圧力および温度をともに変化させるPTSA法(Pressure−Temperature Swing Adsorption Method,PTSA法)、さらには脱着時に減圧するVPSA法(Vacuum Pressure Swing Adsorption Method,VPSA法)がある。   Therefore, when the target gas component is separated from the mixed gas, an operation for adsorbing the adsorbed gas component on the adsorbent (hereinafter referred to as “adsorption step”), the adsorbed gas component is desorbed from the adsorbent, and the adsorbent is removed. The operation of regenerating (hereinafter referred to as “desorption process”) is repeated. As a method for separating the target gas component from the mixed gas in this manner, a temperature swing adsorption method (TSA method) that is performed by changing the temperature of the adsorbent, a pressure swing adsorption method that is performed by changing the pressure of the gas (Pressure Swing Adsorption Method, PSA method), PTSA method (Pressure-Temperature Swing Adsorption Method, PTSA method) for changing both pressure and temperature, and VPSA method (Vacuum Pressure Swing Adsorption Method, VPSA method) for reducing pressure during desorption.

これらの方法のうち、TSA法は吸着剤の加熱と除熱に時間を要するため、除湿や揮発性有機化合物等の微量成分の除去といった、比較的長時間で運転する用途に限定される傾向にある。これに対して、処理対象の混合ガスに含まれる各成分の濃度が数体積%〜数十体積%のオーダーを有する多成分ガスの分離(「バルク分離」とも称される)には、吸着工程と脱着工程を短時間で切り替えることによって、吸着剤使用量の相対的な増大を避けることのできるPSA法やVPSA法が用いられるのが主流である。   Among these methods, the TSA method requires time to heat and remove the adsorbent, and therefore tends to be limited to applications that operate for a relatively long time, such as dehumidification and removal of trace components such as volatile organic compounds. is there. On the other hand, in the separation of multi-component gas (also referred to as “bulk separation”) in which the concentration of each component contained in the mixed gas to be processed is on the order of several volume% to several tens volume%, an adsorption step It is the mainstream to use the PSA method and the VPSA method, which can avoid the relative increase in the amount of adsorbent used by switching the desorption process in a short time.

ところで、より少ない吸着剤を効率的に使用するためには、吸着工程においては、より多くの吸着ガス成分を吸着剤に吸着させるのが望ましく、逆に、脱着工程においては、より多くの吸着ガス成分を吸着剤から脱着させることが望ましい。図1は、PSA法における混合ガスの圧力と吸着剤に吸着する吸着ガス成分の吸着量との関係を示す図である。図1(a)に示すように、吸着剤への吸着ガス成分の吸着量は、吸着塔に導入する混合ガスの圧力が高いほど多くなる傾向があるとともに、吸着量は温度に依存し、吸着剤の温度が上昇するにつれて吸着量は少なくなる傾向にある。   By the way, in order to use less adsorbent efficiently, it is desirable to adsorb more adsorbed gas components to the adsorbent in the adsorption process, and conversely, more adsorbed gas in the desorption process. It is desirable to desorb the components from the adsorbent. FIG. 1 is a diagram showing the relationship between the pressure of a mixed gas and the amount of adsorption of an adsorbed gas component adsorbed on an adsorbent in the PSA method. As shown in FIG. 1 (a), the adsorption amount of the adsorbed gas component to the adsorbent tends to increase as the pressure of the mixed gas introduced into the adsorption tower increases, and the adsorption amount depends on the temperature. The amount of adsorption tends to decrease as the temperature of the agent increases.

例えば、吸着剤の温度が吸着工程および脱着工程の双方においてTである場合、図1(b)に示すように、吸着工程および脱着工程により混合ガスから分離される吸着ガス成分の量Qは、温度Tに対する混合ガスの圧力と吸着量との関係に基づいて、吸着工程における混合ガスの圧力Pと脱着工程における混合ガスの圧力Pとの差で決定される。 For example, when the temperature of the adsorbent is T 2 in both the adsorption step and the desorption step, as shown in FIG. 1B, the amount Q of the adsorbed gas component separated from the mixed gas by the adsorption step and the desorption step is , based on the relationship between the pressure and suction amount of the mixed gas with respect to the temperature T 2, it is determined by the difference between the pressure P D of the mixed gas at a pressure P a and the desorption step of the gas mixture in the adsorption step.

しかしながら、実際のガス分離処理においては、吸着工程において、吸着ガス成分が吸着剤に吸着する際には、吸着エネルギー(以下、「吸着熱」と称する)が放出されるために吸着剤の温度が上昇し(例えばTからTに)、図1(c)に示すように、吸着剤への吸着ガス成分の吸着量が少なくなる方向に働く。 However, in the actual gas separation process, when the adsorbed gas component is adsorbed on the adsorbent in the adsorption process, the adsorption energy (hereinafter referred to as “adsorption heat”) is released, so that the temperature of the adsorbent is reduced. elevated (e.g. from T 2 to T 3), as shown in FIG. 1 (c), it acts in a direction in which the adsorption amount decreases the adsorbed gas component to the adsorbent.

一方、脱着工程において、吸着ガス成分が吸着剤から脱着する際には、吸着熱を吸収するために吸着剤の温度が低下し(例えばTからTに)、図1(c)に示すように、吸着剤からの吸着ガス成分の吸着量は多くなり、脱着量が減る方向に働く。これらの結果、実際のガス分離処理においては、吸着剤に吸脱着させて分離することのできる吸着ガス成分の量Qは、図1(b)に示した、吸着剤の温度が一定であった場合に比べて相対的に少なくなる問題がある。さらに、脱着工程における吸着剤の温度低下は、吸着ガス成分の脱着速度を遅くさせることになり、脱着工程の所要時間が延びてプロセス全体の所要時間も長くなってしまうことも問題となっていた。 On the other hand, when the adsorbed gas component is desorbed from the adsorbent in the desorption step, the temperature of the adsorbent decreases (for example, from T 2 to T 1 ) to absorb the heat of adsorption, as shown in FIG. As described above, the adsorption amount of the adsorbed gas component from the adsorbent increases, and the desorption amount decreases. As a result, in the actual gas separation treatment, the amount Q of the adsorbed gas component that can be separated by adsorbing and desorbing to the adsorbent is the same as the adsorbent temperature shown in FIG. There is a problem of relatively less than the case. Furthermore, a decrease in temperature of the adsorbent in the desorption process slows the desorption speed of the adsorbed gas component, which increases the time required for the desorption process and increases the time required for the entire process. .

このような背景の下、特許文献1には、多数の吸着塔を1つの同一の水槽内に入れて互いに伝熱関係にさせて、吸着工程において発生した熱を脱着工程にある吸着塔に伝熱させることにより、吸着工程と脱着工程における温度変化を低減する技術について記載されている。   Under such a background, Patent Document 1 discloses that a large number of adsorption towers are placed in the same water tank and are in a heat transfer relationship with each other, and heat generated in the adsorption process is transferred to the adsorption tower in the desorption process. It describes a technique for reducing temperature changes in the adsorption process and the desorption process by heating.

特開平7−178308号公報JP 7-178308 A

しかしながら、特許文献1に記載の技術では、吸着工程において発生した熱を、吸着塔等の構造物を介して脱着工程にある吸着塔の吸着剤に伝えているため、伝熱に時間がかかるうえに、吸着剤の性能も向上しない。   However, in the technique described in Patent Document 1, since heat generated in the adsorption process is transmitted to the adsorbent of the adsorption tower in the desorption process via a structure such as an adsorption tower, heat transfer takes time. Furthermore, the performance of the adsorbent is not improved.

このように、従来技術では、混合ガスに含まれる目的ガス成分を依然として効率的に分離することができず、この問題を解決する方途の提案が希求されていた。
そこで、本発明の目的は、混合ガスに含まれる目的ガス成分を効率的に分離することができる吸着塔およびガス分離装置を提供することにある。
Thus, in the prior art, the target gas component contained in the mixed gas still cannot be efficiently separated, and a proposal for a way to solve this problem has been desired.
Then, the objective of this invention is providing the adsorption tower and gas separation apparatus which can isolate | separate the target gas component contained in mixed gas efficiently.

発明者らは、上記課題を解決する方途について鋭意検討した。実際のガス分離処理においては、上述のように、吸着工程においては吸着剤の温度が低い方が吸着性能が高いにもかかわらず、吸着熱のために吸着剤の温度が上昇し、脱着工程においては吸着剤の温度が高い方が脱着性能が高いにも関わらず、吸着熱を吸収するために吸着剤の温度が低下する。
仮に、吸着工程にある吸着塔において発生した吸着熱を脱着工程にある吸着塔に効率的に伝達させることができれば、吸着工程にある吸着塔に充填された吸着剤の温度を低下させて吸着量を増加させ、脱着工程にある吸着塔に充填された吸着剤の温度を上昇させて、脱着量を増加させることができる。
しかしながら、特許文献1に記載された技術をはじめとして、異なる吸着塔の間で、吸着工程において発生した吸着熱を脱着工程にある吸着塔の吸着剤に速やかに伝達することは、現実的には困難である。
そこで、発明者らは、吸着工程において発生した吸着熱を脱着工程にある吸着塔の吸着剤に与える別の方途について鋭意検討した。その結果、吸着塔の内部を隣接する複数のガス分離室に区画し、隣接するガス分離室間を、気密性を有するとともに隣接するガス分離室間で熱を伝える仕切部材で仕切り、この仕切部材は両面に目的ガス成分を吸着する吸着剤層を形成し、吸着工程で供給する混合ガスおよび脱着工程で脱着させる、目的ガス成分からなる脱着ガスの2種類のガスの内、一方のガスを流通させるガス分離室に隣接するガス分離室には他方のガスを流通させる、2系統のガス流路を有する構成とすることが有効であることを見出し、本発明を完成させるに到った。
The inventors diligently studied how to solve the above problems. In actual gas separation processing, as described above, in the adsorption process, the adsorbent temperature rises due to the heat of adsorption, even though the lower the adsorbent temperature, the higher the adsorption performance. Although the desorption performance is higher when the temperature of the adsorbent is higher, the temperature of the adsorbent is lowered to absorb the heat of adsorption.
If the heat of adsorption generated in the adsorption tower in the adsorption process can be efficiently transferred to the adsorption tower in the desorption process, the amount of adsorption can be reduced by lowering the temperature of the adsorbent filled in the adsorption tower in the adsorption process. And the temperature of the adsorbent packed in the adsorption tower in the desorption step can be increased to increase the desorption amount.
However, in practice, including the technique described in Patent Document 1, it is practically possible to quickly transfer the heat of adsorption generated in the adsorption process between the different adsorption towers to the adsorbent of the adsorption tower in the desorption process. Have difficulty.
Accordingly, the inventors diligently studied another way of giving the heat of adsorption generated in the adsorption process to the adsorbent of the adsorption tower in the desorption process. As a result, the inside of the adsorption tower is partitioned into a plurality of adjacent gas separation chambers, and the adjacent gas separation chambers are partitioned by a partition member that is airtight and transmits heat between the adjacent gas separation chambers. Forms an adsorbent layer that adsorbs the target gas component on both sides, and circulates one of the two types of gases, the mixed gas supplied in the adsorption process and the desorption gas consisting of the target gas component, which is desorbed in the desorption process. The present inventors have found that it is effective to have a two-system gas flow path in which the other gas is circulated in the gas separation chamber adjacent to the gas separation chamber to be completed, and the present invention has been completed.

すなわち、本発明の要旨構成は以下の通りである。
(1)圧力スイング吸着法により混合ガスから目的ガス成分を分離するための吸着塔であって、隣接する複数のガス分離室を有し、隣接するガス分離室間は、気密性を有するとともに前記隣接するガス分離室間で熱を伝える仕切部材で仕切られ、該仕切部材の両面に前記目的ガス成分を吸着する吸着剤層を有し、吸着工程で供給する前記混合ガスおよび脱着工程で脱着させる、前記目的ガス成分からなる脱着ガスの2種類のガスの内、一方のガスを流通させるガス分離室に隣接するガス分離室には他方のガスを流通させる、2系統のガス流路を有することを特徴とする吸着塔。
That is, the gist of the present invention is as follows.
(1) An adsorption tower for separating a target gas component from a mixed gas by a pressure swing adsorption method, having a plurality of adjacent gas separation chambers, wherein the adjacent gas separation chambers are airtight and It is partitioned by a partition member that transmits heat between adjacent gas separation chambers, and has an adsorbent layer that adsorbs the target gas component on both surfaces of the partition member, and is desorbed by the mixed gas supplied in the adsorption step and the desorption step. The gas separation chamber adjacent to the gas separation chamber that circulates one of the two types of desorbed gas composed of the target gas component has two gas flow paths that allow the other gas to circulate. Adsorption tower characterized by.

(2)前記仕切部材が熱伝導率50W・m−1・K−1以上である金属または炭素材料の板であることを特徴とする前記(1)に記載の吸着塔。 (2) The adsorption tower according to (1), wherein the partition member is a metal or carbon material plate having a thermal conductivity of 50 W · m −1 · K −1 or more.

(3)前記吸着剤層は、前記仕切部材の上に形成された、金属または炭素材料からなる多孔質材の表面に吸着剤を担持したことを特徴とする前記(1)または(2)に記載の吸着塔。 (3) In the above (1) or (2), the adsorbent layer carries an adsorbent on the surface of a porous material made of a metal or a carbon material formed on the partition member. The adsorption tower described.

(4)前記吸着剤層の厚さが50μm以下であることを特徴とする前記(1)〜(3)に記載の吸着塔。 (4) The adsorption tower as described in (1) to (3) above, wherein the adsorbent layer has a thickness of 50 μm or less.

(5)前記(1)〜(4)のいずれかに記載の吸着塔と、前記混合ガスを前記吸着塔に供給する混合ガス送風手段と、前記吸着塔に供給した混合ガスの内、前記吸着剤層に吸着されなかったガスである吸着オフガスを吸着塔から排気するオフガス排気手段と、前記吸着剤層に吸着されたガス成分を脱着させて回収する脱着ガス排気手段とを有し、前記2系統のガス流路の各々に、前記混合ガス送風手段、前記オフガス排気手段および前記脱着ガス排気手段が接続されていることを特徴とするガス分離装置。 (5) The adsorption tower according to any one of (1) to (4), a mixed gas blowing means for supplying the mixed gas to the adsorption tower, and the adsorption among the mixed gas supplied to the adsorption tower An off-gas exhaust means for exhausting an adsorption off-gas, which is a gas not adsorbed on the adsorbent layer, from the adsorption tower; and a desorption gas exhaust means for desorbing and collecting the gas component adsorbed on the adsorbent layer, The gas separation device, wherein the mixed gas blowing means, the off-gas exhaust means and the desorption gas exhaust means are connected to each of the gas flow paths of the system.

本発明によれば、複数のガス分離室の各々において、吸着工程および脱着工程のうち、隣接するガス分離室とは異なる工程が行われ、また、隣接するガス分離室は高い熱伝導率を有する仕切部材で仕切られるため、吸着工程において発生した吸着熱を脱着工程にある隣接するガス分離室の吸着剤層に速やかに伝達させて、混合ガスに含まれる目的ガス成分を効率的に分離することができる。   According to the present invention, in each of the plurality of gas separation chambers, a step different from the adjacent gas separation chamber among the adsorption step and the desorption step is performed, and the adjacent gas separation chamber has high thermal conductivity. Because it is partitioned by the partition member, the heat of adsorption generated in the adsorption process is quickly transmitted to the adsorbent layer in the adjacent gas separation chamber in the desorption process, thereby efficiently separating the target gas component contained in the mixed gas. Can do.

混合ガスの圧力と吸着ガス成分の吸着剤への吸着量との関係を示す図である。It is a figure which shows the relationship between the pressure of mixed gas, and the adsorption amount to the adsorption agent of an adsorption gas component. (a)本発明に係る吸着塔の模式図、および(b)この吸着塔におけるガス分離処理の工程表である。(A) The schematic diagram of the adsorption tower which concerns on this invention, and (b) The process table | surface of the gas separation process in this adsorption tower. 本発明に係る吸着塔の内部を複数のガス分離室に仕切る仕切部材を示す図である。It is a figure which shows the partition member which partitions off the inside of the adsorption tower which concerns on this invention into a some gas separation chamber. 本発明に係る吸着塔の一例を示す図である。It is a figure which shows an example of the adsorption tower which concerns on this invention. 本発明に係る吸着塔の一例における箱部材積層体の構成を説明する図である。It is a figure explaining the structure of the box member laminated body in an example of the adsorption tower which concerns on this invention. ガス分離室に支持体を有する箱部材積層体を説明する図である。It is a figure explaining the box member laminated body which has a support body in a gas separation chamber. 本発明に係る吸着塔の別の例を示す図である。It is a figure which shows another example of the adsorption tower which concerns on this invention. (a)プレート積層体の積層構造、および(b)ガスの流通方向を説明する図である。(A) It is a figure explaining the lamination structure of a plate laminated body, and (b) the distribution direction of gas. 本発明に係るガス分離装置の一例を示す図である。It is a figure which shows an example of the gas separation apparatus which concerns on this invention. 本発明に係るガス分離装置によるガス分離操作を説明する図である。It is a figure explaining gas separation operation by the gas separation apparatus concerning the present invention. 本発明に係るガス分離装置によるガス分離操作を説明する図である。It is a figure explaining gas separation operation by the gas separation apparatus concerning the present invention. 本発明に係るガス分離装置によるガス分離操作時における吸着剤の温度変化を示す図である。It is a figure which shows the temperature change of adsorbent at the time of gas separation operation by the gas separation apparatus which concerns on this invention. 本発明の比較例に係るガス分離装置によるガス分離操作時における吸着剤の温度変化を示す図である。It is a figure which shows the temperature change of adsorbent at the time of gas separation operation by the gas separation apparatus which concerns on the comparative example of this invention.

以下、図面を参照して本発明を詳細に説明する。
図2(a)は、本発明に係る吸着塔の模式図を示しており、図2(b)はこの吸着塔におけるガス分離処理の工程表を示している。図2(a)に示した吸着塔1は、筐体11と、該筐体11の内部に、少なくとも1つの仕切部材12とを備え、この仕切部材12は、筐体11の内部を複数のガス分離室(図示例では4つのガス分離室14a〜14d)に仕切る。本発明に係る吸着塔1は、図3(a)に示すように、仕切部材12は、該仕切部材12に隣接する2つのガス分離室間で熱を伝え、該仕切部材12の両面に吸着剤層13が形成されている。そして、図2(b)の工程表に示すように、吸着塔1は、混合ガスを吸着剤層13に接触させて目的ガス成分を吸着剤層13に吸着させる吸着工程と、吸着剤層13に吸着した目的ガス成分からなる脱着ガスを脱着させる脱着工程の2種類の工程が、隣接するガス分離室において異なるように構成されている。その結果、吸着塔1は、吸着工程で供給する混合ガスおよび脱着工程で脱着させる、目的ガス成分からなる脱着ガスの2種類のガスの内、一方のガスを流通させるガス分離室に隣接するガス分離室には他方のガスを流通させる、2系統のガス流路を有する。このような構成により、一方のガス分離室(例えば14aおよび14c)において吸着工程を行なう際に、隣接するガス分離室(例えば14bおよび14d)では脱着工程を行い、吸着工程側において発生した吸着熱を、仕切部材12を通して脱着工程側に伝えることにより、吸着工程側のガス分離室14の温度上昇を抑制するとともに脱着工程側のガス分離室(例えば14bおよび14d)の温度低下を抑制することができる。
なお、図には示されていないが、各ガス分離室14a〜14dに混合ガスを供給し、吸着塔1の内部から吸着剤層13に吸着されなかった成分からなる吸着オフガスを排気する配管や自動弁等が適切に接続されている。
Hereinafter, the present invention will be described in detail with reference to the drawings.
Fig.2 (a) has shown the schematic diagram of the adsorption tower which concerns on this invention, FIG.2 (b) has shown the process table | surface of the gas separation process in this adsorption tower. The adsorption tower 1 shown in FIG. 2A includes a housing 11 and at least one partition member 12 inside the housing 11, and the partition member 12 includes a plurality of interiors of the housing 11. The gas is divided into gas separation chambers (four gas separation chambers 14a to 14d in the illustrated example). In the adsorption tower 1 according to the present invention, as shown in FIG. 3A, the partition member 12 transfers heat between two gas separation chambers adjacent to the partition member 12, and is adsorbed on both sides of the partition member 12. An agent layer 13 is formed. As shown in the process chart of FIG. 2B, the adsorption tower 1 includes an adsorption process in which the mixed gas is brought into contact with the adsorbent layer 13 to adsorb the target gas component on the adsorbent layer 13, and the adsorbent layer 13. The two types of desorption processes for desorbing the desorption gas composed of the target gas component adsorbed on the gas are different in the adjacent gas separation chambers. As a result, the adsorption tower 1 is a gas adjacent to the gas separation chamber in which one of the two types of gases, the mixed gas supplied in the adsorption process and the desorption gas composed of the target gas component, which is desorbed in the desorption process, is circulated. The separation chamber has two gas flow paths for allowing the other gas to flow. With such a configuration, when the adsorption process is performed in one gas separation chamber (for example, 14a and 14c), the desorption process is performed in the adjacent gas separation chamber (for example, 14b and 14d), and the adsorption heat generated on the adsorption process side. Is transmitted to the desorption process side through the partition member 12, thereby suppressing an increase in the temperature of the gas separation chamber 14 on the adsorption process side and suppressing a decrease in the temperature of the gas separation chambers (for example, 14 b and 14 d) on the desorption process side. it can.
Although not shown in the figure, a pipe for supplying a mixed gas to each of the gas separation chambers 14a to 14d and exhausting an adsorption off-gas composed of components not adsorbed by the adsorbent layer 13 from the inside of the adsorption tower 1 Automatic valve etc. are connected properly.

仕切部材12としては、熱伝導性の高い材料からなることが好ましく、その熱伝導率は50W・m-1・K-1以上であることがより好ましい。この仕切部材12としては、例えば金属や炭素材料を用いることができる。 The partition member 12 is preferably made of a material having high thermal conductivity, and the thermal conductivity is more preferably 50 W · m −1 · K −1 or more. As this partition member 12, a metal and a carbon material can be used, for example.

上述のように、仕切部材12の両面には、混合ガスに含まれる目的ガス成分を吸着する吸着剤からなる吸着剤層13が形成されている。この吸着剤層13の形成は、具体的には、仕切部材12の表面に吸着剤を塗布または接着等することにより行うことができる。例えば、仕切部材12の両面に吸着剤を塗布する場合には、吸着剤を微粉化したものをバインダーとともにスラリー化して、塗布後に乾燥および焼成する。また、電気化学的な方法やCVD法により、仕切部材12上に吸着剤を成長させて吸着剤層13を形成することもできる。吸着剤としては、吸着するガス種類に応じて、ゼオライト等の公知の吸着剤を適宜選定すればよい。吸着剤の熱伝導性は通常あまり高くないことから、吸着剤層13の厚みは50μm以下とすることが好ましい。   As described above, the adsorbent layers 13 made of the adsorbent that adsorbs the target gas component contained in the mixed gas are formed on both surfaces of the partition member 12. Specifically, the formation of the adsorbent layer 13 can be performed by applying or adhering an adsorbent to the surface of the partition member 12. For example, when an adsorbent is applied to both surfaces of the partition member 12, a finely divided adsorbent is slurried with a binder, dried and fired after application. Further, the adsorbent layer 13 can be formed by growing an adsorbent on the partition member 12 by an electrochemical method or a CVD method. As the adsorbent, a known adsorbent such as zeolite may be appropriately selected according to the type of gas to be adsorbed. Since the thermal conductivity of the adsorbent is usually not so high, the thickness of the adsorbent layer 13 is preferably 50 μm or less.

さらに、図3(b)に示すように、仕切部材12の表面に多孔質層15を設け、吸着剤を多孔質層15の表面に配置して吸着剤層13を形成することがより好ましい。これにより、図3(c)に示すように、仕切部材12の表面により多くの吸着剤を保持することができる。この多孔質層15は、高表面積かつ高熱伝導性を有する材料からなることが好ましく、仕切部材12と同様に、その熱伝導率は50W・m-1・K-1以上であることがより好ましい。多孔質層15としては、ステンレスやニッケル、銅、アルミニウム等を用いることができる。 Furthermore, as shown in FIG. 3B, it is more preferable that the porous layer 15 is provided on the surface of the partition member 12, and the adsorbent layer 13 is formed by disposing the adsorbent on the surface of the porous layer 15. Thereby, as shown in FIG. 3C, more adsorbent can be held on the surface of the partition member 12. The porous layer 15 is preferably made of a material having a high surface area and high thermal conductivity. Like the partition member 12, the thermal conductivity is more preferably 50 W · m −1 · K −1 or more. . As the porous layer 15, stainless steel, nickel, copper, aluminum, or the like can be used.

本発明においては、複数のガス分離室14a〜14dの各々において、ガス分離処理の吸着工程と脱着工程のうち、隣接するガス分離室において異なる工程が行われるように構成される。そのため、例えばガス分離室14aで吸着工程を行っている場合には、隣接するガス分離室14bでは脱着工程が行われることになる。同様に14cでは吸着工程、14dでは脱着工程が行われる。このように構成することにより、吸着塔1は、吸着工程で供給する混合ガスおよび脱着工程で脱着させる、目的ガス成分からなる脱着ガスの内、一方のガスを流通させるガス分離室に隣接するガス分離室には他方のガスを流通させる、2系統のガス流路を有することになるのである。これにより、吸着工程にあるガス分離室において発生した吸着熱は、熱伝導性の高い仕切部材12を介して、脱着工程にある隣接するガス分離室の吸着剤層13に速やかに伝達することができ、混合ガスから目的ガス成分を効率的に分離することができる。   In this invention, in each of several gas separation chamber 14a-14d, it is comprised so that a different process may be performed in an adjacent gas separation chamber among the adsorption | suction process and desorption process of gas separation processing. Therefore, for example, when the adsorption process is performed in the gas separation chamber 14a, the desorption process is performed in the adjacent gas separation chamber 14b. Similarly, an adsorption process is performed at 14c, and a desorption process is performed at 14d. By comprising in this way, the adsorption tower 1 is gas adjacent to the gas separation chamber which distribute | circulates one gas among the mixed gas supplied by an adsorption process, and the desorption gas which consists of a target gas component desorbed by a desorption process. The separation chamber has two gas flow paths through which the other gas flows. Thereby, the heat of adsorption generated in the gas separation chamber in the adsorption process can be quickly transmitted to the adsorbent layer 13 in the adjacent gas separation chamber in the desorption process via the partition member 12 having high thermal conductivity. The target gas component can be efficiently separated from the mixed gas.

次に、吸着塔のより具体的な構造の例を示す。なお、本発明は、ここにおいて説明されるものと同等の機能を有していればよく、特定の形状に限定されない。図4は、本発明に従う吸着塔の一例を示す図である。ここで、図4(a)は吸着塔の上面図を、図4(b)は鳥瞰図を示している。この図に示した吸着塔2は、筐体21の内部に直方体形状の複数の箱部材を積層させた箱部材積層体22を備え、箱部材積層体22に混合ガスを流通させる2本のガス導入管23aおよび23bと、箱部材積層体22から吸着オフガスを排出する2本のガス排出管24aおよび24bとを有する。   Next, an example of a more specific structure of the adsorption tower is shown. In addition, this invention should just have a function equivalent to what is demonstrated here, and is not limited to a specific shape. FIG. 4 is a diagram showing an example of an adsorption tower according to the present invention. Here, FIG. 4A shows a top view of the adsorption tower, and FIG. 4B shows a bird's-eye view. The adsorption tower 2 shown in this figure includes a box member laminated body 22 in which a plurality of rectangular parallelepiped box members are laminated inside a housing 21, and two gases that allow a mixed gas to flow through the box member laminated body 22. It has introduction pipes 23 a and 23 b and two gas discharge pipes 24 a and 24 b for discharging the adsorption off-gas from the box member laminate 22.

図5(a)および(b)に箱部材積層体22の形状の例を示す。図5(a)では、箱部材25は上面25a、下面25bおよび対向する1対の側面25dおよび25fが板材で構成され、他の1対の側面25cおよび25eが開口している。図5(b)では、1対の側面25dおよび25fが開口している。箱部材積層体22は、図5(a)および(b)に示すような、直方体形状を有する複数の箱部材25を、図5(c)に示すように、複数の箱部材25の隣接部において、上面25aおよび底面25bが密着するように、図5(a)および(b)の箱部材25を交互に積層させ、さらに図5(d)に示すように、箱部材25の上面25aおよび25bの内部26側の表面に吸着剤を配置して吸着剤層27を形成したものである。ここで、複数の箱部材25の少なくとも上面25aおよび底面25bは熱を伝える部材からなり、接する上面25aおよび底面25bの対が図2に示した仕切部材12をなし、箱部材25の内部26側に吸着剤層27が形成されており、図3における吸着材層13に対応する。   5A and 5B show examples of the shape of the box member laminate 22. In FIG. 5A, the box member 25 has an upper surface 25a, a lower surface 25b, and a pair of opposing side surfaces 25d and 25f made of a plate material, and the other pair of side surfaces 25c and 25e open. In FIG. 5 (b), a pair of side surfaces 25d and 25f are open. The box member laminate 22 includes a plurality of box members 25 having a rectangular parallelepiped shape as shown in FIGS. 5A and 5B, and adjacent portions of the plurality of box members 25 as shown in FIG. 5 (a) and 5 (b) are alternately laminated so that the upper surface 25a and the bottom surface 25b are in close contact with each other, and as shown in FIG. 5 (d), the upper surface 25a and An adsorbent layer 27 is formed by disposing an adsorbent on the surface of the inner side of 25b. Here, at least the upper surface 25a and the bottom surface 25b of the plurality of box members 25 are members that transmit heat, and the pair of the upper surface 25a and the bottom surface 25b in contact with each other forms the partition member 12 shown in FIG. An adsorbent layer 27 is formed on the surface, and corresponds to the adsorbent layer 13 in FIG.

また、4つの側面25c〜25fの内の対向する2つの側面(図5(a)においては25cおよび25e、図5(b)においては25dおよび25f)が開口しており、これらの開口の一方から混合ガスが内部26に導入され、他方から吸着オフガスが排出される。図5(a)に示した構造においては、開口25cから混合ガスが導入され、開口25fから吸着オフガスが排出される。この箱部材積層体22においては、開口の向き(すなわち、混合ガスが流通する向き)が、箱部材積層体22の積層された箱部材25間で交互に異なるように構成する。例えば、図5(d)に示した箱部材積層体22は、10個の箱部材25を積層させたものであるが、内部26aで吸着工程が行われる場合には、内部26bでは脱着工程が行われる。このように、箱部材25の開口の向きが交互に異なれば、吸着側および脱着側となるガス分離室の開口が揃って、流通させるガスをガス導入管23、ガス排出管24にまとめやすい構造となる。しかし、このような積層構造とせずに、開口する側面の向きを全ての箱部材25について同一にし、積層方向に1つおきの箱部材25の内部26においてガス流路が同一になるように、箱部材積層体22の外部に適切に配管してもよい。   In addition, two opposing side surfaces (25c and 25e in FIG. 5A and 25d and 25f in FIG. 5B) of the four side surfaces 25c to 25f are open, and one of these openings The mixed gas is introduced into the interior 26, and the adsorption off-gas is discharged from the other side. In the structure shown in FIG. 5A, the mixed gas is introduced from the opening 25c, and the adsorption off-gas is discharged from the opening 25f. The box member laminate 22 is configured such that the opening direction (that is, the direction in which the mixed gas flows) is alternately different between the box members 25 on which the box member laminate 22 is laminated. For example, the box member laminate 22 shown in FIG. 5 (d) is obtained by laminating ten box members 25. When the adsorption process is performed in the interior 26a, the desorption process is performed in the interior 26b. Done. In this way, when the opening directions of the box members 25 are alternately different, the openings of the gas separation chambers on the adsorption side and the desorption side are aligned, and the gas to be circulated can be easily combined into the gas introduction pipe 23 and the gas discharge pipe 24. It becomes. However, without using such a laminated structure, the direction of the side surface to be opened is the same for all the box members 25, and the gas flow paths are the same in the interior 26 of every other box member 25 in the lamination direction. The piping may be appropriately provided outside the box member laminate 22.

図4の吸着塔2における複数の箱部材25の各々の内部26は、図2に示した吸着塔1におけるガス分離室14をなす。また、複数の箱部材25の積層方向に隣接する箱部材間で接する上面25aおよび底面25bの内部26側の表面に吸着剤層27が形成されており、上面25aおよび底面25bの対が仕切部材12をなす。ここで、箱部材25の厚さが厚いとガス分離室(箱部材25の内部26)の容積当りの吸着剤量が少なく、ガス分離が非効率となるため、薄い箱部材を多数積層させるのが好ましい。   The interior 26 of each of the plurality of box members 25 in the adsorption tower 2 of FIG. 4 forms a gas separation chamber 14 in the adsorption tower 1 shown in FIG. In addition, an adsorbent layer 27 is formed on the surface on the inner side 26 of the upper surface 25a and the bottom surface 25b that are in contact with each other adjacent to each other in the stacking direction of the plurality of box members 25, and the pair of the upper surface 25a and the bottom surface 25b is a partition member. Twelve. Here, if the thickness of the box member 25 is large, the amount of adsorbent per volume of the gas separation chamber (the inside 26 of the box member 25) is small and gas separation becomes inefficient, so a large number of thin box members are stacked. Is preferred.

このような箱部材積層体22を筐体21の内部に収容し、シール部材28を図4(a)および(c)に示すように配置することにより、ガス導入管23bから混合ガスをガス導入管23b側に面した開口を持つ箱部材25の内部(例えば26a)に導入し、混合ガスに含まれる目的ガス成分を吸着剤層27に吸着させ、ガス排出管24aからガス排出管側に面した開口を有する箱部材25の内部(例えば26b)の吸着剤層27から吸着したガス成分を脱着させて目的ガス成分を分離することができる。   Such a box member laminate 22 is accommodated in the housing 21 and the sealing member 28 is disposed as shown in FIGS. 4 (a) and 4 (c), thereby introducing a mixed gas from the gas introduction pipe 23b. It is introduced into the inside (for example, 26a) of the box member 25 having an opening facing the pipe 23b side, the target gas component contained in the mixed gas is adsorbed on the adsorbent layer 27, and the gas exhaust pipe 24a faces the gas exhaust pipe side. The target gas component can be separated by desorbing the gas component adsorbed from the adsorbent layer 27 inside the box member 25 having the opening (for example, 26b).

上述のように、箱部材積層体22においては、開口を有する側面の向きが箱部材積層体22の積層方向に隣接する箱部材間で互いに異なるように構成されているため、2本のガス導入管23のうちの一方(例えば、23a)から導入された混合ガスは、積層体22を構成する複数の箱部材25のうち、積層方向の1つおきに箱部材25の内部26に導入され、他方(例えば、23b)から導入された混合ガスは、一方(例えば、23a)から導入されなかった箱部材25の内部26に導入されることになる。   As described above, in the box member laminated body 22, the direction of the side surface having the opening is configured so that the box members adjacent to each other in the stacking direction of the box member laminated body 22 are different from each other. The mixed gas introduced from one of the tubes 23 (for example, 23a) is introduced into the interior 26 of the box member 25 every other one of the plurality of box members 25 constituting the stacked body 22, in the stacking direction. The mixed gas introduced from the other (for example, 23b) is introduced into the interior 26 of the box member 25 that has not been introduced from one (for example, 23a).

このような構成を有することにより、吸着塔2においては、積層方向に隣接する箱部材内において、吸着工程および脱着工程のうち、互いに異なる工程を同時に行うことができるようになり、吸着工程にある箱部材25の内部で発生した吸着熱を、仕切部材を構成する上面25aおよび下面25bを介して、脱着工程にある隣接する箱部材25の上面25aおよび下面25bの内部26側の表面に形成された吸着剤層27に伝達させることができ、目的ガス成分の分離を効率的に行うことができる。   By having such a configuration, in the adsorption tower 2, it becomes possible to simultaneously perform different processes among the adsorption process and the desorption process in the box members adjacent in the stacking direction. The heat of adsorption generated inside the box member 25 is formed on the surface on the inside 26 side of the upper surface 25a and the lower surface 25b of the adjacent box member 25 in the desorption process via the upper surface 25a and the lower surface 25b constituting the partition member. Therefore, the target gas component can be separated efficiently.

この吸着塔2において、吸着工程および脱着工程における内部26の圧力変化による箱部材25の変形を防ぐために、箱部材25の内部26に、箱部材25の上面25aを支持する支持体を設け、箱部材25の内部26における混合ガスの流路を保持するようにすることもできる。この支持体の個数や形状等は、上面25aを支持して混合ガスの流路を保持できるように適切に選択することができる。例えば、図6(a)に示すように、箱部材25の内部26に、波形構造を有する支持体29を波形構造の波の方向を混合ガスの流通方向を横切るように配置し、図6(b)に示した吸着塔2を構成することができる。このように構成することにより、ガスの流通を妨げることなく、箱部材25の変形を防止することができる。また、支持体29を高い熱伝導性を有する材料で構成し、その両面に吸着剤を塗布して吸着剤層を形成したり、あるいは吸着剤が表面に配された多孔質材を貼り付けたりしてもよい。   In the adsorption tower 2, in order to prevent deformation of the box member 25 due to a pressure change in the interior 26 in the adsorption process and the desorption process, a support body that supports the upper surface 25 a of the box member 25 is provided in the interior 26 of the box member 25. The flow path of the mixed gas in the inside 26 of the member 25 can also be held. The number and shape of the supports can be appropriately selected so that the upper surface 25a is supported and the mixed gas flow path can be held. For example, as shown in FIG. 6 (a), a support 29 having a corrugated structure is arranged in the interior 26 of the box member 25 so that the wave direction of the corrugated structure crosses the flow direction of the mixed gas. The adsorption tower 2 shown in b) can be constituted. With this configuration, the deformation of the box member 25 can be prevented without hindering the gas flow. Further, the support 29 is made of a material having high thermal conductivity, and an adsorbent is applied to both sides thereof to form an adsorbent layer, or a porous material having an adsorbent disposed on the surface is attached. May be.

図7は、本発明に従う吸着塔の別の例を示す図である。この図に示した吸着塔3は、筐体31の内部に、プレート積層体32を備え、吸着塔3の内部に混合ガスを供給する2つのガス導入口33(33aおよび33b)と、吸着塔3の内部から吸着オフガスを排出する2つのガス排出口34(34aおよび34b)とを有する。   FIG. 7 is a view showing another example of the adsorption tower according to the present invention. The adsorption tower 3 shown in this figure includes a plate stack 32 inside a housing 31, two gas inlets 33 (33 a and 33 b) for supplying a mixed gas to the inside of the adsorption tower 3, and an adsorption tower 3 has two gas discharge ports 34 (34a and 34b) for discharging the adsorption off-gas from the inside.

筐体31の内部収容されたプレート積層体32は、図7(b)および(c)に示すように、熱伝導性の高い材料からなり、4つの角部にガスを流通させるガス流通孔35a〜35dを有する矩形の仕切プレート35と、4つのガス流通孔35a〜35dのうちの互いに対角に位置する2つを囲む無端の帯状のシール部材36とを積層させたものである。ここで、シール部材36は、隣接する仕切プレートとの間で、図2に示した吸着塔1におけるガス分離室に対応する空間37を区画する。   As shown in FIGS. 7B and 7C, the plate laminate 32 housed inside the housing 31 is made of a material having high thermal conductivity, and gas circulation holes 35a for flowing gas through the four corners. A rectangular partition plate 35 having ˜35d and an endless belt-like seal member 36 that surrounds two of the four gas flow holes 35a to 35d located diagonally to each other are laminated. Here, the seal member 36 divides a space 37 corresponding to the gas separation chamber in the adsorption tower 1 shown in FIG. 2 between the adjacent partition plates.

仕切プレート35は、その両面に吸着剤層38が形成されており、従って、この仕切プレート35は、図2に示した吸着塔1における仕切部材12をなす。   Adsorbent layers 38 are formed on both sides of the partition plate 35. Therefore, the partition plate 35 forms the partition member 12 in the adsorption tower 1 shown in FIG.

シール部材36は、4つのガス流通孔35a〜35dのうちの互いに対角に位置する2つを囲み、該シール部材36を挟む2枚の仕切プレートとの間で、図2に示した吸着塔1のガス分離室14をなす空間37を区画する。ここで、シール部材36により囲まれる2つのガス流通孔の対は、積層方向に隣接するガス分離室間で互いに異なるようにする。例えば、図8(a)の右側の仕切プレート上の右側のシール部材36は、ガス流通孔35aおよび35cを囲むのに対して、図8(a)の左側の仕切プレート上の右側のシール部材36は、ガス流通孔35bおよび35dを囲むようにする。その結果、図8(b)に示すように、隣接する空間37ではガスの流通方向が異なることになる。   The sealing member 36 surrounds two of the four gas flow holes 35a to 35d that are located diagonally to each other, and between the two partition plates sandwiching the sealing member 36, the adsorption tower shown in FIG. A space 37 forming one gas separation chamber 14 is defined. Here, the pair of two gas flow holes surrounded by the seal member 36 is made different between the gas separation chambers adjacent in the stacking direction. For example, the right seal member 36 on the right partition plate in FIG. 8A surrounds the gas flow holes 35a and 35c, whereas the right seal member on the left partition plate in FIG. 8A. 36 surrounds the gas flow holes 35b and 35d. As a result, as shown in FIG. 8B, the gas flow directions are different in the adjacent spaces 37.

このようなプレート積層体32を筐体31の内部に収容し、最上部の仕切プレート35の4つのガス流通孔35aおよび35bにガス導入口33aおよび33bをそれぞれ接続し、ガス流通孔35cおよび35dにガス排出口34aおよび34bをそれぞれ接続することにより、ガス導入口33(例えば、33a)から導入された混合ガスが仕切プレート35のガス流通孔(例えば、35a)を介して空間37に導入され、仕切プレート35の表面に配置された吸着剤層38に混合ガスに含まれる目的ガス成分を吸着させ、吸着オフガスをガス流通孔(例えば、35c)を介してガス排出口34(例えば、34a)から外部に排出し、混合ガスに含まれる目的ガス成分を分離することができる。   Such a plate laminated body 32 is accommodated in the housing 31, and the gas inlets 33a and 33b are connected to the four gas circulation holes 35a and 35b of the uppermost partition plate 35, respectively. By connecting the gas outlets 34a and 34b to the gas outlets 34a and 34b, the mixed gas introduced from the gas inlet 33 (for example, 33a) is introduced into the space 37 through the gas flow holes (for example, 35a) of the partition plate 35. The target gas component contained in the mixed gas is adsorbed to the adsorbent layer 38 disposed on the surface of the partition plate 35, and the adsorption off-gas is supplied to the gas discharge port 34 (for example, 34a) through the gas flow hole (for example, 35c). The target gas component contained in the mixed gas can be separated by discharging to the outside.

より詳細には、プレート積層体32においては、シール部材36により囲まれるガス流通孔の対が積層方向に隣接するガス分離室間で互いに異なるように構成されているため、2つのガス導入口33のうちの一方(例えば、33a)から導入された混合ガスは、仕切プレート35とシール部材36により区画される複数の空間37のうち、積層方向に1つおきの空間37に導入され、他方(例えば、33b)から導入された混合ガスは、一方(例えば、33a)から導入されなかった空間37に導入されることになる。   More specifically, in the plate laminated body 32, the two gas introduction ports 33 are configured such that the pair of gas flow holes surrounded by the seal member 36 are different from each other between the gas separation chambers adjacent in the lamination direction. The mixed gas introduced from one (for example, 33a) is introduced into every other space 37 in the stacking direction among the plurality of spaces 37 partitioned by the partition plate 35 and the seal member 36, and the other ( For example, the mixed gas introduced from 33b) is introduced into the space 37 that was not introduced from one side (for example, 33a).

このような構成を有することにより、吸着塔3においては、積層方向に隣接する箱部材内において、吸着工程および脱着工程のうち、互いに異なる工程を同時に行うことができるようになり、吸着工程にある空間37の内部で発生した吸着熱を、仕切プレート35を介して、脱着工程にある隣接する空間37側の表面に形成された吸着剤層38に伝達させることができ、混合ガスに含まれる目的ガス成分を効率的に分離することができる。   By having such a configuration, in the adsorption tower 3, it becomes possible to simultaneously perform different processes among the adsorption process and the desorption process in the box members adjacent in the stacking direction. The heat of adsorption generated inside the space 37 can be transmitted via the partition plate 35 to the adsorbent layer 38 formed on the surface of the adjacent space 37 in the desorption process, and is included in the mixed gas. Gas components can be separated efficiently.

以上の本発明に従う吸着塔を用いることにより、吸着側の吸着剤の温度上昇および脱着側の温度低下を抑制し、混合ガスから目的ガス成分を効率的に分離することができる。   By using the adsorption tower according to the present invention as described above, the temperature increase of the adsorbent on the adsorption side and the temperature decrease on the desorption side can be suppressed, and the target gas component can be efficiently separated from the mixed gas.

続いて、本発明に従うガス分離装置について説明する。図9は、本発明に係るガス分離装置の一例を示す図である。この装置50は、図4に示した吸着塔2を吸着塔52として備えるガス分離装置であって、混合ガスGを吸着塔52に供給する、ブロアや圧縮ポンプ等の送風手段51と、吸着剤層27に吸着されたガス成分を脱着させて回収する、真空ポンプ等の排気手段53とを備える。また、ガス導入管23aおよび23bから混合ガスGを吸着塔内に導入し、ガス排出管24aおよび24bから、吸着剤層27に吸着されなかったガスである吸着オフガスが排出できるように、配管、自動弁AV1〜AV6および背圧弁BPVが構成されている。 Next, the gas separation device according to the present invention will be described. FIG. 9 is a diagram showing an example of a gas separation device according to the present invention. The device 50 is a gas separation apparatus having an adsorption tower 2 shown in FIG. 4 as an adsorption tower 52, and supplies the mixed gas G 0 in the adsorption tower 52, an air blowing means 51 such as a blower or compressor pumps, suction And an exhaust means 53 such as a vacuum pump for desorbing and collecting the gas component adsorbed on the agent layer 27. Further, the mixed gas G 0 from the gas inlet pipe 23a and 23b is introduced into the adsorption tower, the gas exhaust pipe 24a and 24b, to allow adsorption offgas exhaust a gas not adsorbed by the adsorbent layer 27, the pipe The automatic valves AV1 to AV6 and the back pressure valve BPV are configured.

この装置50を使用したガスの分離操作について、図10および図11を参照して説明する。まず、図10を参照すると、混合ガスGは、送風手段51によって送風され、自動弁AV1を介して吸着塔52の内部(ガス分離室)26に流通させられる。この時のガスの圧力は自動弁AV3の下流にある背圧弁BPVにより制御され、一定圧以上では吸着剤層27に吸着しなかった非吸着成分ガスが吸着オフガスGとして排出される。 A gas separation operation using the apparatus 50 will be described with reference to FIGS. First, referring to FIG. 10, the mixed gas G 0 is blown by the blowing means 51 is caused to flow through the inside (gas separation chamber) 26 of the adsorption tower 52 through an automatic valve AV1. The pressure at this time of the gas is controlled by a back pressure valve BPV downstream of automatic valve AV3, nonadsorbed component gas at a constant pressure or more was not adsorbed by the adsorbent layer 27 are discharged as an adsorption offgas G 1.

これと同時に、排気手段53によって自動弁AV5を介して吸着剤層27に吸着していたガス成分が脱着されて、目的ガス成分からなる脱着ガスGとして排出される。この時に、吸着工程にあるガス分離室の吸着剤層27の熱が、隣接する箱部材25の上面25aおよび下面25bを介して脱着工程にある隣接するガス分離室にある吸着剤層27に伝達される。 Simultaneously, gas components adsorbed on the adsorbent layer 27 through an automatic valve AV5 is desorbed and discharged as a desorption gas G 2 consisting of target gas component by the exhaust means 53. At this time, the heat of the adsorbent layer 27 in the gas separation chamber in the adsorption process is transferred to the adsorbent layer 27 in the adjacent gas separation chamber in the desorption process through the upper surface 25a and the lower surface 25b of the adjacent box member 25. Is done.

吸着工程にあるガス分離室内の吸着剤層27にガス成分がある程度吸着して性能が低下した時点で、図10から図11へとバルブの開閉を切り替える。図11においては、混合ガスGは、送風手段1によって送風され、自動弁AV4を介して吸着塔52のガス分離室に流通させられる。この時のガスの圧力は自動弁AV3の下流にある背圧弁BPVにより制御され、一定圧以上では吸着剤に吸着しなかった非吸着成分ガスが吸着オフガスGとして排出される。 When the gas component is adsorbed to some extent on the adsorbent layer 27 in the gas separation chamber in the adsorption process and the performance deteriorates, the opening and closing of the valve is switched from FIG. 10 to FIG. In FIG. 11, the mixed gas G 0 is blown by the blowing means 1 and is circulated into the gas separation chamber of the adsorption tower 52 via the automatic valve AV 4. The pressure at this time of the gas is controlled by a back pressure valve BPV downstream of automatic valve AV3, nonadsorbed component gas at a constant pressure or more was not adsorbed by the adsorbent is discharged as an adsorption offgas G 1.

これと同時に、排気手段53によって自動弁AV2を介して吸着剤層27に吸着していたガス成分が脱着されて脱着ガスGとして排出される。この時に、吸着工程にあるガス分離室の吸着熱が、箱部材25の上面25aおよび下面25bを介して脱着工程にある隣接するガス分離室にある吸着剤層27に伝達される。 At the same time, gas components adsorbed on the adsorbent layer 27 are discharged as a desorption gas G 2 are desorbed through the automatic valve AV2 by the exhaust means 53. At this time, the adsorption heat of the gas separation chamber in the adsorption process is transmitted to the adsorbent layer 27 in the adjacent gas separation chamber in the desorption process via the upper surface 25a and the lower surface 25b of the box member 25.

このように、本発明に係るガス分離装置により、該ガス分離装置を構成する吸着塔において、複数のガス分離室の各々において、吸着工程および脱着工程のうち、隣接するガス分離室とは互いに異なる工程を同時に行うことができ、吸着工程にあるガス分離室において発生した吸着熱を、仕切部材を介して脱着工程にあるガス分離室の吸着剤層に伝達させて、混合ガスから目的ガス成分を効率的に分離することができる。   Thus, with the gas separation apparatus according to the present invention, in the adsorption tower constituting the gas separation apparatus, each of the plurality of gas separation chambers is different from the adjacent gas separation chamber in the adsorption step and the desorption step. The adsorption heat generated in the gas separation chamber in the adsorption process can be transferred to the adsorbent layer in the gas separation chamber in the desorption process via the partition member, and the target gas component can be removed from the mixed gas. It can be separated efficiently.

以下、本発明の実施例について説明し、本発明例の効果を示す。なお、以下の実施例により本発明の範囲は限定されない。   Examples of the present invention will be described below to show the effects of the present invention. The scope of the present invention is not limited by the following examples.

(発明例)
1mmの板厚のステンレス製の箱部材(内面が縦25cm×横25cm×高さ2cm)、および、ステンレス製粒子と樹脂粒子の混合材を成型焼結して作製した多孔質金属板(縦25cm×横25cm×厚0.7cm、比重:0.7g/cm、表面積/体積比:10000m−1、孔径:200μm)を用意し、仕切り部材である箱部材の隣接部、の両面に多孔質金属板を貼り付けた。これを図5(d)に示すように、開口を有する側面、つまりガスの流通方向が互いに直交するように10層積層させた。積層体を、微粉砕Na置換されたY型ゼオライト粉末をバインダーとともに懸濁させた水溶液に浸漬して、積層体を構成する金属製容器の内部(ガス分離室)に塗布し、200℃で5時間乾燥、300℃で24時間焼成した。ゼオライト塗布前後の積層体の重量変化から、積層体の内部に塗布された吸着剤の量は267gであり、これより計算される平均塗布厚みは47μmであった。
(Invention example)
A 1 mm thick stainless steel box member (inner surface is 25 cm long x 25 cm wide x 2 cm high), and a porous metal plate produced by molding and sintering a mixture of stainless steel particles and resin particles (25 cm long) × 25 cm wide × 0.7 cm thick, specific gravity: 0.7 g / cm 3 , surface area / volume ratio: 10000 m −1 , pore diameter: 200 μm) and porous on both sides of the box member that is a partition member A metal plate was attached. As shown in FIG. 5 (d), 10 layers were laminated so that the side surfaces having openings, that is, the gas flow directions were orthogonal to each other. The laminate is dipped in an aqueous solution in which finely pulverized Na-substituted Y-type zeolite powder is suspended together with a binder, and is applied to the inside (gas separation chamber) of a metal container constituting the laminate. Time drying and calcination at 300 ° C. for 24 hours. From the change in the weight of the laminate before and after the zeolite application, the amount of the adsorbent applied to the inside of the laminate was 267 g, and the average coating thickness calculated from this was 47 μm.

上述のように作製したガス分離装置を用いて、混合ガスから二酸化炭素(CO)ガスを分離する処理を行った。その際、混合ガスとしては、CO:22体積%、N:78体積%の組成を有するガスを使用し、複数のガス分離室の各々において、吸着工程および脱着工程のうち、隣接するガス分離室とは異なる工程が行われるようにガスの流れを自動弁で制御して混合ガスからCOガスを分離する処理を行った。また、混合ガスは、7mol/kg−吸着剤/100秒で吸着塔内を流通させ、吸着側の圧力は200kPaとなるように背圧弁を調整し、脱着側の圧力は5kPaまで真空ポンプで減圧した。また、吸着剤層の温度変化を測定できるように吸着塔容器のガス導入口から熱電対を挿入して吸着剤層に接触させて、上記ガス分離操作中の温度変化も測定した。温度変化は周期的な挙動を示した。温度変化を図12に示す。グラフの横軸は工程の開始時間を0secとした。温度は22〜28℃の間で変化し、温度変化幅は6℃であった。真空ポンプの排気側で99体積%濃度のCOガスが72%の回収率で得られた。 Using a gas separation device manufactured as described above, the carbon dioxide from a mixed gas (CO 2) was treated to separate gas. At that time, as the mixed gas, a gas having a composition of CO 2 : 22% by volume and N 2 : 78% by volume is used, and in each of the plurality of gas separation chambers, the adjacent gas among the adsorption process and the desorption process. The process of separating the CO 2 gas from the mixed gas was performed by controlling the gas flow with an automatic valve so that a process different from the separation chamber was performed. The mixed gas is circulated through the adsorption tower at 7 mol / kg-adsorbent / 100 seconds, the back pressure valve is adjusted so that the pressure on the adsorption side is 200 kPa, and the pressure on the desorption side is reduced to 5 kPa with a vacuum pump. did. Further, the temperature change during the gas separation operation was also measured by inserting a thermocouple from the gas inlet of the adsorption tower vessel so as to be able to measure the temperature change of the adsorbent layer and bringing it into contact with the adsorbent layer. The temperature change showed periodic behavior. The temperature change is shown in FIG. The horizontal axis of the graph represents the process start time of 0 sec. The temperature varied between 22 and 28 ° C., and the temperature change width was 6 ° C. On the exhaust side of the vacuum pump, 99% by volume CO 2 gas was obtained with a recovery rate of 72%.

(比較例)
発明例のガス分離装置を使用し、同じ組成の混合ガスを使用し、全てのガス分離室において同じ工程が行われるようにガスの流れを自動弁で制御して混合ガスからCOガスを分離する処理を行った。その他、原料の混合ガス流通量および吸着、脱着工程における圧力は上記発明例と同じ条件とした。その結果、温度変化を図13に示す。グラフの横軸は吸着工程の開始時間を0secとした。温度は19〜31℃の間で変化し、温度変化幅は12℃であった。99体積%濃度のCOガスが58%の回収率で得られた。
(Comparative example)
Using the gas separation device of the invention example, using a mixed gas of the same composition, and controlling the gas flow with an automatic valve so that the same process is performed in all gas separation chambers, the CO 2 gas is separated from the mixed gas The process to do. In addition, the mixed gas flow rate of the raw material and the pressure in the adsorption and desorption processes were set to the same conditions as in the above invention example. As a result, the temperature change is shown in FIG. On the horizontal axis of the graph, the start time of the adsorption process was 0 sec. The temperature varied between 19 and 31 ° C., and the temperature variation range was 12 ° C. 99 volume% concentration of CO 2 gas was obtained with a recovery rate of 58%.

このように、本発明によってガス分離操作時における吸着工程の吸着剤で発生する熱を、熱伝導性の高い部材を介して脱着工程を行っている吸着剤に伝達することによって温度変化が抑制されることが分かった。その結果、ガスの回収率が向上し、混合ガスから目的ガス成分を効率的に分離できることが分かる。   As described above, according to the present invention, the heat generated in the adsorbent in the adsorption process at the time of the gas separation operation is transmitted to the adsorbent performing the desorption process through the member having high thermal conductivity, thereby suppressing the temperature change. I found out. As a result, it is understood that the gas recovery rate is improved and the target gas component can be efficiently separated from the mixed gas.

1,2,3,52 吸着塔
11,21,31 筐体
12 仕切部材
13,27,38 吸着剤層
14,14a,14b,14c,14d ガス分離室
15 多孔質層
22 箱部材積層体
23,23a,23b ガス導入管
24,24a,24b ガス排出管
25 箱部材
25a 上面
25b 下面
25c,25d,25e,25f 側面
26 内部
28,36 シール部材
29 支持体
32 プレート積層体
33,33a,33b ガス導入口
34,34a,34b ガス排出口
35 仕切プレート
35a,35b,35c,35d ガス流通孔
37 空間
50 ガス分離装置
51 送風手段
53 排気手段
混合ガス
吸着オフガス
脱着ガス
AV1,AV2,AV3,AV4,AV5,AV6 自動弁
BVP 背圧弁
1, 2, 3, 52 Adsorption towers 11, 21, 31 Housing 12 Partition members 13, 27, 38 Adsorbent layers 14, 14a, 14b, 14c, 14d Gas separation chamber 15 Porous layer 22 Box member laminate 23, 23a, 23b Gas introduction pipes 24, 24a, 24b Gas discharge pipe 25 Box member 25a Upper surface 25b Lower surface 25c, 25d, 25e, 25f Side surface 26 Inner 28, 36 Seal member 29 Support body 32 Plate laminate 33, 33a, 33b Gas introduction Ports 34, 34a, 34b Gas discharge ports 35 Partition plates 35a, 35b, 35c, 35d Gas flow holes 37 Space 50 Gas separation device 51 Blower unit 53 Exhaust unit G 0 Mixed gas G 1 Adsorption off gas G 2 Desorbed gas AV1, AV2, AV3, AV4, AV5, AV6 Automatic valve BVP Back pressure valve

Claims (5)

圧力スイング吸着法により混合ガスから目的ガス成分を分離するための吸着塔であって、
隣接する複数のガス分離室を有し、隣接するガス分離室間は、気密性を有するとともに前記隣接するガス分離室間で熱を伝える仕切部材で仕切られ、該仕切部材の両面に前記目的ガス成分を吸着する吸着剤層を有し、吸着工程で供給する前記混合ガスおよび脱着工程で脱着させる、前記目的ガス成分からなる脱着ガスの2種類のガスの内、一方のガスを流通させるガス分離室に隣接するガス分離室には他方のガスを流通させる、2系統のガス流路を有することを特徴とする吸着塔。
An adsorption tower for separating a target gas component from a mixed gas by a pressure swing adsorption method,
A plurality of adjacent gas separation chambers are provided, and the adjacent gas separation chambers are partitioned by a partition member that is airtight and transmits heat between the adjacent gas separation chambers, and the target gas is provided on both surfaces of the partition member. Gas separation that has an adsorbent layer that adsorbs components and that circulates one of the two types of gases, the mixed gas supplied in the adsorption step and the desorption gas composed of the target gas component, which is desorbed in the desorption step An adsorption tower having two gas flow paths for allowing the other gas to flow in a gas separation chamber adjacent to the chamber.
前記仕切部材が熱伝導率50W・m−1・K−1以上である金属または炭素材料の板であることを特徴とする請求項1に記載の吸着塔。 2. The adsorption tower according to claim 1, wherein the partition member is a metal or carbon material plate having a thermal conductivity of 50 W · m −1 · K −1 or more. 前記吸着剤層は、前記仕切部材の上に形成された、金属または炭素材料からなる多孔質材の表面に吸着剤を担持したことを特徴とする請求項1または2に記載の吸着塔。   The adsorption tower according to claim 1 or 2, wherein the adsorbent layer carries an adsorbent on a surface of a porous material made of a metal or a carbon material and formed on the partition member. 前記吸着剤層の厚さが50μm以下であることを特徴とする請求項1〜3に記載の吸着塔。   The adsorption tower according to claim 1, wherein a thickness of the adsorbent layer is 50 μm or less. 請求項1〜4のいずれかに記載の吸着塔と、前記混合ガスを前記吸着塔に供給する混合ガス送風手段と、前記吸着塔に供給した混合ガスの内、前記吸着剤層に吸着されなかったガスであるオフガスを吸着塔から排気する吸着オフガス排気手段と、前記吸着剤層に吸着されたガス成分を脱着させて回収する脱着ガス排気手段とを有し、前記2系統のガス流路の各々に、前記混合ガス送風手段、前記オフガス排気手段および前記脱着ガス排気手段が接続されていることを特徴とするガス分離装置。   The adsorption tower according to any one of claims 1 to 4, mixed gas blowing means for supplying the mixed gas to the adsorption tower, and the mixed gas supplied to the adsorption tower, not adsorbed by the adsorbent layer. Off-gas exhaust means for exhausting off-gas, which is a gas, from the adsorption tower, and desorption gas exhaust means for desorbing and recovering the gas component adsorbed on the adsorbent layer, The gas separation device characterized in that the mixed gas blowing means, the off-gas exhaust means and the desorption gas exhaust means are connected to each.
JP2013069659A 2013-03-28 2013-03-28 Adsorption tower and gas separator Active JP5858948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013069659A JP5858948B2 (en) 2013-03-28 2013-03-28 Adsorption tower and gas separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013069659A JP5858948B2 (en) 2013-03-28 2013-03-28 Adsorption tower and gas separator

Publications (2)

Publication Number Publication Date
JP2014188507A true JP2014188507A (en) 2014-10-06
JP5858948B2 JP5858948B2 (en) 2016-02-10

Family

ID=51835391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013069659A Active JP5858948B2 (en) 2013-03-28 2013-03-28 Adsorption tower and gas separator

Country Status (1)

Country Link
JP (1) JP5858948B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881422A (en) * 1981-11-11 1983-05-16 Hidenobu Toyotomi Adsorptive separation of air
JPS59166820U (en) * 1983-04-25 1984-11-08 マツダ株式会社 Adsorption type oxygen separator
JPS6186935A (en) * 1984-10-05 1986-05-02 Kawasaki Heavy Ind Ltd Reactor and operation of fuel battery by using the same
JPS62210031A (en) * 1986-02-26 1987-09-16 Mitsubishi Electric Corp Gas treating device
JPH0584415A (en) * 1990-12-21 1993-04-06 Osaka Gas Co Ltd Gas adsorption treatment equipment
JPH07178308A (en) * 1993-12-24 1995-07-18 Mitsubishi Heavy Ind Ltd Gas separating and recovering device
JP2001269532A (en) * 2000-03-27 2001-10-02 Nippon Sanso Corp Pressure fluctuation adsorption air separation method
JP2004535281A (en) * 2001-04-30 2004-11-25 バッテル メモリアル インスティテュート Method and apparatus for heat swing adsorption and heat enhanced pressure swing adsorption
JP2005291592A (en) * 2004-03-31 2005-10-20 Daikin Ind Ltd Heat exchanger
JP2005321119A (en) * 2004-05-06 2005-11-17 Daikin Ind Ltd Air conditioning system
US20080202339A1 (en) * 2007-02-26 2008-08-28 Hamilton Sunstrand Corporation Thermally linked molecular sieve beds for CO2 removal
JP2008212844A (en) * 2007-03-05 2008-09-18 Shimadzu Corp Adsorption element and adsorption apparatus for carbon dioxide
JP2010527757A (en) * 2007-05-18 2010-08-19 エクソンモービル リサーチ アンド エンジニアリング カンパニー Temperature swing adsorption of CO2 from flue gas using parallel channel contactor
US20120006193A1 (en) * 2010-07-09 2012-01-12 Subir Roychoudhury Adsorption-desorption apparatus and process
JP2012250215A (en) * 2011-06-07 2012-12-20 Sumitomo Seika Chem Co Ltd Target gas separation method and target gas separation device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881422A (en) * 1981-11-11 1983-05-16 Hidenobu Toyotomi Adsorptive separation of air
JPS59166820U (en) * 1983-04-25 1984-11-08 マツダ株式会社 Adsorption type oxygen separator
JPS6186935A (en) * 1984-10-05 1986-05-02 Kawasaki Heavy Ind Ltd Reactor and operation of fuel battery by using the same
JPS62210031A (en) * 1986-02-26 1987-09-16 Mitsubishi Electric Corp Gas treating device
JPH0584415A (en) * 1990-12-21 1993-04-06 Osaka Gas Co Ltd Gas adsorption treatment equipment
JPH07178308A (en) * 1993-12-24 1995-07-18 Mitsubishi Heavy Ind Ltd Gas separating and recovering device
JP2001269532A (en) * 2000-03-27 2001-10-02 Nippon Sanso Corp Pressure fluctuation adsorption air separation method
JP2004535281A (en) * 2001-04-30 2004-11-25 バッテル メモリアル インスティテュート Method and apparatus for heat swing adsorption and heat enhanced pressure swing adsorption
JP2005291592A (en) * 2004-03-31 2005-10-20 Daikin Ind Ltd Heat exchanger
JP2005321119A (en) * 2004-05-06 2005-11-17 Daikin Ind Ltd Air conditioning system
US20080202339A1 (en) * 2007-02-26 2008-08-28 Hamilton Sunstrand Corporation Thermally linked molecular sieve beds for CO2 removal
JP2008207177A (en) * 2007-02-26 2008-09-11 Hamilton Sundstrand Corp System and method of removing carbon dioxide from process air flow
JP2008212844A (en) * 2007-03-05 2008-09-18 Shimadzu Corp Adsorption element and adsorption apparatus for carbon dioxide
JP2010527757A (en) * 2007-05-18 2010-08-19 エクソンモービル リサーチ アンド エンジニアリング カンパニー Temperature swing adsorption of CO2 from flue gas using parallel channel contactor
US20120006193A1 (en) * 2010-07-09 2012-01-12 Subir Roychoudhury Adsorption-desorption apparatus and process
JP2012250215A (en) * 2011-06-07 2012-12-20 Sumitomo Seika Chem Co Ltd Target gas separation method and target gas separation device

Also Published As

Publication number Publication date
JP5858948B2 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
US8852322B2 (en) Gas purification process utilizing engineered small particle adsorbents
JP2014529498A (en) Thermally integrated adsorption / desorption system and method
US20160332106A1 (en) Apparatus and System for Swing Adsorption Processes Related Thereto
US10363516B2 (en) Flexible adsorbents for low pressure drop gas separations
CN103702755A (en) Article for CO2 capture having heat exchange capability
US11911724B2 (en) Enhanced refrigeration purge system
KR20190075127A (en) Parallel channel contactor and sorbent gas separation method
KR100263941B1 (en) Method and apparatus for separation gas mixture
WO2018105196A1 (en) Gas concentrator
JP5875548B2 (en) Gas separation method
US8226746B2 (en) Indirectly heated temperature controlled adsorber for sorbate recovery
TWI763906B (en) Drying room for gas replacement
JP5858948B2 (en) Adsorption tower and gas separator
JP7306683B2 (en) Dry room for gas replacement
TWI771584B (en) Adsorption apparatus and adsorption method
JP4565111B2 (en) Fluidized bed desiccant air conditioning system
KR20180048945A (en) Apparatus and system for an associated rapid circulation swing adsorption process
TW201924766A (en) Electronic gas in-situ purification
JP2011194399A (en) Device for gas separation by pressure swing adsorption
JP2597118Y2 (en) Mixed gas separator
WO2023167260A1 (en) Acidic gas recovery system and recovery method
JPS5881422A (en) Adsorptive separation of air
JP2023158373A (en) Oxygen removal device
JP2698043B2 (en) Separation method of mixed gas and apparatus used therefor
CN116371139A (en) Adsorption separation device for air and organic fluoride liquid steam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151215

R150 Certificate of patent or registration of utility model

Ref document number: 5858948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250