JP2014188237A - Pulse wave detection device, pulse wave detection method, and pulse wave detection program - Google Patents

Pulse wave detection device, pulse wave detection method, and pulse wave detection program Download PDF

Info

Publication number
JP2014188237A
JP2014188237A JP2013067667A JP2013067667A JP2014188237A JP 2014188237 A JP2014188237 A JP 2014188237A JP 2013067667 A JP2013067667 A JP 2013067667A JP 2013067667 A JP2013067667 A JP 2013067667A JP 2014188237 A JP2014188237 A JP 2014188237A
Authority
JP
Japan
Prior art keywords
pulse wave
region
image
wave detection
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013067667A
Other languages
Japanese (ja)
Other versions
JP6052005B2 (en
Inventor
Hidenori Sekiguchi
英紀 関口
Daisuke Uchida
大輔 内田
Masato Sakata
雅人 阪田
Akita Inomata
明大 猪又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013067667A priority Critical patent/JP6052005B2/en
Publication of JP2014188237A publication Critical patent/JP2014188237A/en
Application granted granted Critical
Publication of JP6052005B2 publication Critical patent/JP6052005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve detection accuracy of a pulse wave propagation velocity.SOLUTION: A pulse wave detection device 10 acquires an image of the biological body of a subject which is captured by an imaging device, divides the image into a plurality of regions and performs predetermined statistical processing to pixel values possessed by pixels included in each of the regions for each of wavelength components so as to calculate a representative value for each of the regions, measures a timing at which the representative value in each of the regions where synthesis among the respective wavelength components is performed varies between the frames of the images, and calculates amounts of delays of pulse waves, from a temporal difference of the timing at which the representative value varies in each of the regions.

Description

本発明は、脈波検出装置、脈波検出方法及び脈波検出プログラムに関する。   The present invention relates to a pulse wave detection device, a pulse wave detection method, and a pulse wave detection program.

心臓から送出される血液の体積の変動、いわゆる脈波の検出がなされている。脈波そのものがバイタルサインを表す重要な指標であることはもちろん、脈波伝搬速度からも有用な生体情報を得ることができる。   Changes in the volume of blood delivered from the heart, so-called pulse waves, are detected. Not only is the pulse wave itself an important indicator of vital signs, but useful biological information can also be obtained from the pulse wave velocity.

かかる脈波伝搬速度は、生体の複数の部位で脈波を測定し、部位間での脈波の遅延時間と部位間の距離から求めることができる。例えば、脈波伝搬速度は、動脈硬化の進展を診断するのに有用な指標であり、例えば、伝搬速度から血管年齢などを計測することもできる。また、脈波伝搬速度は、収縮期血圧とも関係を有しており、脈波伝搬速度を血圧の測定に用いることもできる。さらに、脈拍周期のゆらぎは、自律神経とも関係を有しており、ゆらぎの低周波成分や高周波成分、さらには、低周波成分および高周波成分の比から交感神経や副交感神経の働きを診断するのにも有用である。   The pulse wave propagation speed can be obtained from pulse wave delay times between parts and distances between parts by measuring pulse waves at a plurality of parts of the living body. For example, the pulse wave propagation velocity is an index useful for diagnosing the progress of arteriosclerosis, and for example, blood vessel age can be measured from the propagation velocity. Further, the pulse wave propagation speed is also related to the systolic blood pressure, and the pulse wave propagation speed can be used for blood pressure measurement. Furthermore, fluctuations in the pulse cycle are also related to the autonomic nerves, and the function of the sympathetic and parasympathetic nerves is diagnosed from the low-frequency and high-frequency components of fluctuations, and the ratio of low-frequency and high-frequency components. Also useful.

一般に、脈波は、感圧センサを生体に接触させた状態で血管の膨張による皮膚圧の変化を計測したり、血管に可視光や赤外光を照射し、その透過光や反射光の光量変化を検出したりすることによって採取される。ところが、感圧センサを用いる場合には、生体に計測器具を接触させる煩わしさが生じたり、光量変化を検出する場合には、光源等のハードウェアを余計に設けたりといったデメリットもある。   In general, pulse waves measure changes in skin pressure due to blood vessel expansion while the pressure sensor is in contact with a living body, or irradiate blood vessels with visible or infrared light, and the amount of transmitted or reflected light. It is collected by detecting changes. However, when using a pressure-sensitive sensor, there are disadvantages such as the trouble of contacting a measuring instrument with a living body, and when detecting a change in the amount of light, additional hardware such as a light source is provided.

このことから、太陽光や室内光などの環境光の下で生体に計測器具を接触させずに脈波を検出するために、被験者の生体の一部、例えば顔が撮影された画像の輝度変化を用いて脈波を検出する技術が提案されている。かかる技術の一例としては、カメラによって被験者の顔が撮影された画像の信号成分に対し、独立成分分析(ICA:Independent Component Analysis)を適用することによって信号対雑音比を改善する方法が挙げられる。   Therefore, in order to detect a pulse wave without contacting a measuring instrument to the living body under ambient light such as sunlight or room light, a change in luminance of an image of a part of the subject's living body, for example, a face photographed. Techniques have been proposed for detecting a pulse wave using the. As an example of such a technique, there is a method of improving a signal-to-noise ratio by applying independent component analysis (ICA) to a signal component of an image obtained by photographing a subject's face by a camera.

特開2008−301915号公報JP 2008-301915 A 特開平10−283482号公報JP-A-10-283482

しかしながら、上記の技術では、時間分解能が撮像装置のフレーム周波数に依存するので、脈波伝搬速度の検出精度に限界がある。   However, in the above technique, since the time resolution depends on the frame frequency of the imaging apparatus, the detection accuracy of the pulse wave velocity is limited.

例えば、首と顔の間であれば、脈波は、約100ms程度の時間で伝搬される。一方、撮像装置には、一般に、フレーム周波数が30Hz程度のものが採用されることが多い。このように、33ms程度の時間分解能しか持たない撮像装置で約100msの伝搬時間を算出しようとしても、その精度には自ずから限界がある。また、脈拍周期のゆらぎにいたっては、伝搬速度よりも短い10ms程度のゆらぎであるので、脈波伝搬速度以上に脈拍周期のゆらぎを正確に求めることは困難である。そうであるからと言って、フレーム周波数が短い高速度の撮像装置を採用するのも、コストの面からハードルが高く容易ではない。   For example, if it is between the neck and the face, the pulse wave is propagated in about 100 ms. On the other hand, in general, an image pickup apparatus with a frame frequency of about 30 Hz is often employed. Thus, even if it is attempted to calculate a propagation time of about 100 ms with an imaging apparatus having only a time resolution of about 33 ms, the accuracy is naturally limited. Further, since the fluctuation of the pulse cycle is about 10 ms shorter than the propagation speed, it is difficult to accurately obtain the fluctuation of the pulse period more than the pulse wave propagation speed. Even if it is so, it is not easy to adopt a high-speed imaging device with a short frame frequency because of the high hurdles in terms of cost.

1つの側面では、脈波伝搬速度の検出精度を向上させることができる脈波検出装置、脈波検出方法及び脈波検出プログラムを提供することを目的とする。   An object of one aspect is to provide a pulse wave detection device, a pulse wave detection method, and a pulse wave detection program that can improve the detection accuracy of a pulse wave propagation velocity.

一態様の脈波検出装置は、撮像装置によって被験者の生体が撮影された画像を取得する取得部を有する。さらに、前記脈波検出装置は、前記画像を複数の領域に分割する分割部を有する。さらに、前記脈波検出装置は、各領域に含まれる画素が持つ画素値に所定の統計処理を波長成分別に実行することによって各領域の代表値を波長成分別に算出する統計処理部を有する。さらに、前記脈波検出装置は、各波長成分間で合成がなされた領域別の代表値が前記画像のフレーム間で変化するタイミングを測定する測定部を有する。さらに、前記脈波検出装置は、各領域で代表値が変化するタイミングの時間差から脈波の遅延量を算出する算出部を有する。   The pulse wave detection device according to one aspect includes an acquisition unit that acquires an image in which a living body of a subject is captured by an imaging device. Further, the pulse wave detection device includes a dividing unit that divides the image into a plurality of regions. Further, the pulse wave detection device includes a statistical processing unit that calculates a representative value of each region for each wavelength component by executing predetermined statistical processing for each wavelength component on the pixel values of the pixels included in each region. Further, the pulse wave detection device includes a measurement unit that measures a timing at which a representative value for each region synthesized between the wavelength components changes between frames of the image. Further, the pulse wave detection device includes a calculation unit that calculates a delay amount of the pulse wave from a time difference in timing at which the representative value changes in each region.

一実施形態によれば、脈波伝搬速度の検出精度を向上させることができる。   According to one embodiment, the detection accuracy of the pulse wave velocity can be improved.

図1は、実施例1に係る脈波検出装置の機能的構成を示すブロック図である。FIG. 1 is a block diagram illustrating a functional configuration of the pulse wave detection device according to the first embodiment. 図2は、顔画像の一例を示す図である。FIG. 2 is a diagram illustrating an example of a face image. 図3は、顔画像の一例を示す図である。FIG. 3 is a diagram illustrating an example of a face image. 図4は、輝度変化とサンプリング時間の関係の一例を示す図である。FIG. 4 is a diagram illustrating an example of the relationship between the luminance change and the sampling time. 図5は、輝度変化とサンプリング時間の関係の一例を示す図である。FIG. 5 is a diagram illustrating an example of the relationship between the luminance change and the sampling time. 図6は、輝度変化とサンプリング時間の関係の一例を示す図である。FIG. 6 is a diagram illustrating an example of the relationship between the luminance change and the sampling time. 図7は、輝度変化とサンプリング時間の関係の一例を示す図である。FIG. 7 is a diagram illustrating an example of the relationship between the luminance change and the sampling time. 図8は、図7に示した輝度変化のタイミングの時間差の一例を示す図である。FIG. 8 is a diagram illustrating an example of a time difference in luminance change timing illustrated in FIG. 図9は、輝度変化とサンプリング時間の関係の一例を示す図である。FIG. 9 is a diagram illustrating an example of the relationship between the luminance change and the sampling time. 図10は、図9に示した輝度変化のタイミングの時間差の一例を示す図である。FIG. 10 is a diagram illustrating an example of a time difference in luminance change timing illustrated in FIG. 9. 図11は、実施例1に係る遅延量算出処理の手順を示すフローチャートである。FIG. 11 is a flowchart illustrating a procedure of delay amount calculation processing according to the first embodiment. 図12は、被験者が映る画像の一例を示す図である。FIG. 12 is a diagram illustrating an example of an image showing a subject. 図13は、応用例2に係る遅延量算出処理の手順を示すフローチャートである。FIG. 13 is a flowchart illustrating a procedure of delay amount calculation processing according to the application example 2. 図14は、実施例1及び実施例2に係る脈波検出プログラムを実行するコンピュータの一例について説明するための図である。FIG. 14 is a schematic diagram illustrating an example of a computer that executes a pulse wave detection program according to the first and second embodiments.

以下に、本願の開示する脈波検出装置、脈波検出方法及び脈波検出プログラムの実施例を図面に基づいて説明する。なお、この実施例は開示の技術を限定するものではない。そして、各実施例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。   Embodiments of a pulse wave detection device, a pulse wave detection method, and a pulse wave detection program disclosed in the present application will be described below with reference to the drawings. Note that this embodiment does not limit the disclosed technology. Each embodiment can be appropriately combined within a range in which processing contents are not contradictory.

[脈波検出装置の構成]
まず、本実施例に係る脈波検出装置の機能的構成について説明する。図1は、実施例1に係る脈波検出装置の機能的構成を示すブロック図である。図1に示す脈波検出装置10は、太陽光や室内光などの一般の環境光の下で生体に計測器具を接触させずに、被験者が撮影された画像を用いて被験者の脈波、すなわち心臓の拍動に伴う血液の体積の変動を検出する脈波検出処理を実行するものである。
[Configuration of pulse wave detector]
First, the functional configuration of the pulse wave detection device according to the present embodiment will be described. FIG. 1 is a block diagram illustrating a functional configuration of the pulse wave detection device according to the first embodiment. The pulse wave detection device 10 shown in FIG. 1 uses a subject's pulse wave, that is, a subject's pulse wave, i.e., an image obtained by photographing the subject without bringing the measuring instrument into contact with the living body under ordinary ambient light such as sunlight or room light. A pulse wave detection process for detecting a change in the volume of blood accompanying the pulsation of the heart is executed.

一態様としては、脈波検出装置10は、パッケージソフトウェアやオンラインソフトウェアとして提供される脈波検出プログラムを所望のコンピュータにインストールさせることによって実装できる。例えば、スマートフォン、携帯電話機やPHS(Personal Handyphone System)などの通信端末のみならず、通信機能を持たないタブレット端末やスレート端末を含む携帯端末装置に上記の脈波検出プログラムをインストールさせる。これによって、携帯端末装置を脈波検出装置10として機能させることができる。なお、ここでは、脈波検出装置10の実装例として携帯端末装置を例示したが、パーソナルコンピュータを始めとする固定端末に脈波検出プログラムをインストールさせることとしてもかまわない。   As one aspect, the pulse wave detection device 10 can be implemented by installing a pulse wave detection program provided as package software or online software on a desired computer. For example, the pulse wave detection program is installed not only on communication terminals such as smartphones, mobile phones, and PHS (Personal Handyphone System), but also on mobile terminal devices including tablet terminals and slate terminals that do not have communication functions. Accordingly, the mobile terminal device can function as the pulse wave detection device 10. Here, the portable terminal device is illustrated as an implementation example of the pulse wave detection device 10, but the pulse wave detection program may be installed in a fixed terminal such as a personal computer.

図1に示すように、脈波検出装置10は、カメラ11と、画像メモリ11aと、取得部12と、第1の分割部13gと、第2の分割部13rと、統計処理部14g1〜14gn及び統計処理部14r1〜14rnとを有する。さらに、脈波検出装置10は、BPF(Band-Pass Filter)15g1〜15gn及びBPF15r1〜15rnと、差演算部16−1〜16−nと、二値化部17−1〜17−nと、測定部18と、算出部19とを有する。   As shown in FIG. 1, the pulse wave detection device 10 includes a camera 11, an image memory 11a, an acquisition unit 12, a first dividing unit 13g, a second dividing unit 13r, and statistical processing units 14g1 to 14gn. And statistical processing units 14r1 to 14rn. Furthermore, the pulse wave detection device 10 includes BPFs (Band-Pass Filters) 15g1 to 15gn and BPFs 15r1 to 15rn, difference calculation units 16-1 to 16-n, binarization units 17-1 to 17-n, A measurement unit 18 and a calculation unit 19 are included.

かかる脈波検出装置10は、図1に示した機能部以外にも既知の携帯端末装置が有する各種の機能部を有することとしてもかまわない。例えば、脈波検出装置10がタブレット端末やスレート端末として実装される場合には、入力デバイス、表示デバイス、あるいは入力可能かつ表示可能なタッチパネルをさらに有することとしてもよい。また、脈波検出装置10が移動体端末として実装される場合には、アンテナ、キャリア網を介して通信を行うキャリア通信部、GPS(Global Positioning System)受信機などの機能部をさらに有していてもかまわない。   Such a pulse wave detection device 10 may include various functional units included in known mobile terminal devices in addition to the functional units illustrated in FIG. 1. For example, when the pulse wave detection device 10 is implemented as a tablet terminal or a slate terminal, the pulse wave detection apparatus 10 may further include an input device, a display device, or an inputable and displayable touch panel. In addition, when the pulse wave detection device 10 is mounted as a mobile terminal, it further includes functional units such as an antenna, a carrier communication unit that performs communication via a carrier network, and a GPS (Global Positioning System) receiver. It doesn't matter.

図1に示す機能部のうち、カメラ11は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を搭載する撮像装置である。例えば、カメラ11には、R(red)、G(green)、B(blue)など3種以上の受光素子を搭載することができる。かかるカメラ11の実装例としては、デジタルカメラやWebカメラを外部端子を介して接続することとしてもよいし、カメラが出荷時から搭載されている場合にはそのカメラを流用できる。なお、ここでは、脈波検出装置10がカメラ11を有する場合を例示したが、ネットワークまたは記憶デバイスを経由して画像を取得できる場合には、必ずしも脈波検出装置10がカメラ11を有さずともよい。   Among the functional units shown in FIG. 1, the camera 11 is an imaging device on which an imaging element such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) is mounted. For example, the camera 11 can be equipped with three or more light receiving elements such as R (red), G (green), and B (blue). As an example of mounting the camera 11, a digital camera or a web camera may be connected via an external terminal, or when the camera is mounted from the time of shipment, the camera can be used. In addition, although the case where the pulse wave detection device 10 includes the camera 11 is illustrated here, the pulse wave detection device 10 does not necessarily include the camera 11 when an image can be acquired via a network or a storage device. Also good.

ここで、脈波検出装置10は、上記の脈波検出処理を実行するアプリケーションプログラムがプリインストールまたはインストールされている場合に、カメラ11によって脈波を検出し易い被験者の画像が撮像されるように画像の撮影操作を案内することができる。なお、以下では、上記のアプリケーションプログラムのことを「脈波検出用アプリ」と記載する場合がある。   Here, the pulse wave detection device 10 is configured so that when the application program for executing the above-described pulse wave detection process is preinstalled or installed, the camera 11 captures an image of a subject whose pulse wave is easily detected. An image shooting operation can be guided. In the following description, the application program may be referred to as a “pulse wave detection application”.

かかる脈波検出用アプリは、図示しない入力デバイスを介して起動されると、カメラ11を起動する。これを受けて、カメラ11は、カメラ11の撮影範囲に収容された被写体の撮影を開始する。このとき、被験者の顔が映る画像を撮影させる場合には、脈波検出用アプリは、カメラ11が撮影する画像を図示しない表示デバイスに表示しつつ、被験者の鼻を映す目標位置を照準として表示させることもできる。これによって、被験者の眼、耳、鼻や口などの顔パーツの中でも被験者の鼻が撮影範囲の中心部分に収まった画像が撮影できるようにする。そして、脈波検出用アプリは、カメラ11によって被験者の顔が撮影された画像を画像メモリ11aへ保存する。なお、以下では、顔が映った画像のことを「顔画像」と記載する場合がある。   When the pulse wave detection application is activated via an input device (not shown), the camera 11 is activated. In response to this, the camera 11 starts photographing the subject accommodated in the photographing range of the camera 11. At this time, when shooting an image showing the face of the subject, the pulse wave detection app displays the image taken by the camera 11 on a display device (not shown) and displays the target position where the nose of the subject is projected as an aim. It can also be made. As a result, among the facial parts such as the subject's eyes, ears, nose and mouth, an image in which the subject's nose is within the center of the imaging range can be taken. Then, the pulse wave detection application stores an image in which the face of the subject is captured by the camera 11 in the image memory 11a. In the following, an image showing a face may be referred to as a “face image”.

画像メモリ11aは、画像を記憶する記憶デバイスである。一態様としては、画像メモリ11aには、カメラ11によって被験者の顔が撮影される度に、被験者の顔画像が保存される。このとき、画像メモリ11aには、所定の圧縮符号化方式によってエンコードされた動画が保存されることとしてもよいし、被験者の顔が映る静止画の集合が保存されることとしてもよい。以下では、カメラ11によって被験者の顔が撮影された動画が取得される場合を想定し、動画を形成する各フレームの画像を「フレーム画像」と記載する場合がある。なお、ここでは、カメラ11によって撮影された顔画像が保存される場合を例示したが、ネットワークを介して受信した顔画像が保存されることとしてもかまわない。   The image memory 11a is a storage device that stores images. As one aspect, each time a subject's face is photographed by the camera 11, the subject's face image is stored in the image memory 11a. At this time, the image memory 11a may store a moving image encoded by a predetermined compression encoding method, or may store a set of still images showing the face of the subject. Hereinafter, assuming that a moving image in which the face of the subject is captured by the camera 11 is acquired, an image of each frame forming the moving image may be described as a “frame image”. Here, the case where the face image taken by the camera 11 is stored is illustrated, but the face image received via the network may be stored.

取得部12は、画像を取得する処理部である。一態様としては、取得部12は、画像メモリ11aに記憶された被験者の顔画像を取得する。他の一態様としては、取得部12は、被験者の顔が撮影された画像を蓄積するハードディスクや光ディスクなどの補助記憶装置またはメモリカードやUSB(Universal Serial Bus)メモリなどのリムーバブルメディアから画像を取得することもできる。更なる一態様としては、取得部12は、外部装置からネットワークを介して受信した顔画像を取得することもできる。なお、取得部12は、CCDやCMOSなどの撮像素子による出力から得られる2次元のビットマップデータやベクタデータなどの画像データを用いて処理を実行する場合を例示したが、1つのディテクタから出力される信号をそのまま取得して後段の処理を実行させることとしてもよい。   The acquisition unit 12 is a processing unit that acquires an image. As one aspect, the acquisition unit 12 acquires the face image of the subject stored in the image memory 11a. As another aspect, the acquisition unit 12 acquires an image from an auxiliary storage device such as a hard disk or an optical disk or a removable medium such as a memory card or a USB (Universal Serial Bus) memory that stores an image of the face of the subject. You can also As a further aspect, the acquisition unit 12 can also acquire a face image received from an external device via a network. In addition, although the acquisition part 12 illustrated the case where a process is performed using image data, such as two-dimensional bitmap data and vector data obtained from the output by image pick-up elements, such as CCD and CMOS, it is output from one detector. It is also possible to acquire the processed signal as it is and execute the subsequent processing.

ここで、本実施例に係る脈波検出装置10は、画像に含まれる3つの波長成分、すなわちR成分、G成分およびB成分のうちR成分とG成分の2つの波長成分の信号を用いて脈波の検出が行われる場合を例示する。例えば、取得部12は、画像メモリ11aに記憶された顔画像を読み出す度に、画素ごとにG成分の輝度値を持つ顔画像Gを第1の分割部13gへ出力するとともに、画素ごとにR成分の輝度値を持つ顔画像Rを第2の分割部13rへ出力する。   Here, the pulse wave detection device 10 according to the present embodiment uses three wavelength components included in the image, that is, signals of two wavelength components of the R component and the G component among the R component, the G component, and the B component. The case where a pulse wave is detected is illustrated. For example, each time the face image stored in the image memory 11a is read, the acquisition unit 12 outputs a face image G having a G component luminance value for each pixel to the first division unit 13g and R for each pixel. The face image R having the luminance value of the component is output to the second dividing unit 13r.

第1の分割部13g及び第2の分割部13rは、顔画像を分割する処理部である。すなわち、第1の分割部13gが顔画像Gの分割を担当し、第2の分割部13rが顔画像Rの分割を担当する以外は、第1の分割部13g及び第2の分割部13rで同様の処理が実行される。なお、ここでは、第1の分割部13g及び第2の分割部13rを代表して第1の分割部13gで実行される処理を説明することとする。   The first dividing unit 13g and the second dividing unit 13r are processing units that divide a face image. That is, the first dividing unit 13g and the second dividing unit 13r except that the first dividing unit 13g is in charge of dividing the face image G and the second dividing unit 13r is in charge of dividing the face image R. Similar processing is executed. Here, processing executed by the first dividing unit 13g will be described on behalf of the first dividing unit 13g and the second dividing unit 13r.

例えば、第1の分割部13gは、取得部12から顔画像Gが入力される度に、次に説明する処理を実行する。図2及び図3は、顔画像の一例を示す図である。図2に示すように、第1の分割部13gは、顔画像200にテンプレートマッチング等の画像処理を実行することによってG成分の輝度値を持つ顔画像200から顔パーツ、例えば被験者の左目210a、右目210bやあご211などを抽出する。その上で、第1の分割部13gは、2種類の顔パーツによって顔画像が区切られた部分画像を、脈波が伝搬する方向に沿ってN個の領域へ分割する。例えば、図3に示すように、第1の分割部13gは、左目210a又は右目210bが存在する位置から水平方向に延在する直線Leと、あご211が存在する位置から水平方向に延在する直線Ljとによって挟まれた部分画像を抽出する。その上で、第1の分割部13gは、直線Le及び直線Ljによって挟まれた部分画像を脈波の伝搬方向、すなわち画像の鉛直方向に沿ってP〜PのN個の領域へ分割する。 For example, each time the face image G is input from the acquisition unit 12, the first dividing unit 13 g executes a process described below. 2 and 3 are diagrams illustrating examples of face images. As shown in FIG. 2, the first dividing unit 13g performs image processing such as template matching on the face image 200, thereby performing facial parts such as the left eye 210a of the subject from the face image 200 having a G component luminance value. The right eye 210b, chin 211, and the like are extracted. Then, the first dividing unit 13g divides the partial image in which the face image is divided by the two types of face parts into N regions along the direction in which the pulse wave propagates. For example, as shown in FIG. 3, the first dividing unit 13g extends in the horizontal direction from the position where the straight eye Le extends horizontally from the position where the left eye 210a or the right eye 210b exists and the position where the jaw 211 exists. A partial image sandwiched between the straight lines Lj is extracted. On top of that, the first division portion 13g is divided partial image flanked by straight lines Le and linear Lj propagation direction of the pulse wave, i.e., the N regions of P 1 to P n along the vertical direction of the image To do.

このように、脈波の伝搬方向に沿って顔画像を分割するのは、各領域P〜P内で脈波が到達するタイミングを略同一にするためである。すなわち、心臓から動脈に沿って血液が送出されることからも、長手方向が脈波の伝搬方向と直行する方向、すなわち画像の水平方向に延在して形成される領域では、脈波が到達するタイミングが略同一であるとみなせる点が脈波検出装置10によって利用されている。 Thus, the reason why the face image is divided along the propagation direction of the pulse wave is to make the timing at which the pulse wave arrives in each of the regions P 1 to P n substantially the same. That is, since blood is sent out from the heart along the artery, the pulse wave reaches in the region where the longitudinal direction extends in the direction perpendicular to the propagation direction of the pulse wave, that is, in the horizontal direction of the image. The pulse wave detection device 10 uses the point that the timings to be considered are substantially the same.

なお、ここでは、第1の分割部13gが顔画像を分割する場合を例示したが、第2の分割部13rにおいても同様の処理が実行される。また、第1の分割部13g及び第2の分割部13rは、一方の処理部によって分割方法、例えばP〜PのN個の領域の位置や大きさが決定された場合に、他方の処理部にP〜PのN個の領域の位置や大きさを通知させることもできる。これによって、他方の処理部にはテンプレートマッチング等の画像処理を実行させることなく、顔画像を分割させることとしてもよい。また、ここでは、顔画像Gを用いて分割方法を決定する場合を例示したが、原画像、すなわち元の顔画像を用いて分割方法を決定することとしてもかまわない。 Although the case where the first dividing unit 13g divides the face image is illustrated here, the same processing is executed in the second dividing unit 13r. The first division section 13g and the second divided portion 13r is divided manner by one of the processing unit, for example, when the position or size of the N regions of P 1 to P n is determined, the other The processing unit can be notified of the positions and sizes of the N areas P 1 to P n . Thus, the face image may be divided without causing the other processing unit to perform image processing such as template matching. Although the case where the division method is determined using the face image G is illustrated here, the division method may be determined using the original image, that is, the original face image.

これら第1の分割部13g及び第2の分割部13rの後段の処理部では、G成分及びR成分の2つの波長成分ごと、さらには、分割がなされた領域P〜Pごとに、処理が実行される。このため、第1の分割部13gは、顔画像Gから分割された領域PのG信号を統計処理部14g1へ出力し、領域PのG信号を統計処理部14g2へ出力し、・・・、領域PのG信号を統計処理部14gnへ出力する。また、第2の分割部13rは、顔画像Rから分割された領域PのR信号を統計処理部14r1へ出力し、領域PのR信号を統計処理部14r2へ出力し、・・・、領域PのR信号を統計処理部14rnへ出力する。 In the processing unit subsequent to the first dividing unit 13g and the second dividing unit 13r, processing is performed for each of the two wavelength components of the G component and the R component, and for each of the divided regions P 1 to P n. Is executed. Therefore, the first division unit 13g outputs the G signal of the region P 1 divided from the face image G to statistical processing section 14g1, and outputs a G signal of the region P 2 to the statistical processing section 14G2, · · ·, and it outputs a G signal of the region P n to the statistic processing unit 14Gn. The second division part 13r outputs the R signal of a region P 1 divided from the face image R to the statistical processing section 14r1, and outputs the R signal of the region P 2 to the statistical processing section 14r2, · · · and it outputs the R signal of the region P n to the statistic processing unit 14Rn.

統計処理部14g1〜14gn及び14r1〜14rnは、波長成分別または領域別に当該領域に含まれる画素値に対し、所定の統計処理を実行する処理部である。これら統計処理部14g1〜14gn及び14r1〜14rnは、統計処理部14g1〜14gnがG信号の統計処理を担当し、統計処理部14r1〜14rnがR信号の統計処理を担当するが、実行される統計処理の内容は同様である。したがって、統計処理部14g1〜14gn及び14r1〜14rnを代表して統計処理部14g1〜14gnで実行される統計処理について説明することとする。   The statistical processing units 14g1 to 14gn and 14r1 to 14rn are processing units that perform predetermined statistical processing on the pixel values included in the region for each wavelength component or for each region. The statistical processing units 14g1 to 14gn and 14r1 to 14rn have statistical processing units 14g1 to 14gn in charge of G signal statistical processing and statistical processing units 14r1 to 14rn in charge of R signal statistical processing. The contents of the process are the same. Therefore, the statistical processing executed by the statistical processing units 14g1 to 14gn on behalf of the statistical processing units 14g1 to 14gn and 14r1 to 14rn will be described.

一態様としては、統計処理部14g1は、領域Pに含まれる各画素が持つG成分の輝度値を平均する。ここでは、平均値を計算する場合を例示したが、中央値や最頻値を計算することとしてもよく、また、加重平均以外にも任意の平均処理、例えば加重平均や移動平均などを実行することもできる。これによって、領域Pに含まれる各画素が持つG成分の輝度値の平均値が領域PのG成分を代表する代表値として算出される。また、統計処理部14g2は、領域PのG成分の代表値を算出し、統計処理部14gnは、領域PのG成分の代表値を算出する。なお、統計処理部14r1〜14rnにおいても、領域PのR成分の代表値、領域PのR成分の代表値、・・・、領域PのR成分の代表値がそれぞれ算出される。 As an embodiment, the statistical processing unit 14g1 averages the luminance value of the G component having the pixels included in the region P 1. Here, the case of calculating the average value is exemplified, but the median value and the mode value may be calculated. In addition to the weighted average, an arbitrary average process such as a weighted average or a moving average is executed. You can also Thus, the average value of the luminance value of the G component having the pixels included in the region P 1 is calculated as a representative value representing the G component of the region P 1. Further, the statistical processing unit 14g2 calculates a representative value of the G component in the region P 2, the statistical processing unit 14gn calculates a representative value of the G component in the region P n. Also in the statistical processing unit 14R1~14rn, the representative value of the R component of the region P 1, a representative value of the R component of the region P 2, · · ·, a representative value of the R component of the region P n is calculated.

BPF15g1〜15gn及び15r1〜15rnは、いずれも所定の周波数帯の信号成分だけを通過させてそれ以外の周波数帯の信号成分を除去するバンドパスフィルタである。これらBPF15g1〜15gn及び15r1〜15rnは、ハードウェアによって実装されることとしてもよいし、ソフトウェアによって実装されることとしてもよい。   Each of the BPFs 15g1 to 15gn and 15r1 to 15rn is a bandpass filter that passes only signal components in a predetermined frequency band and removes signal components in other frequency bands. These BPFs 15g1 to 15gn and 15r1 to 15rn may be implemented by hardware or may be implemented by software.

これらBPF15g1〜15gn及び15r1〜15rnは、脈波が採り得る0.7Hz以上4Hz未満の脈波周波数帯、1分あたりに換算すれば42bpm以上240bpm未満の周波数帯の信号成分を通過させる。   These BPFs 15g1 to 15gn and 15r1 to 15rn pass signal components in a pulse wave frequency band of 0.7 Hz or more and less than 4 Hz that can be taken by a pulse wave and in a frequency band of 42 bpm or more and less than 240 bpm when converted per minute.

このように、BPF15g1によって領域Pの脈波周波数帯のG信号が抽出され、BPF15g2によって領域Pの脈波周波数帯のG信号が抽出され、さらに、BPF15gnによって領域Pの脈波周波数帯のG信号が抽出される。一方、BPF15r1によって領域Pの脈波周波数帯のR信号が抽出され、BPF15r2によって領域Pの脈波周波数帯のR信号が抽出され、さらに、BPF15rnによって領域Pの脈波周波数帯のR信号が抽出される。 Thus, BPF15g1 G signal of the pulse wave frequency band region P 1 is extracted by, G signal of the pulse wave frequency band region P 2 is extracted by BPF15g2, further pulse wave frequency band region P n by BPF15gn G signals are extracted. On the other hand, an R signal in the pulse wave frequency band of the region P 1 is extracted by the BPF 15r1, an R signal in the pulse wave frequency band of the region P 2 is extracted by the BPF 15r2, and further, an R signal in the pulse wave frequency band of the region P n is extracted by the BPF 15rn. A signal is extracted.

差演算部16−1〜16−nは、領域別に、BPF15g1〜15gnによって出力された領域P〜Pの脈波周波数帯のG信号と、BPF15r1〜15rnによって出力された領域P〜Pの脈波周波数帯のR信号との差を演算する処理部である。 The difference calculation unit 16-1 to 16-n is for each region, and the G signal of the pulse wave frequency band of the output regions P 1 to P n by BPF15g1~15gn, output by BPF15r1~15rn regions P 1 to P It is a processing part which calculates the difference with R signal of n pulse wave frequency band.

一態様としては、差演算部16−1は、BPF15g1によって出力された領域Pの脈波周波数帯のG信号からBPF15r1によって出力された領域Pの脈波周波数帯のR信号を減算する。同様に、差演算部16−2は、BPF15g2によって出力された領域Pの脈波周波数帯のG信号からBPF15r2によって出力された領域Pの脈波周波数帯のR信号を減算する。同様に、差演算部16−nは、BPF15gnによって出力された領域Pの脈波周波数帯のG信号から、BPF15rnによって出力された領域Pの脈波周波数帯のR信号を減算する。これによって、領域P〜Pの脈波周波数帯のG信号に含まれていたノイズ成分が領域P〜Pの脈波周波数帯のR信号によってキャンセルされる結果、領域P〜PごとにSN比の高い輝度信号を得ることができる。このようにして領域P〜Pごとに得られた輝度信号の時系列データは、脈拍波形として用いることもできる。 One The embodiment, the difference calculation unit 16-1 subtracts the R signal of the pulse wave frequency band regions P 1 output by BPF15r1 from G signals outputted pulse wave frequency band regions P 1 by BPF15g1. Similarly, the difference calculation unit 16-2 subtracts the R signal of the pulse wave frequency band of the output region P 2 by BPF15r2 from G signal of the pulse wave frequency band of the output region P 2 by BPF15g2. Similarly, the difference calculation unit 16-n, for the G signal of the pulse wave frequency band of the output region P n by BPF15gn, subtracts the R signal of the pulse wave frequency band of the output region P n by BPF15rn. Thus, the result of region P 1 to P n noise component contained in the G signal of the pulse wave frequency band is canceled by the R signal of the pulse wave frequency band regions P 1 to P n, region P 1 to P A luminance signal with a high S / N ratio can be obtained for each n . Thus, the time-series data of the luminance signal obtained for each of the regions P 1 to P n can be used as a pulse waveform.

なお、ここでは、各領域P〜Pで脈波周波数帯のG信号から脈波周波数帯のR信号を減算する場合を説明したが、輝度信号のSN比を向上させる観点から、次のような方法を採用することもできる。例えば、脈波検出装置10は、G信号及びR信号の間でノイズに対応する周波数帯、すなわち瞬きや体の揺れの他、環境光のチラツキなどのノイズが現れやすい3bpm以上20bpm未満の周波数帯での絶対強度値の比を算出する。その上で、脈波検出装置10は、脈波周波数帯のG信号から、ノイズに対応する周波数帯での絶対強度値の比が乗算された脈波周波数帯のR信号を差し引く演算を実行する。これによって、G信号及びR信号の差を演算してノイズをキャンセルする場合に、脈波が採り得る周波数帯の信号成分の強度が低下するのを抑制しつつ、ノイズ成分を低減させることができる。 Here, the case where the R signal in the pulse wave frequency band is subtracted from the G signal in the pulse wave frequency band in each of the regions P 1 to P n has been described. From the viewpoint of improving the SN ratio of the luminance signal, Such a method can also be adopted. For example, the pulse wave detection device 10 has a frequency band corresponding to noise between the G signal and the R signal, that is, a frequency band of 3 bpm or more and less than 20 bpm in which noise such as blinking of the body light or flickering of environmental light is likely to appear. The ratio of absolute intensity values at is calculated. After that, the pulse wave detection device 10 performs an operation of subtracting the R signal in the pulse wave frequency band multiplied by the ratio of the absolute intensity value in the frequency band corresponding to the noise from the G signal in the pulse wave frequency band. . As a result, when the difference between the G signal and the R signal is calculated to cancel the noise, the noise component can be reduced while suppressing the strength of the signal component in the frequency band that can be taken by the pulse wave from decreasing. .

二値化部17−1〜17−nは、差演算部16−1〜16−nによって出力された領域P〜Pの輝度信号を二値化する処理部である。これら二値化部17−1〜17−nは、入力される輝度信号が各領域P〜Pで異なるものの、輝度信号を二値化する手順は同様である。したがって、二値化部17−1〜17−nを代表して二値化部17−1で実行される処理について説明する。 The binarization units 17-1 to 17-n are processing units that binarize the luminance signals of the regions P 1 to P n output by the difference calculation units 16-1 to 16-n. These binarization units 17-1 to 17-n have the same procedure for binarizing the luminance signal, although the input luminance signal is different in each of the areas P 1 to P n . Therefore, the processing executed by the binarization unit 17-1 on behalf of the binarization units 17-1 to 17-n will be described.

一態様としては、二値化部17−1は、フレーム間で領域Pの輝度信号に変化があるか否かによって二値化を行う。例えば、二値化部17−1は、今回のフレームで得られた領域Pの輝度信号と、1つ前のフレームで得られた領域Pの輝度信号との間で値の差が所定の閾値よりも大きいか否かを判定する。一例として、閾値には、フレーム間での微差の輝度変化を検出するために、ゼロを採用できる。他の一例として、閾値には、カメラ11によって撮影される顔画像に照明の点滅等のノイズが混入する場合には、ゼロよりも大きい値を採用することもできる。このとき、二値化部17−1は、今回のフレームと1つ前のフレームの間で輝度信号の値の差が閾値以下である場合には「0」を出力する一方で、今回のフレームと1つ前のフレームの間で輝度信号の値の差が閾値よりも大きい場合には「1」を出力する。なお、二値化部17−2〜17−nにおいても、上記の二値化部17−1と同様に、各々の領域P〜Pの輝度信号が二値化される。 As an embodiment, the binarization unit 17-1 performs binarization on whether there is a change in the luminance signal of a region P 1 between frames. For example, the binarization unit 17-1, a luminance signal of a region P 1 obtained in the current frame, the difference value between the luminance signal of a region P 1 obtained in the previous frame is predetermined It is determined whether it is larger than the threshold value. As an example, zero can be used as the threshold value in order to detect a slight luminance change between frames. As another example, when noise such as blinking of illumination is mixed in the face image photographed by the camera 11, a value larger than zero can be adopted as the threshold value. At this time, the binarization unit 17-1 outputs “0” when the difference in the value of the luminance signal between the current frame and the previous frame is equal to or less than the threshold value, while the current frame “1” is output when the difference in value of the luminance signal between the previous frame and the previous frame is greater than the threshold value. In the binarization units 17-2 to 17-n, similarly to the binarization unit 17-1, the luminance signals of the respective regions P 2 to P n are binarized.

測定部18は、各領域P〜Pの輝度変化のタイミングを測定する処理部である。一態様としては、測定部18は、二値化部17−1〜17−nによって出力される値がフレーム間で「0」から「1」へ変化した領域が存在するか否かを判定する。このとき、値が「0」から「1」へ変化した領域が存在する場合には、当該領域は、今回のフレームで輝度変化の立ち上がりが検出されたと言え、当該領域に脈波が伝搬したと推定できる。この場合には、測定部18は、輝度変化の立ち上がりが検出された領域と、当該領域の輝度変化の立ち上がりが検出された顔画像のサンプリング時間とを対応付けて図示しない内部メモリに保存する。ここで言う「サンプリング時間」とは、カメラ11によって画像が撮影された時間を指し、カメラ11のフレーム周波数によって定まる。例えば、カメラ11のフレーム周波数が30Hzである場合には、カメラ11によって画像の撮影が開始されたサンプリング時間を起点に33ms間隔でサンプリング時間が到来する。 The measuring unit 18 is a processing unit that measures the timing of the luminance change in each of the regions P 1 to P n . As an aspect, the measurement unit 18 determines whether or not there is an area where the values output from the binarization units 17-1 to 17-n have changed from “0” to “1” between frames. . At this time, if there is a region where the value has changed from “0” to “1”, it can be said that the rising edge of the luminance change has been detected in the current frame, and the pulse wave has propagated to the region. Can be estimated. In this case, the measurement unit 18 associates the area where the rise of the luminance change is detected with the sampling time of the face image where the rise of the luminance change of the area is detected, and saves it in an internal memory (not shown). Here, the “sampling time” refers to the time when an image is taken by the camera 11 and is determined by the frame frequency of the camera 11. For example, when the frame frequency of the camera 11 is 30 Hz, the sampling time arrives at 33 ms intervals starting from the sampling time when the camera 11 starts capturing an image.

ここで、本実施例に係る脈波検出装置10が発揮する時間分解能について説明する。図4及び図5は、輝度変化とサンプリング時間の関係の一例を示す図である。図4及び図5には、分割数Nが5であり、被験者の心臓から近い順に領域P、P、P、P、Pの輝度変化が図示されているものとする。このうち、図4には、各サンプリング点の間にも輝度変化の大きさが図示されている。一方、図5には、各サンプリング点で「0」または「1」に二値化された輝度変化が図示されている。なお、図4及び図5に示す実線は、あるタイミングT0で発生した脈波が伝搬した時の脈波に伴って発生する輝度変化であり、破線は、前記タイミングよりもわずかに遅れたタイミングT0+α(但し、αはサンプリング時間間隔33msよりも小さな時間)で発生した脈波が伝搬した時の脈波に伴って発生する輝度変化であるものとする。 Here, the time resolution exhibited by the pulse wave detection device 10 according to the present embodiment will be described. 4 and 5 are diagrams illustrating an example of the relationship between the luminance change and the sampling time. 4 and 5, it is assumed that the division number N is 5, and the luminance changes in the regions P 1 , P 2 , P 3 , P 4 , and P 5 are illustrated in the order from the subject's heart. Among these, FIG. 4 also shows the magnitude of the luminance change between the sampling points. On the other hand, FIG. 5 shows a luminance change binarized to “0” or “1” at each sampling point. The solid line shown in FIGS. 4 and 5 is a luminance change generated along with the pulse wave when the pulse wave generated at a certain timing T0 is propagated, and the broken line is a timing T0 + α slightly delayed from the timing. (Where α is a time shorter than the sampling time interval of 33 ms) is assumed to be a luminance change generated along with the pulse wave when the pulse wave is propagated.

図4に示す実線のように、タイミングT0の場合、領域Pだけがサンプリング時間T2の前に輝度変化が開始しており、残りの領域P〜Pではサンプリング時間T2〜T3の間に輝度変化が開始している。この場合、図5に示す実線のように、領域Pでは、サンプリング時間T1まで「0」が出力される一方で、サンプリング時間T2からは「1」が出力される。この他の領域P〜Pでは、サンプリング時間T2まで「0」が出力される一方で、サンプリング時間T3からは「1」が出力される。 As indicated by the solid line in Fig. 4, when the timing T0, only the region P 1 has started the luminance change before the sampling time T2, during the remaining regions P 2 to P 5 in the sampling time T2~T3 The brightness change has started. In this case, as shown by the solid line shown in FIG. 5, in the region P 1, until the sampling time T1 while "0" is output, "1" is output from the sampling time T2. In the other regions P 2 to P 5 , “0” is output until the sampling time T2, while “1” is output from the sampling time T3.

さらに、図4に示す破線のように、タイミングT0+αの場合、領域P〜Pではサンプリング時間T2〜T3の間に輝度変化が開始しており、残りの領域Pではサンプリング時間T3の後に輝度変化が開始している。この場合、図5に示す破線のように、領域P〜Pでは、サンプリング時間T2まで「0」が出力される一方で、サンプリング時間T3からは「1」が出力される。残りの領域Pでは、サンプリング時間T3まで「0」が出力される一方で、サンプリング時間T4からは「1」が出力される。このように、サンプリング時間間隔よりも小さなα時間の変化をサンプリング時間ごとの変化として表すことができる。 Further, as shown by the broken line shown in FIG. 4, when the timing T0 + alpha, luminance change between the regions P 1 to P 4 in the sampling time T2~T3 has start, after the remaining regions P 5 at the sampling time T3 The brightness change has started. In this case, as indicated by a broken line in FIG. 5, in the areas P 1 to P 4 , “0” is output until the sampling time T2, while “1” is output from the sampling time T3. In the remaining regions P 5, while up to the sampling time T3 "0" is output, "1" is output from the sampling time T4. In this way, a change in α time that is smaller than the sampling time interval can be expressed as a change for each sampling time.

図6及び図7は、輝度変化とサンプリング時間の関係の一例を示す図である。図6及び図7においても、図4及び図5と同様に、分割数Nが5であり、被験者の心臓から近い順に領域P、P、P、P、Pの輝度変化が図示されているものとする。このうち、図6には、各サンプリング点の間にも輝度変化の大きさが図示されている。一方、図7には、各サンプリング点で「0」または「1」に二値化された輝度変化が図示されている。なお、図6及び図7に示す実線、破線、一点鎖線、細線は、各々、タイミングT0、T0+α、T0+2α、T0+3αで発生した脈波が伝搬した時の脈波に伴って発生する輝度変化であることとする。 6 and 7 are diagrams illustrating an example of the relationship between the luminance change and the sampling time. 6 and 7, similarly to FIGS. 4 and 5, the division number N is 5, and the luminance changes in the regions P 1 , P 2 , P 3 , P 4 , and P 5 are in order from the subject's heart. It is assumed that it is illustrated. Among these, FIG. 6 also shows the magnitude of the luminance change between the sampling points. On the other hand, FIG. 7 shows a luminance change binarized to “0” or “1” at each sampling point. The solid line, the broken line, the alternate long and short dash line, and the thin line shown in FIGS. 6 and 7 are luminance changes that occur with the pulse wave when the pulse wave generated at the timings T0, T0 + α, T0 + 2α, and T0 + 3α propagates, respectively. I will do it.

図6に示す実線のように、タイミングT0の場合、領域P〜Pではサンプリング時間T1〜T2の間に輝度変化が開始しており、残りの領域Pではサンプリング時間T2の後に輝度変化が開始している。この場合、図7に示す実線のように、領域P〜Pでは、サンプリング時間T1まで「0」が出力される一方で、サンプリング時間T2からは「1」が出力される。残りの領域Pでは、サンプリング時間T2まで「0」が出力される一方で、サンプリング時間T3からは「1」が出力される。 As indicated by the solid line in Fig. 6, when the timing T0, the luminance variation between the regions P 1 to P 4 in the sampling time T1~T2 has start, the luminance changes after the remaining regions P 5 at the sampling time T2 Has started. In this case, as indicated by the solid line in FIG. 7, in the areas P 1 to P 4 , “0” is output until the sampling time T1, while “1” is output from the sampling time T2. In the remaining regions P 5, while up to the sampling time T2 "0" is output, "1" is output from the sampling time T3.

また、図6に示す破線のように、タイミングT0+αの場合、領域P〜Pではサンプリング時間T1〜T2の間に輝度変化が開始しており、領域P〜Pではサンプリング時間T2の後に輝度変化が開始している。この場合、図7に示す破線のように、領域P〜Pでは、サンプリング時間T1まで「0」が出力される一方で、サンプリング時間T2からは「1」が出力される。残りの領域P〜Pでは、サンプリング時間T2まで「0」が出力される一方で、サンプリング時間T3からは「1」が出力される。 Further, as indicated by the broken line in FIG. 6, when the timing is T0 + α, the luminance change starts between the sampling times T1 and T2 in the regions P 1 to P 3 , and the sampling time T 2 in the regions P 4 to P 5. Later, the luminance change started. In this case, as indicated by the broken line shown in FIG. 7, in the areas P 1 to P 3 , “0” is output until the sampling time T1, while “1” is output from the sampling time T2. In the remaining regions P 4 to P 5 , “0” is output until the sampling time T2, while “1” is output from the sampling time T3.

さらに、図6に示す一点鎖線のように、タイミングT0+2αの場合、領域P〜Pではサンプリング時間T1〜T2の間に輝度変化が開始しており、領域P〜Pではサンプリング時間T2の後に輝度変化が開始している。この場合、図7に示す一点鎖線のように、領域P〜Pでは、サンプリング時間T1まで「0」が出力される一方で、サンプリング時間T2からは「1」が出力される。残りの領域P〜Pでは、サンプリング時間T2まで「0」が出力される一方で、サンプリング時間T3からは「1」が出力される。 Further, as a chain line shown in FIG. 6, when the timing T0 + 2.alpha, regions P 1 to P has started luminance change between the two at sampling times T1 to T2, a region P 3 in to P 5 sampling time T2 After this, the luminance change starts. In this case, as indicated by the alternate long and short dash line in FIG. 7, in the areas P 1 to P 2 , “0” is output until the sampling time T1, while “1” is output from the sampling time T2. In the remaining regions P 3 to P 5 , “0” is output until the sampling time T2, while “1” is output from the sampling time T3.

また、図6に示す細線のように、タイミングT0+3αの場合、領域Pではサンプリング時間T1〜T2の間に輝度変化が開始しており、残りの領域P〜Pではサンプリング時間T2の後に輝度変化が開始している。この場合、図7に示す細線のように、領域Pでは、サンプリング時間T1まで「0」が出力される一方で、サンプリング時間T2からは「1」が出力される。残りの領域P〜Pでは、サンプリング時間T2まで「0」が出力される一方で、サンプリング時間T3からは「1」が出力される。 Further, as the thin line shown in FIG. 6, when the timing T0 + 3.alpha., Luminance change between the regions P 1 sampling time T1~T2 has start, after the remaining region P 2 to P 5 in the sampling time T2 The brightness change has started. In this case, as the thin line shown in FIG. 7, in the region P 1, until the sampling time T1 while "0" is output, "1" is output from the sampling time T2. In the remaining regions P 2 to P 5 , “0” is output until the sampling time T2, while “1” is output from the sampling time T3.

これらタイミングT0〜T0+3αにわたって領域P〜Pごとの輝度変化をまとめると図8の通りになる。図8は、図7に示した輝度変化のタイミングの時間差の一例を示す図である。図8には、被験者の心臓から最も遠い場所に位置する領域Pで輝度変化の立ち上がりが検出されたサンプリング時間T3の1フレーム前のサンプリング時間T2における二値の状態がタイミングT0〜T0+3αにわたって図示されている。 FIG. 8 shows a summary of luminance changes for each of the regions P 1 to P 5 over these timings T0 to T0 + 3α. FIG. 8 is a diagram illustrating an example of a time difference in luminance change timing illustrated in FIG. Figure 8 is shown over the farthest place in region P 5 located detects the rise of the luminance change in the 1-frame state timing T0~T0 + 3α binary before sampling time T2 of the sampling time T3 from the subject's heart Has been.

図8に示すように、タイミングT0では、領域Pで輝度変化の立ち上がりが検出される直前のサンプリング時間T2の時点で、輝度変化の立ち上がりが領域P以外の全ての領域P〜Pで検出されている。また、タイミングT0+αでは、サンプリング時間T2の時点で先のタイミングT0では輝度変化の立ち上がりが検出されていた領域Pで輝度変化がなく、領域P〜Pで輝度変化の立ち上がりが検出されている。この例では、脈波は1サンプリング、すなわち、フレーム周期の間に、領域P〜Pまで、すなわち、4領域間を伝搬しているので、各領域の伝搬遅延が等しいとすると、1領域間を伝搬するのはフレーム周期の1/4である。従って、タイミングT0とタイミングT0+αで1領域分変化の仕方が異なるので、タイミングT0とタイミングT0+αでは、フレーム周期の1/4の時間差があることを意味する。すなわち、この例では、αは1/4周期となる。 As shown in FIG. 8, the timing T0, the area P at the time point of the sampling time T2 immediately before the rising of the brightness change is detected at 5, all the rise of luminance change is other than the region P 5 regions P 1 to P 4 Has been detected. Further, at the timing T0 + alpha, no luminance change in a region P 4 where the rising of the previous timing T0 in luminance variation has been detected at the sampling time T2, in the region P 1 to P 3 is detected the rise of luminance change Yes. In this example, the pulse wave propagates through one sampling, that is, between the regions P 1 to P 5 during the frame period, that is, between the four regions. Propagating between them is 1/4 of the frame period. Therefore, since the manner of change by one region differs between the timing T0 and the timing T0 + α, it means that there is a time difference of ¼ of the frame period between the timing T0 and the timing T0 + α. That is, in this example, α is ¼ period.

さらに、タイミングT0+2αでは、サンプリング時間T2の時点で先のタイミングT0では輝度変化の立ち上がりが検出されていた領域P〜Pで輝度変化がなく、領域P〜Pで輝度変化の立ち上がりが検出されている。これは、タイミングT0及びタイミングT0+2αの間で輝度変化の立ち上がりがフレーム周期の2/4の期間の時間差があることを意味する。また、タイミングT0+3αでは、サンプリング時間T2の時点で先のタイミングT0では輝度変化の立ち上がりが検出されていた領域P〜Pで輝度変化がなく、領域Pだけで輝度変化の立ち上がりが検出されている。これは、タイミングT0及びタイミングT0+3αの間で輝度変化の立ち上がりがフレーム周期の3/4の期間の時間差があることを意味する。 Further, at the timing T0 + 2α, there is no luminance change in the areas P 3 to P 4 where the rising of the luminance change was detected at the timing T0 at the time of the sampling time T2, and the rising of the luminance change in the areas P 1 to P 2. It has been detected. This means that there is a time difference between the timing T0 and the timing T0 + 2α in a period in which the rise of the luminance change is 2/4 of the frame period. Further, at the timing T0 + 3.alpha., No change in luminance in the region P 2 to P 4 of the rise of the previous timing T0 in luminance variation has been detected at the sampling time T2, detects the rise of the luminance change in only the area P 1 ing. This means that there is a time difference between the timing T0 and the timing T0 + 3α in a period in which the rise of the luminance change is 3/4 of the frame period.

このように、複数の領域間での輝度変化のタイミングの時間差を比較することによって、フレーム周期以下の時間分解能で脈波が伝搬するタイミングを測定できる。例えば、図5の例で言えば、領域PとPの間では、輝度変化の立ち上がりが1サンプリング分ずれているので、1サンプリングを4分割することができる結果、時間分解能を4倍向上させることができる。例えば、カメラ11のフレーム周波数が30Hzである場合には、フレーム周期33msの1/4である約8ms(≒33ms÷4)まで時間分解能を向上させることができる。 In this way, by comparing the time difference of the luminance change timing between the plurality of regions, the timing at which the pulse wave propagates can be measured with a time resolution equal to or less than the frame period. For example, in the example of FIG. 5, since the rise of the luminance change is shifted by one sampling between the regions P 1 and P 5 , one sampling can be divided into four, resulting in a fourfold improvement in time resolution. Can be made. For example, when the frame frequency of the camera 11 is 30 Hz, the time resolution can be improved to about 8 ms (≈33 ms / 4), which is 1/4 of the frame period 33 ms.

算出部19は、領域P〜Pの輝度変化のタイミングの時間差から各領域P〜Pの脈波の遅延量を算出する処理部である。一態様としては、算出部19は、N番目の領域Pで輝度変化の立ち上がりが検出された場合に、脈波の遅延量の算出を開始する。例えば、算出部19は、1つ前のフレームで「0」が設定されていた領域のうち、今回のフレームで「1」が設定された領域、すなわち輝度変化の立ち上がりが検出された領域の個数mを計数する。ここで、各領域の脈波の遅延量が等しいとすると、1領域の遅延量を「d」とし、1フレームの期間であるフレーム周期を「Ts」とし、フレーム間で輝度変化の立ち上がりが検出された領域の個数を「m」としたとき、遅延量dは、下記の算出式(1)によって算出することができる。算出部19は、下記の算出式(1)に既知である「Ts」及び「m」を代入することによって脈波の遅延量dを算出する。 Calculating unit 19 is a processing unit that calculates a delay amount of the pulse wave of each region P 1 to P n from the time difference between the timing of the luminance change area P 1 to P n. As one aspect, the calculation unit 19 starts calculating the delay amount of the pulse wave when the rising edge of the luminance change is detected in the Nth region Pn . For example, the calculation unit 19 counts the number of areas in which “1” is set in the current frame among the areas in which “0” is set in the previous frame, that is, the number of areas in which the rising of the luminance change is detected. Count m. Here, assuming that the delay amount of the pulse wave in each region is equal, the delay amount of one region is “d”, the frame period which is the period of one frame is “Ts”, and the rise of the luminance change between frames is detected. The delay amount d can be calculated by the following calculation formula (1), where “m” is the number of the regions that have been set. The calculation unit 19 calculates a pulse wave delay amount d by substituting known “Ts” and “m” into the following calculation formula (1).

d=Ts/m・・・(1)   d = Ts / m (1)

図9は、輝度変化とサンプリング時間の関係の一例を示す図である。また、図10は、図9に示した輝度変化のタイミングの時間差の一例を示す図である。このうち、図9には、分割数Nが11であり、被験者の心臓から近い順に領域P、P、P、・・・、P11の輝度変化が図示されているものとする。図9には、各サンプリング点の間にも輝度変化の大きさが図示されている。また、図10には、サンプリング時間T1及びT2における二値の状態が図示されている。 FIG. 9 is a diagram illustrating an example of the relationship between the luminance change and the sampling time. FIG. 10 is a diagram illustrating an example of a time difference in luminance change timing illustrated in FIG. 9. 9, it is assumed that the division number N is 11, and the luminance changes in the regions P 1 , P 2 , P 3 ,..., P 11 are illustrated in order from the subject's heart. FIG. 9 shows the magnitude of the luminance change between the sampling points. FIG. 10 shows a binary state at the sampling times T1 and T2.

図9に示すように、領域Pだけがサンプリング時間T1よりも前に輝度変化が開始しており、領域P〜Pでは、サンプリング時間T1〜T2の間に輝度変化が開始しており、領域P10〜P11ではサンプリング時間T2〜T3の間に輝度変化が開始している。この場合、図10に示すように、サンプリング時間T1では、領域Pの出力は「1」となる一方で領域P〜P11の出力は「0」となり、領域Pだけ輝度変化の立ち上がりが検出される。また、サンプリング時間T2では、領域P〜Pの出力は「1」となる一方で領域P10〜P11の出力は「0」となり、領域Pに続いて領域P〜Pまで輝度変化の立ち上がりが検出される。 As shown in FIG. 9, only the region P 1 has started the luminance change before the sampling time T1, in the region P 2 to P 9, and the start of the luminance change between the sampling time T1~T2 , the luminance change is initiated during the region P 10 to P 11 at the sampling time T2 to T3. In this case, as shown in FIG. 10, the sampling time T1, the output is "0" of the region P 2 to P 11 outputs while a "1" in the area P 1, and the rise of only the luminance change area P 1 Is detected. Further, the sampling time T2, the output is "0" in the area P 10 to P 11 output regions P 1 to P 9 While becomes "1", to the region P 2 to P 9 Following region P 1 The rising edge of the luminance change is detected.

かかる状況の下、算出部19によってサンプリング時間T1及びT2の間で輝度変化の立ち上がりが検出された領域の個数mが計数される。すなわち、サンプリング時間T1のフレームで「0」が出力された領域は、領域Pを除く領域P〜P11である。これら領域P〜P11のうちサンプリング時間T2のフレームで「1」が出力された領域は、領域P〜Pである。このため、サンプリング時間T2で輝度変化の立ち上がりが検出された領域P〜Pの8個が「m」として計数される。 Under such circumstances, the calculation unit 19 counts the number m of areas in which the rising of the luminance change is detected between the sampling times T1 and T2. That is, the areas where “0” is output in the frame of the sampling time T1 are areas P 2 to P 11 excluding the area P 1 . Of these areas P 2 to P 11 , areas where “1” is output in the frame at the sampling time T 2 are areas P 2 to P 9 . For this reason, eight of the areas P 2 to P 9 in which the rising of the luminance change is detected at the sampling time T 2 are counted as “m”.

このようにして個数mが既知となると、上記の算出式(1)に既知である「Ts」及び「m」を代入することによって1領域の脈波の遅延量dを算出できる。すなわち、フレーム周期Ts(=33ms)、個数m(=8個)を上記の算出式(1)に代入すると、遅延量dは、「33/8」の計算によって4.2msと算出できる。   When the number m becomes known in this way, the pulse wave delay amount d in one region can be calculated by substituting known “Ts” and “m” into the above-described calculation formula (1). That is, when the frame period Ts (= 33 ms) and the number m (= 8) are substituted into the above calculation formula (1), the delay amount d can be calculated as 4.2 ms by the calculation of “33/8”.

このように、遅延量dが求まれば、領域の短辺の長さ、すなわち領域の鉛直方向の長さも既知であるので、領域の短辺の長さを画像上のスケールから実空間のスケール、例えばメートルに換算することによって所要時間が遅延量dであるときの移動量Mを算出できる。よって、移動量Mを遅延量dで除算することによって脈波伝搬速度を算出することもできる。   Thus, if the delay amount d is obtained, the length of the short side of the region, that is, the length of the region in the vertical direction is also known, so the length of the short side of the region is determined from the scale on the image to the scale of the real space. For example, the amount of movement M when the required time is the delay amount d can be calculated by converting into meters. Therefore, the pulse wave propagation velocity can also be calculated by dividing the movement amount M by the delay amount d.

また、遅延量dが求まっていれば、測定部18によって各領域に対応付けて保存されたサンプリング時間を用いて、各々の領域ごとに脈波が伝搬した時刻をカメラ11の時間分解能を超えて正確に求めることもできる。例えば、同一のサンプリング時間において輝度変化の立ち上がりが検出された領域のうち心臓から最も遠く脈波の遅延が最大となる領域、すなわちPに付される番号が最大である領域を基準領域として特定する。その上で、基準領域に脈波がサンプリング時間±0の時刻で伝搬したものとし、サンプリング時間に対応するグローバルな時刻を脈波伝搬時刻とする。そして、基準領域よりも心臓に近い領域は「基準領域の脈波伝搬時刻−基準領域からの距離×遅延量d」で脈波伝搬時刻を算出し、基準領域よりも心臓から遠い領域は「基準領域の脈波伝搬時刻+基準領域からの距離×遅延量d」で脈波伝搬時刻を算出できる。なお、基準領域からの距離とは、脈波伝搬時刻を算出する対象の領域が基準領域から離れている個数を指す。   If the delay amount d is obtained, the time at which the pulse wave propagates for each region exceeds the time resolution of the camera 11 using the sampling time stored in association with each region by the measurement unit 18. It can also be determined accurately. For example, the region where the delay of the pulse wave is the longest from the heart, that is, the region where the number assigned to P is the maximum among the regions where the rise of the luminance change is detected at the same sampling time is specified as the reference region. . Then, it is assumed that the pulse wave has propagated to the reference region at the time of sampling time ± 0, and the global time corresponding to the sampling time is set as the pulse wave propagation time. Then, the pulse wave propagation time is calculated by “pulse wave propagation time of the reference region−distance from the reference region × delay amount d” for the region closer to the heart than the reference region. The pulse wave propagation time can be calculated by “pulse wave propagation time of region + distance from reference region × delay amount d” ”. Note that the distance from the reference region refers to the number of regions in which the pulse wave propagation time is calculated being separated from the reference region.

さらに、脈波伝搬時刻が求まっていれば、脈拍周期や脈拍周期のゆらぎも算出することができる。例えば、同一の領域で脈波伝搬時刻を順次算出し、今回に算出された脈波伝搬時刻から1つ前に算出された脈波伝搬時刻を差し引くことによって脈拍周期を算出することができ、脈拍周期同士で差分を計算することによって脈拍周期のゆらぎを算出することもできる。   Furthermore, if the pulse wave propagation time is obtained, the pulse period and fluctuation of the pulse period can also be calculated. For example, the pulse wave propagation time can be calculated sequentially in the same region, and the pulse cycle can be calculated by subtracting the pulse wave propagation time calculated immediately before from the pulse wave propagation time calculated this time. The fluctuation of the pulse period can also be calculated by calculating the difference between the periods.

このようにして得られる脈波の遅延量、伝搬速度、伝搬時刻、脈波周期のゆらぎや脈拍波形は、脈波検出装置10が有する図示しない表示デバイスを始め、任意の出力先へ出力することができる。例えば、脈波伝搬速度を用いて血管年齢や血圧等の測定を行う測定プログラム、脈拍数や脈拍周期のゆらぎから自律神経の働きを診断したり、脈拍波形から心疾患等を診断したりする診断プログラムが脈波検出装置10にインストールされている場合には、測定プログラムや診断プログラムを出力先とすることができる。また、測定プログラムや診断プログラムをWebサービスとして提供するサーバ装置などを出力先とすることもできる。さらに、脈波検出装置10を利用する利用者の関係者、例えば介護士や医者などが使用する端末装置を出力先とすることもできる。これによって、院外、例えば在宅や在席のモニタリングサービスも可能になる。なお、測定プログラムや診断プログラムの測定結果や診断結果も、脈波検出装置10を始め、関係者の端末装置に表示させることができるのも言うまでもない。   The pulse wave delay amount, propagation speed, propagation time, pulse wave cycle fluctuation and pulse waveform obtained in this way are output to an arbitrary output destination including a display device (not shown) of the pulse wave detection device 10. Can do. For example, a measurement program that measures blood vessel age, blood pressure, etc. using pulse wave propagation speed, diagnosis of autonomic nerve function from fluctuations in pulse rate and pulse cycle, diagnosis of heart disease etc. from pulse waveform When the program is installed in the pulse wave detection device 10, a measurement program or a diagnostic program can be output. In addition, a server device that provides a measurement program or a diagnostic program as a Web service can be used as an output destination. Further, a terminal device used by a person concerned of the user who uses the pulse wave detection device 10, for example, a caregiver or a doctor, can be used as the output destination. This also enables monitoring services outside the hospital, for example, at home or at home. Needless to say, the measurement results and diagnostic results of the measurement program and the diagnostic program can also be displayed on the terminal devices of the parties concerned including the pulse wave detection device 10.

なお、上記の取得部12と、第1の分割部13gと、第2の分割部13rと、統計処理部14g1〜14gn及び14r1〜14rnと、BPF15g1〜15gn及び15r1〜15rnと、差演算部16−1〜16−nと、二値化部17−1〜17−nと、測定部18と、算出部19とは、CPU(Central Processing Unit)やMPU(Micro Processing Unit)などに脈波検出プログラムを実行させることによって実現できる。また、上記の各機能部は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などのハードワイヤードロジックによっても実現できる。   The acquisition unit 12, the first dividing unit 13g, the second dividing unit 13r, the statistical processing units 14g1 to 14gn and 14r1 to 14rn, the BPFs 15g1 to 15gn and 15r1 to 15rn, and the difference calculating unit 16 -1 to 16-n, binarization units 17-1 to 17-n, measurement unit 18, and calculation unit 19 detect pulse waves in a CPU (Central Processing Unit), MPU (Micro Processing Unit), or the like. This can be realized by executing the program. Each functional unit described above can also be realized by a hard wired logic such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA).

また、上記の画像メモリ11aには、半導体メモリ素子や記憶装置を採用できる。例えば、半導体メモリ素子の一例としては、VRAM(Video Random Access Memory)、RAM(Random Access Memory)、ROM(Read Only Memory)やフラッシュメモリ(flash memory)などが挙げられる。また、記憶装置の一例としては、ハードディスク、光ディスクなどの記憶装置が挙げられる。   Further, a semiconductor memory element or a storage device can be adopted for the image memory 11a. For example, examples of the semiconductor memory device include a video random access memory (VRAM), a random access memory (RAM), a read only memory (ROM), and a flash memory. Further, examples of the storage device include storage devices such as a hard disk and an optical disk.

[処理の流れ]
続いて、本実施例に係る脈波検出装置の処理の流れについて説明する。図11は、実施例1に係る遅延量算出処理の手順を示すフローチャートである。この遅延量算出処理は、カメラ11によって画像が画像メモリ11aに保存される度に処理を起動し、画像メモリ11aに画像が保存されなくなるまで繰り返し実行される処理である。なお、図示しない入力デバイス等を介して中断操作を受け付けた場合には、遅延量算出処理を中止することもできる。
[Process flow]
Subsequently, the flow of processing of the pulse wave detection device according to the present embodiment will be described. FIG. 11 is a flowchart illustrating a procedure of delay amount calculation processing according to the first embodiment. This delay amount calculation process is a process that is started every time an image is stored in the image memory 11a by the camera 11 and repeatedly executed until no image is stored in the image memory 11a. Note that when an interruption operation is received via an input device (not shown) or the like, the delay amount calculation process can be stopped.

図11に示すように、取得部11は、画像メモリ11aに記憶された画像を取得する(ステップS101)。続いて、第1の分割部13gまたは第2の分割部13rは、顔画像から抽出された顔パーツ、例えば目およびあごによって定まる輝度変化の測定範囲を設定する(ステップS102)。   As shown in FIG. 11, the acquisition unit 11 acquires an image stored in the image memory 11a (step S101). Subsequently, the first dividing unit 13g or the second dividing unit 13r sets a measurement range of a luminance change determined by face parts extracted from the face image, for example, eyes and chin (step S102).

その上で、第1の分割部13g及び第2の分割部13rは、G成分の画素値を持つ顔画像及びR成分の画素値を持つ顔画像ごとに、ステップS102で設定された測定範囲に該当する部分の画像を脈波の伝搬方向に沿ってN個の領域へ分割する(ステップS103)。これによって、G成分の画素値を持つ顔画像のうち測定範囲に該当する部分の画像がN個の領域に分割されるとともに、R成分の画素値を持つ顔画像のうち測定範囲に該当する部分の画像がN個の領域に分割される。   In addition, the first dividing unit 13g and the second dividing unit 13r set the measurement range set in step S102 for each face image having a G component pixel value and each face image having an R component pixel value. The image of the corresponding part is divided into N areas along the propagation direction of the pulse wave (step S103). As a result, the image corresponding to the measurement range in the face image having the G component pixel value is divided into N areas, and the portion corresponding to the measurement range in the face image having the R component pixel value. Are divided into N regions.

そして、統計処理部14g1〜14gn及び14r1〜14rnは、波長成分別に各領域に含まれる各画素の輝度値を平均することによって当該領域の代表値を算出する(ステップS104)。具体的には、統計処理部14g1〜14gnは、領域PのG成分の代表値、領域PのG成分の代表値、・・・、領域PのG成分の代表値を算出する。また、統計処理部14r1〜14rnは、領域PのR成分の代表値、領域PのR成分の代表値、・・・、領域PのR成分の代表値を算出する。 Then, the statistical processing units 14g1 to 14gn and 14r1 to 14rn calculate the representative value of the area by averaging the luminance values of the pixels included in the area for each wavelength component (step S104). Specifically, the statistical processing unit 14g1~14gn calculates the representative value of the G component in the region P 1, a representative value of the G component in the region P 2, · · ·, a representative value of the G component in the region P n. Further, the statistical processing unit 14r1~14rn calculates the representative value of the R component of the region P 1, a representative value of the R component of the region P 2, · · ·, a representative value of the R component of the region P n.

続いて、BPF15g1〜15gn及び15r1〜15rnは、波長成分別および領域別に脈波が採り得る0.7Hz以上4Hz未満の脈波周波数帯、1分あたりに換算すれば42bpm以上240bpm未満の周波数帯の信号成分を抽出する(ステップS105)。具体的には、BPF15g1は、領域Pの脈波周波数帯のG信号を抽出し、BPF15g2は、領域Pの脈波周波数帯のG信号を抽出し、さらに、BPF15gnは、領域Pの脈波周波数帯のG信号を抽出する。また、BPF15r1は、領域Pの脈波周波数帯のR信号を抽出し、BPF15r2は、領域Pの脈波周波数帯のR信号を抽出し、BPF15rnは、領域Pの脈波周波数帯のR信号を抽出する。 Subsequently, BPF 15g1 to 15gn and 15r1 to 15rn have a pulse wave frequency band of 0.7 Hz to less than 4 Hz that can be taken by a wavelength component and a region, and a frequency band of 42 bpm to less than 240 bpm when converted per minute. A signal component is extracted (step S105). Specifically, BPF15g1 extracts the G signal of the pulse wave frequency band regions P 1, BPF15g2 extracts the G signal of the pulse wave frequency band regions P 2, further, BPF15gn the region P n The G signal in the pulse wave frequency band is extracted. Further, BPF15r1 extracts the R signal of the pulse wave frequency band regions P 1, BPF15r2 extracts the R signal of the pulse wave frequency band regions P 2, BPF15rn the region P n of the pulse wave frequency band R signal is extracted.

そして、差演算部16−1〜16−nは、領域別に、BPF15g1〜15gnによって出力された領域P〜Pの脈波周波数帯のG信号と、BPF15r1〜15rnによって出力された領域P〜Pの脈波周波数帯のR信号との差を演算することによってノイズをキャンセルする(ステップS106)。これによって、領域P〜Pの脈波周波数帯のG信号に含まれていたノイズ成分が領域P〜Pの脈波周波数帯のR信号によってキャンセルされる結果、領域P〜PごとにSN比の高い輝度信号を得ることができる。 Then, the difference calculation unit 16-1 to 16-n is for each region, and the G signal of the pulse wave frequency band of the output regions P 1 to P n by BPF15g1~15gn, region P 1 output by BPF15r1~15rn The noise is canceled by calculating the difference from the R signal in the pulse wave frequency band of ~ Pn (step S106). Thus, the result of region P 1 to P n noise component contained in the G signal of the pulse wave frequency band is canceled by the R signal of the pulse wave frequency band regions P 1 to P n, region P 1 to P A luminance signal with a high S / N ratio can be obtained for each n .

その後、二値化部17−1〜17−nは、差演算部16−1〜16−nによって出力された領域P〜Pの輝度信号を二値化する(ステップS107)。 Thereafter, the binarization units 17-1 to 17-n binarize the luminance signals of the regions P 1 to P n output by the difference calculation units 16-1 to 16-n (Step S107).

続いて、測定部18は、二値化部17−1〜17−nによって出力される値がフレーム間で「0」から「1」へ変化した領域が存在するか否か、すなわちいずれかの領域で輝度変化の立ち上がりが検出されたか否かを判定する(ステップS108)。   Subsequently, the measurement unit 18 determines whether there is an area where the values output from the binarization units 17-1 to 17-n have changed from “0” to “1” between frames, that is, It is determined whether or not a rise in luminance change has been detected in the region (step S108).

ここで、領域P〜Pのうちいずれかの領域値で輝度変化の立ち上がりが検出された場合(ステップS108Yes)には、当該領域に脈波が伝搬したと推定できる。この場合には、測定部18は、輝度変化の立ち上がりが検出された領域と、当該領域の輝度変化の立ち上がりが検出された顔画像のサンプリング時間とを対応付けた上で(ステップS109)内部メモリへ保存する。 Here, when the rise of the luminance change is detected in any one of the regions P 1 to P n (step S108 Yes), it can be estimated that the pulse wave has propagated to the region. In this case, the measurement unit 18 associates the area where the rise of the brightness change is detected with the sampling time of the face image where the rise of the brightness change of the area is detected (step S109). Save to

その後、輝度変化の立ち上がりが検出された領域がN番目の領域である場合、すなわち心臓から最も遠く脈波の遅延が最大となる領域Pである場合(ステップS110Yes)には、次のような処理を実行する。すなわち、算出部19は、今回のフレームで輝度変化の立ち上がりが検出された領域の個数mを計数する(ステップS111)。 Thereafter, when the region where the rising edge of the luminance change is detected is the Nth region, that is, when the region Pn is the farthest from the heart and the delay of the pulse wave is the maximum (step S110 Yes), the following Execute the process. That is, the calculation unit 19 counts the number m of areas in which the rising of the luminance change is detected in the current frame (step S111).

その上で、算出部19は、ステップS111で計数された領域の個数mでフレーム周期Tsを除算することによって各領域P〜Pにおける脈波の遅延量dを算出する(ステップS112)。続いて、算出部19は、ステップS112で算出された脈波の遅延量dを用いて、脈波伝搬速度や各領域の脈波伝搬時刻を算出する(ステップS113)。 After that, the calculation unit 19 calculates the pulse wave delay amount d in each of the regions P 1 to P n by dividing the frame period Ts by the number m of the regions counted in step S111 (step S112). Subsequently, the calculation unit 19 calculates the pulse wave propagation speed and the pulse wave propagation time of each region using the pulse wave delay amount d calculated in step S112 (step S113).

このように、脈波伝搬速度や各領域の脈波伝搬時刻が算出された後、あるいは領域Pで輝度変化の立ち上がりが検出されなかった場合(ステップS108NoまたはステップS110No)には、ステップS101に戻り、上記のステップS101〜ステップS113までの処理を繰り返し実行する。 As described above, after the pulse wave propagation speed and the pulse wave propagation time of each region are calculated, or when the rise of the brightness change is not detected in the region P n (step S108 No or step S110 No), the process proceeds to step S101. Returning, the processing from step S101 to step S113 is repeated.

[実施例1の効果]
上述してきたように、本実施例に係る脈波検出装置10は、被験者の生体が撮影された画像を複数の領域に分割し、各領域で輝度が変化するタイミングの時間差から脈波の遅延量を算出する。このため、本実施例に係る脈波検出装置10では、脈波が伝搬するタイミングを測定する時間分解能を動画のフレーム周期以下に向上できる。したがって、本実施例に係る脈波検出装置10によれば、脈波の遅延量を始め、脈波伝搬速度、脈波到達時刻や脈波周期のゆらぎなどの検出精度を向上させることができる。
[Effect of Example 1]
As described above, the pulse wave detection device 10 according to the present embodiment divides an image obtained by photographing a subject's living body into a plurality of regions, and the pulse wave delay amount from the time difference in timing at which the luminance changes in each region. Is calculated. For this reason, in the pulse wave detection device 10 according to the present embodiment, the time resolution for measuring the timing at which the pulse wave propagates can be improved below the frame period of the moving image. Therefore, according to the pulse wave detection device 10 according to the present embodiment, it is possible to improve detection accuracy such as pulse wave delay amount, pulse wave propagation speed, pulse wave arrival time, pulse wave cycle fluctuation, and the like.

さて、これまで開示の装置に関する実施例について説明したが、本発明は上述した実施例以外にも、種々の異なる形態にて実施されてよいものである。そこで、以下では、本発明に含まれる他の実施例を説明する。   Although the embodiments related to the disclosed apparatus have been described above, the present invention may be implemented in various different forms other than the above-described embodiments. Therefore, another embodiment included in the present invention will be described below.

[応用例1]
上記の実施例1では、各領域P〜Pの間で脈波の遅延量が一定であるとの想定の下、脈波の遅延量を算出する算出方法について説明したが、他の算出方法によって脈波の遅延量を算出することもできる。
[Application Example 1]
In the first embodiment, the calculation method for calculating the delay amount of the pulse wave has been described under the assumption that the delay amount of the pulse wave is constant between the regions P 1 to P n. The amount of delay of the pulse wave can also be calculated by the method.

すなわち、脈波伝搬速度は、生体の部位によって異なる。このため、各領域の脈波の伝搬方向の長さが一定であっても、領域の遅延量が同一であるとは限らない。そこで、脈波検出装置10は、各領域の遅延量の検出精度をさらに高めるために、各領域が輝度変化の立ち上がりの変化点となった頻度を用いて、各領域の間で異なる脈波の遅延量を算出することもできる。   That is, the pulse wave propagation speed varies depending on the part of the living body. For this reason, even if the length of the propagation direction of the pulse wave in each region is constant, the delay amount of the region is not always the same. Therefore, in order to further improve the detection accuracy of the delay amount of each region, the pulse wave detection device 10 uses a frequency at which each region becomes the rising change point of the luminance change, The amount of delay can also be calculated.

例えば、脈波検出装置10は、複数の脈波周期にわたって各領域の輝度信号を二値化する。その上で、脈波検出装置10は、同一のサンプリング時間で輝度変化の立ち上がりが検出された領域の中で脈波の起点となる心臓から直近に位置する変化点の領域となった回数Niを計数する。具体的には、領域iと領域i+1の間で輝度変化が起きた回数を「Ni」、フレーム周期を「Ts」、1周期分の遅延領域の個数を「m」としたとき、領域iの遅延量は、下記の算出式(2)によって算出することができる。なお、下記の算出式(2)における「Σ」は、i=1〜mの総和であるものとする。   For example, the pulse wave detection device 10 binarizes the luminance signal of each region over a plurality of pulse wave periods. After that, the pulse wave detection device 10 calculates the number Ni of the change point region located closest to the heart that is the start point of the pulse wave in the region where the rise of the luminance change is detected in the same sampling time. Count. Specifically, when the number of changes in luminance between the area i and the area i + 1 is “Ni”, the frame period is “Ts”, and the number of delay areas for one period is “m”, The amount of delay can be calculated by the following calculation formula (2). Note that “Σ” in the following calculation formula (2) is the sum of i = 1 to m.

di=Ni×Ts×ΣNi・・・(2)   di = Ni × Ts × ΣNi (2)

このように、上記の算出式(2)を用いて各領域の脈波の遅延量diを算出することによって、各領域の脈波の伝搬方向の長さが一定であっても、各領域の脈波の遅延量をより精度よく算出することができる。すなわち、変化点の領域となった回数Niが多いほど、当該領域の遅延量が大きくなると推定できる。この場合には、上記の算出式(2)によって他の領域よりも値が大きい遅延量が算出されることになる。一方、変化点の領域となった回数Niが少ないほど、当該領域の遅延量は値が小さくなると推定できる。この場合には、上記の算出式(2)によって他の領域よりも値が小さい遅延量が算出されることになる。   In this way, by calculating the pulse wave delay amount di of each region using the above calculation formula (2), even if the length of the propagation direction of the pulse wave of each region is constant, The delay amount of the pulse wave can be calculated with higher accuracy. That is, it can be estimated that the greater the number of times Ni that has become the change point region, the greater the delay amount of the region. In this case, the delay amount having a value larger than that of the other areas is calculated by the above calculation formula (2). On the other hand, it can be estimated that the smaller the number of times Ni that has become the change point region is, the smaller the value of the delay amount in the region is. In this case, the amount of delay having a value smaller than that of other regions is calculated by the above calculation formula (2).

[応用例2]
また、脈波検出装置10は、収縮期血圧の測定値に応じて、各領域の遅延量を算出することもできる。一般に、脈波伝搬速度V1は、収縮期血圧P1に対して下記の1次式(3)で近似できることが知られている。ただし、下記の1次式(3)の傾きa1及び切片a0は、個人差によって値が異なる。このため、事前の測定によってキャリブレーションしておくことが好ましい。
[Application 2]
Further, the pulse wave detection device 10 can also calculate the delay amount of each region according to the measured value of the systolic blood pressure. In general, it is known that the pulse wave propagation velocity V1 can be approximated by the following linear expression (3) with respect to the systolic blood pressure P1. However, the slope a1 and the intercept a0 of the following linear expression (3) have different values depending on individual differences. For this reason, it is preferable to calibrate by prior measurement.

V1=a1×P1+a0・・・(3)   V1 = a1 × P1 + a0 (3)

上記の1次式を利用して、被験者の生体における複数の部位で脈波伝搬時刻の差を求め、各部位の間の距離から脈波伝搬速度を求めることによって収縮期血圧を測定することができる。ところが、脈波伝搬速度は、血圧によって変化するので、各領域の遅延量も血圧によって変化する。   It is possible to measure systolic blood pressure by calculating the difference in pulse wave propagation time at a plurality of sites in the subject's living body using the above-mentioned primary equation and calculating the pulse wave propagation speed from the distance between the sites. it can. However, since the pulse wave propagation speed changes with blood pressure, the amount of delay in each region also changes with blood pressure.

そこで、脈波検出装置10は、一例として、胸の脈波から顔の脈波までの伝搬速度から血圧を求める場合には、先ず、通常時の収縮期血圧P1を仮定して脈波伝搬速度V1を決定する。その上で、脈波検出装置10は、脈波伝搬速度V1から部位別に各領域の遅延量を求め、領域ごとの遅延量から胸と顔の部位ごとに脈波伝搬時刻を測定し、胸から顔への脈波伝搬時刻の差から脈波伝搬速度V2を求め、脈波伝搬速度V2から収縮期血圧P2を求める。そして、脈波検出装置10は、最初に仮定した血圧P1と異なる場合には、最初に仮定した血圧P1を修正し、誤差が充分に小さくなるまで、以上の計算を繰り返す。   Therefore, as an example, when the pulse wave detection device 10 obtains the blood pressure from the propagation velocity from the chest pulse wave to the facial pulse wave, first, the pulse wave propagation velocity is assumed assuming a normal systolic blood pressure P1. V1 is determined. After that, the pulse wave detection device 10 calculates the delay amount of each region for each region from the pulse wave propagation velocity V1, measures the pulse wave propagation time for each region of the chest and face from the delay amount for each region, The pulse wave velocity V2 is obtained from the difference in the pulse wave propagation time to the face, and the systolic blood pressure P2 is obtained from the pulse wave velocity V2. If the blood pressure P1 is different from the initially assumed blood pressure P1, the pulse wave detecting device 10 corrects the initially assumed blood pressure P1 and repeats the above calculation until the error becomes sufficiently small.

図12は、被験者が映る画像の一例を示す図である。図12には、胸と顔の各々で領域をN個に分割する態様が図示されている。図12に示すように、胸部では、脈波の起点となる心臓から近い順に胸領域1〜胸領域NbのN個の領域に分割される。一方、頭部では、脈波の起点となる心臓から近い順に顔領域1〜顔領域NfのN個の領域に分割される。   FIG. 12 is a diagram illustrating an example of an image showing a subject. FIG. 12 shows a mode in which the area is divided into N parts for each of the chest and the face. As shown in FIG. 12, the chest is divided into N regions of a chest region 1 to a chest region Nb in order from the heart that is the starting point of the pulse wave. On the other hand, the head is divided into N areas of face area 1 to face area Nf in order from the heart that is the starting point of the pulse wave.

図13は、応用例2に係る遅延量算出処理の手順を示すフローチャートである。この処理は、図示しない入力デバイス等を介して遅延量の算出指示がなされた場合などに処理が起動される。図13に示すように、脈波検出装置10は、基準とする第1の血圧P1、すなわちキャリブレーション時に測定された収縮期血圧を内部の主記憶装置や補助記憶装置または外部装置から取得する(ステップS301)。そして、脈波検出装置10は、ステップS301で取得された第1の血圧P1から脈波伝搬速度V1を算出する(ステップS302)。   FIG. 13 is a flowchart illustrating a procedure of delay amount calculation processing according to the application example 2. This process is started when a delay amount calculation instruction is given via an input device (not shown) or the like. As shown in FIG. 13, the pulse wave detection device 10 acquires the first blood pressure P1 as a reference, that is, the systolic blood pressure measured at the time of calibration from an internal main storage device, an auxiliary storage device, or an external device ( Step S301). Then, the pulse wave detection device 10 calculates the pulse wave propagation velocity V1 from the first blood pressure P1 acquired in step S301 (step S302).

続いて、脈波検出装置10は、ステップS302で算出された脈波伝搬速度V1を用いて、複数の部位のうち脈波の起点となる心臓から近い第1の部位、例えば胸部の各領域1〜Nbの遅延量Dbiを算出する(ステップS303)。かかる遅延量Dbiは、胸領域1の下端から胸領域iの上端までの距離を「Lbi」としたとき、脈波伝搬速度V1でLbiを除する計算、すなわち「Lbi/V1」によって算出できる。なお、「i」は、1〜Nbの自然数である。   Subsequently, the pulse wave detection device 10 uses the pulse wave propagation velocity V1 calculated in step S302, and among the plurality of regions, the first region close to the heart from which the pulse wave starts, for example, each region 1 of the chest A delay amount Dbi of .about.Nb is calculated (step S303). The delay amount Dbi can be calculated by calculating by dividing Lbi by the pulse wave propagation velocity V1, that is, “Lbi / V1” when the distance from the lower end of the chest region 1 to the upper end of the chest region i is “Lbi”. “I” is a natural number of 1 to Nb.

そして、脈波検出装置10は、取得部12によって取得される画像から第1の部位の各領域1〜Nbの輝度変化の立ち上がりを測定する(ステップS304)。その上で、脈波検出装置10は、ステップS303で算出された各領域1〜Nbの遅延量Dbiと、ステップS304で輝度変化の立ち上がりが測定された各領域1〜Nbのサンプリング時間とを用いて、第1の部位の領域1の脈波伝搬時刻Tbを算出する(ステップS305)。   Then, the pulse wave detection device 10 measures the rise of the luminance change of each region 1 to Nb of the first part from the image acquired by the acquisition unit 12 (step S304). In addition, the pulse wave detection device 10 uses the delay amount Dbi of each region 1 to Nb calculated in step S303 and the sampling time of each region 1 to Nb in which the rise of the luminance change is measured in step S304. Then, the pulse wave propagation time Tb of the region 1 of the first part is calculated (step S305).

また、脈波検出装置10は、ステップS302で算出された脈波伝搬速度V1を用いて、複数の部位のうち脈波の起点となる心臓から第1の部位よりも遠い第2の部位、例えば頭部の各領域1〜Nfの遅延量Dfiを算出する(ステップS306)。かかる遅延量Dfiは、顔領域1の下端から顔領域iの上端までの距離を「Lfi」としたとき、脈波伝搬速度V1でLfiを除する計算、すなわち「Lfi/V1」によって算出できる。なお、「i」は、1〜Nfの自然数である。   Further, the pulse wave detection device 10 uses the pulse wave propagation velocity V1 calculated in step S302, and a second part farther than the first part from the heart that is the starting point of the pulse wave among a plurality of parts, for example, The delay amount Dfi of each of the head regions 1 to Nf is calculated (step S306). The delay amount Dfi can be calculated by a calculation of dividing Lfi by the pulse wave propagation velocity V1, that is, “Lfi / V1” when the distance from the lower end of the face area 1 to the upper end of the face area i is “Lfi”. “I” is a natural number of 1 to Nf.

そして、脈波検出装置10は、取得部12によって取得される画像から第2の部位の各領域1〜Nfの輝度変化の立ち上がりを測定する(ステップS307)。その上で、脈波検出装置10は、ステップS306で算出された各領域1〜Nfの遅延量Dfiと、ステップS307で輝度変化の立ち上がりが測定された各領域1〜Nfのサンプリング時間とを用いて、第2の部位の領域Nfの脈波伝搬時刻Tfを算出する(ステップS308)。   Then, the pulse wave detection device 10 measures the rise of the luminance change in each of the regions 1 to Nf of the second part from the image acquired by the acquisition unit 12 (Step S307). In addition, the pulse wave detection device 10 uses the delay amount Dfi of each of the regions 1 to Nf calculated in step S306 and the sampling time of each of the regions 1 to Nf in which the rise of the luminance change is measured in step S307. Then, the pulse wave propagation time Tf of the region Nf of the second part is calculated (step S308).

その後、脈波検出装置10は、ステップS305で算出された第1の部位の領域1の脈波伝搬時刻Tbと、ステップS308で算出された第2の部位の領域Nfの脈波伝搬時刻Tfとを用いて、第1の部位から第2の部位までの遅延量Tbfを算出する(ステップS309)。かかる胸から顔までの遅延量Tbfは、頭部の領域Nfの脈波伝搬時刻Tfから胸部の領域1の脈波伝搬時刻Tbを差し引く計算、すなわち「Tf−Tb」によって算出できる。   Thereafter, the pulse wave detection device 10 calculates the pulse wave propagation time Tb of the first region 1 calculated in step S305 and the pulse wave propagation time Tf of the second region Nf calculated in step S308. Is used to calculate the delay amount Tbf from the first part to the second part (step S309). The delay amount Tbf from the chest to the face can be calculated by subtracting the pulse wave propagation time Tb of the chest region 1 from the pulse wave propagation time Tf of the head region Nf, that is, “Tf−Tb”.

その上で、脈波検出装置10は、ステップS309で算出された第1の部位から第2の部位までの遅延量Tbfと、第1の部位から第2の部位までの距離Lbfとから、脈波伝搬速度V2を算出する(ステップS310)。かかる脈波伝搬速度V2は、図12に示した第1の部位から第2の部位までの距離Lbfを、第1の部位から第2の部位までの遅延量Tbfで除する計算、すなわち「Lbf/Tbf」によって算出できる。そして、脈波検出装置10は、ステップS310で算出された脈波伝搬速度V2を用いて、第2の血圧P2を算出する(ステップS311)。これは、脈波伝搬速度V1の代わりに脈波伝搬速度V2を上記の1次式(3)へ代入することによって算出できる。   Then, the pulse wave detection device 10 calculates the pulse from the delay amount Tbf from the first part to the second part calculated in step S309 and the distance Lbf from the first part to the second part. A wave propagation velocity V2 is calculated (step S310). The pulse wave velocity V2 is calculated by dividing the distance Lbf from the first part to the second part shown in FIG. 12 by the delay amount Tbf from the first part to the second part, that is, “Lbf / Tbf ". Then, the pulse wave detection device 10 calculates the second blood pressure P2 using the pulse wave propagation velocity V2 calculated in step S310 (step S311). This can be calculated by substituting the pulse wave propagation velocity V2 into the primary equation (3) instead of the pulse wave propagation velocity V1.

そして、脈波検出装置10は、ステップS301で取得された第1の血圧P1と、ステップS311で算出された第2の血圧P2との誤差が所定の適正範囲内であるか否かを判定する(ステップS312)。   Then, the pulse wave detection device 10 determines whether or not the error between the first blood pressure P1 acquired in step S301 and the second blood pressure P2 calculated in step S311 is within a predetermined appropriate range. (Step S312).

ここで、かかる脈波伝搬速度V2は、上記の脈波伝搬速度V1を用いて算出されるが、基準とする第1の血圧P1だけで求められる値ではなく、胸部および頭部の各領域で輝度変化の立ち上がりが測定されたサンプリング時間も用いて求められる。このため、脈波伝搬速度V2は、脈波伝搬速度V1が実測値によって正確な脈波伝搬速度へ収斂している公算が高い。それゆえ、脈波伝搬速度V2を用いて算出された第2の血圧P2と第1の血圧との誤差が大きいほど、最初に仮定された脈波伝搬速度V1が実際の脈波伝搬速度と乖離しているとみなすことができる。この場合には、各領域の脈波の遅延量も実際の値と乖離している可能性が高くなる。   Here, the pulse wave velocity V2 is calculated using the above-described pulse wave velocity V1, but is not a value obtained only from the reference first blood pressure P1, but in each region of the chest and head. It is also determined using the sampling time at which the rise of the luminance change is measured. For this reason, the pulse wave propagation velocity V2 is highly likely to be converged to the accurate pulse wave propagation velocity by the measured value. Therefore, as the error between the second blood pressure P2 calculated using the pulse wave velocity V2 and the first blood pressure increases, the initially assumed pulse wave velocity V1 becomes more dissimilar from the actual pulse wave velocity. Can be regarded as doing. In this case, there is a high possibility that the delay amount of the pulse wave in each region is different from the actual value.

よって、第1の血圧P1と第2の血圧P2との誤差が適正範囲外である場合(ステップS312No)には、脈波検出装置10は、次のような処理を実行する。すなわち、脈波検出装置10は、ステップS310で算出された脈波伝搬速度V2を脈波伝搬速度V1へ、ステップS311で算出された第2の血圧P2を第1の血圧P1へ置き換え(ステップS313)、上記のステップS303〜ステップS312までの処理を繰り返し実行する。   Therefore, when the error between the first blood pressure P1 and the second blood pressure P2 is outside the appropriate range (step S312 No), the pulse wave detection device 10 executes the following process. That is, the pulse wave detection device 10 replaces the pulse wave propagation velocity V2 calculated in step S310 with the pulse wave propagation velocity V1, and replaces the second blood pressure P2 calculated in step S311 with the first blood pressure P1 (step S313). ), And repeatedly executes the processing from step S303 to step S312 described above.

最後に、第1の血圧P1と第2の血圧P2との誤差が適正範囲内である場合(ステップS312Yes)には、各領域の脈波の遅延量が実際の値と乖離している可能性が低いとみなすことができる。この場合には、脈波の遅延量、脈波伝搬速度V1またはV2や血圧P1またはP2を所定の出力先へ出力の上、処理を終了する。   Finally, when the error between the first blood pressure P1 and the second blood pressure P2 is within an appropriate range (step S312 Yes), there is a possibility that the delay amount of the pulse wave in each region is different from the actual value. Can be considered low. In this case, the pulse wave delay amount, the pulse wave velocity V1 or V2, and the blood pressure P1 or P2 are output to a predetermined output destination, and the process is terminated.

なお、図13に示したフローチャートでは、ステップS303〜ステップS305の処理が実行されてからステップS306〜ステップS308の処理が実行される場合を図示したが、これらの処理は順序を入れ替えて実行することもできるし、並列に実行することもできる。   In the flowchart shown in FIG. 13, the case where the processing of Step S306 to Step S308 is executed after the processing of Step S303 to Step S305 is illustrated, but these processing should be executed in a reversed order. You can also run in parallel.

このように、脈波検出装置10は、収縮期血圧を用いて各領域の遅延量を正確に算出することができる。   In this manner, the pulse wave detection device 10 can accurately calculate the delay amount of each region using the systolic blood pressure.

[分割数]
なお、領域の分割数Nは、値を大きくするほど時間分解能を向上させることができるが、値を過度に大きくするとSN比が低下する場合もある。このため、例えば、フレーム間で輝度変化の立ち上がりにずれが発生する領域が少なくとも1つ発生する程度の数に分割数を設定することによって実施例1及び実施例2で説明する遅延量の算出を実現できる。
[Division number]
The time resolution can be improved as the value of the division number N of the region is increased. However, when the value is excessively increased, the SN ratio may be lowered. For this reason, for example, the delay amount described in the first and second embodiments is calculated by setting the number of divisions to such a number that at least one region where a deviation occurs in the rise of the luminance change between frames is generated. realizable.

[入力信号]
上記の実施例1及び実施例2では、入力信号としてR信号およびG信号の二種類を用いる場合を例示したが、異なる複数の光波長成分を持つ信号であれば任意の種類の信号および任意の数の信号を入力信号とすることができる。例えば、R、G、B、IRおよびNIRなどの光波長成分が異なる信号のうち任意の組合せの信号を2つ用いることもできるし、また、3つ以上用いることもできる。
[input signal]
In the first embodiment and the second embodiment, the case where two types of R signal and G signal are used as input signals is illustrated. However, any type of signal and any number of signals having different light wavelength components may be used. A number of signals can be input signals. For example, two signals of any combination among signals having different optical wavelength components such as R, G, B, IR, and NIR can be used, or three or more signals can be used.

[他の実装例]
上記の実施例1では、脈波検出装置10が上記の脈波検出処理をスタンドアローンで実行する場合を例示したが、クライアントサーバシステムとして実装することもできる。例えば、脈波検出装置10は、脈波検出サービスを提供するWebサーバとして実装することとしてもよいし、アウトソーシングによって脈波検出サービスを提供するクラウドとして実装することとしてもかまわない。このように、脈波検出装置10がサーバ装置として動作する場合には、スマートフォンや携帯電話機等の携帯端末装置やパーソナルコンピュータ等の情報処理装置をクライアント端末として収容することができる。これらクライアント端末からネットワークを介して被験者の顔が映った画像が取得された場合に脈波検出処理を実行し、脈波の検出結果やその検出結果を用いてなされた診断結果をクライアント端末へ応答することによって脈波検出サービスを提供できる。
[Other implementation examples]
In the first embodiment, the case where the pulse wave detection device 10 executes the above-described pulse wave detection processing in a stand-alone manner is illustrated, but it can also be implemented as a client server system. For example, the pulse wave detection device 10 may be implemented as a Web server that provides a pulse wave detection service, or may be implemented as a cloud that provides a pulse wave detection service by outsourcing. As described above, when the pulse wave detection device 10 operates as a server device, a mobile terminal device such as a smartphone or a mobile phone or an information processing device such as a personal computer can be accommodated as a client terminal. When an image showing the face of the subject is acquired from these client terminals via the network, the pulse wave detection process is executed, and the pulse wave detection result and the diagnosis result made using the detection result are responded to the client terminal By doing so, a pulse wave detection service can be provided.

[分散および統合]
また、図示した各装置の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。例えば、脈波検出装置10が有する各機能部を脈波検出装置10の外部装置としてネットワーク経由で接続するようにしてもよい。
また、各機能部を別の装置がそれぞれ有し、ネットワーク接続されて協働することで、上記の脈波検出装置10の機能を実現するようにしてもよい。
[Distribution and integration]
In addition, each component of each illustrated apparatus does not necessarily need to be physically configured as illustrated. In other words, the specific form of distribution / integration of each device is not limited to that shown in the figure, and all or a part thereof may be functionally or physically distributed or arbitrarily distributed in arbitrary units according to various loads or usage conditions. Can be integrated and configured. For example, each functional unit included in the pulse wave detection device 10 may be connected as an external device of the pulse wave detection device 10 via a network.
Moreover, you may make it implement | achieve the function of said pulse-wave detection apparatus 10 by having each function part each in another apparatus, and being network-connected and cooperating.

[脈波検出プログラム]
また、上記の実施例で説明した各種の処理は、予め用意されたプログラムをパーソナルコンピュータやワークステーションなどのコンピュータで実行することによって実現することができる。そこで、以下では、図14を用いて、上記の実施例と同様の機能を有する脈波検出プログラムを実行するコンピュータの一例について説明する。
[Pulse wave detection program]
The various processes described in the above embodiments can be realized by executing a prepared program on a computer such as a personal computer or a workstation. In the following, an example of a computer that executes a pulse wave detection program having the same function as that of the above-described embodiment will be described with reference to FIG.

図14は、実施例1及び実施例2に係る脈波検出プログラムを実行するコンピュータの一例について説明するための図である。図14に示すように、コンピュータ100は、操作部110aと、スピーカ110bと、カメラ110cと、ディスプレイ120と、通信部130とを有する。さらに、このコンピュータ100は、CPU150と、ROM160と、HDD170と、RAM180とを有する。これら110〜180の各部はバス140を介して接続される。   FIG. 14 is a schematic diagram illustrating an example of a computer that executes a pulse wave detection program according to the first and second embodiments. As illustrated in FIG. 14, the computer 100 includes an operation unit 110a, a speaker 110b, a camera 110c, a display 120, and a communication unit 130. Further, the computer 100 includes a CPU 150, a ROM 160, an HDD 170, and a RAM 180. These units 110 to 180 are connected via a bus 140.

HDD170には、図14に示すように、上記の実施例1で示した取得部12と、第1の分割部13gと、第2の分割部13rと、統計処理部14g1〜14gn及び14r1〜14rnと、BPF15g1〜15gn及び15r1〜15rnと、差演算部16−1〜16−nと、二値化部17−1〜17−nと、測定部18と、算出部19と同様の機能を発揮する脈波検出プログラム170aが予め記憶される。この脈波検出プログラム170aについては、図1に示した各々の機能部の各構成要素と同様、適宜統合又は分離しても良い。すなわち、HDD170に格納される各データは、常に全てのデータがHDD170に格納される必要はなく、処理に必要なデータのみがHDD170に格納されれば良い。   As shown in FIG. 14, the HDD 170 includes the acquisition unit 12, the first dividing unit 13g, the second dividing unit 13r, the statistical processing units 14g1 to 14gn and 14r1 to 14rn shown in the first embodiment. BPF 15g1-15gn and 15r1-15rn, difference calculation units 16-1 to 16-n, binarization units 17-1 to 17-n, measurement unit 18, and calculation unit 19 The pulse wave detection program 170a to be stored is stored in advance. The pulse wave detection program 170a may be integrated or separated as appropriate, as with each component of each functional unit shown in FIG. In other words, all data stored in the HDD 170 need not always be stored in the HDD 170, and only data necessary for processing may be stored in the HDD 170.

そして、CPU150が、脈波検出プログラム170aをHDD170から読み出してRAM180に展開する。これによって、図14に示すように、脈波検出プログラム170aは、脈波検出プロセス180aとして機能する。この脈波検出プロセス180aは、HDD170から読み出した各種データを適宜RAM180上の自身に割り当てられた領域に展開し、この展開した各種データに基づいて各種処理を実行する。なお、脈波検出プロセス180aは、図1に示した各機能部にて実行される処理、例えば図11や図13に示す処理を含む。また、CPU150上で仮想的に実現される各処理部は、常に全ての処理部がCPU150上で動作する必要はなく、処理に必要な処理部のみが仮想的に実現されれば良い。   Then, the CPU 150 reads the pulse wave detection program 170 a from the HDD 170 and develops it in the RAM 180. Accordingly, as shown in FIG. 14, the pulse wave detection program 170a functions as a pulse wave detection process 180a. The pulse wave detection process 180a expands various data read from the HDD 170 in an area allocated to itself on the RAM 180 as appropriate, and executes various processes based on the expanded various data. The pulse wave detection process 180a includes processing executed by each functional unit shown in FIG. 1, for example, processing shown in FIG. 11 and FIG. In addition, each processing unit virtually realized on the CPU 150 does not always require that all processing units operate on the CPU 150, and only a processing unit necessary for the processing needs to be virtually realized.

なお、上記の脈波検出プログラム170aについては、必ずしも最初からHDD170やROM160に記憶させておく必要はない。例えば、コンピュータ100に挿入されるフレキシブルディスク、いわゆるFD、CD−ROM、DVDディスク、光磁気ディスク、ICカードなどの「可搬用の物理媒体」に各プログラムを記憶させる。そして、コンピュータ100がこれらの可搬用の物理媒体から各プログラムを取得して実行するようにしてもよい。また、公衆回線、インターネット、LAN、WANなどを介してコンピュータ100に接続される他のコンピュータまたはサーバ装置などに各プログラムを記憶させておき、コンピュータ100がこれらから各プログラムを取得して実行するようにしてもよい。   Note that the pulse wave detection program 170a is not necessarily stored in the HDD 170 or the ROM 160 from the beginning. For example, each program is stored in a “portable physical medium” such as a flexible disk inserted into the computer 100, so-called FD, CD-ROM, DVD disk, magneto-optical disk, or IC card. Then, the computer 100 may acquire and execute each program from these portable physical media. In addition, each program is stored in another computer or server device connected to the computer 100 via a public line, the Internet, a LAN, a WAN, etc., and the computer 100 acquires and executes each program from these. It may be.

10 脈波検出装置
11 カメラ
11a 画像メモリ
12 取得部
13g 第1の分割部
13r 第2の分割部
14g1,14g2,14gn,14r1,14r2,14rn 統計処理部
15g1,15g2,15gn,15r1,15r2,15rn BPF
16−1,16−2,16−n 差演算部
17−1,17−2,17−n 二値化部
18 測定部
19 算出部
DESCRIPTION OF SYMBOLS 10 Pulse wave detection apparatus 11 Camera 11a Image memory 12 Acquisition part 13g 1st division part 13r 2nd division part 14g1, 14g2, 14gn, 14r1, 14r2, 14rn Statistical processing part 15g1, 15g2, 15gn, 15r1, 15r2, 15rn BPF
16-1, 16-2, 16-n Difference calculation unit 17-1, 17-2, 17-n Binarization unit 18 Measurement unit 19 Calculation unit

Claims (10)

撮像装置によって被験者の生体が撮影された画像を取得する取得部と、
前記画像を複数の領域に分割する分割部と、
各領域に含まれる画素が持つ画素値に所定の統計処理を波長成分別に実行することによって各領域の代表値を波長成分別に算出する統計処理部と、
各波長成分間で合成がなされた領域別の代表値が前記画像のフレーム間で変化するタイミングを測定する測定部と、
各領域で代表値が変化するタイミングの時間差から脈波の遅延量を算出する算出部と
を有することを特徴とする脈波検出装置。
An acquisition unit for acquiring an image of a subject's living body captured by an imaging device;
A dividing unit for dividing the image into a plurality of regions;
A statistical processing unit that calculates a representative value of each region for each wavelength component by executing predetermined statistical processing for each wavelength component on the pixel values of the pixels included in each region;
A measurement unit that measures the timing at which the representative value for each region synthesized between the wavelength components changes between frames of the image;
A pulse wave detection device comprising: a calculation unit that calculates a delay amount of a pulse wave from a time difference between timings at which representative values change in each region.
前記代表値が前記画像のフレーム間で変化するか否かによって代表値を二値化する二値化部をさらに有し、
前記算出部は、
各領域で代表値が変化するタイミングの時間差として、前記画像のフレーム間で二値が反転する領域の数を算出することを特徴とする請求項1に記載の脈波検出装置。
A binarization unit that binarizes the representative value according to whether the representative value changes between frames of the image;
The calculation unit includes:
The pulse wave detection device according to claim 1, wherein the number of regions where binary values are inverted between frames of the image is calculated as a time difference between timings at which representative values change in each region.
前記算出部は、
前記画像のフレーム周期を前記画像のフレーム間で二値が反転する領域の数で分配することによって各領域間の遅延量を算出することを特徴とする請求項1に記載の脈波検出装置。
The calculation unit includes:
The pulse wave detection device according to claim 1, wherein the delay amount between the regions is calculated by distributing the frame period of the image by the number of regions where the binary value is inverted between the frames of the image.
前記領域ごとに同一のフレームで二値の反転が検出された領域の中で脈波の起点となる心臓から直近に位置する変化点の領域となった回数を計数する計数部をさらに有し、
前記算出部は、
前記変化点の領域となった回数の大小によって前記画像のフレーム周期を各領域へ分配する量を変えて各領域間の遅延量を算出することを特徴とする請求項3に記載の脈波検出装置。
The counter further includes a counting unit that counts the number of times that the region of the change point located closest to the heart that is the starting point of the pulse wave in the region where binary inversion is detected in the same frame for each region,
The calculation unit includes:
4. The pulse wave detection according to claim 3, wherein the amount of delay between the regions is calculated by changing the amount of distribution of the frame period of the image to each region according to the number of times the region becomes the change point region. apparatus.
前記算出部は、
各領域間の遅延量から、脈波伝搬速度、脈波伝搬時刻、脈拍周期、脈拍周期のゆらぎ、もしくは脈波伝搬速度、脈波伝搬時刻、脈拍周期及び脈拍周期のゆらぎの組合せをさらに算出することを特徴とする請求項1〜4のいずれか一つに記載の脈波検出装置。
The calculation unit includes:
Further calculate the pulse wave propagation speed, pulse wave propagation time, pulse period, pulse period fluctuation, or a combination of pulse wave velocity, pulse wave propagation time, pulse period and pulse period fluctuation from the delay amount between each region. The pulse wave detection device according to any one of claims 1 to 4, wherein the device is a pulse wave detection device.
第1の血圧を記憶する記憶部をさらに有し、
前記取得部は、
第1の部位及び前記第1の部位よりも脈波の起点となる心臓から遠い第2の部位を含む画像を取得し、
前記測定部は、
前記第1の部位及び前記第2の部位ごとに、各波長成分間で合成がなされた領域別の代表値が前記画像のフレーム間で変化するタイミングを測定し、
前記算出部は、
前記第1の血圧から導出される第1の脈波伝搬速度を用いて、前記第1の部位が分割された各領域間の遅延量を算出するとともに、前記第2の部位が分割された各領域間の遅延量を算出し、
前記第1の部位の各領域間の遅延量と、前記第1の部位の各領域で代表値が変化するタイミングの時間差とに基づいて当該第1の部位への脈波伝搬時刻を算出するとともに、前記第2の部位の各領域間の遅延量と、前記第2の部位の各領域で代表値が変化するタイミングの時間差とに基づいて当該第2の部位への脈波伝搬時刻を算出し、
前記第1の部位への脈波伝搬時刻及び前記第2の部位への脈波伝搬時刻の差から、前記第1の部位から前記第2の部位までの遅延量を算出し、
前記第1の部位から前記第2の部位までの遅延量と、前記第1の部位及び前記第2の部位の間の距離とから第2の脈波伝搬速度を算出し、
前記第2の脈波伝搬速度から導出される第2の血圧と、前記第1の血圧との差が所定の範囲内になるまで、前記第2の血圧を導出する処理を繰り返し実行することを特徴とする請求項5に記載の脈波検出装置。
A storage unit that stores the first blood pressure;
The acquisition unit
Obtaining an image including a first part and a second part farther from the heart that is the origin of the pulse wave than the first part;
The measuring unit is
For each of the first part and the second part, measure the timing at which the representative value for each region synthesized between the wavelength components changes between frames of the image,
The calculation unit includes:
The first pulse wave velocity derived from the first blood pressure is used to calculate the amount of delay between the regions where the first part is divided, and each of the parts where the second part is divided Calculate the amount of delay between areas,
While calculating the pulse wave propagation time to the first part based on the delay amount between the areas of the first part and the time difference of the timing at which the representative value changes in each area of the first part The pulse wave propagation time to the second part is calculated based on the delay amount between the areas of the second part and the time difference of the timing at which the representative value changes in each area of the second part. ,
From the difference between the pulse wave propagation time to the first part and the pulse wave propagation time to the second part, the delay amount from the first part to the second part is calculated,
A second pulse wave velocity is calculated from a delay amount from the first part to the second part and a distance between the first part and the second part;
Repeatedly executing the process of deriving the second blood pressure until the difference between the second blood pressure derived from the second pulse wave propagation velocity and the first blood pressure falls within a predetermined range. The pulse wave detection device according to claim 5, wherein the device is a pulse wave detection device.
前記分割部は、
前記被験者の動脈に沿って画像を分割することを特徴とする請求項1〜6のいずれか一つに記載の脈波検出装置。
The dividing unit is
The pulse wave detection device according to any one of claims 1 to 6, wherein an image is divided along an artery of the subject.
前記分割部は、
前記画像から前記被験者の顔に含まれる第1の顔パーツ及び第2の顔パーツを抽出し、前記第1の顔パーツ及び前記第2の顔パーツによって定まる範囲の画像を分割することを特徴とする請求項7に記載の脈波検出装置。
The dividing unit is
Extracting a first face part and a second face part included in the face of the subject from the image, and dividing an image in a range determined by the first face part and the second face part; The pulse wave detection device according to claim 7.
コンピュータが、
撮像装置によって被験者の生体が撮影された画像を取得し、
前記画像を複数の領域に分割し、
各領域に含まれる画素が持つ画素値に所定の統計処理を波長成分別に実行することによって各領域の代表値を波長成分別に算出し、
各波長成分間で合成がなされた領域別の代表値が前記画像のフレーム間で変化するタイミングを測定し、
各領域で代表値が変化するタイミングの時間差から脈波の遅延量を算出する
処理を実行することを特徴とする脈波検出方法。
Computer
Obtain an image of the subject's living body captured by the imaging device,
Dividing the image into a plurality of regions;
Calculate the representative value for each wavelength component by executing predetermined statistical processing for each wavelength component on the pixel values of the pixels included in each region,
Measure the timing at which the representative value for each region synthesized between the wavelength components changes between frames of the image,
A pulse wave detection method comprising: executing a process of calculating a delay amount of a pulse wave from a time difference between timings at which representative values change in each region.
コンピュータに、
撮像装置によって被験者の生体が撮影された画像を取得し、
前記画像を複数の領域に分割し、
各領域に含まれる画素が持つ画素値に所定の統計処理を波長成分別に実行することによって各領域の代表値を波長成分別に算出し、
各波長成分間で合成がなされた領域別の代表値が前記画像のフレーム間で変化するタイミングを測定し、
各領域で代表値が変化するタイミングの時間差から脈波の遅延量を算出する
処理を実行させることを特徴とする脈波検出プログラム。
On the computer,
Obtain an image of the subject's living body captured by the imaging device,
Dividing the image into a plurality of regions;
Calculate the representative value for each wavelength component by executing predetermined statistical processing for each wavelength component on the pixel values of the pixels included in each region,
Measure the timing at which the representative value for each region synthesized between the wavelength components changes between frames of the image,
A pulse wave detection program for executing a process of calculating a delay amount of a pulse wave from a time difference between timings at which representative values change in each region.
JP2013067667A 2013-03-27 2013-03-27 Pulse wave detection device, pulse wave detection method, and pulse wave detection program Active JP6052005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013067667A JP6052005B2 (en) 2013-03-27 2013-03-27 Pulse wave detection device, pulse wave detection method, and pulse wave detection program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067667A JP6052005B2 (en) 2013-03-27 2013-03-27 Pulse wave detection device, pulse wave detection method, and pulse wave detection program

Publications (2)

Publication Number Publication Date
JP2014188237A true JP2014188237A (en) 2014-10-06
JP6052005B2 JP6052005B2 (en) 2016-12-27

Family

ID=51835176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067667A Active JP6052005B2 (en) 2013-03-27 2013-03-27 Pulse wave detection device, pulse wave detection method, and pulse wave detection program

Country Status (1)

Country Link
JP (1) JP6052005B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016055129A (en) * 2014-09-12 2016-04-21 富士通株式会社 Information processing unit, pulse wave measurement program, and pulse wave measurement method
JP2016077890A (en) * 2014-10-09 2016-05-16 パナソニックIpマネジメント株式会社 Non-contact blood pressure measurement apparatus and non-contact blood pressure measurement method
JP2016135261A (en) * 2014-02-27 2016-07-28 京セラ株式会社 Sensor, sensor device, and driving method of sensor device
WO2016158624A1 (en) * 2015-03-30 2016-10-06 国立大学法人東北大学 Biological information measurement device, biological information measurement method, biological information display device and biological information display method
WO2016163019A1 (en) * 2015-04-10 2016-10-13 株式会社日立製作所 Biological information analyzing system
JP2016190022A (en) * 2015-03-30 2016-11-10 国立大学法人東北大学 Biological information measuring device, biological information measuring method, biological information display device and biological information display method
CN106798547A (en) * 2016-12-29 2017-06-06 乐普(北京)医疗器械股份有限公司 A kind of computational methods of the arm ankle pulse wave time delay based on statistics
JP2019511941A (en) * 2016-03-01 2019-05-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Device, system and method for determining a vital sign of interest
WO2019116996A1 (en) * 2017-12-15 2019-06-20 シャープ株式会社 Blood pressure measuring device, and method for measuring blood pressure
US10485479B2 (en) 2015-07-16 2019-11-26 Samsung Electronics Co., Ltd. Grip-type blood pressure measuring apparatus and method of operating the same
CN111387966A (en) * 2020-03-20 2020-07-10 中国科学院深圳先进技术研究院 Signal wave reconstruction method and heart rate variability information detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358984A (en) * 2000-06-15 2001-12-26 Mitsubishi Heavy Ind Ltd Moving picture processing camera
JP2004005726A (en) * 2003-07-24 2004-01-08 Fujitsu Ltd Traffic flow monitoring system for moving-body
JP2004073398A (en) * 2002-08-14 2004-03-11 Rikogaku Shinkokai Method for estimating menstruation indica during exercise by image processor
JP2008301915A (en) * 2007-06-06 2008-12-18 Sony Corp Physiological data acquiring apparatus and physiological data acquiring method
JP2010051592A (en) * 2008-08-28 2010-03-11 Fujitsu Ltd Pulsimeter, pulse-measuring method and pulse-measuring program
JP2012169725A (en) * 2011-02-10 2012-09-06 Sony Corp Image processing apparatus, image processing method, program, and image display apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358984A (en) * 2000-06-15 2001-12-26 Mitsubishi Heavy Ind Ltd Moving picture processing camera
JP2004073398A (en) * 2002-08-14 2004-03-11 Rikogaku Shinkokai Method for estimating menstruation indica during exercise by image processor
JP2004005726A (en) * 2003-07-24 2004-01-08 Fujitsu Ltd Traffic flow monitoring system for moving-body
JP2008301915A (en) * 2007-06-06 2008-12-18 Sony Corp Physiological data acquiring apparatus and physiological data acquiring method
JP2010051592A (en) * 2008-08-28 2010-03-11 Fujitsu Ltd Pulsimeter, pulse-measuring method and pulse-measuring program
JP2012169725A (en) * 2011-02-10 2012-09-06 Sony Corp Image processing apparatus, image processing method, program, and image display apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135261A (en) * 2014-02-27 2016-07-28 京セラ株式会社 Sensor, sensor device, and driving method of sensor device
JP2016055129A (en) * 2014-09-12 2016-04-21 富士通株式会社 Information processing unit, pulse wave measurement program, and pulse wave measurement method
JP2016077890A (en) * 2014-10-09 2016-05-16 パナソニックIpマネジメント株式会社 Non-contact blood pressure measurement apparatus and non-contact blood pressure measurement method
US10736517B2 (en) 2014-10-09 2020-08-11 Panasonic Intellectual Property Management Co., Ltd. Non-contact blood-pressure measuring device and non-contact blood-pressure measuring method
JP2020062529A (en) * 2015-03-30 2020-04-23 国立大学法人東北大学 Biological information display device, biological information display method and biological information display program
WO2016158624A1 (en) * 2015-03-30 2016-10-06 国立大学法人東北大学 Biological information measurement device, biological information measurement method, biological information display device and biological information display method
JP2016190022A (en) * 2015-03-30 2016-11-10 国立大学法人東北大学 Biological information measuring device, biological information measuring method, biological information display device and biological information display method
US11445921B2 (en) 2015-03-30 2022-09-20 Tohoku University Biological information measuring apparatus and biological information measuring method, and computer program product
WO2016163019A1 (en) * 2015-04-10 2016-10-13 株式会社日立製作所 Biological information analyzing system
JPWO2016163019A1 (en) * 2015-04-10 2017-08-10 株式会社日立製作所 Biological information analysis system
US10485479B2 (en) 2015-07-16 2019-11-26 Samsung Electronics Co., Ltd. Grip-type blood pressure measuring apparatus and method of operating the same
JP2019511941A (en) * 2016-03-01 2019-05-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Device, system and method for determining a vital sign of interest
CN106798547A (en) * 2016-12-29 2017-06-06 乐普(北京)医疗器械股份有限公司 A kind of computational methods of the arm ankle pulse wave time delay based on statistics
WO2019116996A1 (en) * 2017-12-15 2019-06-20 シャープ株式会社 Blood pressure measuring device, and method for measuring blood pressure
JPWO2019116996A1 (en) * 2017-12-15 2020-11-26 シャープ株式会社 Blood pressure measuring device and blood pressure measuring method
JP7068339B2 (en) 2017-12-15 2022-05-16 シャープ株式会社 Blood pressure measuring device and blood pressure measuring method
CN111387966A (en) * 2020-03-20 2020-07-10 中国科学院深圳先进技术研究院 Signal wave reconstruction method and heart rate variability information detection device

Also Published As

Publication number Publication date
JP6052005B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP6052005B2 (en) Pulse wave detection device, pulse wave detection method, and pulse wave detection program
EP2979631B1 (en) Blood flow index calculation method, blood flow index calculation program and blood flow index calculation device
WO2016006027A1 (en) Pulse wave detection method, pulse wave detection program, and pulse wave detection device
JP6167614B2 (en) Blood flow index calculation program, blood flow index calculation device, and blood flow index calculation method
US20160228011A1 (en) Bio-information acquiring device and bio-information acquiring method
JP6098257B2 (en) Signal processing apparatus, signal processing method, and signal processing program
JP6102433B2 (en) Pulse wave detection program, pulse wave detection method, and pulse wave detection device
JP6142664B2 (en) Pulse wave detection device, pulse wave detection program, pulse wave detection method, and content evaluation system
JP6098304B2 (en) Pulse wave detection device, pulse wave detection method, and pulse wave detection program
KR20150059631A (en) Method and apparatus for measuring of Heart rate
JP6052027B2 (en) Pulse wave detection device, pulse wave detection program, and pulse wave detection method
JP6135255B2 (en) Heart rate measuring program, heart rate measuring method and heart rate measuring apparatus
US11083382B2 (en) Method, information processing apparatus and server for determining a physiological parameter of an individual
US20180242898A1 (en) Viewing state detection device, viewing state detection system and viewing state detection method
JPWO2014002276A1 (en) Vital sign detection method, vital sign detection device, and vital sign detection program
US11989884B2 (en) Method, apparatus and program
JP6020015B2 (en) Pulse wave detection device, pulse wave detection program, and pulse wave detection method
JP6248780B2 (en) Pulse wave detection device, pulse wave detection method, and pulse wave detection program
JP6488722B2 (en) Pulse wave detection device, pulse wave detection method, and pulse wave detection program
JP6167615B2 (en) Blood flow index calculation program, terminal device, and blood flow index calculation method
WO2020003910A1 (en) Heartbeat detection device, heartbeat detection method, and program
JP2015198789A (en) Information processing device, pulse wave measurement program and pulse wave measurement method
JP6167849B2 (en) Pulse wave detection device, pulse wave detection method, and pulse wave detection program
JP2023122683A (en) Measuring apparatus, measuring method, and program
TW201438674A (en) Image type exercise amount evaluation and measurement system and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6052005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150