JP2014187962A - Water quality testing method using algae - Google Patents

Water quality testing method using algae Download PDF

Info

Publication number
JP2014187962A
JP2014187962A JP2013067559A JP2013067559A JP2014187962A JP 2014187962 A JP2014187962 A JP 2014187962A JP 2013067559 A JP2013067559 A JP 2013067559A JP 2013067559 A JP2013067559 A JP 2013067559A JP 2014187962 A JP2014187962 A JP 2014187962A
Authority
JP
Japan
Prior art keywords
light
algae
water
absorbance
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013067559A
Other languages
Japanese (ja)
Inventor
Hironori Kako
啓憲 加来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013067559A priority Critical patent/JP2014187962A/en
Priority to PCT/JP2014/053547 priority patent/WO2014156363A1/en
Publication of JP2014187962A publication Critical patent/JP2014187962A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/186Water using one or more living organisms, e.g. a fish
    • G01N33/1866Water using one or more living organisms, e.g. a fish using microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water quality testing method using algae for simply and accurately determining water quality of environmental water, treated factory wastewater, culture solution of algae, or the like.SOLUTION: Water to be tested is irradiated with white light from a light-emitting section 2 of a transmission color sensor 1, a light receiving section 3 receives light transmitted through culture solution 4, a color filter (not shown) decomposes the received light and detects green light (500 to 570 nm) and red light (620 to 740nm), absorbance of each color is calculated from a light intensity of the green light and a light intensity of the red light, a culture state of algae is determined based on a ratio (absorbance ratio) of the light intensities, algal growth potential (AGP) or growth inhibition property of the algae in water to be tested is determined by comparing with a reference absorbance ratio of environmental water or the like.

Description

本発明は、環境水や工場排水処理水、あるいは藻類の培養液などの水質を判断するための藻類を利用した水質試験方法に関する。   The present invention relates to a water quality test method using algae for judging the water quality of environmental water, industrial wastewater treated water, or algae culture solution.

河川や湖沼、海水などの環境水は、アオコなどの微細藻類が繁殖しやすい環境は好ましくない。また、工場排水を処理した処理水も環境に悪影響を及ぼすような水質では外部環境に排出するのは許容されるべきではない。例えば、高度に処理された処理水であっても一般水域に比較して、窒素やりんなどの栄養塩類が多く含まれることが多々あり、微細藻類の増殖が促進される虞がある。そこで、一般的には環境水や工場排水の処理水を採取して水質分析を行い、pH、各種重金属や有機性炭素成分あるいはトータル窒素(TN)やりんなどの含有量を分析することが行われているが、これらの各種成分分析の結果は、処理水などの必ずしも環境への影響の正確な指標となりうるものではない、という問題があった。   Environmental water such as rivers, lakes, and seawater is not preferable in an environment where microalgae such as blue-green algae can easily propagate. Also, treated water that has been treated from factory wastewater should not be allowed to be discharged to the outside environment with water quality that adversely affects the environment. For example, even highly treated water is often richer in nutrient salts such as nitrogen and phosphorus than in general water, and there is a risk that the growth of microalgae may be promoted. In general, therefore, environmental water and factory wastewater are collected and analyzed for water quality, and the contents of pH, various heavy metals, organic carbon components, total nitrogen (TN) and phosphorus are analyzed. However, there has been a problem that the results of the analysis of these various components cannot necessarily be an accurate indicator of the influence on the environment such as treated water.

また、微細藻類は産業用の用途が拡大しており、産業利用のために培養液で増殖させるが、この培養液を増殖に適したものとするために、環境水に肥料成分を添加したりしている。しかしながら、培養液が実際の藻類の培養に好適であるかどうかも藻類を培養してみなければわからないのが現状であった。   In addition, microalgae are used for industrial purposes and are grown in a culture solution for industrial use. To make this culture solution suitable for growth, fertilizer components can be added to environmental water. doing. However, the current situation is that it is not possible to determine whether the culture solution is suitable for culturing actual algae without culturing the algae.

これは、環境水における有害物質や成長促進因子となる物質は、種類が非常に多いためであり、これらの成分を個別に全て分析するのは現実的ではないためである。その一方で、生物が受けた慢性的な影響の総和として、生物学的試験により水質を評価することは可能である。   This is because there are many kinds of harmful substances and growth promoting factors in environmental water, and it is not realistic to analyze all of these components individually. On the other hand, it is possible to evaluate the water quality by biological tests as the sum of the chronic effects on living organisms.

そこで、藻類を実際に培養し、その結果に基づいて水質を判断する生物学的試験法が種々行われている。例えば、生物毒性試験として、下水道試験法の一つであるAGP試験法がある。ここで、AGPとは、Algal Grouth Potentialsの略号であり、このAGP試験法では、放流水(処理水)に藻類を接種し、これを所定の条件に保持して、その増殖する度合いを放流水域のそれと比較することで、この放流水が放流水域の富栄養化に与える影響を評価する、というものである。   Therefore, various biological test methods for actually culturing algae and judging the water quality based on the results have been performed. For example, as a biotoxicity test, there is an AGP test method which is one of sewer test methods. Here, AGP is an abbreviation for Algal Ground Potentials. In this AGP test method, algae is inoculated into the effluent water (treated water), and this is maintained in a predetermined condition, and the degree of growth is determined in the effluent water area. By comparing it with that of, the effect of this effluent on eutrophication in the effluent area is evaluated.

また、国立環境研究所が策定したものとして、藻類生長阻害試験がある。この藻類生長阻害試験は、新規化学物質の届出に際して要求されるものであり、藻類を被験物質(環境水や処理水)に暴露し、放流水域との生長阻害率を比較することにより、藻類の生長に対する被験物質の毒性を明らかにする、というものである。   The National Institute for Environmental Studies has developed an algae growth inhibition test. This algae growth inhibition test is required for notification of new chemical substances. By exposing algae to test substances (environmental water and treated water) and comparing the growth inhibition rate with the discharge water area, It reveals the toxicity of the test substance to growth.

これらの方法においては、いずれも藻類の計測は、乾燥重量法、粒子計測法、吸光度法、クロロフィル法、直接計測法などにより行っている。   In these methods, algae are measured by dry weight method, particle measurement method, absorbance method, chlorophyll method, direct measurement method and the like.

これらAGP試験及び藻類生長阻害試験は、いずれも客観的な信頼性を有するものである。しかしながら、これらの試験法では以下のような種々の問題があった。すなわち、乾燥重量法では、ある程度の試験期間を要するにもかかわらず、分析のために経時的に培養液を採取し分析し続ける必要があるため、多量の被験物質(環境水や処理水)や培養液が必要となるばかりか、濃度測定の操作が煩雑である。また、粒子計測法、吸光度法及びクロロフィル法は、非常に高額な測定機器が必要であり汎用的でない。さらに、直接計測法は、測定精度が測定者の修練度に依存するため測定誤差が生じやすい。このように、生物学的試験により水質を評価することは可能であるにもかかわらず、汎用的に精度良くこれを行う方法は従来なかった。   These AGP test and algal growth inhibition test are both objectively reliable. However, these test methods have the following various problems. In other words, the dry weight method requires a certain amount of test period, but it is necessary to collect and keep analyzing the culture solution over time for analysis, so a large amount of test substances (environmental water and treated water) and culture Not only is liquid required, but the operation of concentration measurement is complicated. Further, the particle measurement method, the absorbance method, and the chlorophyll method are not versatile because they require very expensive measuring instruments. Further, the direct measurement method is likely to cause measurement errors because the measurement accuracy depends on the skill level of the measurer. Thus, although it is possible to evaluate water quality by biological tests, there has been no conventional method for accurately performing water quality.

本発明は上記課題に鑑みてなされたものであり、環境水や工場排水処理水、あるいは藻類の培養液などの水質を簡単かつ精度よく判断するための藻類を利用した水質試験方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a water quality test method using algae for easily and accurately judging the water quality of environmental water, industrial wastewater treated water, or algae culture solution. With the goal.

上記課題を解決するために、本発明は、被試験水に藻類を添加し、この藻類を含む被試験水の色合いを青色光(450〜490nm)、緑色光(500〜570nm)及び赤色光(620〜740nm)にそれぞれ分解して少なくとも2以上の波長域を検出し、これら2以上の光の波長の光強度に基づき被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定することを特徴とする藻類を利用した水質試験方法を提供する(発明1)。   In order to solve the above-described problems, the present invention adds algae to water to be tested, and changes the color of water to be tested containing the algae to blue light (450 to 490 nm), green light (500 to 570 nm) and red light ( 620 to 740 nm) to detect at least two or more wavelength ranges, and determine the algae productivity (AGP) or growth inhibition of the algae based on the light intensity of these two or more light wavelengths. Provided is a water quality test method utilizing algae (Invention 1).

かかる発明(発明1)によれば、藻類を含む被試験水の色合いを青色光、緑色光及び赤色光に分解するには、可視光の色度をRGBに分けて検出すればよく、安価なカラーセンサを適用することができる。そして、カラーセンサを適用することで、オンラインでの計測が可能となり、測定時間の大幅な短縮及び測定の簡易化することができる。さらに、このカラーセンサは、可視光のみで衛星写真など広い範囲の色調の変化を感知することができる。これらにより、藻類の培養状態を効率よくモニタリングして、基準となる環境水等と対比することで被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定することが可能となる。   According to this invention (Invention 1), in order to decompose the color of water to be tested containing algae into blue light, green light and red light, the chromaticity of visible light may be detected separately for RGB, and it is inexpensive. A color sensor can be applied. By applying the color sensor, online measurement is possible, and the measurement time can be greatly shortened and the measurement can be simplified. Furthermore, this color sensor can detect a wide range of color tone changes such as satellite photographs with only visible light. Thus, it is possible to determine the algae productivity (AGP) or the algae growth inhibitory property of the water under test by efficiently monitoring the culture state of the algae and comparing it with the standard environmental water or the like. .

上記発明(発明1)においては、前記緑色光(500〜570nm)と前記赤色光(620〜740nm)とを分解して検出し、前記緑色光の波長の光強度と赤色光の波長の光強度とから被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定するのが好ましい(発明2)。前記緑色光の波長の光強度から緑色光の吸光度を算出するとともに前記赤色光の波長の光強度から赤色光の吸光度を算出し、該赤色光の吸光度を緑色光の吸光度で除した値で被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定するのが好ましい(発明3)。   In the said invention (invention 1), the said green light (500-570 nm) and the said red light (620-740 nm) are decomposed | disassembled and detected, The light intensity of the wavelength of the said green light, and the light intensity of the wavelength of red light From these, it is preferable to determine the algae productivity (AGP) or the growth inhibition of algae (Invention 2). The absorbance of the green light is calculated from the light intensity of the green light wavelength, the absorbance of the red light is calculated from the light intensity of the red light wavelength, and the red light absorbance is divided by the absorbance of the green light. It is preferable to determine the algal productivity (AGP) of the test water or the growth inhibition of the algae (Invention 3).

かかる発明(発明2,3)によれば、赤色光の吸光度と緑色光の吸光度との強光度比は、光合成を行う緑色の藻類の培養速度と相関性があり、培養速度が速くなると吸光度比が増加するので、基準となる環境水等の吸光度比と対比することで、藻類の被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定することが可能となる。   According to such inventions (Inventions 2 and 3), the intensity ratio between the absorbance of red light and the absorbance of green light is correlated with the culture rate of green algae performing photosynthesis, and the absorbance ratio increases as the culture rate increases. Therefore, it is possible to determine the algae productivity (AGP) or the growth inhibition of algae by comparing with the absorbance ratio of the environmental water or the like as a reference.

上記発明(発明1〜3)においては、前記藻類を含む被試験水の分光した各波長の光強度と、それぞれ白色光を分光した各波長の光強度とを対比することにより被試験水の分光した各波長の吸光度を算出し、この各光の吸光度に基づき、被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定するのが好ましい(発明4)。上記発明(発明3)においては、前記白色光が、清澄水を透過した白色光もしくは清澄水に浸漬した白色物質からの反射光であるのが好ましい(発明5)。   In the said invention (invention 1-3), the spectrum of the water to be tested is compared by comparing the light intensity of each wavelength obtained by spectroscopy of the water under test containing the algae with the light intensity of each wavelength obtained by separating white light. It is preferable to calculate the absorbance of each wavelength and determine the algae productivity (AGP) or growth inhibition of the algae based on the absorbance of each light (Invention 4). In the said invention (invention 3), it is preferable that the said white light is the reflected light from the white substance which permeate | transmitted the clear water or the clear water (invention 5).

かかる発明(発明4,5)によれば、藻類を含む被試験水の青色光、緑色光及び赤色光の光強度を、それぞれ白色光を分光した各波長の光強度と対比して各色光の吸光度を算出することで、被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を正確に判断することができる。   According to the inventions (Inventions 4 and 5), the blue light, green light and red light intensity of water to be tested containing algae is compared with the light intensity of each wavelength obtained by spectrally dividing white light. By calculating the absorbance, it is possible to accurately determine the algal productivity (AGP) of the water to be tested or the growth inhibition of the algae.

本発明によれば、藻類を含む被試験水の色合いを青色光、緑色光及び赤色光に分解して検出し、これらの波長の帯域光の光強度を対比することで藻類の培養状態を判定しているので、藻類の培養状態のオンラインでの計測が可能となり、測定時間の大幅な短縮及び測定の簡易化することができる。これにより、藻類の培養状態を効率よくモニタリングして、基準となる環境水等の吸光度比と対比することで、被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定することができる。   According to the present invention, the color of the water to be tested containing algae is detected by decomposing it into blue light, green light and red light, and the culture state of the algae is determined by comparing the light intensity of the band light of these wavelengths. Therefore, it is possible to measure the culture state of the algae on-line, and the measurement time can be greatly shortened and the measurement can be simplified. By this, the culture state of algae is efficiently monitored, and the algae productivity (AGP) or the growth inhibition of algae is determined by comparing with the standard absorbance ratio of environmental water, etc. Can do.

特に、藻類を含む被試験水の色合い緑色光と赤色光とを分解して検出し、緑色光の波長の帯域光の光強度と赤色光の波長の帯域光の光強度とから赤色光の吸光度を緑色光の吸光度を決定し、この赤色光の吸光度を緑色光の吸光度で除した値(吸光度比)を算出し、この吸光度比の値により藻類の被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定することが可能となる。   In particular, the color of the water under test containing algae is detected by decomposing green light and red light, and the red light absorbance is determined from the light intensity of the band light of the green light wavelength and the light intensity of the band light of the red light wavelength. The absorbance of green light is determined, the value obtained by dividing the absorbance of red light by the absorbance of green light (absorbance ratio) is calculated, and the algae productivity (AGP) of the test water of the algae is calculated from the value of this absorbance ratio. Or it becomes possible to determine the growth inhibitory property of algae.

本発明の第一の実施形態に係る藻類を利用した水質試験方法を実施可能な装置を示す概略図である。It is the schematic which shows the apparatus which can implement the water quality test method using the algae concerning 1st embodiment of this invention. 本発明の第二の実施形態に係る藻類を利用した水質試験方法を実施可能な装置を示す概略図である。It is the schematic which shows the apparatus which can implement the water quality test method using the algae concerning 2nd embodiment of this invention. 実施例2における藻類を利用した水質試験方法における吸光度と比増殖速度との関係を示すグラフである。It is a graph which shows the relationship between the light absorbency in the water quality test method using the algae in Example 2, and a specific growth rate.

以下、本発明の実施形態について添付図面を参照して詳細に説明する。ただし、本実施形態はいずれも例示であり、本発明はこれに限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, this embodiment is only an example, and the present invention is not limited to this.

本実施形態においては、被試験水にあらかじめ培養しておいた藻類を添加し、この藻類を含む被試験水の色合いを青色光(450〜490nm)、緑色光(500〜570nm)及び赤色光(620〜740nm)にそれぞれ分解して少なくとも2以上の波長域を検出し、これら2以上の光の波長の光強度に基づき被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定する。   In this embodiment, algae that have been cultured in advance are added to the water to be tested, and the color of the water to be tested containing the algae is changed to blue light (450 to 490 nm), green light (500 to 570 nm), and red light ( 620 to 740 nm) to detect at least two or more wavelength ranges, and determine the algae productivity (AGP) or growth inhibition of the algae based on the light intensity of these two or more light wavelengths. To do.

具体的には、光合成を行う緑色の藻類の場合、藻類を含む培養液の色合い(色度)から緑色光(500〜570nm)と前記赤色光(620〜740nm)とを分解して検出し、前記緑色光の波長域の光強度と赤色光の波長域の光強度とから被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定する。   Specifically, in the case of green algae performing photosynthesis, the green light (500-570 nm) and the red light (620-740 nm) are decomposed and detected from the color (chromaticity) of the culture solution containing algae, The algae productivity (AGP) of the water to be tested or the growth inhibition of algae is determined from the light intensity in the wavelength range of the green light and the light intensity in the wavelength range of the red light.

本実施形態において、被試験水としては特に制限はなく、河川や湖沼、海水などの環境水、工場排水を処理した処理水、及び藻類を産業用に利用するための培養液などを試験対象とすることができる。上述したような被試験水には、その評価目的に応じて、ろ過、熱分解、希釈などの前処理を行ったり、窒素、リンなどの肥料成分を添加したりすることができる。   In the present embodiment, the water to be tested is not particularly limited, and environmental water such as rivers, lakes, and seawater, treated water that has been processed from factory wastewater, and culture solution for using algae for industrial purposes are tested. can do. In the water to be tested as described above, pretreatment such as filtration, pyrolysis and dilution can be performed, or fertilizer components such as nitrogen and phosphorus can be added depending on the purpose of evaluation.

被試験水に接種する藻類としては、一般的な藻類、微細藻類、シアノバクテリアなどを用いることができ、特に微細藻類が好適である。具体的には、被試験水が淡水の場合、Selenastrum capricornutum、Chlorella ellipsoidea、 Chlorella vulgaris、Microcystis aeruginosa、f.aeruginosa Microcystis aeruginosa f.flosaquae、Stigeoclonium tenue、Anabaena flos−aquae、Chlamydomonas属、Cyclotella属、Nitzschia属、Synedra属、Nitzschia palea、及びPseudokirchneriella subcapitata (Korshikov) F.Hindakなどが好適であるが、これらに限定されるものではない。   Common algae, microalgae, cyanobacteria, and the like can be used as the algae inoculated into the test water, and microalgae are particularly preferable. Specifically, when the water to be tested is fresh water, Selenastrum capricornutum, Chlorella ellipsisidea, Chlorella vulgaris, Microcystis aeruginosa, f. aeruginosa Microcystis aeruginosa f. flosaquae, Stigeoclonium tenue, Anabaena flosaquae, Chlamydomonas sp, Cyclotella genus, Nitzschia sp, Synedra genus, Nitzschia Palea, and Pseudokirchneriella subcapitata (Korshikov) but such F.Hindak is preferred, but is not limited thereto.

また、被試験水が海水の場合、Skeletonema costatum、Thalassiosira pseudonana、Chattonella antique、 Dunaliella tertiolecta、及びHeterosigma属などを好適に用いることができるが、これらに限定されるものではない。   Moreover, when test water is seawater, Skeletonema costatum, Thalassiosira pseudona, Chattonella antique, Dunaliella teriolecta, and Heterosigma genus can be preferably used.

これらの藻類は、あらかじめ必要量を培養(前培養)しておくのが好ましい。   These algae are preferably cultured in advance (preculture) in a necessary amount.

上記藻類を被試験水に接種したら培養する。この被試験水による培養は、20±2℃または25±2℃の温度で行うのが好ましく、そのための培養槽に温度調整機構を設ければよい。また、この藻類には照度1,000〜4,000luxの範囲の光を照射するのが好ましく、上記範囲で光量を調節できる機構を設ける。さらに、培養液を撹拌混合しながら培養するのが好ましい。このため、振とう機構もしくはエアレーション機構などが必要である。   When the algae is inoculated into the test water, it is cultured. The culture with the water to be tested is preferably performed at a temperature of 20 ± 2 ° C. or 25 ± 2 ° C., and a temperature adjusting mechanism may be provided in the culture tank for that purpose. Moreover, it is preferable to irradiate the algae with light in the range of illuminance of 1,000 to 4,000 lux, and a mechanism capable of adjusting the light amount within the above range is provided. Furthermore, it is preferable to culture while stirring and mixing the culture solution. For this reason, a shaking mechanism or an aeration mechanism is required.

また、このようにして接種した藻類を被試験水で所定の期間培養したら、培養した被試験水の色度を検知する。この被試験水の色度を検知する手段としては、安価で緑色光、赤色光及び青色光をそれぞれ分けて検出可能であることから、カラーセンサを用いるのが好ましい。このカラーセンサは、測定した色をカラーフィルタによってRGB成分に分解し、それぞれの色成分の光強度をフォトダイオー等により検知する仕組みを有するものである。このカラーセンサは、可視光のみで衛星写真など広い範囲の色調の変化を感知することができる。   When the algae inoculated in this way are cultured in the test water for a predetermined period, the chromaticity of the cultured water to be tested is detected. As a means for detecting the chromaticity of the water under test, it is preferable to use a color sensor because it is inexpensive and can separately detect green light, red light and blue light. This color sensor has a mechanism in which measured colors are separated into RGB components by a color filter, and the light intensity of each color component is detected by a photo diode or the like. This color sensor can detect changes in a wide range of color tones such as satellite photographs using only visible light.

具体的には、カラーセンサを用いて、以下のようにして藻類の培養状態(増殖速度)を判定する。すなわち、まず、光の吸収が生じない透明な水(例えば純水)に白色光を照射して、透過した光をカラーセンサで検出する。この白色光は、カラーセンサのカラーフィルタによってRGB成分に分解されて受光されるので、このときの赤色帯域光(緑色光)R1と緑色帯域光(緑色光)G1とのそれぞれの光強度を計測する。   Specifically, the color sensor is used to determine the algae culture state (growth rate) as follows. That is, first, white light is irradiated to transparent water (for example, pure water) that does not absorb light, and the transmitted light is detected by a color sensor. Since this white light is decomposed into RGB components by the color filter of the color sensor and received, the respective light intensities of the red band light (green light) R1 and the green band light (green light) G1 are measured. To do.

次に藻類を培養した被試験水を同じカラーセンサを用い、同様に白色光を照射して、透過した光をカラーセンサで検出する。この透過光は、カラーセンサのカラーフィルタによってRGB成分に分解されて受光されるので、このときの赤色帯域光(赤色光)R2と緑色帯域光(緑色光)G2とのそれぞれの光強度を計測する。   Next, the test water in which the algae is cultured is irradiated with white light in the same manner using the same color sensor, and the transmitted light is detected by the color sensor. Since this transmitted light is separated into RGB components by the color filter of the color sensor and received, the respective light intensities of the red band light (red light) R2 and the green band light (green light) G2 are measured. To do.

この赤色帯域光(赤色光)と緑色帯域光(緑色光)とは、例えば、特開2010−151605号に記載されている図1に示すような透過型カラーセンサ1を用いて測定することができる。この透過型カラーセンサ1は、発光部2とカラーフィルタ(図示せず)を備えた受光部3とを有し、発光部2から白色光を照射して、培養液4を透過してきた光を受光部3で受光し、図示しない制御機構で赤色帯域光(緑色光)と緑色帯域光(緑色光)とのそれぞれの光強度を算出する。   The red band light (red light) and the green band light (green light) can be measured using, for example, a transmissive color sensor 1 as shown in FIG. 1 described in Japanese Patent Application Laid-Open No. 2010-151605. it can. The transmissive color sensor 1 includes a light emitting unit 2 and a light receiving unit 3 including a color filter (not shown), and irradiates white light from the light emitting unit 2 and transmits light transmitted through the culture solution 4. Light is received by the light receiving unit 3, and the light intensity of each of the red band light (green light) and the green band light (green light) is calculated by a control mechanism (not shown).

また、特開2010−181150号に記載されている図2に示すような反射型カラーセンサ11を用いることもできる。この反射型カラーセンサ11は、発光部12とカラーフィルタ(図示せず)を備えた受光部13と、反射板14とを有し、発光部12から白色光を照射して、反射板14を経由して培養液15を透過してきた光を受光部13で受光し、図示しない制御機構で赤色帯域光(緑色光)と緑色帯域光(緑色光)とのそれぞれの光強度を算出する。   A reflective color sensor 11 as shown in FIG. 2 described in JP 2010-181150 can also be used. The reflective color sensor 11 includes a light receiving unit 13 including a light emitting unit 12 and a color filter (not shown), and a reflective plate 14. The reflective color sensor 11 irradiates white light from the light emitting unit 12, and The light that has passed through the culture medium 15 is received by the light receiving unit 13, and the light intensity of each of the red band light (green light) and the green band light (green light) is calculated by a control mechanism (not shown).

このようにして、透明な水と微細藻類を含む被試験水の赤色光と緑色光の吸光強度を測定したら、下記式により赤色光の吸光度と緑色光の吸光度と両者の比(吸光度比)とをそれぞれ算出する。
赤色帯域光吸光度:A=−log(R2/R1)
緑色帯域光吸光度:A=−log(G2/G1)
吸光度比:X=A/A
In this way, when the red light and green light absorption intensities of the water to be tested containing transparent water and microalgae are measured, the red light absorbance and green light absorbance and the ratio (absorbance ratio) of the two according to the following formula Are calculated respectively.
Red band light absorbance: A R = −log (R2 / R1)
Green band light absorbance: A G = −log (G2 / G1)
Absorbance ratio: X = AR / AG

一方、被試験水中の微細藻類の重量濃度を測定し、比増殖速度を計測する。この比増殖速度は、例えば、孔径1μmのガラス繊維ろ紙で培養液の懸濁物質を取り出してその重量を測定し、培養液(被試験水)の液量から重量濃度を算出する。そして、培養日数T1[日]のときの重量濃度C1[mg/L]及び培養液量V1[L]と、培養日数T2[日]のときの重量濃度C2[mg/L]及び培養液量V2[L]とから下記式により比増殖速度ν[1/日]を算出する。
比増殖速度:ν=(ln(m2/m1))/(T2−T1) ・・・(1)
(式(1)中、m1=C1×V1、m2=C2×V2)
On the other hand, the weight concentration of microalgae in the water to be tested is measured, and the specific growth rate is measured. This specific growth rate is obtained, for example, by measuring the weight of a suspended substance in a culture solution with a glass fiber filter having a pore diameter of 1 μm and measuring the weight thereof, and calculating the weight concentration from the amount of the culture solution (test water). Then, the weight concentration C1 [mg / L] and the amount of culture solution V1 [L] at the culture day T1 [day], and the weight concentration C2 [mg / L] and the culture solution amount at the culture day T2 [day]. The specific growth rate ν [1 / day] is calculated from V2 [L] by the following formula.
Specific growth rate: ν = (ln (m2 / m1)) / (T2-T1) (1)
(In Formula (1), m1 = C1 × V1, m2 = C2 × V2)

本発明者の研究によれば、この比増殖速度(ν)と吸光度比(X)との間には高い相関が認められることがわかった。そして、この相関性を解析した結果、吸光度比(X)が減少すると比増殖速度(ν)が低下し、藻類生長阻害性が大きいと判断できる一方、吸光度比(X)が増加すると比増殖速度(ν)が低下し、藻類生産力が大きいと判断できる。したがって、例えば、工場排水の処理水の場合には、放流水域の水であらかじめ藻類を培養して吸光度比(X)を測定しておき、これと対比することで、工場排水処理水が藻類の生産力の増大傾向を示すのか、あるいは藻類の生長阻害性の増大傾向を示すのかを判断すればよい。また、新規な培養液の場合には、基準となる培養液であらかじめ藻類を培養して吸光度比(X)を測定しておき、これと対比することで、新規な培養液が藻類の生産力の増大傾向を示すのか、あるいは藻類の生長阻害性を示すのかを判断すればよい。   According to the study of the present inventor, it was found that a high correlation was observed between the specific growth rate (ν) and the absorbance ratio (X). As a result of analyzing this correlation, it can be determined that the specific growth rate (ν) decreases when the absorbance ratio (X) decreases, and the algal growth inhibition is large. On the other hand, the specific growth rate when the absorbance ratio (X) increases. It can be judged that (ν) decreases and the algal productivity is large. Therefore, for example, in the case of treated water of factory wastewater, the algae is cultured in advance in the water of the discharge water area, the absorbance ratio (X) is measured, and compared with this, the treated water of the factory wastewater is What is necessary is just to judge whether it shows the increase tendency of productivity or the increase tendency of the growth inhibitory property of algae. In the case of a new culture solution, the algae is cultured in advance with a reference culture solution, and the absorbance ratio (X) is measured. It is sufficient to determine whether or not it shows a tendency to increase or a growth inhibition of algae.

さらに、この相関性を応用すれば、吸光度比(X)が所望とする傾向となるように、工場排水の処理水の場合には処理条件の変更や、培養液の場合には成分の変更などの措置を採るようにしてもよい。   Furthermore, if this correlation is applied, the treatment conditions will be changed in the case of treated water of factory effluent, or the components will be changed in the case of a culture solution so that the absorbance ratio (X) will have a desired tendency. You may make it take the measures.

以上、本発明について前記実施形態に基づき説明してきたが、本発明は前記実施形態に限られず種々の変更実施が可能である。例えば、本実施形態では、緑色の微細藻類について、緑色光(500〜570nm)と赤色光(620〜740nm)とに基づいて、微細藻類の培養状態の判断を行っているが、ヘマトコッカスなどの赤色の微細藻類の場合には、青色光(450〜490nm)の吸光度のデータを用いるなどすることもできる。   As mentioned above, although this invention has been demonstrated based on the said embodiment, this invention is not restricted to the said embodiment, A various change implementation is possible. For example, in the present embodiment, for green microalgae, the culture state of microalgae is determined based on green light (500 to 570 nm) and red light (620 to 740 nm). In the case of red microalgae, absorbance data of blue light (450 to 490 nm) can be used.

以下の具体的実施例及び比較例に基づき本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
The present invention will be described in more detail based on the following specific examples and comparative examples, but the present invention is not limited to the following examples.
Example 1

国立環境研究所微生物系統保存施設より分譲されたChlorella vulgaris Beijerinck(NIES−2170株:以下、試験株1という)をpH7.5±0.1に調整した表1に示す組成のAAP培地を用い、このAAP培地を1Lの容積のガラス製平型培養瓶に入れ、工業用COを3体積%の濃度で添加したものを通気し、蛍光灯照明(明/暗=12hr/12hr、照度4000lux)で7日間前培養を行った。 Using an AAP medium having the composition shown in Table 1 adjusted to pH 7.5 ± 0.1 Chlorella vulgaris Beijerinck (NIES-2170 strain: hereinafter referred to as test strain 1) distributed from the National Institute for Environmental Studies microbial strain preservation facility, Place this AAP medium in a 1 L glass flat culture bottle, add industrial CO 2 at a concentration of 3% by volume, ventilate, and illuminate with fluorescent lamp (light / dark = 12 hr / 12 hr, illuminance 4000 lux) For 7 days.

そして、前培養を終えた試験株1を遠心分離(1,000G、5分間)で回収したものを、滅菌した炭酸水素ナトリウム溶液(15mg/L)に加えて振とうし、十分に懸濁させた後に、再び遠心分離して藻体を回収した。この回収した試験株1の藻体を被試験水の模擬水としてAAP培地(条件1;基準条件)と、硝酸ナトリウム濃度を400mg/Lに増やしたAAP培地(条件2)と、次亜塩素酸ナトリウムを0.1mg/Lを添加したAAP培地(条件3)とにそれぞれ藻体濃度約0.4g/Lとなるように接種し、1Lの容積のガラス製平型培養瓶で培養を行った。なお、条件1は、標準条件、条件2は藻類生産力の高い水を模擬した条件、条件3は藻類生長阻害性のある水を模擬した条件を想定した。   Then, the test strain 1 that has been precultured and collected by centrifugation (1,000 G, 5 minutes) is added to a sterilized sodium hydrogen carbonate solution (15 mg / L), shaken, and sufficiently suspended. After that, it was centrifuged again to collect algal bodies. AAP medium (condition 1; reference condition) using the collected algal cells of test strain 1 as simulated water for test water, AAP medium (condition 2) with a sodium nitrate concentration increased to 400 mg / L, and hypochlorous acid AAP medium (condition 3) supplemented with 0.1 mg / L of sodium was inoculated so as to have an algal body concentration of about 0.4 g / L, respectively, and cultured in a 1 L glass flat culture bottle. . Condition 1 was assumed to be a standard condition, condition 2 was a condition simulating water with high algal productivity, and condition 3 was a condition simulating water having an algal growth inhibitory property.

培養は、上述した前培養と同様に工業用COを3容積%の濃度に添加したものを通気し、蛍光灯照明(明/暗=12hr/12hr、照度4000lux)で14日間行った。この試験株1の培養液(被試験水)に白色光を照射し、透過した光を図1及び図2に示す光センサを備えた検出器を用いて測定した。光センサはRGBの3つのカラーフィルタを介して受光し、赤色帯域光R2と緑色帯域光G2のそれぞれの光強度を計測した。 Culturing was carried out for 14 days under a fluorescent lamp illumination (bright / dark = 12 hr / 12 hr, illuminance 4000 lux), aerated with industrial CO 2 added to a concentration of 3% by volume, as in the pre-culture described above. The culture solution (test water) of this test strain 1 was irradiated with white light, and the transmitted light was measured using a detector equipped with the photosensor shown in FIGS. The optical sensor received light through three color filters of RGB, and measured the light intensity of each of the red band light R2 and the green band light G2.

一方、ヤマト科学社製純水製造装置WG270で製造した純水を、光の吸収が生じない透明な水とし、この純水に白色光を照射し、透過した光を同様に検出器で検出した。そして、同様に赤色帯域光R1と緑色帯域光G1のそれぞれの光強度を計測し、下式にて吸光度および吸光度比を算出した。   On the other hand, the pure water produced by the pure water production apparatus WG270 manufactured by Yamato Kagaku Co., Ltd. is transparent water that does not absorb light, the pure water is irradiated with white light, and the transmitted light is similarly detected by the detector. . Similarly, the light intensities of the red band light R1 and the green band light G1 were measured, and the absorbance and the absorbance ratio were calculated by the following equations.

赤色帯域光吸光度:A=−log10(R2/R1)
緑色帯域光吸光度:A=−log10(G2/G1)
吸光度比:X=A/A
Red band light absorbance: A R = −log 10 (R2 / R1)
Green band light absorbance: A G = −log 10 (G2 / G1)
Absorbance ratio: X = AR / AG

同時に、培養液中の試験株1の重量濃度を測定し、下式にて比増殖速度を算出した。この比増殖速度は、孔径1μmのガラス繊維ろ紙で培養液の懸濁物質をろ過して重量を測定し、重量濃度を算出した。そして、培養日数T1[日]のときの重量濃度C1[mg/L]及び培養液量V1[L]と、培養日数T2[日]のときの重量濃度C2[mg/L]及び培養液量V2[L]とから下記式により比増殖速度ν[1/日]を算出した。表2に条件1、2及び3における赤色帯域光と緑色帯域光の吸光度比Xと比増殖速度νの測定結果を示す。   At the same time, the weight concentration of test strain 1 in the culture solution was measured, and the specific growth rate was calculated by the following equation. The specific growth rate was calculated by measuring the weight by filtering the suspended matter in the culture solution with a glass fiber filter having a pore size of 1 μm and calculating the weight concentration. Then, the weight concentration C1 [mg / L] and the amount of culture solution V1 [L] at the culture day T1 [day], and the weight concentration C2 [mg / L] and the culture solution amount at the culture day T2 [day]. The specific growth rate ν [1 / day] was calculated from V2 [L] by the following formula. Table 2 shows the measurement results of the absorbance ratio X and specific growth rate ν of red band light and green band light under conditions 1, 2 and 3.

比増殖速度:ν=(ln(m2/m1))/(T2−T1) ・・・(1)
(式(1)中、m1=C1×V1、m2=C2×V2)
Specific growth rate: ν = (ln (m2 / m1)) / (T2-T1) (1)
(In Formula (1), m1 = C1 × V1, m2 = C2 × V2)

Figure 2014187962
Figure 2014187962

Figure 2014187962
Figure 2014187962

表2から明らかなとおり、赤色帯域光と緑色帯域光の吸光度比Xと比増殖速度νとには相関が見られ、基準である条件1と比較して、被試験水の藻類生産力が高いと吸光度比Xの値が大きくなり(条件2)、被試験水に藻類生長阻害性が高いと吸光度比Xの値が小さくなる(条件3)傾向にあることがわかり、吸光度比Xが被試験水の藻類生産力および藻類成長阻害性を判定する指標となりうることが確認できた。
(実施例2)
As apparent from Table 2, there is a correlation between the absorbance ratio X of the red band light and the green band light and the specific growth rate ν, and the algal productivity of the water to be tested is higher than that of the condition 1 as a reference. The value of the absorbance ratio X increases (Condition 2), and if the water under test has a high algal growth inhibitory property, the value of the absorbance ratio X tends to decrease (Condition 3). It was confirmed that it can be an index for judging the algal productivity and algae growth inhibition of water.
(Example 2)

国立環境研究所微生物系統保存施設より分譲されたDesmodesmus sp.(NIES−96株)を、pH6.5〜7.5に調整した表3及び表4に示す組成のC培地を用いて、このC培地に工業用COを3体積%の濃度で添加したものを通気し、蛍光灯照明(明/暗=12hr/12hr)で培養を行った。培養液は表5に記載の4条件で半回分培養を実施し、実施例1と同様に赤色帯域光と緑色帯域光の吸光度比Xおよび比増殖速度νの経時変化を算出した。結果を図3に示す。 Desmodesmus sp. Sold by the National Institute for Environmental Studies microbial strain preservation facility. (NIES-96 strain) was adjusted to pH 6.5 to 7.5, and C medium having the composition shown in Table 3 and Table 4 was used. Industrial CO 2 was added to C medium at a concentration of 3% by volume. The material was aerated and cultured with fluorescent lamp illumination (bright / dark = 12 hr / 12 hr). The culture solution was subjected to half-batch culture under the four conditions shown in Table 5, and the change over time in the absorbance ratio X of the red band light and the green band light and the specific growth rate ν was calculated in the same manner as in Example 1. The results are shown in FIG.

Figure 2014187962
Figure 2014187962

Figure 2014187962
Figure 2014187962

Figure 2014187962
Figure 2014187962

図3に示すように吸光度比Xと比増殖速度νには高い相関が見られ、吸光度比Xが被試験水の藻類生産力および藻類成長阻害性を判定する指標となりうることが確認できた。   As shown in FIG. 3, a high correlation was observed between the absorbance ratio X and the specific growth rate ν, and it was confirmed that the absorbance ratio X can serve as an index for determining the algal productivity and algal growth inhibition of the water to be tested.

上述したような藻類を利用した水質試験方法によれば、藻類を含む被試験水の色合いを青色光、緑色光及び赤色光に分解して検出し、これらの波長域の光強度から吸光度比を算出し、基準となる環境水等の吸光度比と対比することで、被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定しているので、カラーセンサなどの安価な検出装置で、藻類の生産力及び生長阻害性を再現性良く判断することができる。特にカラーセンサを用いることができるので、計測者の習熟度に左右されずに安定性が高い水質の試験方法を提供することが可能となる。   According to the water quality test method using algae as described above, the color of water under test containing algae is detected by decomposing into blue light, green light and red light, and the absorbance ratio is determined from the light intensity in these wavelength regions. Calculated and compared with the absorbance ratio of environmental water, etc., as a reference, and the algae productivity (AGP) or growth inhibition of the algae is determined by the water under test, so an inexpensive detection device such as a color sensor Thus, the productivity and growth inhibition of algae can be determined with good reproducibility. In particular, since a color sensor can be used, it is possible to provide a water quality test method having high stability without being influenced by the proficiency level of the measurer.

1…透過型カラーセンサ
2…発光部
3…受光部
4…培養液
11…反射型カラーセンサ
12…発光部
13…受光部
14…反射板
15…培養液
DESCRIPTION OF SYMBOLS 1 ... Transmission type color sensor 2 ... Light-emitting part 3 ... Light-receiving part 4 ... Culture solution 11 ... Reflection type color sensor 12 ... Light-emitting part 13 ... Light-receiving part 14 ... Reflecting plate 15 ... Culture solution

Claims (5)

被試験水に藻類を添加し、
この藻類を含む被試験水の色合いを青色光(450〜490nm)、緑色光(500〜570nm)及び赤色光(620〜740nm)にそれぞれ分解して少なくとも2以上の波長域を検出し、
これら2以上の光の波長の光強度に基づき被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定することを特徴とする藻類を利用した水質試験方法。
Add algae to the water under test,
The color of water to be tested containing algae is decomposed into blue light (450 to 490 nm), green light (500 to 570 nm) and red light (620 to 740 nm), respectively, and at least two wavelength ranges are detected.
A water quality test method using algae, wherein the algae productivity (AGP) of the water to be tested or the growth inhibition of algae is determined based on the light intensity of the wavelength of two or more light.
前記緑色光(500〜570nm)と前記赤色光(620〜740nm)とを分解して検出し、前記緑色光の波長の光強度と赤色光の波長の光強度とから被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定することを特徴とする請求項1に記載の藻類を利用した水質試験方法。   The green light (500 to 570 nm) and the red light (620 to 740 nm) are decomposed and detected, and algae is produced from the light intensity of the green light wavelength and the light intensity of the red light wavelength. The water quality test method using algae according to claim 1, wherein force (AGP) or growth inhibition of algae is determined. 前記緑色光の波長の光強度から緑色光の吸光度を算出するとともに前記赤色光の波長の光強度から赤色光の吸光度を算出し、該赤色光の吸光度を緑色光の吸光度で除した値で被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定することを特徴とする請求項2に記載の藻類を利用した水質試験方法。   The absorbance of the green light is calculated from the light intensity of the green light wavelength, the absorbance of the red light is calculated from the light intensity of the red light wavelength, and the red light absorbance is divided by the absorbance of the green light. The water quality test method using algae according to claim 2, wherein the algae productivity (AGP) or growth inhibition of algae is determined. 前記藻類を含む被試験水の分光した各波長の光強度と、それぞれ白色光を分光した各波長の光強度とを対比することにより被試験水の分光した各波長の吸光度を算出し、この各光の吸光度に基づき、被試験水の藻類の生産力(AGP)又は藻類の生長阻害性を判定することを特徴とする請求項1〜3のいずれかに記載の藻類を利用した水質試験方法。   By comparing the light intensity of each wavelength obtained by spectroscopy of the test water containing the algae with the light intensity of each wavelength obtained by separating white light, the absorbance of each wavelength obtained by spectroscopy of the test water was calculated. The water quality test method using algae according to any one of claims 1 to 3, wherein algae productivity (AGP) or growth inhibition of algae is determined based on light absorbance. 前記白色光が、清澄水を透過した白色光もしくは清澄水に浸漬した白色物質からの反射光であることを特徴とする請求項4に記載の藻類を利用した水質試験方法。   5. The water quality test method using algae according to claim 4, wherein the white light is white light transmitted through clear water or reflected light from a white substance immersed in clear water.
JP2013067559A 2013-03-27 2013-03-27 Water quality testing method using algae Pending JP2014187962A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013067559A JP2014187962A (en) 2013-03-27 2013-03-27 Water quality testing method using algae
PCT/JP2014/053547 WO2014156363A1 (en) 2013-03-27 2014-02-14 Water quality examination method utilizing alga

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067559A JP2014187962A (en) 2013-03-27 2013-03-27 Water quality testing method using algae

Publications (1)

Publication Number Publication Date
JP2014187962A true JP2014187962A (en) 2014-10-06

Family

ID=51623364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067559A Pending JP2014187962A (en) 2013-03-27 2013-03-27 Water quality testing method using algae

Country Status (2)

Country Link
JP (1) JP2014187962A (en)
WO (1) WO2014156363A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051558A (en) * 2017-12-13 2018-05-18 山东星火科学技术研究院 Petrochemical wastewater Online Monitoring Control integrated system
WO2019075788A1 (en) * 2017-10-17 2019-04-25 深圳市沃特沃德股份有限公司 Drinking water management method and apparatus and device for giving pet water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017201622A1 (en) * 2016-05-24 2017-11-30 Real Tech Inc. A device for detecting algae concentration using first derivative of visible light absorbance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872545B2 (en) * 2003-03-20 2005-03-29 Dade Behring Inc. Microbiological analyzer using colorimetric means for biochemical color and growth determinations
JP5777848B2 (en) * 2009-02-03 2015-09-09 栗田工業株式会社 Method and apparatus for measuring lysate concentration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019075788A1 (en) * 2017-10-17 2019-04-25 深圳市沃特沃德股份有限公司 Drinking water management method and apparatus and device for giving pet water
CN108051558A (en) * 2017-12-13 2018-05-18 山东星火科学技术研究院 Petrochemical wastewater Online Monitoring Control integrated system

Also Published As

Publication number Publication date
WO2014156363A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
Schreiber et al. New type of dual-channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests
Collos et al. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures
Loiselle et al. The optical characterization of chromophoric dissolved organic matter using wavelength distribution of absorption spectral slopes
JP3842492B2 (en) Algae concentration measurement system
Yang et al. Seawater pH measurements in the field: A DIY photometer with 0.01 unit pH accuracy
Schreiber New emitter-detector-cuvette assembly for measuring modulated chlorophyll fluorescence of highly diluted suspensions in conjunction with the standard PAM fluorometer
Almomani et al. Monitoring and measurement of microalgae using the first derivative of absorbance and comparison with chlorophyll extraction method
CN104977263A (en) Multi-parameter water quality monitor and monitoring method
KR101224855B1 (en) Apparatus for measuring algae using multi wavelength source of light
JP4108555B2 (en) Water quality measuring method and apparatus
Karsten et al. A new in vivo fluorimetric technique to measure growth of adhering phototrophic microorganisms
US9448170B2 (en) Harmful substance evaluating method and harmful substance evaluation kit
WO2014156363A1 (en) Water quality examination method utilizing alga
Lvova et al. Systematic approach in Mg2+ ions analysis with a combination of tailored fluorophore design
Carafa et al. Characterization of river biofilm responses to the exposure with heavy metals using a novel micro fluorometer biosensor
Ezenarro et al. Integrated photonic system for early warning of cyanobacterial blooms in aquaponics
McLamore et al. Development and validation of an open source O2-sensitive gel for physiological profiling of soil microbial communities
Imtiaz et al. Fluorescence spectroscopy based characterization of pseudomonas aeruginosa suspension
Banerjee et al. A portable spectroscopic instrument for multiplexed monitoring of acute water toxicity: Design, testing, and evaluation
KR20100083095A (en) A kit and a method for evaluating toxicity using spore release by the green alga ulva
KR20140093389A (en) Total Ecotoxicological measuring system using Photochemical algae sensor
Courtois et al. Continuous monitoring of cyanobacterial blooms: benefits and conditions for using fluorescence probes
Kunasakaran et al. The effects of pH and cell density to the responses of immobilized cyanobacteria for copper detection
JP2003090797A (en) Water quality measuring system by fluorescence analysis
RU2222003C2 (en) Method of biological testing of natural water, sewage and aqueous solutions