JP2014184465A - Joint method for cast iron material and joint member obtained thereby - Google Patents

Joint method for cast iron material and joint member obtained thereby Download PDF

Info

Publication number
JP2014184465A
JP2014184465A JP2013060853A JP2013060853A JP2014184465A JP 2014184465 A JP2014184465 A JP 2014184465A JP 2013060853 A JP2013060853 A JP 2013060853A JP 2013060853 A JP2013060853 A JP 2013060853A JP 2014184465 A JP2014184465 A JP 2014184465A
Authority
JP
Japan
Prior art keywords
cast iron
joint
iron material
joining
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013060853A
Other languages
Japanese (ja)
Inventor
Hidetoshi Fujii
英俊 藤井
Yoshiaki Morisada
好昭 森貞
Takumi Haruyama
巧 晴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Osaka University NUC
Original Assignee
Iwate University
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University, Osaka University NUC filed Critical Iwate University
Priority to JP2013060853A priority Critical patent/JP2014184465A/en
Publication of JP2014184465A publication Critical patent/JP2014184465A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a joint method for cast iron and a joint member capable of applying to a joint target material whose cross section is not a circular shape, particularly, to provide a friction agitation joint method for cast iron and a joint member for friction agitation in which a black lead deformation layer and a chill structure which reduce mechanical properties of a joint are not formed.SOLUTION: Provided is the joint method for joint target materials, in which at least one of the joint target materials includes a cast iron material. The joint method comprises the following steps of: a first step of forming a decarbonization layer on the cast iron material; and a second step of contacting the joint target materials each other via the decarbonization layer and performing friction agitation joint to the joint target area including the decarbonization layer.

Description

本発明は鋳鉄材の接合方法及びそれにより得られる接合部材に関し、より具体的には、継手の機械的特性を低下させる黒鉛変形層及びチル組織を形成させない鋳鉄材の摩擦攪拌接合方法及び摩擦攪拌接合部材に関する。   TECHNICAL FIELD The present invention relates to a method for joining cast iron materials and a joining member obtained thereby, and more specifically, a friction stir welding method and friction stir welding for cast iron materials that do not form a graphite deformed layer and a chill structure that lower mechanical properties of the joint. The present invention relates to a joining member.

鋳鉄材の溶融溶接は鉄鋼材の溶融溶接と比較して極めて困難であり、鋳鉄材同士の接合及び鋳鉄材と他の金属材との異材接合のいずれも、実用化が断念されるケースが多い。これは、鋳鉄材を溶融状態から急冷凝固すると、硬くて脆いセメンタイト系共晶やマルテンサイト組織が形成し、当該組織が割れ発生等の原因となり継手特性を劣化させるからである。   Melting welding of cast iron materials is extremely difficult compared to melting welding of steel materials, and there are many cases where practical application is abandoned both for joining cast iron materials and for dissimilar joining of cast iron materials and other metal materials. . This is because when a cast iron material is rapidly solidified from a molten state, a hard and brittle cementite-type eutectic or martensite structure is formed, which causes cracks and the like and deteriorates joint characteristics.

これに対し、近年では材料の溶融を伴わない固相接合が注目され、鋳鉄材の接合についても固相接合が検討されている。例えば、特許文献1(特開2000−246466号公報)では、黒鉛系鋳鉄材の接合方法が提案されている。具体的には、接合すべき被接合材の少なくとも一方は黒鉛を有する各種鋳鉄系材料、他方は同一、又は異種の黒鉛系鋳鉄、非鋳鉄系の各種鉄鋼材料もしくは非鉄系材料よりなり、少なくとも何れか一方の被接合材の接合面の断面を、回転軸中心を頂点として円周方向へ傾斜する凹開先で形成して、他方の被接合材の接合面との間に同形の空隙ボイドを介して突き合わせ、何れか一方の被接合材を固定し他方を同軸で高速回転し、相互の摩擦力によって生成した黒鉛変形層を接合面外へ排出し、摩擦圧接することが記載されている。   On the other hand, in recent years, solid-phase bonding that does not involve melting of materials has attracted attention, and solid-phase bonding has also been studied for the joining of cast iron materials. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2000-246466) proposes a method for joining graphite cast iron materials. Specifically, at least one of the materials to be joined is made of various cast iron materials having graphite, and the other is made of the same or different types of graphite cast iron, non-cast iron-type various steel materials or non-ferrous materials, and at least one of them. A cross section of the joining surface of one of the materials to be joined is formed with a concave groove that is inclined in the circumferential direction with the center of the rotation axis as an apex, and an identical void void is formed between the joining surface of the other material to be joined. In other words, one of the materials to be joined is fixed, the other is coaxially rotated at high speed, the graphite deformation layer generated by the mutual frictional force is discharged out of the joining surface, and friction welding is described.

そして、前記特許文献1に記載されている黒鉛系鋳鉄材の接合法においては、黒鉛変形層を接合面外へ排出することで接合面の強度は少なくとも母材又はその熱影響部の強度を超え、接合部を健全で無欠陥の強靱組織で形成するように調整することができるとしている。   And in the joining method of the graphite-type cast iron material described in the said patent document 1, the strength of a joining surface exceeds the intensity | strength of a base material or its heat-affected zone at least by discharging | emitting a graphite deformation layer out of a joining surface. The joint can be adjusted to be formed with a sound and defect-free tough structure.

また、非特許文献1(溶接学会論文集 第27巻 第3号 p.176−182(2009))では、球状黒鉛鋳鉄材を573K及び773Kに予熱し、当該予熱した球状黒鉛鋳鉄材に摩擦攪拌接合を施すことを特徴とする球状黒鉛鋳鉄材の接合方法が提案されている。   Further, in Non-Patent Document 1 (Journal of the Japan Welding Society Vol. 27, No. 3, p. 176-182 (2009)), a spheroidal graphite cast iron material is preheated to 573K and 773K, and friction stir is applied to the preheated spheroidal graphite cast iron material. There has been proposed a method for joining spheroidal graphite cast iron materials characterized by performing joining.

前記被特許文献1に記載されている球状黒鉛鋳鉄材の接合方法においては、予熱温度及び接合速度を変化させることにより、球状黒鉛鋳鉄材のチル化(セメンタイト系共晶の形成)及びマルテンサイト化を抑制し、また、摩擦攪拌接合に伴う塑性流動によって形成される黒鉛変形層が機械的特性に及ぼす影響を低減させることで、良好な継手を得ることができるとしている。   In the joining method of the spheroidal graphite cast iron material described in Patent Document 1, the preheating temperature and joining speed are changed to change the chilling (formation of cementite eutectic) and martensite of the spheroidal graphite cast iron material. In addition, it is said that a good joint can be obtained by suppressing the influence of the graphite deformation layer formed by the plastic flow accompanying the friction stir welding on the mechanical properties.

特開2000−246466号公報JP 2000-246466 A

溶接学会論文集 第27巻 第3号 p.176−182 (2009)Welding Society Proceedings Vol. 27, No. 3, p. 176-182 (2009)

しかしながら、上記特許文献1に開示されている黒鉛系鋳鉄材の接合法は、摩擦圧接法の原理から、断面形状が円形である被接合材にしか適用することができず、被接合材の形状に制限がある。また、上記非特許文献1に開示されている球状黒鉛鋳鉄材の接合方法においては、例えば773Kと高温の予熱が必要であることに加え、機械的特性を低下させる原因となる黒鉛変形層及びチル組織を完全には排除できない。   However, the method for joining graphite cast iron materials disclosed in Patent Document 1 can be applied only to a material to be joined having a circular cross-section from the principle of the friction welding method. There are limitations. In addition, the spheroidal graphite cast iron material joining method disclosed in Non-Patent Document 1 requires preheating at a high temperature of, for example, 773K, and in addition to a graphite deformation layer and a chill that cause mechanical properties to deteriorate. An organization cannot be completely excluded.

以上のような従来技術における問題点に鑑み、本発明の目的は、断面形状が円形以外の被接合材にも適用可能な鋳鉄材の接合方法及びそれにより得られる接合部材を提供し、より具体的には、予備加熱を必要とせず、継手の機械的特性を低下させる黒鉛変形層及びチル組織を形成させない鋳鉄材の摩擦攪拌接合方法及びそれにより得られる摩擦攪拌接合部材を提供することにある。 In view of the above problems in the prior art, an object of the present invention is to provide a cast iron material joining method applicable to a material to be joined having a cross-sectional shape other than circular, and a joining member obtained thereby, and more specifically Specifically, it is intended to provide a friction stir welding method for a cast iron material that does not require preheating and that does not form a graphite deformed layer and a chill structure that lower the mechanical properties of the joint, and a friction stir welding member obtained thereby. .

本発明者は上記目的を達成すべく、摩擦攪拌接合条件及び摩擦攪拌接合に対する鋳鉄材の予備処理方法等について鋭意研究を重ねた結果、脱炭処理を施した鋳鉄材に摩擦攪拌接合することが極めて有効であることを見出し、本発明に到達した。   In order to achieve the above object, the present inventor conducted extensive research on the friction stir welding conditions and the pretreatment method of the cast iron material for the friction stir welding, and as a result, the friction stir welding can be performed on the cast iron material that has been decarburized. The inventors have found that the present invention is extremely effective, and have reached the present invention.

即ち、本発明は、
少なくとも一方に鋳鉄材を含む被接合材同士の接合方法であって、
前記鋳鉄材に脱炭層を形成させる第一工程と、
前記接合材同士を前記脱炭層を介して接触させて、前記脱炭層を含む被接合領域に対して摩擦攪拌接合を施す第二工程と、
を有する鋳鉄材を含む被接合材同士の接合方法を提供する。
That is, the present invention
It is a method for joining materials to be joined that include cast iron material at least in one of the following:
A first step of forming a decarburized layer on the cast iron material;
A second step of bringing the bonding materials into contact with each other via the decarburized layer, and applying friction stir welding to the bonded region including the decarburized layer;
Provided is a method for joining materials to be joined, including a cast iron material having the following.

本発明の鋳鉄材の接合方法においては、前記第二工程において、摩擦攪拌接合によって形成する前記鋳鉄材の攪拌部の深さ又は幅を、前記脱炭層の深さ又は幅と略同一とすることが好ましい。   In the cast iron material joining method of the present invention, in the second step, the depth or width of the stirring portion of the cast iron material formed by friction stir welding is substantially the same as the depth or width of the decarburized layer. Is preferred.

また、本発明の鋳鉄材の接合方法においては、前記他方の被接合材が鋳鉄材以外の金属材であり、前記第二工程において、前記鋳鉄材の上に前記金属材を重ね、前記金属材側から前記摩擦攪拌接合用の回転ツールを挿入して重ね合せ接合を施すことが好ましい。   In the cast iron material joining method of the present invention, the other material to be joined is a metal material other than the cast iron material, and in the second step, the metal material is stacked on the cast iron material, and the metal material It is preferable that the rotary tool for friction stir welding is inserted from the side to perform overlap welding.

また、本発明の鋳鉄材の接合方法においては、前記第一工程において、前記脱炭層の形成に減圧脱炭処理を用いることが好ましく、また、前記他方の被接合材がステンレス鋼材であることが好ましい。   In the method for joining cast iron materials of the present invention, it is preferable to use a vacuum decarburization treatment for forming the decarburized layer in the first step, and the other material to be joined is a stainless steel material. preferable.

本発明の接合部材は、鋳鉄材の摩擦攪拌接合領域に黒鉛変形層及びチル組織を有しないことを特徴とし、上記本発明の鋳鉄材を含む被接合材同士の接合方法によって製造されることが好ましい。 The joining member of the present invention is characterized by having no graphite deformation layer and chill structure in the friction stir welding region of the cast iron material, and can be manufactured by a method for joining materials to be joined including the cast iron material of the present invention. preferable.

本発明によれば、断面形状が円形以外の被接合材にも適用可能な鋳鉄材の接合方法及びそれにより得られる接合部材を提供し、より具体的には、予備加熱を必要とせず、継手の機械的特性を低下させる黒鉛変形層及びチル組織を形成させない鋳鉄材の摩擦攪拌接合方法及びそれにより得られる摩擦攪拌接合部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cross-sectional shape provides the joining method of the cast iron material applicable also to to-be-joined materials other than circular, and the joining member obtained by it, More specifically, it does not require preheating and is a coupling. It is possible to provide a friction stir welding method for a cast iron material that does not form a graphite deformed layer and a chill structure that lower the mechanical properties of the steel, and a friction stir welding member obtained thereby.

本発明の鋳鉄材を含む被接合材同士の接合方法の工程図である。It is process drawing of the joining method of the to-be-joined materials containing the cast iron material of this invention. 攪拌部と脱炭層との関係を示す概略図である(突合せ接合)。It is the schematic which shows the relationship between a stirring part and a decarburization layer (butt joining). 攪拌部と脱炭層との関係を示す概略図である(重ね合せ接合)。It is the schematic which shows the relationship between a stirring part and a decarburization layer (lamination joining). 鋳鉄材を含む接合部材の第一の実施形態(突合せ接合)を示す断面図である。It is sectional drawing which shows 1st embodiment (butt joining) of the joining member containing a cast iron material. 鋳鉄材を含む接合部材の第二の実施形態(重ね合せ接合)を示す断面図である。It is sectional drawing which shows 2nd embodiment (lamination joining) of the joining member containing a cast iron material. 脱炭処理を施したことにより脱炭層を有する球状黒鉛鋳鉄板の断面写真である。It is a cross-sectional photograph of the spheroidal graphite cast iron plate which has a decarburized layer by having performed the decarburization process. 実施例及び比較例において得られた継手1〜継手4及び比較継手1〜比較継手3の表面外観写真である。It is the surface appearance photograph of the coupling 1-coupling 4 and the comparative coupling 1-the comparative coupling 3 which were obtained in the Example and the comparative example. 継手1の接合界面近傍における組織を示す断面写真である。3 is a cross-sectional photograph showing the structure in the vicinity of the joint interface of the joint 1. 比較継手4の攪拌部における組織を示す断面写真である。3 is a cross-sectional photograph showing a structure in a stirring portion of a comparative joint 4. 比較継手1の接合界面近傍における組織を示す断面写真である。3 is a cross-sectional photograph showing the structure in the vicinity of the joint interface of the comparative joint 1. 継手4の接合界面近傍における組織を示す断面写真である。4 is a cross-sectional photograph showing a structure in the vicinity of a joint interface of a joint 4. 引張せん断試験に用いた試験片の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the test piece used for the tensile shear test. 各試験片の引張せん断強度の試験結果を示すグラフである。It is a graph which shows the test result of the tensile shear strength of each test piece. 引張せん断試験後の試験片の外観を示す写真である。It is a photograph which shows the external appearance of the test piece after a tensile shear test.

以下、図面を参照しながら本発明の鋳鉄材を含む被接合材同士の接合方法及びそれにより得られる接合部材の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。   Hereinafter, a representative embodiment of a method for joining materials to be joined including the cast iron material of the present invention and a joining member obtained thereby will be described in detail with reference to the drawings, but the present invention is limited only to these. It is not a thing. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description may be omitted. Further, since the drawings are for conceptually explaining the present invention, the dimensions and ratios of the components shown may be different from the actual ones.

(A)鋳鉄の接合方法
図1は、本発明の鋳鉄材を含む被接合材同士の接合方法の工程図である。本発明の鋳鉄材を含む被接合材同士の接合方法は、鋳鉄材に脱炭層を形成させる第一工程(S01)と、第一工程(S01)で形成させた脱炭層を含む被接合領域に対して摩擦攪拌接合を施す第二工程(S02)と、を有している。なお、本発明の鋳鉄の接合方法に用いる鋳鉄は特に限定されないが、球状黒鉛鋳鉄を用いることが好ましい。
(A) Cast Iron Joining Method FIG. 1 is a process diagram of a joining method between workpieces including the cast iron material of the present invention. The joining method of the to-be-joined materials containing the cast iron material of this invention is in the to-be-joined area | region containing the decarburized layer formed in the 1st process (S01) and the 1st process (S01) which form a decarburized layer in cast iron material. And a second step (S02) for performing friction stir welding. The cast iron used in the cast iron joining method of the present invention is not particularly limited, but spheroidal graphite cast iron is preferably used.

≪第一工程:脱炭処理≫
鋳鉄材への脱炭処理方法については、本発明の効果を損なわない範囲で従来公知の種々の脱炭処理方法を用いることができる。例えば、脱炭させる雰囲気として砂鉄やスケール片を用い、これを鋳鉄部材と共に鉄箱に密閉し、当該鉄箱を炉内で加熱することで脱炭を達成することができる。一般的には、1070℃前後の温度で60〜100時間加熱して脱炭処理した後、500〜600℃まで徐冷し、その後、放冷する。
≪First step: decarburization treatment≫
About the decarburization processing method to a cast iron material, the conventionally well-known various decarburization processing methods can be used in the range which does not impair the effect of this invention. For example, decarburization can be achieved by using sand iron or a scale piece as an atmosphere for decarburization, sealing it in an iron box together with a cast iron member, and heating the iron box in a furnace. Generally, after decarburizing by heating at a temperature of about 1070 ° C. for 60 to 100 hours, it is gradually cooled to 500 to 600 ° C. and then left to cool.

上述の脱炭処理方法においては、例えば、2mmの深さの脱炭層を得るために約80時間が必要となるが、処理時間を短縮して効率的に脱炭処理を行うことができるという観点から、一酸化炭素と二酸化炭素を含む雰囲気ガスを流通させた流動層熱処理炉を用いることが好ましい。この場合、窒素、水素、炭化水素及び空気の中から、任意に1つ若しくは複数種類選択した気体を雰囲気ガスに添加することで、脱炭量を調整することができる。また、一酸化炭素を発生させるために、グラファイト及び活性炭等の炭素粒子を炉内に配置してもよい。 In the decarburization method described above, for example, about 80 hours are required to obtain a decarburized layer having a depth of 2 mm, but the viewpoint that the decarburization process can be efficiently performed by reducing the processing time. Therefore, it is preferable to use a fluidized bed heat treatment furnace in which an atmospheric gas containing carbon monoxide and carbon dioxide is circulated. In this case, the amount of decarburization can be adjusted by adding one or more kinds of gases arbitrarily selected from nitrogen, hydrogen, hydrocarbons, and air to the atmospheric gas. In order to generate carbon monoxide, carbon particles such as graphite and activated carbon may be placed in the furnace.

また、従来公知の脱炭剤を用いることで、上述の脱炭速度を増大させることができる。脱炭剤としては、例えば、酸化鉄、炭酸ナトリウム、炭酸カリウム及び炭酸カルシウム等を用いることができる。   Moreover, the above-mentioned decarburization speed can be increased by using a conventionally known decarburizing agent. As the decarburizing agent, for example, iron oxide, sodium carbonate, potassium carbonate, calcium carbonate, or the like can be used.

ここで、脱炭効率及び脱炭の均質性等の観点から、本発明の鋳鉄材を含む被接合材の接合方法においては、真空加熱炉を用いた減圧脱炭処理を用いることが好ましい。真空加熱炉を用いて酸素が存在する減圧下で脱炭処理を行うことで、鋳鉄材表面近傍に形成される反応雰囲気が長時間停滞することを防止できるため、効率よく脱炭処理を行うことができる。なお、真空炉内の圧力は特に限定されず、被処理材や求められる処理時間等に応じて適宜設定すればよい。   Here, from the viewpoints of decarburization efficiency, homogeneity of decarburization, and the like, it is preferable to use a vacuum decarburization process using a vacuum heating furnace in the bonding method of the material to be bonded including the cast iron material of the present invention. By performing decarburization treatment under reduced pressure in the presence of oxygen using a vacuum heating furnace, the reaction atmosphere formed in the vicinity of the cast iron material surface can be prevented from stagnation for a long time, so that decarburization treatment can be performed efficiently. Can do. In addition, the pressure in a vacuum furnace is not specifically limited, What is necessary is just to set suitably according to a to-be-processed material, the processing time required, etc.

脱炭処理により形成するべき脱炭層の深さは、第二工程(S02)における摩擦攪拌接合条件に依存して、種々の範囲に設定することができるが、100〜1000μm程度が好ましい。脱炭層が100μm以上であれば、摩擦攪拌条件の最適化が容易であり、脱炭層が1000μm以下であれば、脱炭処理によって空孔が形成されても継手及び鋳鉄材の特性(機械的特性、耐食性及び被覆性等)をある程度、維持・確保できるからである。更には、より確実に摩擦攪拌条件の最適化を容易とし継手及び鋳鉄材の特性を維持・確保するという観点から、500〜800μm程度がより好ましい。   The depth of the decarburized layer to be formed by the decarburization treatment can be set in various ranges depending on the friction stir welding conditions in the second step (S02), but is preferably about 100 to 1000 μm. If the decarburized layer is 100 μm or more, it is easy to optimize the friction stirring conditions. If the decarburized layer is 1000 μm or less, the characteristics of the joint and cast iron material (mechanical characteristics) even if voids are formed by the decarburization process. In other words, corrosion resistance and covering properties can be maintained and secured to some extent. Furthermore, about 500-800 micrometers is more preferable from a viewpoint of optimizing friction stirring conditions more reliably and maintaining and ensuring the characteristic of a joint and cast iron material.

鋳鉄材において、被接合領域以外等で脱炭が好ましくない場合は、当該領域にマスキングを行うことで脱炭を抑制することができる。即ち、第一工程(S01)において、マスキングにより脱炭させない領域を残しておくことができる。   In the cast iron material, when decarburization is not preferable except in a bonded region, decarburization can be suppressed by masking the region. That is, in the first step (S01), it is possible to leave a region that is not decarburized by masking.

≪第二工程:摩擦攪拌接合≫
第二工程(S02)は、第一工程(S01)で形成させた脱炭層を含む被接合領域に対して摩擦攪拌接合を施す工程である。即ち、脱炭層を有する鋳鉄材を一方の被接合材とし、当該被接合材と他方の被接合材とを、当該脱炭層を介して接触させ、両者を摩擦攪拌接合する。
≪Second process: Friction stir welding≫
The second step (S02) is a step of performing friction stir welding on the bonded region including the decarburized layer formed in the first step (S01). That is, a cast iron material having a decarburized layer is used as one material to be joined, the material to be joined and the other material to be joined are brought into contact with each other via the decarburized layer, and both are friction stir welded.

摩擦攪拌接合とは、FSW(Friction Stir Welding)と称され、接合しようとする二つの金属材からなる被接合材それぞれの端部を突き合わせ、回転ツールの先端に設けられた突起部(プローブ)を両者の端部の間に挿入し、これら端部の長手方向に沿って回転ツールを回転させつつ移動させることによって、二つの金属部材を接合する方法である。   Friction stir welding is referred to as FSW (Friction Stir Welding), where the ends of the materials to be joined made of two metal materials to be joined are brought into contact with each other, and a protrusion (probe) provided at the tip of the rotary tool is used. It is a method of joining two metal members by inserting between both ends and moving the rotating tool along the longitudinal direction of these ends while rotating.

本発明における「摩擦攪拌接合」とは、回転ツールを回転させつつ接合方向に向けて移動させる摩擦攪拌接合、回転ツールを回転させつつ接合部位で移動させないスポット摩擦攪拌接合、被接合材同士を接合部位で突合せる摩擦攪拌接合、及び被接合材同士を重ね合わせて一方の被接合材の側から重ね合せた部位まで回転ツールを挿入する摩擦攪拌接合の4つのいずれかの態様、並びにこれらを任意に組み合わせた態様が含まれる。   “Friction stir welding” in the present invention refers to friction stir welding in which the rotating tool is rotated and moved in the joining direction, spot friction stir welding in which the rotating tool is not rotated and moved at the joining site, and the materials to be joined are joined together. Any one of four modes of friction stir welding to be abutted at a part and friction stir welding in which a rotating tool is inserted from the side of one of the members to be joined together by overlapping the parts to be joined, and these are arbitrarily selected Are combined with each other.

また、被接合材は鋳鉄材同士でもよく、鋳鉄材とその他の金属材との組み合わせであってもよい。ここで、接合領域における黒鉛変形層及びチル組織の形成を防止するため、少なくとも鋳鉄材の被接合領域については脱炭処理が施されている必要がある。なお、本願において黒鉛変形層とは、摩擦攪拌接合を施す第二工程(S02)によって形成されるものを意味し、第二工程(S02)以前に母材に有するものは含まない。   Further, the materials to be joined may be cast iron materials, or a combination of cast iron materials and other metal materials. Here, in order to prevent the formation of the graphite deformation layer and the chill structure in the joining region, at least the joined region of the cast iron material needs to be decarburized. In addition, in this application, a graphite deformation layer means what is formed by the 2nd process (S02) which performs friction stir welding, and the thing which has in a base material before a 2nd process (S02) is not included.

ここで、図2及び図3を用いて、摩擦攪拌接合によって形成される攪拌部(回転ツールの挿入に起因した塑性流動によって形成される領域)と、脱炭層と、の関係を説明する。突合せ接合の場合の攪拌部6と脱炭層4との関係を図2に示し、重ね合せ接合の場合を攪拌部6と脱炭層4との関係を図3に示す。本発明においては、摩擦攪拌接合によって形成される攪拌部の深さ又は幅は、脱炭層の深さとほぼ同程度とすることが好ましい。ここで、脱炭層4に存在する空孔は摩擦攪拌接合時にある程度押し潰されるため、各種機械的特性等に及ぼす空孔の影響が許容される限りにおいて、攪拌部6は脱炭層4より小さくてもよい。なお、一般的に攪拌部6の母材結晶粒は微細化されることが多く、未処理部よりも強度等が向上する。   Here, the relationship between the stirrer formed by friction stir welding (region formed by plastic flow resulting from insertion of a rotating tool) and the decarburized layer will be described with reference to FIGS. 2 and 3. FIG. 2 shows the relationship between the stirring unit 6 and the decarburized layer 4 in the case of butt joining, and FIG. 3 shows the relationship between the stirring unit 6 and the decarburized layer 4 in the case of lap joining. In the present invention, the depth or width of the stirring portion formed by friction stir welding is preferably approximately the same as the depth of the decarburized layer. Here, since the pores existing in the decarburized layer 4 are crushed to some extent during the friction stir welding, the stirrer 6 is smaller than the decarburized layer 4 as long as the influence of the pores on various mechanical characteristics and the like is allowed. Also good. In general, the base material crystal grains of the stirring unit 6 are often refined, and the strength and the like are improved as compared with the untreated part.

なお、図2及び図3については、鋳鉄板2全体に対して脱炭処理を行った場合を想定しており、鋳鉄材2の全外周面に脱炭層4が形成されている(理解を容易とするために、脱炭層4の割合を実際よりも大きく記載している)。また、図3については鋳鉄板2と鋳鉄板2以外の金属板8とを接合する場合について示している。   2 and 3, it is assumed that the entire cast iron plate 2 is decarburized, and the decarburized layer 4 is formed on the entire outer peripheral surface of the cast iron material 2 (easy to understand). Therefore, the ratio of the decarburized layer 4 is shown larger than the actual). FIG. 3 shows a case where the cast iron plate 2 and the metal plate 8 other than the cast iron plate 2 are joined.

図2に示す突合せ接合の場合、突合せ面に存在する脱炭層4の内部に回転ツールを挿入し、脱炭層4の幅と同程度の攪拌部6を形成させることが好ましい。攪拌部6が脱炭層4の外に及ぶと塑性流動の影響で黒鉛変形層が形成され、一方で、攪拌部6が脱炭層4の幅よりも小さい場合は脱炭層4に存在する空孔が継手強度を低下させてしまうからである。なお、脱炭層4に存在する空孔は、摩擦攪拌接合に伴う塑性流動によって消滅する。   In the case of the butt joint shown in FIG. 2, it is preferable to insert a rotating tool into the decarburized layer 4 existing on the butt surface to form the stirring unit 6 having the same width as the decarburized layer 4. When the stirrer 6 extends outside the decarburized layer 4, a graphite deformation layer is formed due to the influence of plastic flow. On the other hand, when the stirrer 6 is smaller than the width of the decarburized layer 4, pores present in the decarburized layer 4 are present. This is because the joint strength is lowered. In addition, the void | hole which exists in the decarburization layer 4 is lose | disappeared by the plastic flow accompanying friction stir welding.

図3に示す重ね合せ接合の場合、鋳鉄板2と金属板8との重ね合せ面に存在する脱炭層4の深さと同程度の攪拌部6を形成させることが好ましい。攪拌部6が脱炭層4の外に及ぶと塑性流動の影響で黒鉛変形層が形成され、一方で、攪拌部6が脱炭層4の深さよりも小さい場合は脱炭層4に存在する空孔が継手強度を低下させてしまうからである。なお、脱炭層4に存在する空孔は、摩擦攪拌接合に伴う塑性流動によって消滅する。   In the case of lap joining shown in FIG. 3, it is preferable to form a stirring portion 6 having the same degree as the depth of the decarburized layer 4 existing on the lap surface of the cast iron plate 2 and the metal plate 8. When the stirrer 6 extends outside the decarburized layer 4, a graphite deformation layer is formed due to the influence of plastic flow. On the other hand, when the stirrer 6 is smaller than the depth of the decarburized layer 4, voids present in the decarburized layer 4 are present. This is because the joint strength is lowered. In addition, the void | hole which exists in the decarburization layer 4 is lose | disappeared by the plastic flow accompanying friction stir welding.

上述のとおり、本発明の鋳鉄材を含む被接合材の接合方法は種々の接合態様について適用することができるが、他方の被接合材が鋳鉄材以外の金属材であり、鋳鉄材の上に鋳鉄材以外の金属材を重ね、鋳鉄材以外の金属材側から回転ツールを挿入して重ね合せ接合を施すことが好ましい。特に、他方の被接合材がステンレス鋼材であることが好ましい。ステンレス鋼に関しては黒鉛変形層及びチル組織の形成を考慮する必要がなく、加えて、鋳鉄材とステンレス鋼材とを接合することで、鋳鉄部材に耐食性等を付与することができるからである。   As described above, the joining method of the material to be joined including the cast iron material of the present invention can be applied to various joining modes, but the other material to be joined is a metal material other than the cast iron material, and is on the cast iron material. It is preferable that metal materials other than the cast iron material are stacked, and a rotary tool is inserted from the metal material side other than the cast iron material to perform the overlap bonding. In particular, the other material to be joined is preferably a stainless steel material. For stainless steel, it is not necessary to consider the formation of a graphite deformed layer and a chill structure, and in addition, corrosion resistance and the like can be imparted to the cast iron member by joining the cast iron material and the stainless steel material.

攪拌部6の大きさ及び形状は、回転ツールの大きさ及び形状に加え、摩擦攪拌接合条件によって適宜調節することができる。摩擦攪拌接合を行う場合、基本的にはツール位置は任意の設定値で規定されるが、接合中の入熱が小さくなる条件(回転ツールを低回転速度及び高移動速度とする条件)では回転ツールが浮き上がる傾向となる。また、ツールに加える荷重で制御する荷重制御方式やモータに加わるトルクで制御するトルク制御方式で摩擦攪拌接合を行う場合、ツール回転速度及びツール移動速度と設定荷重がバランスするツール位置となる。   The size and shape of the stirring unit 6 can be appropriately adjusted depending on the friction stir welding conditions in addition to the size and shape of the rotary tool. When performing friction stir welding, the tool position is basically defined by an arbitrary set value, but it rotates under conditions where the heat input during welding is low (the rotating tool has a low rotational speed and a high moving speed). The tool tends to rise. Further, when the friction stir welding is performed by a load control method that is controlled by a load applied to the tool or a torque control method that is controlled by a torque applied to the motor, the tool position is a balance between the tool rotation speed and the tool movement speed and the set load.

また、攪拌部6の幅は摩擦攪拌接合に伴う入熱が大きい場合(高荷重、高回転及び低移動速度)は大きくなり、入熱が小さい場合(低荷重、低回転及び高移動速度)は小さくなる。これらの関係を利用し、摩擦攪拌接合に用いる回転ツールの大きさ及び形状と、接合条件を適宜設定することで、攪拌部6の大きさ及び形状を制御することができる。   In addition, the width of the stirring unit 6 is large when the heat input accompanying the friction stir welding is large (high load, high rotation and low moving speed), and when the heat input is small (low load, low rotation and high moving speed). Get smaller. By utilizing these relationships, the size and shape of the stirring unit 6 can be controlled by appropriately setting the size and shape of the rotary tool used for friction stir welding and the joining conditions.

(B)鋳鉄材を含む接合部材
図4は、本発明の鋳鉄材を含む接合部材の第一の実施形態(突合せ接合)を示した断面図である。また、図5は本発明の鋳鉄材を含む接合部材の第二の実施形態(重ね合せ接合)を示した断面図である。なお、図5については鋳鉄材と鋳鉄材以外の金属材とを接合する場合について示している。
(B) Joining Member Containing Cast Iron Material FIG. 4 is a cross-sectional view showing a first embodiment (butt joint) of a joining member containing a cast iron material of the present invention. Moreover, FIG. 5 is sectional drawing which showed 2nd embodiment (lamination joining) of the joining member containing the cast iron material of this invention. In addition, about FIG. 5, it has shown about the case where a cast iron material and metal materials other than a cast iron material are joined.

本発明の鋳鉄材を含む接合部材は、攪拌部6を有しており、攪拌部6に黒鉛変形層及びチル組織が存在しないことを特徴としている。なお、本発明の鋳鉄を含む接合部材に用いる鋳鉄材は特に限定されないが、球状黒鉛鋳鉄を用いることが好ましい。また、本発明において黒鉛変形層とは、摩擦攪拌接合を施す第二工程(S02)によって形成されるものを意味し、第二工程(S02)以前に母材に有するものは含まない。 The joining member including the cast iron material of the present invention has a stirring portion 6, and is characterized in that a graphite deformed layer and a chill structure do not exist in the stirring portion 6. In addition, although the cast iron material used for the joining member containing the cast iron of the present invention is not particularly limited, it is preferable to use spheroidal graphite cast iron. Moreover, in this invention, a graphite deformation layer means what is formed by the 2nd process (S02) which performs friction stir welding, and the thing which has in a base material before a 2nd process (S02) is not included.

接合部において、脱炭層4は完全に消失し、攪拌部6となっていることが好ましいが、引張強度及び疲労強度等の機械的特性に大きな影響を与えない程度において、脱炭層4が残存していてもよい。なお、接合部以外における脱炭層4については、残っていても消失していてもよく、特に限定されるものではない。   It is preferable that the decarburized layer 4 completely disappears and becomes the stirring unit 6 at the joint, but the decarburized layer 4 remains to the extent that mechanical properties such as tensile strength and fatigue strength are not greatly affected. It may be. In addition, about the decarburized layer 4 other than a junction part, it may remain | survive or may lose | disappear, and it is not specifically limited.

接合部材は鋳鉄材同士で構成されていてもよく、鋳鉄材と鋳鉄材以外の金属材との組み合わせで構成されていてもよいが、鋳鉄材とステンレス鋼材とで構成されていることが好ましい。なお、本発明の鋳鉄の接合部材は、本発明の鋳鉄の接合方法を用いて製造することができる。   The joining member may be composed of cast iron materials or a combination of a cast iron material and a metal material other than the cast iron material, but is preferably composed of a cast iron material and a stainless steel material. The cast iron joining member of the present invention can be manufactured using the cast iron joining method of the present invention.

また、摩擦攪拌接合の態様には、回転ツールを回転させつつ接合方向に向けて移動させる摩擦攪拌接合、回転ツールを回転させつつ接合部位で移動させないスポット摩擦攪拌接合、被接合材同士を接合部位で突合せる摩擦攪拌接合、及び被接合材同士を重ね合わせて一方の被接合材の側から重ね合せた部位まで回転ツールを挿入する摩擦攪拌接合の4つ並びにこれらを組み合わせたものが含まれる。   In addition, the friction stir welding mode includes a friction stir welding in which the rotating tool is rotated and moved in the joining direction, a spot friction stir welding in which the rotating tool is rotated and not moved at the joining site, and the materials to be joined are joined to each other. 4, friction stir welding to be brought into contact with each other, friction stir welding in which the members to be joined are overlapped and the rotary tool is inserted from the side of one of the materials to be joined to each other, and combinations thereof are included.

以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。   As mentioned above, although typical embodiment of this invention was described, this invention is not limited only to these, Various design changes are possible and these design changes are all contained in the technical scope of this invention. It is.

≪実施例1≫
真空加熱炉を用い、板厚3mmの球状黒鉛鋳鉄(FCD450−10)板に対して脱炭処理を施した。用いた球状黒鉛鋳鉄板の組成を表1に示す。970℃の炉中で24時間の脱炭処理を行うことで、図6に示す脱炭層を有する球状黒鉛鋳鉄板を得た。球状黒鉛鋳鉄板表面近傍で観察される小さな黒い球状の領域が脱炭によって形成した空孔であり、約700μmの深さの脱炭層が形成されていることが分かる。
Example 1
Using a vacuum heating furnace, decarburization treatment was performed on a spheroidal graphite cast iron (FCD450-10) plate having a thickness of 3 mm. Table 1 shows the composition of the spheroidal graphite cast iron plate used. By performing decarburization treatment for 24 hours in a furnace at 970 ° C., a spheroidal graphite cast iron plate having a decarburized layer shown in FIG. 6 was obtained. It can be seen that small black spherical regions observed near the surface of the spheroidal graphite cast iron plate are pores formed by decarburization, and a decarburized layer having a depth of about 700 μm is formed.

上述の脱炭処理を施した球状黒鉛鋳鉄板の上に厚さ1.5mmのステンレス鋼(SUS304)板を重ね合せ、当該ステンレス鋼板の上から回転ツールを挿入し、摩擦攪拌接合(線接合)を施した。用いたステンレス鋼板の組成を表2に示す。   A stainless steel (SUS304) plate having a thickness of 1.5 mm is overlaid on the spheroidal graphite cast iron plate subjected to the above decarburization treatment, and a rotating tool is inserted from above the stainless steel plate, and friction stir welding (line joining) is performed. Was given. Table 2 shows the composition of the stainless steel plate used.

回転ツールには超硬合金製のもの(ショルダ径:15mm,プローブ径:6mm,プローブ長:1.6mm)を用い、ツール回転速度を300rpm、ツール移動速度を100mm/min、荷重を1.6tonfとして荷重制御方式にて摩擦攪拌接合を行い、継手1を得た。なお、ツール前進角は3°とし、摩擦攪拌接合はAr雰囲気中で行った。   A rotating tool made of cemented carbide (shoulder diameter: 15 mm, probe diameter: 6 mm, probe length: 1.6 mm) was used, the tool rotation speed was 300 rpm, the tool movement speed was 100 mm / min, and the load was 1.6 tonf. As a result, friction stir welding was performed by a load control method to obtain a joint 1. The tool advance angle was 3 °, and the friction stir welding was performed in an Ar atmosphere.

≪実施例2≫
摩擦攪拌接合におけるツール回転速度を400rpm、ツール移動速度を80mm/minとした以外は実施例1と同様にして、継手2を得た。
<< Example 2 >>
A joint 2 was obtained in the same manner as in Example 1 except that the tool rotation speed in friction stir welding was 400 rpm and the tool moving speed was 80 mm / min.

≪実施例3≫
摩擦攪拌接合におけるツール回転速度を400rpm、ツール移動速度を150mm/minとした以外は実施例1と同様にして、継手3を得た。
Example 3
A joint 3 was obtained in the same manner as in Example 1 except that the tool rotation speed in friction stir welding was 400 rpm and the tool moving speed was 150 mm / min.

≪実施例4≫
回転ツールのプローブ長を2.0mmとし、摩擦攪拌接合におけるツール回転速度を400rpm、ツール移動速度を180mm/minとした以外は実施例1と同様にして、継手4を得た。
Example 4
A joint 4 was obtained in the same manner as in Example 1 except that the probe length of the rotary tool was 2.0 mm, the tool rotation speed in friction stir welding was 400 rpm, and the tool movement speed was 180 mm / min.

≪比較例1≫
回転ツールのプローブ長を2.0mmとした以外は実施例1と同様にして、比較継手1を得た。
≪Comparative example 1≫
Comparative joint 1 was obtained in the same manner as in Example 1 except that the probe length of the rotary tool was set to 2.0 mm.

≪比較例2≫
回転ツールのプローブ長を2.0mmとし、摩擦攪拌接合におけるツール回転速度を400rpm、ツール移動速度を100mm/minとした以外は実施例1と同様にして、比較継手2を得た。
≪Comparative example 2≫
A comparative joint 2 was obtained in the same manner as in Example 1 except that the probe length of the rotary tool was 2.0 mm, the tool rotation speed in friction stir welding was 400 rpm, and the tool movement speed was 100 mm / min.

≪比較例3≫
回転ツールのプローブ長を2.0mmとし、摩擦攪拌接合におけるツール回転速度を400rpm、ツール移動速度を150mm/minとした以外は実施例1と同様にして、比較継手3を得た。
«Comparative Example 3»
Comparative joint 3 was obtained in the same manner as in Example 1 except that the probe length of the rotary tool was 2.0 mm, the tool rotation speed in friction stir welding was 400 rpm, and the tool movement speed was 150 mm / min.

≪比較例4≫
球状黒鉛鋳鉄板に脱炭処理を施さない以外は実施例1と同様にして、比較継手4を得た。
<< Comparative Example 4 >>
Comparative joint 4 was obtained in the same manner as in Example 1 except that the spheroidal graphite cast iron plate was not subjected to decarburization treatment.

≪比較例5≫
球状黒鉛鋳鉄板に脱炭処理を施さず、摩擦攪拌接合におけるツール回転速度を400rpm、ツール移動速度を50mm/minとした以外は実施例1と同様にして、比較継手5を得た。
<< Comparative Example 5 >>
Comparative joint 5 was obtained in the same manner as in Example 1 except that the spheroidal graphite cast iron plate was not decarburized, the tool rotation speed in friction stir welding was 400 rpm, and the tool movement speed was 50 mm / min.

≪比較例6≫
球状黒鉛鋳鉄板に脱炭処理を施さず、摩擦攪拌接合におけるツール回転速度を400rpm、ツール移動速度を100mm/minとした以外は実施例1と同様にして、比較継手6を得た。
<< Comparative Example 6 >>
Comparative joint 6 was obtained in the same manner as in Example 1 except that the spheroidal graphite cast iron plate was not decarburized, the tool rotation speed in friction stir welding was 400 rpm, and the tool movement speed was 100 mm / min.

≪比較例7≫
球状黒鉛鋳鉄板に脱炭処理を施さず、摩擦攪拌接合におけるツール回転速度を400rpm、ツール移動速度を150mm/minとした以外は実施例1と同様にして、比較継手7を得た。
<< Comparative Example 7 >>
Comparative joint 7 was obtained in the same manner as in Example 1 except that the spheroidal graphite cast iron plate was not decarburized, the tool rotation speed in friction stir welding was 400 rpm, and the tool movement speed was 150 mm / min.

継手1〜継手4及び比較継手1〜比較継手3の表面外観写真を図7に示す。いずれの継手においても顕著なバリや表面欠陥等は認められず、外観的には良好な継手が得られていることが分かる。   Surface appearance photographs of the joint 1 to the joint 4 and the comparative joint 1 to the comparative joint 3 are shown in FIG. In any of the joints, no significant burrs or surface defects are observed, and it can be seen that a good joint is obtained in appearance.

継手1の接合界面近傍における組織写真を図8に示す。接合部の全ての領域(中央、右端部及び左端部)において黒鉛変形層及びチル組織は観察されない。また、脱炭処理によって形成した空孔は塑性流動によって完全に消失しており、極めて良好な継手が得られていることが確認できる。   A structure photograph in the vicinity of the joint interface of the joint 1 is shown in FIG. The graphite deformation layer and the chill structure are not observed in all regions (center, right end, and left end) of the joint. Moreover, the void | hole formed by the decarburization process has lose | disappeared completely by plastic flow, and it can confirm that a very favorable joint is obtained.

比較継手4の攪拌部における組織写真を図9に示す。比較継手4では脱炭処理を施していないため、攪拌部全域において黒鉛変形層が観察される。特に、塑性流動が強い板材表面近傍では、著しく変形した黒鉛変形層が形成されている。   A structural photograph in the stirring portion of the comparative joint 4 is shown in FIG. Since the comparative joint 4 is not decarburized, a graphite deformation layer is observed in the entire stirring portion. In particular, a graphite deformed layer that is significantly deformed is formed in the vicinity of the plate surface having a strong plastic flow.

比較継手1の接合界面近傍における組織写真を図10に示す。特に、接合部中央において顕著に黒鉛変形層の形成が確認できる。これは、プローブ長が2.0mmの回転ツールを用いたため、摩擦攪拌接合中に塑性流動が脱炭層を突き抜け、球状黒鉛が存在する領域に達したことが原因である。   A structural photograph in the vicinity of the joint interface of the comparative joint 1 is shown in FIG. In particular, the formation of a graphite deformation layer can be confirmed remarkably at the center of the joint. This is because a rotating tool having a probe length of 2.0 mm was used, so that plastic flow penetrated the decarburized layer during friction stir welding and reached a region where spherical graphite was present.

継手4の接合界面近傍における組織写真を図11に示す。継手4においては、プローブ長さが2.0mmの回転ツールを用いているにもかかわらず、黒鉛変形層が確認されない。これは、摩擦攪拌接合の回転ピッチ(ツール移動速度/ツール回転速度)が比較的大きく、接合中の入熱量が小さいため、被接合材からの反力によってツールの位置が僅かに上方に変化し、塑性流動が脱炭層内に納まったと考えられる。また、チル組織及び脱炭処理によって形成した空孔が存在しておらず、極めて良好な継手が得られていることが確認できる。   A structural photograph in the vicinity of the joint interface of the joint 4 is shown in FIG. In the joint 4, the graphite deformation layer is not confirmed although a rotating tool having a probe length of 2.0 mm is used. This is because the rotational pitch of friction stir welding (tool moving speed / tool rotating speed) is relatively large and the heat input during welding is small, so the position of the tool changes slightly upward due to the reaction force from the materials to be joined. It is thought that the plastic flow was stored in the decarburized bed. Moreover, the void | hole formed by the chill structure | tissue and the decarburization process does not exist, and it can confirm that a very favorable joint is obtained.

表3に摩擦攪拌接合において用いる回転ツールのプローブ長及び回転ピッチと黒鉛変形層の有無との関係を示す。プローブ長が1.6mmの場合、全ての継手において黒鉛変形層が形成していない。これは、今回用いた被接合材の配置及び脱炭層の厚さに対し、好適に用いることができるプローブ長が1.6mmであることを示している。   Table 3 shows the relationship between the probe length and rotation pitch of the rotary tool used in the friction stir welding and the presence or absence of the graphite deformation layer. When the probe length is 1.6 mm, the graphite deformation layer is not formed in all the joints. This has shown that the probe length which can be used suitably is 1.6 mm with respect to arrangement | positioning of the to-be-joined material used this time, and the thickness of a decarburization layer.

球状黒鉛鋳鉄板の上側に配置されたステンレス鋼板の厚さが1.5mmであり、球状黒鉛鋳鉄板に形成させた脱炭層の厚さが約700μmであることから、それら合計の厚さは約2.2mmとなる。ここで、プローブ直下の塑性流動等を考慮すると、プローブ長が1.6mmのツールを用いた場合に、攪拌領域の厚さが上述の約2.2mmとほぼ等しくなったものと考えられる。 Since the thickness of the stainless steel plate disposed on the upper side of the spheroidal graphite cast iron plate is 1.5 mm, and the thickness of the decarburized layer formed on the spheroidal graphite cast iron plate is about 700 μm, the total thickness is about 2.2 mm. Here, considering the plastic flow directly under the probe, it is considered that when the tool having a probe length of 1.6 mm is used, the thickness of the stirring region is substantially equal to the above-described about 2.2 mm.

一方で、プローブ長が2.0mmの場合、回転ピッチが0.45の場合を除いて黒鉛変形層が形成している。プローブ長が2.0mmの場合は塑性流動の影響が脱炭層の外に及び、黒鉛変形層が形成してしまうが、回転ピッチを0.45と大きくすることで回転ツールが僅かに浮き上がり、結果として好適な範囲で塑性流動が生じたものと考えられる。 On the other hand, when the probe length is 2.0 mm, the graphite deformation layer is formed except when the rotation pitch is 0.45. When the probe length is 2.0 mm, the influence of plastic flow is outside the decarburized layer and a graphite deformed layer is formed, but by increasing the rotation pitch to 0.45, the rotating tool slightly floats, resulting in It is considered that plastic flow occurred within a suitable range.

[引張せん断試験]
上記実施例及び比較例で得られた継手を用いて、図12に示す試験片を作製し、引張せん断強度を測定した。なお、当該試験片は継手を接合方向に対して垂直に幅10mmに切断している。各試験片の引張せん断強度を図13に示す。
[Tensile shear test]
Using the joints obtained in the above Examples and Comparative Examples, a test piece shown in FIG. 12 was prepared, and the tensile shear strength was measured. In addition, the said test piece cut | disconnected the joint to the width | variety 10mm perpendicular | vertical with respect to the joining direction. The tensile shear strength of each test piece is shown in FIG.

黒鉛変形層が形成した比較継手1〜比較継手7に関しては、引張せん断強度が最大でも6kN程度に留まっている。これに対し、継手1〜継手4に関しては、引張せん断強度が比較継手1〜比較継手7の約2倍に達していることが分かる。   Regarding the comparative joint 1 to the comparative joint 7 formed with the graphite deformation layer, the tensile shear strength remains at about 6 kN at the maximum. On the other hand, with regard to the joints 1 to 4, it can be seen that the tensile shear strength reaches about twice that of the comparative joints 1 to 7.

引張せん断試験後の試験片外観を図14に示す。実施例1で得られた継手1では、接合部ではなくステンレス鋼板で母材破断しており、被接合材の機械的特性を十分に活用し得る継手となっている。これに対し、比較例1で得られた比較継手1では、接合部(攪拌部)において、黒鉛変形層に沿って破断している。   The appearance of the test piece after the tensile shear test is shown in FIG. In the joint 1 obtained in Example 1, the base material is broken not by the joining portion but by the stainless steel plate, so that the joint can sufficiently utilize the mechanical properties of the materials to be joined. In contrast, in the comparative joint 1 obtained in Comparative Example 1, the joint (stirring portion) is broken along the graphite deformation layer.

2・・・鋳鉄板
4・・・脱炭層
6・・・攪拌部
8・・・金属板
2 ... Cast iron plate 4 ... Decarburized layer 6 ... Stirrer 8 ... Metal plate

Claims (6)

少なくとも一方に鋳鉄材を含む被接合材同士の接合方法であって、
前記鋳鉄材に脱炭層を形成させる第一工程と、
前記接合材同士を前記脱炭層を介して接触させて、前記脱炭層を含む被接合領域に対して摩擦攪拌接合を施す第二工程と、
を有する鋳鉄材を含む被接合材同士の接合方法。
It is a method for joining materials to be joined that include cast iron material at least in one of the following:
A first step of forming a decarburized layer on the cast iron material;
A second step of bringing the bonding materials into contact with each other via the decarburized layer, and applying friction stir welding to the bonded region including the decarburized layer;
The joining method of the to-be-joined materials containing the cast iron material which has this.
前記第二工程において、
摩擦攪拌接合によって形成する前記鋳鉄材の攪拌部の深さ又は幅を、前記脱炭層の深さ又は幅と略同一とすること、
を特徴とする請求項1に記載の鋳鉄材を含む被接合材同士の接合方法。
In the second step,
The depth or width of the stirring portion of the cast iron material formed by friction stir welding is substantially the same as the depth or width of the decarburized layer;
The joining method of the to-be-joined materials containing the cast iron material of Claim 1 characterized by these.
前記他方の被接合材が鋳鉄材以外の金属材であり、
前記第二工程において、前記鋳鉄材の上に前記金属材を重ね、前記金属材側から前記摩擦攪拌接合用の回転ツールを挿入して重ね合せ接合を施すこと、
を特徴とする請求項1又は2に記載の鋳鉄材を含む被接合材同士の接合方法。
The other material to be joined is a metal material other than cast iron material,
In the second step, the metal material is overlaid on the cast iron material, and the rotary tool for friction stir welding is inserted from the metal material side to perform overlap bonding,
The joining method of the to-be-joined materials containing the cast iron material of Claim 1 or 2 characterized by these.
前記第一工程において、前記脱炭層の形成に減圧脱炭処理を用いること、
を特徴とする請求項1〜3のいずれかに記載の鋳鉄材を含む被接合材同士の接合方法。
In the first step, a vacuum decarburization treatment is used to form the decarburization layer,
The joining method of the to-be-joined materials containing the cast iron material in any one of Claims 1-3 characterized by these.
前記他方の被接合材がステンレス鋼材であること、
を特徴とする請求項1〜4のいずれかに記載の鋳鉄材を含む被接合材同士の接合方法。
The other material to be joined is a stainless steel material,
The joining method of the to-be-joined materials containing the cast iron material in any one of Claims 1-4 characterized by these.
前記鋳鉄材の摩擦攪拌接合領域に黒鉛変形層及びチル組織を有しないこと、
を特徴とする請求項1〜5のいずれかに記載の鋳鉄材を含む被接合材同士の接合方法によって形成された接合部材。
Not having a graphite deformation layer and a chill structure in the friction stir welding region of the cast iron material,
The joining member formed by the joining method of the to-be-joined materials containing the cast iron material in any one of Claims 1-5 characterized by these.
JP2013060853A 2013-03-22 2013-03-22 Joint method for cast iron material and joint member obtained thereby Pending JP2014184465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013060853A JP2014184465A (en) 2013-03-22 2013-03-22 Joint method for cast iron material and joint member obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013060853A JP2014184465A (en) 2013-03-22 2013-03-22 Joint method for cast iron material and joint member obtained thereby

Publications (1)

Publication Number Publication Date
JP2014184465A true JP2014184465A (en) 2014-10-02

Family

ID=51832549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013060853A Pending JP2014184465A (en) 2013-03-22 2013-03-22 Joint method for cast iron material and joint member obtained thereby

Country Status (1)

Country Link
JP (1) JP2014184465A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108296625A (en) * 2018-02-09 2018-07-20 西京学院 A kind of xenogenesis thickness spheroidal graphite cast-iron connection method based on agitating friction weldering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108296625A (en) * 2018-02-09 2018-07-20 西京学院 A kind of xenogenesis thickness spheroidal graphite cast-iron connection method based on agitating friction weldering
CN108296625B (en) * 2018-02-09 2020-06-30 西京学院 Friction stir welding-based method for connecting nodular cast irons with different thicknesses

Similar Documents

Publication Publication Date Title
Watanabe et al. Joining of aluminum alloy to steel by friction stir welding
Li et al. Effect of welding parameters on microstructure and mechanical properties of AA6061-T6 butt welded joints by stationary shoulder friction stir welding
JP6500317B2 (en) Friction bonding method
Rajakumar et al. Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints
JP5099009B2 (en) Metal processing method and structure
JP6497451B2 (en) Friction stir welding method and apparatus
WO2016147668A1 (en) Friction stir welding apparatus for structural steel
JP6739854B2 (en) Friction welding method
JPWO2015045299A1 (en) Friction stir welding method for structural steel and method for manufacturing a joint for structural steel
JP2009148821A (en) Friction-stir weldment and system and method for producing the same
Tiwari et al. Effect of tool offset and rotational speed in dissimilar friction stir welding of AISI 304 stainless steel and mild steel
JP6332561B2 (en) Friction stir welding method and apparatus for structural steel
KR20180122668A (en) Low temperature bonding method of metal materials and bonding structure
JP6332562B2 (en) Friction stir welding method and apparatus for structural steel
JP4607133B2 (en) Friction stir processing tool and method of manufacturing friction stir processed product
JP6958099B2 (en) Join joint
JP2014184465A (en) Joint method for cast iron material and joint member obtained thereby
JP4543204B2 (en) Friction stir welding method
KR20130045025A (en) Method for welding aluminium alloy and titanium alloy by hybrid friction stir welding with tungsten inert gas welding
KR101276332B1 (en) Method For Welding Magnesium Alloy and Structural Steel By Hybrid Friction Stir Welding with Tungsten Inert Gas Welding
Li et al. Feasibility and interface migration characteristics of friction stir lap welding of LA141 Mg-Li alloy
Husseina et al. The Joining of Three Dissimilar Metallic Alloys by a Single-Pass Friction Stir Welding
Abe et al. Dissimilar metal joining of magnesium alloy to steel by FSW
Feng et al. Friction stir welding of API Garde 65 steel pipes
Moosabeiki et al. Influences of tool pin profile and tool shoulder curvature on the formation of friction stir welding zone in AA6061 aluminium alloy