JP2014182534A - Alarm system - Google Patents

Alarm system Download PDF

Info

Publication number
JP2014182534A
JP2014182534A JP2013055849A JP2013055849A JP2014182534A JP 2014182534 A JP2014182534 A JP 2014182534A JP 2013055849 A JP2013055849 A JP 2013055849A JP 2013055849 A JP2013055849 A JP 2013055849A JP 2014182534 A JP2014182534 A JP 2014182534A
Authority
JP
Japan
Prior art keywords
temperature
fire
alarm
correction coefficient
increase rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013055849A
Other languages
Japanese (ja)
Other versions
JP6282039B2 (en
Inventor
Hidenari Matsukuma
秀成 松熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2013055849A priority Critical patent/JP6282039B2/en
Publication of JP2014182534A publication Critical patent/JP2014182534A/en
Application granted granted Critical
Publication of JP6282039B2 publication Critical patent/JP6282039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Alarm Systems (AREA)
  • Fire Alarms (AREA)

Abstract

PROBLEM TO BE SOLVED: To appropriately perform fire determination to provide an alarm, without detection delay or a false alarm, even when performing differential type fire determination in which a temperature rise rate is obtained with an alarm unit, on the basis of the measured temperature of a temperature measuring chip, to be compared with a threshold.SOLUTION: Temperature measuring chips 10-1-10-3 are set at and near a sofa, a heater, and a trash box to transmit temperature measurement signals to an alarm unit 100. The alarm unit 100 performs fire determination (differential type fire determination), in the case of a temperature rise rate of a measured temperature having a predetermined threshold or more, to provide an alarm. The alarm unit 100 corrects a temperature rise rate, detected based on measurement sensitivity, with a predetermined correction coefficient based on the assumption of a temperature rise in setting environment of the temperature measuring chips, and compares the corrected temperature rise rate with the threshold to perform fire determination. When a slow temperature rise associated with fire is assumed, the alarm unit 100 corrects the temperature rise rate by multiplying it by a correction coefficient more than 1, compares it with the predetermined threshold to perform fire determination, and thereby preventing delay in fire determination.

Description

本発明は、監視領域に設置されている機器や場所の温度をスポット的に測定して火災につながる異常を検知して警報する警報システムに関する。   The present invention relates to an alarm system that measures the temperature of devices and places installed in a monitoring area in a spot manner to detect and warn of an abnormality leading to a fire.

従来、住宅等における火災などの異常を検知して警報する警報器が普及している。このうち、住宅用火災警報器を住警器と言う。   2. Description of the Related Art Conventionally, alarm devices that detect and warn of an abnormality such as a fire in a house have become widespread. Of these, residential fire alarms are referred to as residential alarms.

このような住警器にあっては、電池電源で動作し、火災を検知するセンサ部と火災を警報する警報部を一体に備え、センサ部の検出信号から火災を検知すると警報部から所定パターンの火災警報音を出力して報知するようにしており、所謂自動火災報知設備のように火災受信機等を必要とせず住警器単体で火災監視と警報報知ができることから、設置が簡単でコスト的にも安価であり、一般住宅での設置義務化に伴い広く普及している。   In such a house alarm device, it is operated by a battery power source, and is integrally provided with a sensor unit for detecting a fire and an alarm unit for alarming a fire. When a fire is detected from a detection signal of the sensor unit, a predetermined pattern is generated from the alarm unit. Because the fire alarm sound is output and notified, and fire monitoring and alarm notification can be performed with a single residential alarm without the need for a fire receiver as in the so-called automatic fire alarm system, installation is simple and cost-effective. It is also inexpensive and has become widespread with the mandatory installation in ordinary houses.

また、複数の住警器間で通信を行うことによって、任意の住警器で火災警報音が出力されると、他の住警器でも連動して火災警報音を出力させる連動型の住警器も実用化され、普及している(特許文献4)。   In addition, by communicating between multiple home alarms, when a fire alarm sound is output from any home alarm, an interlocked home police that outputs a fire alarm sound in conjunction with other home alarms. The device has also been put into practical use and is widely used (Patent Document 4).

特開2007−094719号公報JP 2007-094719 A 実用新案登録第3143139号公報Utility Model Registration No. 3143139 特開2011−170877号公報JP 2011-170877 A 特開2009−140236号公報JP 2009-140236 A

しかしながら、火災が発生する場所は各種ストーブ、ガスコンロ等の火気を使用している場所または喫煙などで火気を使用する場所やくず入れ等であり、火災を早期に発見するためには、これらの場所又はその近傍に住警器を設置すればよいが、現在の住警器やその他の火災警報器は、例えば監視領域となる部屋全体を見渡せる天井面や壁面上部に設置されており、上記のような火災の可能性のある場所やその近傍についてスポット的に火災を監視するようにはなっていない。   However, places where fires occur are places using fire such as various stoves, gas stoves, etc. or places where waste is used by smoking etc. or waste bins, etc. In order to detect fires early, these places However, the current house alarm and other fire alarms are installed, for example, on the ceiling surface or the upper part of the wall surface overlooking the entire room as the monitoring area. There is no spot-on-site monitoring of potential fires and nearby locations.

このような場所につきスポット的に火災を監視する方法としては、例えば監視対象機器や監視対象場所(或いはその近傍)に温度センサを設置し、火災を検知して火災検知信号を出力するようにすれば良い。しかし、火災を検知して警報するためには、温度センサを用いたセンサ部以外に音響警報や表示を行う警報部が必要であり、そうすると従来の住警器と同等のものを火災の可能性の場所に直接配置して火災を監視することになり、コストも高くなり、実用化は困難である。   As a method of spotting a fire in such a place, for example, a temperature sensor may be installed at a monitoring target device or a monitoring target place (or its vicinity) to detect a fire and output a fire detection signal. It ’s fine. However, in order to detect and alarm a fire, an alarm unit that performs an acoustic alarm or display is required in addition to a sensor unit that uses a temperature sensor. It will be placed directly in the place to monitor the fire, the cost will be high and practical application is difficult.

また、住警器は煙や熱気流の対流を考慮して火災を検知し易い場所、例えば天井面や壁面上部に取り付けるようにしているが、センサ部と警報部、更には各種操作部が一体となっていることから、例えば高所に設置されているために操作部に手が届かず操作し難かったりするといったように、センサ部の設置に適した場所が必ずしも警報部や操作部の設置に適した場所と一致しないという問題点もあった。   In addition, the residential alarm is installed in a place where it is easy to detect a fire in consideration of convection of smoke or hot air flow, for example, the ceiling surface or the upper part of the wall surface, but the sensor unit, alarm unit, and various operation units are integrated. Therefore, the location suitable for the installation of the sensor unit is not necessarily the installation of the alarm unit or the operation unit, for example, it is difficult to operate because the operation unit is not reachable because it is installed at a high place There was also a problem that it was not consistent with the place suitable for.

このような問題を解決するため、本願出願人にあっては、電池により動作し、温度を検出して送信する温度測定チップと、温度測定チップから受信した想定温度から火災を判断した場合に警報する警報器からなる警報システムを提案している。温度測定チップは、警報機能をもたないことから小型化と軽量化ができ、コスト的にも安価であることから、複数の温度測定チップを準備し、従来の住警器と同様に、部屋の天井面や壁面上部に設置する以外に、火災の可能性のある機器や場所、例えばストーブなど暖房機器、ごみ入れ、喫煙場所となるベッドやソファやその近傍に温度測定チップを配置して火災を監視することを可能としている。   In order to solve such a problem, the applicant of the present application operates a battery, detects a temperature, transmits a temperature measurement chip, and warns when a fire is judged from an assumed temperature received from the temperature measurement chip. Proposes an alarm system consisting of alarming devices. Since the temperature measuring chip does not have an alarm function, it can be reduced in size and weight, and it is also inexpensive. In addition to being installed on the ceiling surface or upper wall of the room, there is a possibility of fire by placing a temperature measuring chip on a bed or sofa where there is a possibility of a fire, such as a heating device such as a stove, a garbage can, a smoking area, or a nearby area. It is possible to monitor.

ところで、このような警報システムにあっては、温度測定チップから送信した測定温度を警報器で受信し、所定の閾値温度と比較し、閾値温度以上の場合に火災を判断して警報する所謂定温式の火災判断を行っている。   By the way, in such an alarm system, the measured temperature transmitted from the temperature measuring chip is received by the alarm device, compared with a predetermined threshold temperature, and when the temperature is equal to or higher than the threshold temperature, a so-called constant temperature alarm is performed. The fire judgment of the ceremony is performed.

しかし、温度測定チップを火災の可能性のある場所やその近傍に設置した場合、例えば暖房機器に設置した場合、暖房機器の使用に伴い温度測定チップによる測定温度が上昇し、閾値温度を超える加熱状態になると警報器から非火災報が出されるという問題がある。   However, when the temperature measuring chip is installed in or near a place where there is a possibility of fire, for example, when it is installed in a heating device, the temperature measured by the temperature measuring chip increases with the use of the heating device, and the heating exceeds the threshold temperature. There is a problem that a non-fire report is issued from the alarm when it becomes a state.

このような定温式火災判断の問題を解消するためには、単位時間に所定温度を超える温度上昇を検知した場合に火災を判断する所謂差動式の火災判断をすることが考えられる。差動式の火災判断によれば、例えば温度測定チップを設置した暖房機器がその使用により室温より高い温度に加熱していても、火災と判断するような温度上昇を短い時間で起こすようなことはなく、非火災報を防止することができる。   In order to solve the problem of the constant temperature fire determination, it is conceivable to perform a so-called differential fire determination in which a fire is determined when a temperature rise exceeding a predetermined temperature is detected per unit time. According to the differential fire judgment, for example, even if a heating device with a temperature measuring chip is heated to a temperature higher than room temperature due to its use, a temperature rise that can be judged as a fire is caused in a short time. No, non-fire reports can be prevented.

しかしながら、温度測定チップを火災の可能性のある場所やその近傍に設置し、且つ警報器で差動式の火災判断を行う場合、温度測定チップを配置した場所やその近傍で発生する火災の状況によっては、火災であっても差動式の火災判断に必要な単位時間当たりの温度上昇が発生せず、火災を判断するまでの時間遅れが大きくなることが想定される。   However, when a temperature measurement chip is installed at or near a place where there is a possibility of fire, and a differential fire judgment is made with an alarm, the situation of the fire that occurs at or near the place where the temperature measurement chip is placed Depending on the situation, even if it is a fire, the temperature rise per unit time necessary for the differential fire judgment does not occur, and it is assumed that the time delay until the fire is judged becomes large.

例えば温度測定チップを配置したソファがタバコの火が原因で内部がくすぶり続けているような場合、温度測定チップによる測定温度の上昇は比較的緩やかであり、くすぶり状態が継続して発火に至った場合に測定温度が急激に上昇し、火災を判断して警報したときには火災が拡大してしまっているという状況が想定される。   For example, when a sofa with a temperature measuring chip is smoldering internally due to cigarette fire, the temperature rise by the temperature measuring chip is relatively slow, and the smoldering state continues to ignite. In this case, it is assumed that the measured temperature rises rapidly and the fire has spread when the fire is judged and alarmed.

また暖房機器やその近傍に温度測定チップを配置した場合、暖房機器の使用開始により測定温度が上昇し、この温度上昇率が火災を判断する閾値より高くなると非火災報を出してしまうという問題もある。   In addition, when a temperature measuring chip is placed in or near the heating equipment, the measured temperature rises when the heating equipment starts to be used, and a non-fire report is issued if this temperature rise rate is higher than the threshold for judging a fire. is there.

本発明は、温度測定チップの測定温度から警報器で温度上昇率を求めて閾値と比較する差動式の火災判断を行っても、検出遅れや非火災報を出すことなく火災を適切に判断して警報可能とする警報システム及び火災監視方法を提供することを目的とする。   The present invention appropriately determines a fire without issuing a detection delay or a non-fire report even if a differential fire judgment is performed by obtaining a temperature rise rate from a measured temperature of a temperature measuring chip and comparing it with a threshold value. It is an object to provide an alarm system and a fire monitoring method that enable an alarm.

(警報システムA)
温度を測定して送信する温度測定チップと、
前記温度測定チップから受信した測定温度の温度上昇率を検知し、当該温度上昇率が所定の閾値以上の場合に火災を判断して火災警報を出力する警報器と、
を備えた警報システムに於いて、
警報器は、温度上昇率を所定の補正係数で補正して火災の検出感度を変更することを特徴とする。
(警報システムB)
本発明は、
所定の監視領域に設置され、温度を測定して当該測定温度を含む温度測定信号を送信する1又は複数の温度測定チップと、
温度測定チップから受信した温度測定信号の測定温度に基づいて温度上昇率を検知し、当該温度上昇率が所定の閾値以上の場合に火災を判断して火災警報を出力する警報器と、
を備えた警報システムに於いて、
警報器は、温度測定チップの設置環境での温度上昇を想定して所定の補正係数を予め定め、温度測定信号の測定温度から検知した温度上昇率を補正係数で補正して火災を判断することを特徴とする。
(補正係数)
ここで、警報器は、温度測定チップの設置環境での火災発生に伴う温度の緩慢な上昇を想定して1を超える所定の補正係数を予め定め、温度上昇率に補正係数を乗じた補正温度上昇率が閾値以上の場合に火災を判断する。
(Alarm system A)
A temperature measuring chip for measuring and transmitting the temperature;
An alarm device for detecting a temperature increase rate of the measured temperature received from the temperature measuring chip, and determining a fire when the temperature increase rate is equal to or greater than a predetermined threshold, and outputting a fire alarm;
In an alarm system with
The alarm device is characterized in that the fire detection sensitivity is changed by correcting the temperature rise rate with a predetermined correction coefficient.
(Alarm system B)
The present invention
One or a plurality of temperature measurement chips installed in a predetermined monitoring area, measuring the temperature and transmitting a temperature measurement signal including the measurement temperature;
An alarm device that detects a temperature increase rate based on the measured temperature of the temperature measurement signal received from the temperature measurement chip, and judges a fire when the temperature increase rate is equal to or greater than a predetermined threshold, and outputs a fire alarm;
In an alarm system with
The alarm device shall determine a predetermined correction coefficient in advance assuming the temperature rise in the installation environment of the temperature measurement chip, and determine the fire by correcting the temperature increase rate detected from the measured temperature of the temperature measurement signal with the correction coefficient. It is characterized by.
(Correction coefficient)
Here, the alarm device preliminarily sets a predetermined correction coefficient exceeding 1 assuming a slow increase in temperature due to the occurrence of a fire in the installation environment of the temperature measuring chip, and a correction temperature obtained by multiplying the temperature increase rate by the correction coefficient. A fire is judged when the rate of increase is above a threshold.

また、警報器は、温度測定チップの設置環境での火災以外の原因による温度上昇を想定して1未満となる所定の補正係数を予め定め、温度上昇率に補正係数を乗じた補正温度上昇率が閾値以上の場合に火災を判断する。   In addition, the alarm device predetermines a predetermined correction coefficient that is less than 1 assuming a temperature increase due to a cause other than a fire in the temperature measurement chip installation environment, and a correction temperature increase rate obtained by multiplying the temperature increase rate by the correction coefficient. A fire is judged if is greater than or equal to the threshold.

(基本的な効果)
本発明によれば、温度測定チップの設置環境での温度上昇を想定して温度上昇率を補正する所定の補正係数を予め定め、温度測定チップからの測定温度を警報器で受信して温度上昇率を検知した場合に、所定の補正係数により温度上昇率を補正し(検出感度を変更し)、補正した温度上昇率が閾値以上の場合に火災を判断して警報するようにしたため、火災発生による温度上昇の様子が温度測定チップの設置環境により異なっていても、火災の判断遅れや非火災報を抑制した差動式による適切な判断ができる。
(Basic effect)
According to the present invention, a predetermined correction coefficient for correcting the temperature increase rate is determined in advance assuming temperature increase in the installation environment of the temperature measuring chip, and the temperature rises when the measured temperature from the temperature measuring chip is received by the alarm device. When the rate is detected, the temperature rise rate is corrected by a predetermined correction coefficient (detection sensitivity is changed), and when the corrected temperature rise rate is equal to or greater than the threshold, a fire is judged and an alarm is generated. Even if the temperature rise due to the temperature varies depending on the installation environment of the temperature measurement chip, it is possible to make an appropriate judgment using a differential system that suppresses a delay in fire judgment and non-fire reports.

(火災判断遅れを抑制する効果)
例えば火災発生による緩慢な温度上昇が想定される温度測定チップの設置環境、例えばソファや寝具またはその近傍に温度測定チップを配置した場合、ソファや寝具は火災の初期段階ではくすぶり続けるために測定温度の上昇は緩慢なことが想定できる。この場合には、1を超える補正係数を設定し、測定温度から検知された温度上昇率に1を超える補正係数を乗じて補正した温度上昇率(高い検出感度に補正)を求めて閾値と比較することで、補正した温度上昇率は早い段階で閾値に達して火災を判断でき、火災の判断遅れを抑制できる。
(Effect to suppress fire judgment delay)
For example, when a temperature measuring chip is installed in or near a sofa or bedding where the temperature rises slowly due to a fire, for example, the sofa or bedding continues to smolder in the initial stage of the fire, the measurement temperature It can be assumed that the rise in the market is slow. In this case, a correction coefficient exceeding 1 is set, and a temperature increase rate (corrected to high detection sensitivity) corrected by multiplying the temperature increase rate detected from the measured temperature by a correction coefficient exceeding 1 is obtained and compared with a threshold value. By doing so, the corrected temperature increase rate reaches a threshold value at an early stage, and a fire can be determined, and a fire determination delay can be suppressed.

(非火災報を抑制する効果)
また温度測定チップを暖房機器またはその近傍に設置した場合、暖房機器の使用開始に伴い火災以外の原因による設置環境の温度上昇が想定できる。この場合には、1未満の補正係数を設定し、測定温度から検知された温度上昇率に1未満の補正係数を乗じた補正した温度上昇率(低い検出感度に補正)を求めて閾値と比較することで、補正した温度上昇率が閾値に到達しないようにして、非火災報を抑制することができる。
(Effects to suppress non-fire reports)
Further, when the temperature measuring chip is installed in or near the heating device, it is possible to assume an increase in the temperature of the installation environment due to a cause other than a fire with the start of use of the heating device. In this case, a correction coefficient of less than 1 is set, and a corrected temperature increase rate (corrected to a low detection sensitivity) obtained by multiplying the temperature increase rate detected from the measured temperature by a correction coefficient of less than 1 is compared with the threshold value. By doing so, the non-fire report can be suppressed by preventing the corrected rate of temperature increase from reaching the threshold value.

本発明による警報システムの概略構成を示したブロック図The block diagram which showed schematic structure of the alarm system by this invention 図1のシステムで用いる温度測定チップの構成を示したブロック図The block diagram which showed the structure of the temperature measurement chip | tip used with the system of FIG. 図1のシステムで用いる警報器の構成を示したブロック図Block diagram showing the configuration of the alarm used in the system of FIG. 図4の警報制御部による火災判断制御を示した説明図Explanatory drawing which showed the fire judgment control by the alarm control part of FIG. 図4の警報制御部に設定する補正係数の一例を示した説明図Explanatory drawing which showed an example of the correction coefficient set to the alarm control part of FIG. 警報器を連動する本発明の他の実施形態を示した説明図Explanatory drawing which showed other embodiment of this invention which interlock | cooperates an alarm device 連動型の警報器の構成を示したブロック図Block diagram showing the structure of a linked alarm

[警報システムの概略]
図1は本発明による警報システムの概略構成を示した説明図であり、住宅の例えば居間に設置した場合を例にとっている。
[Outline of alarm system]
FIG. 1 is an explanatory diagram showing a schematic configuration of an alarm system according to the present invention, taking a case where it is installed in a living room as an example.

図1において、本発明の警報システムは、複数の温度測定チップ10−1〜1−4と警報器100で構成する。温度測定チップ10−1はソファ1に配置し、温度測定チップ10−2は暖房機器2に配置し、温度測定チップ10−3はごみ入れ3に配置し、温度測定チップ10−4は壁面上部に設置している。警報器100は居住者の手が届く容易に操作可能な壁面位置等に配置する。   In FIG. 1, the alarm system of the present invention includes a plurality of temperature measurement chips 10-1 to 1-4 and an alarm device 100. The temperature measurement chip 10-1 is disposed on the sofa 1, the temperature measurement chip 10-2 is disposed on the heating device 2, the temperature measurement chip 10-3 is disposed on the trash can 3, and the temperature measurement chip 10-4 is on the upper wall surface. It is installed in. The alarm device 100 is arranged at a wall surface position where the resident's hand can easily operate.

温度測定チップ10−1〜10−4は設置環境の温度を測定し、当該測定温度を含む温度測定信号を通信経路aにより警報器100に送信する。警報器100は温度測定チップ10−1〜10−4から受信した測定温度から温度上昇率を検知し、火災を判断した場合に火災警報を警報する。   The temperature measurement chips 10-1 to 10-4 measure the temperature of the installation environment, and transmit a temperature measurement signal including the measurement temperature to the alarm device 100 through the communication path a. The alarm device 100 detects the rate of temperature rise from the measured temperature received from the temperature measuring chips 10-1 to 10-4, and issues a fire alarm when a fire is judged.

以下、温度測定チップ10−1〜10−4をそれぞれ区別せず総称する場合は温度測定チップ10という。   Hereinafter, the temperature measurement chips 10-1 to 10-4 are collectively referred to as the temperature measurement chip 10 without being distinguished from each other.

[温度測定チップ]
図2は温度測定チップの構成を示したブロック図である。温度測定チップ10は、測定制御部12、温度検出素子13、アンテナ14aを接続した第1通信部14及び表示部16を備え、図示しない電池電源で動作する。測定制御部12は、CPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路またはワイヤードロジック回路等を使用する。
[Temperature measurement chip]
FIG. 2 is a block diagram showing the configuration of the temperature measuring chip. The temperature measurement chip 10 includes a measurement control unit 12, a temperature detection element 13, a first communication unit 14 connected to an antenna 14a, and a display unit 16, and operates with a battery power source (not shown). The measurement control unit 12 uses a computer circuit or a wired logic circuit provided with a CPU, a memory, various input / output ports, and the like.

温度検出素子13は設置環境の温度に応じて例えば抵抗値が変化するサーミスタなどを使用する。   The temperature detection element 13 uses, for example, a thermistor whose resistance value changes according to the temperature of the installation environment.

第1通信部14は測定制御部12の指示を受け警報器100との間で所定の第1通信プロトコルに従って信号を送受信する。第1通信プロトコルとしては例えばRFID(Radio Frequency IDentification「電波による個体識別」の略)に割当てられた周波数950〜957MHzを使用したセンサネットワーク用の近距離通信プロトコルを使用する。   The first communication unit 14 transmits / receives a signal to / from the alarm device 100 according to a predetermined first communication protocol in response to an instruction from the measurement control unit 12. As the first communication protocol, for example, a short-range communication protocol for a sensor network using a frequency of 950 to 957 MHz assigned to RFID (Radio Frequency IDentification “abbreviation of individual identification by radio wave”) is used.

表示部16はLEDなどの表示素子とその駆動回路を備える。   The display unit 16 includes a display element such as an LED and its drive circuit.

測定制御部12は例えばCPUのプログラムの実行により実現する機能である。測定制御部12は、例えば警報器100からの制御指示に基づき、温度検出素子13の検出信号から設置環境の温度を測定し、当該測定温度を含む温度測定信号を第1通信部14から警報器100へ送信させる。   The measurement control unit 12 is a function realized, for example, by executing a CPU program. For example, based on a control instruction from the alarm device 100, the measurement control unit 12 measures the temperature of the installation environment from the detection signal of the temperature detection element 13, and sends a temperature measurement signal including the measurement temperature from the first communication unit 14 to the alarm device. 100 is transmitted.

即ち、警報器100は所定周期毎に、一括AD変換信号を温度測定チップ10へ送信してくる。これを受信して測定制御部12は温度検出素子13の検出信号をAD変換して読み込み、温度を測定する制御を行う。続いて警報器100は温度測定チップ10のアドレスを指定したポーリング信号を送信してくる。これを受信して測定制御部12は温度測定信号を警報器100へ送信する制御を行う。   That is, the alarm device 100 transmits a batch AD conversion signal to the temperature measurement chip 10 at predetermined intervals. Upon receiving this, the measurement control unit 12 performs AD control to read the detection signal of the temperature detection element 13 after AD conversion and measure the temperature. Subsequently, the alarm device 100 transmits a polling signal specifying the address of the temperature measurement chip 10. Upon receiving this, the measurement control unit 12 performs control to transmit a temperature measurement signal to the alarm device 100.

このような警報器100からの一括AD変換信号とポーリング信号による温度測定と温度測定信号の送信により、複数の温度測定チップ10から送信した温度測定信号の警報器100側での受信における信号衝突を回避し、また、複数の温度測定チップ10による温度測定のタイミングを一致させることができる。   By such temperature measurement using the batch AD conversion signal and the polling signal from the alarm device 100 and transmission of the temperature measurement signal, signal collision in reception on the alarm device 100 side of the temperature measurement signals transmitted from the plurality of temperature measurement chips 10 is detected. The timing of temperature measurement by the plurality of temperature measurement chips 10 can be matched.

なお、警報器100からの指示によらず、温度測定チップ10において所定周期毎に温度を測定して警報器100へ送信するようにしても良い。この場合には、他の温度測定チップから送信する温度測定信号との衝突を回避するため、キャリアセンスを行い、キャリアのないタイミングで温度測定信号を送信する。   Note that the temperature measurement chip 10 may measure the temperature every predetermined period and transmit the temperature to the alarm device 100 without depending on the instruction from the alarm device 100. In this case, in order to avoid a collision with a temperature measurement signal transmitted from another temperature measurement chip, carrier sense is performed and the temperature measurement signal is transmitted at a timing when there is no carrier.

[警報器]
(警報器の構成)
図3は警報器の構成を示したブロック図である。図3において、警報器100は、警報制御部101、アンテナ102aを接続した第1通信部102、報知部104及び操作部105を備え、図示しない電池電源により動作する。警報制御部101は、CPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路またはワイヤードロジック回路等を使用する。
[Alarm]
(Alarm configuration)
FIG. 3 is a block diagram showing the configuration of the alarm device. In FIG. 3, the alarm device 100 includes an alarm control unit 101, a first communication unit 102 connected to an antenna 102a, a notification unit 104, and an operation unit 105, and is operated by a battery power source (not shown). The alarm control unit 101 uses a CPU, a memory, a computer circuit provided with various input / output ports, a wired logic circuit, or the like.

第1通信部102は、警報制御部101の指示を受け、温度測定チップ10との間で前述した第1通信プロトコルに従って信号を送受信する。   The first communication unit 102 receives an instruction from the alarm control unit 101 and transmits / receives a signal to / from the temperature measurement chip 10 according to the first communication protocol described above.

報知部104は例えばスピーカ、LED及びそれぞれの駆動回路を備え、必要に応じ警報制御部102の指示によりスピーカから警報音を出力すると共にLEDにより警報表示を行う。操作部105は警報音及び又は警報表示を停止するための操作を受け付ける警報停止スイッチ、感度制御にための補正係数の設定操作を受け付ける補正係数設定スイッチを含む各種のスイッチを備えている。   The notification unit 104 includes, for example, a speaker, an LED, and respective drive circuits, and outputs an alarm sound from the speaker according to an instruction from the alarm control unit 102 as necessary, and displays an alarm by the LED. The operation unit 105 includes various switches including an alarm stop switch that receives an operation for stopping an alarm sound and / or an alarm display, and a correction coefficient setting switch that receives an operation for setting a correction coefficient for sensitivity control.

警報制御部101は例えばCPUによるプログラムの実行により実現する機能であり、差動式の火災判断制御を実行する。   The alarm control unit 101 is a function realized by, for example, execution of a program by the CPU, and executes differential fire determination control.

(警報器の火災判断制御)
図4は、図3の警報制御部101で実行する火災判断制御の説明図であり、機能構成を図4(A)に示し、この火災判断制御に用いる補正係数の決め方を図4(B)に表形式で示し、更にメモリに記憶する補正情報を図4(C)に示す。
(Alarm fire control)
FIG. 4 is an explanatory diagram of the fire determination control executed by the alarm control unit 101 of FIG. 3, the functional configuration is shown in FIG. 4 (A), and how to determine the correction coefficient used for this fire determination control is shown in FIG. 4 (B). FIG. 4C shows the correction information shown in the table format and stored in the memory.

図4(A)において、火災判断制御の機能は、温度上昇率検知部201、補正係数設定部202、補正部203、閾値設定部204及び火災判断部205を備える。   4A, the fire determination control function includes a temperature rise rate detection unit 201, a correction coefficient setting unit 202, a correction unit 203, a threshold setting unit 204, and a fire determination unit 205.

温度上昇率検知部201は温度測定チップ10からの測定温度に基づき温度上昇率を検知する。温度上昇率は、所定周期で測定した測定温度の温度差を周期で割った値である。   The temperature increase rate detection unit 201 detects the temperature increase rate based on the measured temperature from the temperature measurement chip 10. The temperature increase rate is a value obtained by dividing the temperature difference between the measured temperatures measured at a predetermined cycle by the cycle.

補正係数設定部202は、温度測定チップ10の設置環境での温度上昇を想定して決定した所定の補正係数を保持しており、この補正係数により、検知した温度上昇率を補正する。補正係数は次のルールに従って設定する。
(1) 温度測定チップ10の設置環境での火災発生に伴う温度の緩慢な上昇を想定して1を超える補正係数を定める。
(2) 温度測定チップ10の設置環境での火災以外の原因による温度上昇を想定して1未満の補正係数を定める。
The correction coefficient setting unit 202 holds a predetermined correction coefficient determined on the assumption of a temperature increase in the installation environment of the temperature measurement chip 10, and corrects the detected temperature increase rate with this correction coefficient. The correction coefficient is set according to the following rules.
(1) A correction coefficient exceeding 1 is determined on the assumption that the temperature rises slowly due to the occurrence of a fire in the installation environment of the temperature measuring chip 10.
(2) A correction coefficient of less than 1 is determined assuming a temperature rise due to a cause other than a fire in the installation environment of the temperature measuring chip 10.

図4(B)はルール(1)(2)に基づく補正係数の決め方を示している。温度測定チップ10の設置環境としては、図1のソファ、暖房機器、ごみ入れ、壁面上部に設置した場合としている。   FIG. 4B shows how to determine the correction coefficient based on the rules (1) and (2). As the installation environment of the temperature measurement chip 10, it is assumed that the sofa, the heating device, the trash can, and the upper part of the wall surface in FIG. 1 are installed.

このような設置環境につきルール(1)を適用して火災発生に伴う温度上昇を想定すると、ソファは、火災の初期段階では繊維などがくすぶり続ける状態が続き、その後に発火に至る所謂燻燃火災が想定できる。このため火災に伴う温度上昇には時間がかかることから「緩慢上昇」を想定する。   Assuming that the temperature rises due to the occurrence of a fire by applying the rule (1) for such an installation environment, the sofa continues to be smoldered with fibers in the initial stage of the fire, and then the so-called burning fire that leads to ignition Can be assumed. For this reason, since it takes time to increase the temperature due to a fire, a “slow increase” is assumed.

この場合、測定温度に基づく温度上昇率は低い値を示し、そのままでは火災を判断するまでに時間がかかる。そこで、補正係数K1として、1を超える値を設定し、測定温度から検知した温度上昇率に補正係数K1を乗じて高くする補正を行い、火災の判断遅れを抑制する。   In this case, the rate of temperature increase based on the measured temperature shows a low value, and it takes time to determine a fire if it is left as it is. Therefore, a value exceeding 1 is set as the correction coefficient K1, and correction is performed by multiplying the temperature increase rate detected from the measured temperature by the correction coefficient K1, thereby suppressing a fire determination delay.

ごみ入れについても、ソファと同様な火災による温度上昇が想定できるので、「緩慢上昇」を想定し、1を超える値をもつ補正係数K3とする。   As for the trash can, a temperature rise due to a fire similar to that of a sofa can be assumed, so a “slow rise” is assumed and a correction coefficient K3 having a value exceeding 1 is assumed.

想定温度上昇として「緩慢上昇」とした場合に1を超える値とする補正係数K1,K3は、同じ値としても良いし、それぞれの設置環境に応じて異ならせても良い。例えば燻焼火災の時間が長い場合には補正係数の値を大きめにし、燻焼火災の時間が短い場合には補正係数の値を小さめにする。   The correction coefficients K1 and K3 that are greater than 1 when the assumed temperature rise is “slow rise” may be the same value or different depending on the installation environment. For example, when the time of smoldering fire is long, the value of the correction coefficient is increased, and when the time of smoldering fire is short, the value of the correction coefficient is decreased.

暖房機器については、暖房機器の使用を開始した場合に、温度が上昇し、そのままでは測定温度から検知した温度上昇率が所定の閾値を超えて非火災報を判断してしまう可能性がある。そこで、ルール(2)による火災以外の原因による温度上昇として「加熱上昇」を想定し、この場合は、1未満の補正係数K2を設定し、温度上昇率に補正係数K2を乗じて低くする補正を行い、非火災報を防止する。   As for the heating equipment, when the use of the heating equipment is started, the temperature rises, and if it is left as it is, there is a possibility that the temperature rise rate detected from the measured temperature exceeds a predetermined threshold value and the non-fire report is judged. Therefore, “heating rise” is assumed as a temperature rise due to a cause other than a fire according to rule (2). In this case, a correction coefficient K2 of less than 1 is set, and the temperature rise rate is multiplied by the correction coefficient K2 to make it lower. To prevent non-fire reports.

壁面上部については、ルール(1)(2)のいずれも該当しないため、火災に伴う温度上昇として「規格上昇」とする。「規格上昇」とは、差動式火災感知器の規格で定めている例えば2種感度に対応した温度上昇とする。   For the upper part of the wall surface, neither rule (1) nor (2) is applicable, so “temperature increase” is assumed as the temperature increase due to the fire. The “standard increase” is a temperature increase corresponding to, for example, two types of sensitivity defined in the standard of the differential fire detector.

差動式スポット型感知器の2種感度では、直線上昇の作動試験として、「室温から毎分15℃の割合で直線的に上昇する水平気流を加えたとき、4.5分以内で火災信号を発信すること」を定める。これは温度上昇率として約3.3(℃/分)となり、これを規格上昇とする。なお、1種感度では温度上昇率は約2.2(℃/分)となり、これを規格上昇としても良い。   The differential spot type sensor has two types of sensitivity. As a linear ascending operation test, “When a horizontal air flow that rises linearly at a rate of 15 ° C./min from room temperature is applied, a fire signal is detected within 4.5 minutes. "Send" This is about 3.3 (° C./min) as the temperature rise rate, and this is the standard rise. Note that with one type of sensitivity, the temperature increase rate is about 2.2 (° C./min), and this may be used as a standard increase.

火災発生に伴う想定した温度上昇が「規格上昇」の場合、補正係数K4はK4=1を設定し、測定温度から検知した温度上昇率をそのまま火災判断に使用する。   When the assumed temperature rise accompanying the occurrence of a fire is “standard rise”, the correction coefficient K4 is set to K4 = 1, and the temperature rise rate detected from the measured temperature is used as it is for the fire judgment.

補正係数設定部202には図4(C)に示すように、温度測定チップ10−1〜10−4のアドレスA1〜A4に対応して補正係数K1〜K4を配置した補正係数情報を保持(メモリに記憶)する。   As shown in FIG. 4C, the correction coefficient setting unit 202 holds correction coefficient information in which correction coefficients K1 to K4 are arranged corresponding to the addresses A1 to A4 of the temperature measurement chips 10-1 to 10-4 ( Memory).

補正部203は温度上昇率測定部201から出力した温度上昇率に、補正係数設定部202から出力した対応する補正係数を乗算し、補正温度上昇率を出力する。   The correction unit 203 multiplies the temperature increase rate output from the temperature increase rate measurement unit 201 by the corresponding correction coefficient output from the correction coefficient setting unit 202, and outputs a correction temperature increase rate.

閾値設定部204は差動式の火災判断に使用する所定の閾値を設定する。この閾値は、前述した1種感度または2種感度の温度上昇率に相当する値を使用する。   The threshold setting unit 204 sets a predetermined threshold used for differential fire judgment. As this threshold value, a value corresponding to the temperature increase rate of the above-described type 1 sensitivity or type 2 sensitivity is used.

火災判断部205は補正部203から出力した補正温度上昇率と閾値設定部204から出力した所定の閾値とを比較し、補正温度上昇率が閾値以上の場合に火災を判断し、火災判断結果を出力し、これに基づき図3の報知部104のスピーカから音声メッセージを出力させると共にLEDを点灯、点滅又は明滅して火災警報を報知出力させる制御を行う。   The fire determination unit 205 compares the corrected temperature increase rate output from the correction unit 203 with a predetermined threshold value output from the threshold setting unit 204, determines a fire when the correction temperature increase rate is equal to or greater than the threshold value, and determines the fire determination result. Based on this, a voice message is output from the speaker of the notification unit 104 in FIG. 3, and the LED is turned on, blinking, or flickering to perform a fire alarm notification output.

(設置場所と補正係数の例)
図5は図4の火災判断制御に設定する補正係数の一例を表形式で示した説明図であり、住宅に設置した場合の設置場所と補正係数を示す。図5において、設置場所となる天井面、壁面上部、居間、喫煙なしの主寝室、階段室及び空き室は、火災発生による温度上昇を規格上昇と想定し、補正係数KとしてK=1を設定し、測定温度から検知した温度上昇率をそのまま所定の閾値と比較して火災を判断する。
(Example of installation location and correction factor)
FIG. 5 is an explanatory diagram showing an example of the correction coefficient set in the fire determination control of FIG. 4 in a table format, and shows the installation location and correction coefficient when installed in a house. In FIG. 5, the ceiling surface, the upper part of the wall, the living room, the main bedroom without smoking, the staircase, and the vacant rooms, which are the installation locations, are assumed to rise in temperature due to the occurrence of a fire, and the correction factor K is set to K = 1. Then, the temperature rise rate detected from the measured temperature is directly compared with a predetermined threshold value to determine a fire.

壁面下部は、壁面上段に比べ火災発生に伴う熱気流を受ける度合いが低いことから、火災発生による温度上昇を緩慢上昇と想定し、1を超える補正係数Kとして例えばK=1.1を設定し、所定の閾値に補正係数K=1.1を乗じて高くし、この補正温度上昇率と所定の閾値を比較して火災を判断する。   Since the lower part of the wall surface is less susceptible to thermal airflow due to the occurrence of a fire than the upper part of the wall surface, the temperature rise due to the fire is assumed to be a slow rise, and for example, K = 1.1 is set as a correction coefficient K exceeding 1. The predetermined threshold value is multiplied by the correction coefficient K = 1.1 to increase it, and a fire is judged by comparing the corrected temperature increase rate with the predetermined threshold value.

ソファ、ベッド、ごみ入れ、喫煙ありの主寝室は、火災発生による温度上昇を緩慢上昇と想定し、1を超える補正係数Kとして例えばK=1.2を設定し、測定温度から検知した温度上昇率に補正係数K=1.2を乗じて高くし、この補正温度上昇率を所定の閾値と比較して火災を判断する。   In the main bedroom with sofa, bed, trash can and smoking, assuming that the temperature rise due to the fire is a slow rise, set a correction factor K exceeding 1, for example K = 1.2, and the temperature rise detected from the measured temperature The rate is increased by a correction coefficient K = 1.2, and this correction temperature rise rate is compared with a predetermined threshold value to determine a fire.

子供部屋、老人居室については、火災発生による温度上昇を緩慢上昇と想定するが、弱者であることから可能限り早期に火災を発見して避難などの対応を可能とするため、1を超える補正係数として例えばK=1.5といった大きめの値を設定する。   For children's rooms and elderly living rooms, it is assumed that the temperature rise due to the occurrence of a fire is a slow rise, but because it is a weak person, a correction factor exceeding 1 is required to detect fires as soon as possible and to take measures such as evacuation For example, a larger value such as K = 1.5 is set.

暖房機器、台所については、火災以外の原因による温度上昇があることから加熱上昇と想定し、1未満の補正係数Kとして例えばK=0.8を設定し、測定温度から検知した温度上昇率に補正係数K=0.8を乗じて低くし、この補正温度上昇率を所定の閾値と比較して火災を判断する。   For heating equipment and kitchens, it is assumed that there is a rise in temperature due to a cause other than a fire. As a correction factor K of less than 1, for example, K = 0.8 is set and the rate of temperature rise detected from the measured temperature is set. The correction coefficient K is multiplied by 0.8 to make it low, and this correction temperature rise rate is compared with a predetermined threshold value to determine a fire.

なお、図5の設置場所に対する補正係数は一例であり、火災発生の状況や設置場所の温度上昇の状況に応じ適宜の補正係数を設定することを妨げない。   In addition, the correction coefficient with respect to the installation location of FIG. 5 is an example, and it does not prevent setting an appropriate correction coefficient according to the situation of fire occurrence or the temperature rise of the installation location.

[警報システムの処理動作]
図1において、警報器100は所定周期、例えば1分周期で一括AD変換信号を温度測定チップ10−1〜10−4に送信し、続いて温度測定チップ10−1〜10−4のアドレスを順次指定してしたポーリング信号を送信する。
[Alarm system processing]
In FIG. 1, the alarm device 100 transmits a batch AD conversion signal to the temperature measurement chips 10-1 to 10-4 at a predetermined cycle, for example, one minute cycle, and subsequently the addresses of the temperature measurement chips 10-1 to 10-4 are sent. Transmit polling signals specified in sequence.

温度測定チップ10−1〜10−4は一括AD変換信号を有効受信した場合、設置場所の環境温度を測定し、自己アドレスを指定したポーリング信号の有効受信に応じて、測定温度を含む温度測定信号を警報器100に送信する。なお、有効受信とは、受信信号の宛先を示すアドレスが自己アドレスに一致し、それ以外の符号やデータも正しく受信できたことを意味する。   When the temperature measurement chips 10-1 to 10-4 receive the batch AD conversion signal effectively, the temperature measurement chip 10-1 to 10-4 measures the environmental temperature of the installation location, and measures the temperature including the measurement temperature according to the effective reception of the polling signal designating the self-address. A signal is transmitted to the alarm device 100. The effective reception means that the address indicating the destination of the received signal matches the self address, and other codes and data can be received correctly.

温度測定チップ10−1〜10−4からの温度測定信号を有効受信した警報器100は、図4(A)の温度上昇率検知部201で例えば温度測定チップ10−1について前回の測定温度と今回の測定温度との温度差として温度上昇率を検知する。また補正係数設定部202は温度測定チップ10−1のアドレスA1に対応して補正係数K1を出力する。補正部203は温度上昇率に補正係数K1を乗算して補正温度上昇率を火災判断部205に出力し、火災判断部205は補正温度上昇率と閾値設定部204からの所定の閾値と比較し、閾値以上の場合に火災を判断し、音声メッセージとLEDの表示により火災警報を出力させる。   The alarm device 100 that has received the temperature measurement signals from the temperature measurement chips 10-1 to 10-4 effectively receives, for example, the temperature measurement rate of the temperature measurement chip 10-1 in the temperature rise rate detection unit 201 in FIG. The temperature rise rate is detected as the temperature difference from the current measured temperature. The correction coefficient setting unit 202 outputs a correction coefficient K1 corresponding to the address A1 of the temperature measurement chip 10-1. The correction unit 203 multiplies the temperature increase rate by the correction coefficient K1 and outputs the corrected temperature increase rate to the fire determination unit 205. The fire determination unit 205 compares the correction temperature increase rate with a predetermined threshold value from the threshold setting unit 204. If the threshold is exceeded, a fire is judged and a fire alarm is output by voice message and LED display.

[警報器の連動]
図6は、本発明による警報システムの他の実施形態を示した説明図であり、住宅の各部屋に設置した警報器を連動するようにしたことを特徴とする。
[Alarm interlock]
FIG. 6 is an explanatory view showing another embodiment of the alarm system according to the present invention, and is characterized in that alarm devices installed in each room of the house are interlocked.

図6において、住宅などの監視領域には、例えば各部屋などに分けて警報器100−1〜100−4を設置し、警報器100−1〜100−4のそれぞれに対応して監視グループG1〜G4を形成し、監視グループG1〜G4に温度測定チップ10−11〜10−13,10−21〜10−23,10−31〜10−33,10−41〜10−43を配置している。   In FIG. 6, for example, alarm devices 100-1 to 100-4 are installed in a monitoring area such as a house separately for each room, and a monitoring group G1 corresponding to each of the alarm devices 100-1 to 100-4. ~ G4 is formed, and the temperature measurement chips 10-11 to 10-13, 10-21 to 10-23, 10-31 to 10-33, 10-41 to 10-43 are arranged in the monitoring groups G1 to G4. Yes.

以下、警報器100−1〜100−4及び温度測定チップ10−11〜10−43をそれぞれ区別せず総称する場合は警報器100及び温度測定チップ10という。   Hereinafter, the alarm devices 100-1 to 100-4 and the temperature measurement chips 10-11 to 10-43 are collectively referred to as the alarm device 100 and the temperature measurement chip 10 without being distinguished from each other.

温度測定チップ10は図2と同様である。警報器100は図7に示すように、他の警報器と通信するため、図3に対し更にアンテナ107aを接続した第2通信部107を追加しており、これ以外は基本的に同様である。   The temperature measuring chip 10 is the same as that shown in FIG. As shown in FIG. 7, in order to communicate with other alarm devices, the alarm device 100 has a second communication unit 107 connected to an antenna 107a added to FIG. .

第2通信部107は、所定の第2通信プロトコルに従って他の警報器との間で火災連動信号を送受信する。第2通信プロトコルに従った連動信号の送受信は、例えば400MHz帯の特定小電力無線局の標準規格として知られたSTD−30(小電力セキュリティシステム無線局の無線設備標準規格)またはSTD−T67(特定小電力無線局テレメータ用、テレコントロール用及びデータ伝送用無線設備の標準規格)に準拠する。   The 2nd communication part 107 transmits / receives a fire interlocking signal between other alarm devices according to a predetermined 2nd communication protocol. For example, STD-30 (a low power security system radio station radio equipment standard) or STD-T67 (a low power security system radio station standard) known as a standard for a specific low power radio station in the 400 MHz band is used for transmission and reception of interlocking signals according to the second communication protocol. Compliant with specified low-power radio station telemeter, telecontrol and data transmission radio equipment standards).

温度測定チップ10と警報器100は、監視グループ符号を登録して送受信する信号に含めることで、通信経路aで示すように、同じ監視グループに属する場合にのみ信号を有効に送受信する。   The temperature measurement chip 10 and the alarm device 100 effectively transmit / receive a signal only when belonging to the same monitoring group, as indicated by the communication path a, by including the monitoring group code in a signal to be transmitted / received as indicated by the communication path a.

また警報器100−1〜100−4は連動グループを形成しており、連動グループ符号を登録して送受信する連動信号に含めることで、通信経路bで示すように、同じ連動グループに属する場合にのみ連動信号を有効に受信することができる。   In addition, the alarm devices 100-1 to 100-4 form an interlocking group. When the alarming devices 100-1 to 100-4 belong to the same interlocking group as shown by the communication path b by including the interlocking group code in the interlocking signal transmitted and received. Only the interlocking signal can be received effectively.

警報制御部101は、図4(A)の火災判断機能により火災を判断した場合、連動元として火災警報を出力すると共に、火災連動信号を第2通信部107から他の警報器へ送信させ、他の警報器で連動先を示す火災警報を出力させる制御を行う。   When the alarm control unit 101 determines a fire by the fire determination function of FIG. 4A, the alarm control unit 101 outputs a fire alarm as a link source and transmits a fire link signal from the second communication unit 107 to another alarm device. Control is performed to output a fire alarm indicating the link destination with other alarm devices.

また警報制御部101は、第2通信部107により他の警報器100−2〜100−4のいずれかが送信した火災連動信号の有効受信を検知した場合に、報知部114から連動先を示す火災警報音を出力させると共に連動先を示す警報表示を行わせる制御を行う。   Moreover, the alarm control part 101 shows an interlocking destination from the alerting | reporting part 114, when the effective reception of the fire interlocking signal which any of the other alarm devices 100-2 to 100-4 transmitted by the 2nd communication part 107 is detected. Control is performed to output a fire alarm sound and display an alarm indicating the interlocking destination.

また警報制御部101は、火災警報の出力中に火災復旧又は警報停止操作を検知した場合、報知部104からの連動元を示す火災警報音出力と警報表示を停止させる制御を行うと共に、火災復旧連動信号又は警報停止連動信号を第2通信部107のから他の警報器100−2〜100−4へ送信させる制御を行い、当該火災復旧連動信号又は警報停止連動信号を受信した他の警報器100−2〜100−4で連動先を示す火災警報音出力と警報表示を停止させる。   The alarm control unit 101 performs control to stop the fire alarm sound output and the alarm display indicating the link source from the notification unit 104 when the fire recovery or alarm stop operation is detected during the output of the fire alarm, and the fire recovery. Other alarm devices that perform control to transmit the interlock signal or the alarm stop interlock signal from the second communication unit 107 to the other alarm devices 100-2 to 100-4 and receive the fire recovery interlock signal or the alarm stop interlock signal 100-2 to 100-4 stop the fire alarm sound output and alarm display indicating the interlocking destination.

[本発明の変形例]
(補正係数の変更)
上記の実施形態にあっては、警報システムを設置する場合に、温度測定チップの設置場所に基づき例えば図5の例のように、所定の補正係数を設定しているが、警報システムの使用中に、必要に応じて補正係数を変更することもできる。この補正係数の変更は、例えば火災以外の原因による非火災報が出された場合、非火災報が出たことを示す所定の操作を行うことで、そのとき設定している補正係数Kを、所定の単位補正係数ΔK、例えばΔK=0.1ずつ低下させる変更を行う。
[Modification of the present invention]
(Change of correction coefficient)
In the above embodiment, when an alarm system is installed, a predetermined correction coefficient is set based on the installation location of the temperature measurement chip, for example, as in the example of FIG. 5, but the alarm system is being used. In addition, the correction coefficient can be changed as necessary. For example, when a non-fire report is issued due to a cause other than a fire, the correction coefficient K set at that time is changed by performing a predetermined operation indicating that the non-fire report has been issued. A change is made to decrease by a predetermined unit correction coefficient ΔK, for example, ΔK = 0.1.

(温度測定)
また、上記の実施形態にあっては、警報器から一括AD変換信号とポーリング信号を温度測定チップへ送信して温度測定信号を受信しているが、警報器からの指示によらずに温度測定チップが自立的に所定周期毎に温度測定信号を送信するようにしても良い。
(Temperature measurement)
Further, in the above embodiment, the batch AD conversion signal and the polling signal are transmitted from the alarm device to the temperature measurement chip and the temperature measurement signal is received, but the temperature measurement is not performed according to the instruction from the alarm device. The chip may autonomously transmit a temperature measurement signal every predetermined period.

(通信プロトコル)
また、上記の実施形態にあっては、連動型の警報器と温度測定チップの間は第1通信プロトコルに従った通信、警報器の間は第2通信プロトコルに従った通信としているが、それぞれ同じ通信プロトコルとし、チャンネルを別にすれば良い。このようにすれば警報器に第1通信部と第2通信部を設ける必要がなく、1つの通信部として構成を簡単できる。
(Communication protocol)
In the above embodiment, the communication between the interlocking alarm device and the temperature measurement chip is in accordance with the first communication protocol, and the alarm device is in communication with the second communication protocol. The same communication protocol and different channels may be used. If it does in this way, it is not necessary to provide a 1st communication part and a 2nd communication part in an alarm device, and a structure can be simplified as one communication part.

また、警報器及び温度測定チップの間の通信は無線によるものでなくても良く、有線通信によっても、また有線と無線を適宜混在させるものであっても良い。   Further, the communication between the alarm device and the temperature measurement chip may not be wireless, and may be wired communication or a combination of wired and wireless as appropriate.

(用途)
また、上記の実施形態は住宅用に限らずビルやオフィス用など各種用途の温度異常の監視にも適用できる。
(Use)
Moreover, the above-described embodiment is applicable not only to residential use but also to monitoring temperature abnormalities for various uses such as buildings and offices.

(その他)
また本発明は上記の実施形態に限定されず、その目的と利点を損なうことのない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(Other)
The present invention is not limited to the above-described embodiments, includes appropriate modifications that do not impair the objects and advantages thereof, and is not limited by the numerical values shown in the above-described embodiments.

10,10−1〜10−4,10−11〜10−43:温度測定チップ
12:測定制御部
13:温度検出素子
14,102:第1通信部
100,100−1〜100−4:警報器
101:警報制御部
104:報知部
105:操作部
107:第2通信部
201:温度上昇率検知部
202:補正係数設定部
203:補正部
204:閾値設定部
205:火災判断部
10, 10-1 to 10-4, 10-11 to 10-43: Temperature measurement chip 12: Measurement control unit 13: Temperature detection element 14, 102: First communication unit 100, 100-1 to 100-4: Alarm Device 101: Alarm control unit 104: Notification unit 105: Operation unit 107: Second communication unit 201: Temperature increase rate detection unit 202: Correction coefficient setting unit 203: Correction unit 204: Threshold setting unit 205: Fire determination unit

Claims (4)

温度を測定して送信する温度測定チップと、
前記温度測定チップから受信した測定温度の温度上昇率を検知し、当該温度上昇率が所定の閾値以上の場合に火災を判断して火災警報を出力する警報器と、
を備えた警報システムに於いて、
前記警報器は、前記温度上昇を所定の補正係数で補正して火災の検出感度を変更することを特徴とする警報システム。
A temperature measuring chip for measuring and transmitting the temperature;
An alarm device for detecting a temperature increase rate of the measured temperature received from the temperature measuring chip, and determining a fire when the temperature increase rate is equal to or greater than a predetermined threshold, and outputting a fire alarm;
In an alarm system with
The alarm system is characterized by changing the fire detection sensitivity by correcting the temperature rise with a predetermined correction coefficient.
所定の監視領域に設置され、温度を測定して当該測定温度を含む温度測定信号を送信する1又は複数の温度測定チップと、
前記温度測定チップから受信した温度測定信号の測定温度に基づいて温度上昇率を検知し、当該温度上昇率が所定の閾値以上の場合に火災を判断して火災警報を出力する警報器と、
を備えた警報システムに於いて、
前記警報器は、前記温度測定チップの設置環境での温度上昇を想定して所定の補正係数を予め定め、前記温度測定信号の測定温度から検知した温度上昇率を前記補正係数で補正して火災を判断することを特徴とする警報システム。
One or a plurality of temperature measurement chips installed in a predetermined monitoring area, measuring the temperature and transmitting a temperature measurement signal including the measurement temperature;
An alarm device that detects a temperature increase rate based on a measurement temperature of a temperature measurement signal received from the temperature measurement chip, and judges a fire when the temperature increase rate is equal to or greater than a predetermined threshold, and outputs a fire alarm;
In an alarm system with
The alarm device predetermines a predetermined correction coefficient assuming temperature rise in the installation environment of the temperature measurement chip, and corrects the temperature increase rate detected from the measured temperature of the temperature measurement signal with the correction coefficient to fire. An alarm system characterized by judging.
請求項2記載の警報システムに於いて、前記警報器は、前記温度測定チップの設置環境での火災発生に伴う温度の緩慢な上昇を想定して1を超える所定の補正係数を予め定め、前記温度上昇率に前記補正係数を乗じた補正温度上昇率が前記閾値以上の場合に火災を判断することを特徴とする警報システム。
3. The alarm system according to claim 2, wherein the alarm device predetermines a predetermined correction coefficient exceeding 1 on the assumption of a gradual increase in temperature due to the occurrence of a fire in an installation environment of the temperature measuring chip, An alarm system, wherein a fire is judged when a corrected temperature increase rate obtained by multiplying a temperature increase rate by the correction coefficient is equal to or greater than the threshold value.
請求項2記載の警報システムに於いて、前記警報器は、前記温度測定チップの設置環境での火災以外の原因による温度上昇を想定して1未満となる所定の補正係数を予め定め、前記温度上昇率に前記補正係数を乗じた補正温度上昇率が前記閾値以上の場合に火災を判断することを特徴とする警報システム。   3. The alarm system according to claim 2, wherein the alarm device predetermines a predetermined correction coefficient that is less than 1 assuming a temperature rise caused by a cause other than a fire in an installation environment of the temperature measuring chip, A warning system, wherein a fire is judged when a corrected temperature increase rate obtained by multiplying an increase rate by the correction coefficient is equal to or greater than the threshold value.
JP2013055849A 2013-03-19 2013-03-19 Alarm system Active JP6282039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013055849A JP6282039B2 (en) 2013-03-19 2013-03-19 Alarm system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013055849A JP6282039B2 (en) 2013-03-19 2013-03-19 Alarm system

Publications (2)

Publication Number Publication Date
JP2014182534A true JP2014182534A (en) 2014-09-29
JP6282039B2 JP6282039B2 (en) 2018-02-21

Family

ID=51701197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013055849A Active JP6282039B2 (en) 2013-03-19 2013-03-19 Alarm system

Country Status (1)

Country Link
JP (1) JP6282039B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020144512A (en) * 2019-03-05 2020-09-10 日本電気株式会社 Evacuation support device, evacuation support method, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455696A (en) * 1987-08-26 1989-03-02 Hochiki Co Fire judging device
JPH04108289U (en) * 1991-03-05 1992-09-18 ニツタン株式会社 fire detector
JPH08249563A (en) * 1995-03-14 1996-09-27 Yamato Protec Co Optical fiber type fire sensing system
JP2000137876A (en) * 1998-10-30 2000-05-16 Hochiki Corp Fire monitoring device and fire sensor
JP2000194967A (en) * 1998-12-28 2000-07-14 Hochiki Corp Differential heat sensor
JP2003132450A (en) * 2001-10-19 2003-05-09 Yokohama Rubber Co Ltd:The Measured data transmitter and fire alarm supporting system
JP2008275557A (en) * 2007-05-07 2008-11-13 Hochiki Corp Gas alarm

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455696A (en) * 1987-08-26 1989-03-02 Hochiki Co Fire judging device
JPH04108289U (en) * 1991-03-05 1992-09-18 ニツタン株式会社 fire detector
JPH08249563A (en) * 1995-03-14 1996-09-27 Yamato Protec Co Optical fiber type fire sensing system
JP2000137876A (en) * 1998-10-30 2000-05-16 Hochiki Corp Fire monitoring device and fire sensor
JP2000194967A (en) * 1998-12-28 2000-07-14 Hochiki Corp Differential heat sensor
JP2003132450A (en) * 2001-10-19 2003-05-09 Yokohama Rubber Co Ltd:The Measured data transmitter and fire alarm supporting system
JP2008275557A (en) * 2007-05-07 2008-11-13 Hochiki Corp Gas alarm

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020144512A (en) * 2019-03-05 2020-09-10 日本電気株式会社 Evacuation support device, evacuation support method, and program
JP7375307B2 (en) 2019-03-05 2023-11-08 日本電気株式会社 Evacuation support equipment, evacuation support methods and programs

Also Published As

Publication number Publication date
JP6282039B2 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
AU2008312982B2 (en) Communication system
WO2019033999A1 (en) Fire alarm method and system based on air conditioner
CN109166269A (en) Fire early warning device and system based on wireless communication
JP6121762B2 (en) Alarm system
JP5291743B2 (en) Fire alarm system
JP2010033516A (en) Controller device
JP2014186574A (en) Alarm system
JP6001870B2 (en) Alarm system
JP6282039B2 (en) Alarm system
JP7093175B2 (en) Fire alarm
JP5981334B2 (en) Alarm system
JP2014182535A (en) Alarm system
AU2012203421B2 (en) Alarm device
JP6037430B2 (en) Alarm system
KR101357869B1 (en) Remote checking system for heat detector and device thereof
JP6046914B2 (en) Alarm system
JP2010020663A (en) Alarm
JP2013164781A (en) Alarm system
JP2011008486A (en) Alarm
JP6247802B2 (en) Alarm system
JP6231288B2 (en) Alarm system and smoke observation chip
JP5973241B2 (en) Alarm system
JP2013254292A (en) Alarm system
JP2010108435A (en) Fire sensing system
JP2014160294A (en) Alarm system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180123

R150 Certificate of patent or registration of utility model

Ref document number: 6282039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150