JP2014182325A - Imaging optical device, contact type image sensor module and image reader - Google Patents

Imaging optical device, contact type image sensor module and image reader Download PDF

Info

Publication number
JP2014182325A
JP2014182325A JP2013057772A JP2013057772A JP2014182325A JP 2014182325 A JP2014182325 A JP 2014182325A JP 2013057772 A JP2013057772 A JP 2013057772A JP 2013057772 A JP2013057772 A JP 2013057772A JP 2014182325 A JP2014182325 A JP 2014182325A
Authority
JP
Japan
Prior art keywords
lens
hole
image plane
image
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013057772A
Other languages
Japanese (ja)
Inventor
Hidekazu Kobayashi
英和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013057772A priority Critical patent/JP2014182325A/en
Publication of JP2014182325A publication Critical patent/JP2014182325A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Facsimile Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contact type image sensor module that does not use a refraction distribution type lens, which is able to restrict ghost formed on an image face.SOLUTION: An imaging optical device comprises: a lens member in which a plurality of lens faces 30a, 30b for forming erecting unmagnified images of an object on specific image faces are formed on the object side and the image face side, one on each side; and light shielding members 20, 21 arranged on the object side and image face side of the lens member, one at each side, and having a plurality of through holes 201, 211 through which the respective optical axes of the different lens faces pass. The image face side through hole has a lens face side aperture 211a at a position further away from the lens face by a predetermined margin distance from the intersection furthest from the lens face of the intersections of a target light beam passing through the object side through-hole formed on an optical axis passing through the through-holes and also passing through the periphery of the image face side lens face having the optical axis, with ghost light beams G1, G2 that are not target light beams passing through the periphery of the image face side lens face having the light source.

Description

本発明は結像光学装置、接触型イメージセンサーモジュールおよび画像読み取り装置に関する。   The present invention relates to an imaging optical device, a contact-type image sensor module, and an image reading device.

従来、セルフォック(登録商標)レンズアレイ等の屈折率分布型レンズを用いない接触型イメージセンサーモジュールが知られている。屈折率分布型レンズを用いない接触型イメージセンサーモジュールでは、レンズ部材と対象物の間と、レンズ部材と像面の間に貫通孔を有する遮光部材が設けられる。   Conventionally, a contact-type image sensor module that does not use a gradient index lens such as a SELFOC (registered trademark) lens array is known. In a contact-type image sensor module that does not use a gradient index lens, a light shielding member having a through hole is provided between the lens member and the object and between the lens member and the image plane.

特開2007−57995号公報JP 2007-57995 A 特開2000−214305号公報JP 2000-214305 A

屈折率分布型レンズを用いない接触型イメージセンサーモジュールでは、像面に形成されるゴーストの抑制が課題である。   In a contact-type image sensor module that does not use a gradient index lens, it is a problem to suppress ghosts formed on the image plane.

本発明の結像光学装置は、所定の像面にそれぞれ対象物の正立等倍像を結ぶ複数のレンズ面が前記対象物側と前記像面側とにそれぞれ形成されたレンズ部材と、前記レンズ部材の前記対象物側と前記像面側とにそれぞれ配置され、互いに異なる前記レンズ面の光軸が通る複数の貫通孔がそれぞれに形成された遮光部材と、を備え、前記像面側の前記貫通孔は、当該貫通孔を通る光軸上に形成された前記対象物側の前記貫通孔と当該光軸を持つ前記像面側のレンズ面の外周とを通るターゲット光線と、当該光軸を持つ前記像面側のレンズ面の外周を通る前記ターゲット光線でないゴースト光線との交点のうち、当該レンズ面から最も遠い交点からさらに所定のマージン距離だけ当該レンズ面から離れた位置において当該レンズ面側の開口を有する。   The imaging optical device according to the present invention includes a lens member in which a plurality of lens surfaces each connecting an erecting equal-magnification image of an object to a predetermined image surface are formed on the object side and the image surface side, and A light-shielding member that is disposed on each of the object side and the image plane side of the lens member and has a plurality of through holes through which optical axes of the lens surfaces different from each other are formed. The through hole includes a target light beam passing through the through hole on the object side formed on an optical axis passing through the through hole and an outer periphery of the lens surface on the image plane side having the optical axis, and the optical axis. Among the intersection points with the ghost rays that are not the target rays passing through the outer periphery of the lens surface on the image plane side, the lens surface at a position further away from the lens surface by a predetermined margin distance from the intersection farthest from the lens surface With side opening .

本発明によると、ターゲット光線が通るレンズ面を通る光の中に含まれるゴースト光線を遮ることができる位置まで像面側の遮光部材がレンズ面から離れているため、従来に比べてゴーストを著しく抑制することができる。なお、ゴースト光線とは像面まで到達すると像面にゴーストを形成する光線である。   According to the present invention, since the light shielding member on the image surface side is away from the lens surface to a position where the ghost light included in the light passing through the lens surface through which the target light beam passes can be separated from the lens surface, the ghost is significantly reduced. Can be suppressed. A ghost ray is a ray that forms a ghost on the image plane when it reaches the image plane.

ここで、像面側の貫通孔のレンズ面側の開口の位置は、レンズ部材に近い方が、貫通孔を光軸が通っているレンズ面でないレンズ面を通った光線が貫通孔に入射しにくくなる。しかし本願発明者は、ターゲット光線が通るレンズ面を通る光の中にも、像面にゴーストを形成するゴースト光線が含まれていることを発見した。さらに本願発明者は、ゴースト光線がレンズ面の光軸に対してなす角はターゲット光線がレンズ面の光軸に対してなす角よりも大きいことに着目し、貫通孔のレンズ面側の開口の位置をレンズ部材からある程度離すことでゴーストを抑制できることを発見した。すなわち、像面側の貫通孔のレンズ面側の開口の位置を、ターゲット光線と、貫通孔を光軸が通っている像面側のレンズ面の外周を通るターゲット光線でないゴースト光線との交点のうち、当該レンズ面から最も遠い交点とすることで、ゴーストは抑制できる。そこで、製造公差に応じた所定のマージン距離だけその交点からさらにレンズ面から離れた位置に像面側の貫通孔のレンズ面側の開口の位置が設定される。   Here, the position of the opening on the lens surface side of the through hole on the image surface side is closer to the lens member, and light passing through the lens surface that is not the lens surface through which the optical axis passes through the through hole is incident on the through hole. It becomes difficult. However, the inventor of the present application has found that a ghost ray that forms a ghost in the image plane is also included in the light passing through the lens surface through which the target ray passes. Further, the inventor of the present application pays attention to the fact that the angle formed by the ghost light beam with respect to the optical axis of the lens surface is larger than the angle formed by the target light beam with respect to the optical axis of the lens surface. It was discovered that the ghost can be suppressed by moving the position away from the lens member to some extent. That is, the position of the aperture on the lens surface side of the through hole on the image plane side is the intersection of the target beam and a ghost beam that is not the target beam passing through the outer periphery of the lens surface on the image plane side through which the optical axis passes through the through hole. Among them, the ghost can be suppressed by setting the intersection farthest from the lens surface. Therefore, the position of the opening on the lens surface side of the through hole on the image surface side is set at a position further away from the lens surface from the intersection by a predetermined margin distance corresponding to the manufacturing tolerance.

また、像面側の貫通孔のレンズ面側の開口の幅は、ターゲット光線を通す範囲でできるだけ狭くすることが好ましいため、開口位置におけるターゲット光線の幅とする。このように対象物側の貫通孔のレンズ面側の開口の位置と幅を設定することにより、ゴーストを抑制することができる。   In addition, the width of the opening on the lens surface side of the through hole on the image surface side is preferably as narrow as possible within the range through which the target light beam can pass, and thus is the width of the target light beam at the opening position. Thus, a ghost can be suppressed by setting the position and width of the opening on the lens surface side of the through hole on the object side.

また、対象物1点からの光を3本のレンズを通って像面に結像するよう設計する場合、3本のレンズのうち真ん中のレンズを通った光は像面側の貫通孔の内壁面には当たりにくいためゴーストは発生しにくい。ところが、真ん中のレンズの両側にあるレンズを通った光はレンズ−像面間距離に対するレンズピッチで決まる角度で貫通孔を通過する。このため、像面側の貫通孔の内壁面に当たってしまい光量が低下する場合がある。したがって、像面側の貫通孔の内壁面には、この角度の光が当たらないようなテーパーを設けることが好ましい。すなわち、像面側の貫通孔の幅は、レンズ面側の開口を通ったターゲット光線の束よりも像面方向に広がっていることが好ましい。   In addition, when the light from one point of the object is designed to form an image on the image plane through the three lenses, the light passing through the middle lens among the three lenses is in the through hole on the image plane side. Since it is difficult to hit the wall, ghosts are unlikely to occur. However, the light passing through the lenses on both sides of the middle lens passes through the through hole at an angle determined by the lens pitch with respect to the lens-image distance. For this reason, it may hit the inner wall surface of the through hole on the image plane side, and the amount of light may decrease. Therefore, it is preferable to provide a taper on the inner wall surface of the through hole on the image plane side so that light of this angle does not strike. In other words, it is preferable that the width of the through hole on the image plane side is wider in the image plane direction than the bundle of target rays that have passed through the opening on the lens plane side.

本発明の実施形態にかかる断面図。Sectional drawing concerning embodiment of this invention. 本発明の実施形態にかかる平面図。The top view concerning embodiment of this invention. 本発明の実施形態にかかる光線図。The light ray figure concerning embodiment of this invention. 図3の部分拡大図。The elements on larger scale of FIG.

以下、本発明の実施の形態を添付図面を参照しながら説明する。尚、各図において対応する構成要素には同一の符号が付され、重複する説明は省略される。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the corresponding component in each figure, and the overlapping description is abbreviate | omitted.

1.画像読み取り装置
本発明の位置実施例としての画像読み取り装置1の要部を図1に示す。この画像読み取り装置1は、結像光学装置2とリニアイメージセンサー40とを含む接触型イメージセンサーモジュールと、プラテンガラス10と、図示しないアナログデジタル変換器、副走査機構、制御部等を備える。
1. Image Reading Device FIG. 1 shows a main part of an image reading device 1 as a position example of the present invention. The image reading device 1 includes a contact-type image sensor module including the imaging optical device 2 and the linear image sensor 40, a platen glass 10, an analog-digital converter (not shown), a sub-scanning mechanism, a control unit, and the like.

位置決め部材としてのプラテンガラス10は、対象物としての原稿9を結像光学装置2に対して位置決めするための透明な平板ガラスである。撮像素子としてのリニアイメージセンサー40は、プラテンガラス10と平行でプラテンガラス10に対向する受光面40aを有する。対象物の像面となる受光面40aには図示しない多数の光電変換素子が直線的に配列されている。光電変換素子の配列方向が主走査方向となり、これに直交する方向が副走査方向となる。結像光学装置2は、対象物側の第一遮光部材20、レンズ部材30および像面側の第二遮光部材21を備える。結像光学装置2は、リニアイメージセンサー40の受光面40aに正立等倍像を結ぶようにプラテンガラス10とリニアイメージセンサー40との間に配置されている。   A platen glass 10 as a positioning member is a transparent flat glass for positioning a document 9 as an object with respect to the imaging optical device 2. The linear image sensor 40 as an imaging element has a light receiving surface 40 a that is parallel to the platen glass 10 and faces the platen glass 10. A large number of photoelectric conversion elements (not shown) are linearly arranged on the light receiving surface 40a serving as the image plane of the object. The arrangement direction of the photoelectric conversion elements is the main scanning direction, and the direction orthogonal to this is the sub-scanning direction. The imaging optical device 2 includes a first light shielding member 20 on the object side, a lens member 30, and a second light shielding member 21 on the image plane side. The imaging optical device 2 is disposed between the platen glass 10 and the linear image sensor 40 so as to form an erecting equal-magnification image on the light receiving surface 40a of the linear image sensor 40.

レンズ部材30は、対向する2つの端面のそれぞれに多数のレンズ面30a、30bが直線的に配列されている透明樹脂部材である。レンズ部材30の対象物側の端面と像面側の端面とは同一形状である。すなわち、レンズ部材30の対象物側のレンズ面30aと、レンズ部材30の像面側のレンズ面30bとは同一の形状を有し、それぞれの端面におけるレンズ面30a、30bの配置も同一である。   The lens member 30 is a transparent resin member in which a large number of lens surfaces 30a and 30b are linearly arranged on each of two opposing end surfaces. The end surface on the object side and the end surface on the image plane side of the lens member 30 have the same shape. That is, the lens surface 30a on the object side of the lens member 30 and the lens surface 30b on the image surface side of the lens member 30 have the same shape, and the arrangement of the lens surfaces 30a and 30b on the respective end surfaces is also the same. .

レンズ部材30の両側に配置される第一遮光部材20と第二遮光部材21とは射出成形により製造される不透明樹脂からなる板状部材である。第一遮光部材20は、レンズ部材30とプラテンガラス10の間に、リニアイメージセンサー40の受光面40aと平行に配置される。第二遮光部材21は、レンズ部材30とリニアイメージセンサー40の間に、リニアイメージセンサー40の受光面40aと平行に配置される。遮光部材20、21にはそれぞれ多数の貫通孔201、211が直線的に配列されている。貫通孔201、211には、それぞれ異なるレンズ面30a、30bの光軸が通っている。   The first light shielding member 20 and the second light shielding member 21 disposed on both sides of the lens member 30 are plate-like members made of an opaque resin manufactured by injection molding. The first light shielding member 20 is disposed between the lens member 30 and the platen glass 10 in parallel with the light receiving surface 40 a of the linear image sensor 40. The second light shielding member 21 is disposed between the lens member 30 and the linear image sensor 40 in parallel with the light receiving surface 40 a of the linear image sensor 40. A large number of through holes 201 and 211 are linearly arranged in the light shielding members 20 and 21, respectively. The optical axes of different lens surfaces 30a and 30b pass through the through holes 201 and 211, respectively.

2.結像光学装置の詳細
図2(a)は、レンズ面30a、30bの光軸方向から見たレンズ面30a、30bの輪郭を示している。また、図2(b)は、第一遮光部材20と第二遮光部材21の光軸方向から見た貫通孔201、211の輪郭を示している。貫通孔201、211の配列方向および配列間隔はレンズ面30a、30bの配列方向および配列間隔と一致している。貫通孔201、211の配列方向とレンズ面30a、30bの配列方向は、主走査方向に一致する。
2. Details of Imaging Optical Device FIG. 2A shows the contours of the lens surfaces 30a and 30b viewed from the optical axis direction of the lens surfaces 30a and 30b. FIG. 2B shows the outlines of the through holes 201 and 211 as seen from the optical axis direction of the first light shielding member 20 and the second light shielding member 21. The arrangement direction and arrangement interval of the through holes 201 and 211 coincide with the arrangement direction and arrangement interval of the lens surfaces 30a and 30b. The arrangement direction of the through holes 201 and 211 and the arrangement direction of the lens surfaces 30a and 30b coincide with the main scanning direction.

レンズ面30a、30bは、レンズ面30a、30bの配列方向に垂直な平面で両端部を切り取られ両隣のレンズ面30a、30bとその平面において互いに交わる球面で構成されている。したがって、隣り合うレンズ面の円周が互いに接する構成に比べると、レンズ部材30の端面に大きなレンズ面30a、30bを密に配置することができる。これにより受光面40aの放射照度を高めることができるとともに照度斑を低減できる。   The lens surfaces 30a and 30b are formed of spherical surfaces whose both ends are cut off by a plane perpendicular to the arrangement direction of the lens surfaces 30a and 30b and intersecting each other on the adjacent lens surfaces 30a and 30b. Therefore, compared to a configuration in which the circumferences of adjacent lens surfaces are in contact with each other, large lens surfaces 30 a and 30 b can be densely arranged on the end surface of the lens member 30. As a result, the irradiance of the light receiving surface 40a can be increased and illuminance unevenness can be reduced.

貫通孔201、211は光軸に直交する断面がレンズ面30a、30bの配列方向に短い長方形である。角がR加工がされていれば、樹脂成型しやすい。そして貫通孔201、211の内壁面のそれぞれは平面で構成されているが、曲面でもよい。またこれら内壁面は光吸収機能を持たせる必要から、部材としては光吸収部材を用いることが望ましく、具体的には黒色の樹脂などが好ましい。また、内壁面の表面には細かな凹凸が付いている事も好ましい。レンズ面30a、30bの幅は、貫通孔201、211の開口と同様に、レンズ面30a、30bの配列方向に狭く、その配列方向に直交する方向で広い。このように貫通孔201、211の開口形状がレンズ面30a、30bの形状に対応しているため、対象物側の貫通孔201から放射される光束を効率よくレンズ面30aに入射させることができ、また、レンズ面30bから放射される光束を効率よく像面側の貫通孔211に入射させることができる。これにより受光面40aの放射照度を高めることができる。   The through holes 201 and 211 have a rectangular shape whose cross section perpendicular to the optical axis is short in the arrangement direction of the lens surfaces 30a and 30b. If the corner is rounded, resin molding is easy. Each of the inner wall surfaces of the through holes 201 and 211 is a flat surface, but may be a curved surface. Since these inner wall surfaces need to have a light absorbing function, it is desirable to use a light absorbing member as the member, and specifically, a black resin or the like is preferable. It is also preferable that the surface of the inner wall surface has fine irregularities. Similarly to the openings of the through holes 201 and 211, the widths of the lens surfaces 30a and 30b are narrow in the arrangement direction of the lens surfaces 30a and 30b and wide in the direction orthogonal to the arrangement direction. As described above, since the opening shapes of the through holes 201 and 211 correspond to the shapes of the lens surfaces 30a and 30b, the light beam emitted from the through hole 201 on the object side can be efficiently incident on the lens surface 30a. In addition, the light beam emitted from the lens surface 30b can be efficiently incident on the through hole 211 on the image surface side. Thereby, the irradiance of the light receiving surface 40a can be increased.

光軸方向におけるレンズ部材30に対する遮光部材20、21の位置を図3、図4に示す。レンズ部材30からプラテンガラスの表面10aまでの距離dと、レンズ部材30からリニアイメージセンサーの受光面40aまでの距離dは、光学距離としては同じである。プラテンガラスの屈折率をnp、厚みをdとすれば、dは物理距離的にはd(n−1)だけ長くなる。従って、物理距離としてはd=d+d(n−1)となるが、ここでは理解を容易にするために無視している。第一遮光部材20、レンズ部材30および第二遮光部材21は、一点鎖線で示すように、第一遮光部材20の貫通孔20aの中心軸と、第二遮光部材21の貫通孔21aの中心軸と、レンズ面30aの光軸と、レンズ面30bの光軸とが一致するように配置されている。 3 and 4 show the positions of the light shielding members 20 and 21 with respect to the lens member 30 in the optical axis direction. The distance d 7 from the lens member 30 to the surface 10a of the platen glass and the distance d 8 from the lens member 30 to the light receiving surface 40a of the linear image sensor are the same as the optical distance. If the refractive index of the platen glass is n p and the thickness is d p , d 7 becomes longer by d p (n p −1) in terms of physical distance. Therefore, the physical distance is d 7 = d 8 + d p (n p −1), but is ignored here for easy understanding. The first light shielding member 20, the lens member 30, and the second light shielding member 21 have a central axis of the through hole 20 a of the first light shielding member 20 and a central axis of the through hole 21 a of the second light shielding member 21, as indicated by the alternate long and short dash line. And the optical axis of the lens surface 30a and the optical axis of the lens surface 30b are arranged to coincide with each other.

第一遮光部材20とレンズ部材30の距離が短いほどレンズ面30aにゴースト光が入射しにくくなる。したがって、第一遮光部材20とレンズ部材30との距離dは、できる限り小さく設定する。なお、射出成形によって形成することにより第一遮光部材20の製造コストを低減でき、また、像面側の開口が狭いほどゴースト光が入射しにくいため、像面側の開口を狭くするのが好ましいが、ターゲット光線を遮らないようにターゲット光線の束の広がりに応じて貫通孔201はプラテンガラス9からレンズ部材30に向かう方向に広がっていることが好ましい。 As the distance between the first light shielding member 20 and the lens member 30 is shorter, ghost light is less likely to enter the lens surface 30a. Therefore, the distance d 9 between the first shielding member 20 and the lens member 30 is set as small as possible. In addition, since the manufacturing cost of the first light shielding member 20 can be reduced by forming by injection molding, and the ghost light is less likely to be incident as the opening on the image plane side is narrow, it is preferable to narrow the opening on the image plane side. However, it is preferable that the through hole 201 extends in the direction from the platen glass 9 toward the lens member 30 in accordance with the spread of the bundle of target beams so as not to block the target beam.

第二遮光部材21もレンズ部材30に近い方が、第二遮光部材21の貫通孔211を光軸が通っているレンズ面30bでないレンズ面30bを通ったゴースト光が貫通孔211に入射しにくくなる。しかし、貫通孔211を光軸が通っているレンズ面30bを通る光線の中にも、点線及び二点鎖線で示すゴースト光線G1、G2が含まれ得る。このため、第二遮光部材21をレンズ部材30に近づけすぎると、このようなゴースト光線G1、G2が貫通孔211に入射してしまう。 When the second light shielding member 21 is closer to the lens member 30, ghost light that has passed through the lens surface 30 b that is not the lens surface 30 b 0 through which the optical axis passes through the through hole 211 of the second light shielding member 21 enters the through hole 211. It becomes difficult. However, some of the light rays passing through the lens surface 30b 0 which the optical axis passes through the through hole 211 may also be included ghost light G1, G2 indicated by the dotted line and two-dot chain line. For this reason, if the second light shielding member 21 is too close to the lens member 30, such ghost rays G1 and G2 enter the through hole 211.

ターゲット光線が通るレンズ面30bから出射するゴースト光線がレンズ面30bの一点鎖線で示す光軸となす角は、ターゲット光線がレンズ面30bの一点鎖線で示す光軸となす角よりも大きい。したがってゴースト光線はレンズ面30bからある程度離れるとターゲット光線の束の外側に出る。そこでゴースト光線が貫通孔211に入射することを防ぐには、レンズ面30bの外周を通るターゲット光線とゴースト光線との交点のうちレンズ面30bから最も遠い交点まで、レンズ面30bから貫通孔211の開口211aを離せばよい。ゴースト光線がレンズ面30b通る点が光軸から遠いほど、ゴースト光線とレンズ面30bの外周を通るターゲット光線との交点がレンズ面30bから遠くなる。 Optical axis angle shown ghost rays of light outgoing from the lens surface 30b 0 through the target light beam by a one-dot chain line of the lens surface 30b 0 is greater than the optical axis angle indicated target light beam by a chain line of the lens surface 30b 0 . Thus the ghost light exits outside of the bundle of target light some extent away from the lens surface 30b 0. Therefore in preventing the ghost light is incident on the through hole 211 to the farthest intersection from the lens surface 30b 0 of intersection of the target light and ghost light passing through the periphery of the lens surface 30b 0, through the lens surface 30b 0 The opening 211a of the hole 211 may be separated. As that ghost light passes a lens surface 30b 0 is far from the optical axis, the intersection with the target light beam passing through the periphery of the ghost light and the lens surface 30b 0 is the distance from the lens surface 30b 0.

ゴースト光は、図3、図4の点線が示すように、像面側の一のレンズ面30bを通るターゲット光線が通る対象物側の貫通孔211の隣の貫通孔211を通った光線G1を含み得る。またゴースト光は、図3の二点鎖線が示すように、像面側の一のレンズ面30bを通るターゲット光線が通る対象物側の貫通孔201の内壁面で反射した光線G2を含み得る。 Ghost light is 3, as shown by a dotted line in FIG. 4, beam G1 passing through the through hole 211 adjacent to the through hole 211 of the object side through the target light ray passing through the first lens surface 30b 0 on the image side Can be included. The ghost light is, as indicated by the two-dot chain line in FIG. 3, may include a light G2 reflected at the inner wall surface of the through-hole 201 of the object side through the target light ray passing through the first lens surface 30b 0 on the image side .

本実施例では、図3、図4に示すように、ターゲット光線が通る対象物側の貫通孔201の内壁面で反射したゴースト光線G2よりも、その隣の貫通孔201を通ったゴースト光線G1の方がレンズ面30bの光軸とのなす角が小さくなる。したがって図4に示すようにゴースト光線G1とレンズ面30bの外周を通るターゲット光線との交点Qは、ゴースト光線G2とレンズ面30bの外周を通るターゲット光線との交点Pよりも、レンズ面30bから遠くなる。なお、ターゲット光線が通る対象物側の貫通孔201の内壁面で反射したゴースト光線G2と、その隣の貫通孔201を通ったゴースト光線G1とで、どちらの方がレンズ面30bの外周を通るターゲット光線との交点がレンズ面30bから遠くなるかは、貫通孔201の配列間隔やその内壁面の傾斜角等によって決まる。 In this embodiment, as shown in FIGS. 3 and 4, the ghost light beam G1 that has passed through the adjacent through hole 201 rather than the ghost light beam G2 reflected by the inner wall surface of the through hole 201 on the object side through which the target light beam passes. Is smaller in angle with the optical axis of the lens surface 30b. Intersection Q of the target light beam passing through the periphery of the ghost light G1 and the lens surface 30b 0 4 therefore, than the intersection point P of the target light beam passing through the periphery of the ghost light G2 and a lens surface 30b 0, the lens surface It is far from 30b. Note that the ghost light G2 reflected at the inner wall surface of the through-hole 201 of the object side through the target light in a ghost light G1 passing through the through hole 201 of the adjacent, towards Which the outer periphery of the lens surface 30b 0 Whether the intersection with the passing target light beam is far from the lens surface 30b is determined by the arrangement interval of the through holes 201, the inclination angle of the inner wall surface, and the like.

そして、対象物側の貫通孔201の内壁面形状によっては、レンズ部材30の対象物側において、ターゲット光線が通る貫通孔201でも、その隣の貫通孔201でもない貫通孔201を通り、像面側においてターゲット光線が通る貫通孔211に入射するゴースト光線G3をもゴースト光は含み得るが、そのようなゴースト光線G3は貫通孔201、211の内壁面で複数回反射する角度で貫通孔201、211に進入する。貫通孔201、211の内壁面は光を吸収する部材であるため複数回反射することで大きく減衰し、実質的には、像面にゴーストを形成しない。   Depending on the inner wall surface shape of the through-hole 201 on the object side, on the object side of the lens member 30, the image plane passes through the through-hole 201 that is neither the through-hole 201 through which the target light beam passes nor the adjacent through-hole 201. Ghost light can also include ghost light G3 incident on the through-hole 211 through which the target light beam passes, but such ghost light G3 is reflected at the inner wall surface of the through-holes 201 and 211 at an angle that is reflected multiple times. Enter 211. Since the inner wall surfaces of the through holes 201 and 211 are members that absorb light, they are greatly attenuated by being reflected a plurality of times, and substantially no ghost is formed on the image plane.

そこで本実施例では、孔軸が一致している2つの貫通孔201、211と、像面側のレンズ面の外周とを通るターゲット光線と、そのターゲット光線が通る対象物側の貫通孔201の内壁面で反射してレンズ面30bの外周を通るゴースト光線との交点と、その隣の貫通孔201とレンズ面30bの外周を通るゴースト光線とそのターゲット光線との交点のうち、レンズ面30bから最も遠い交点Qに像面側の貫通孔211の開口211aの位置を設定する。なお、実際には公差を勘案したマージン距離分だけ交点Qよりもレンズ面30bから離れた位置に開口211aの位置を設定することになる。 Therefore, in this embodiment, the target beam passing through the two through-holes 201 and 211 having the same hole axis and the outer periphery of the lens surface on the image plane side, and the through-hole 201 on the object side through which the target beam passes. and intersections of the ghost light reflected by the inner wall surface through the outer periphery of the lens surface 30b 0, of the intersection of the ghost light and its target light passing through the periphery of the through hole 201 and the lens surface 30b 0 of the next lens surface to set the position of the opening 211a of the through hole 211 of the image plane side to the farthest intersection Q from 30b 0. Incidentally, it will set the actually position of the opening 211a at a position away from the lens surface 30b 0 than the intersection point Q by a margin distance worth of consideration of tolerance.

また、ターゲット光線が通るレンズ面30bの隣のレンズ面30bを通ったゴースト光線が貫通孔211に入射しないようにするため、開口211aの幅はターゲット光線の束の全体が貫通孔211に入射できる最も狭い幅か、もしくは、公差を勘案したマージン分だけその幅よりもわずかに広い幅に設定する。これにより、ターゲット光線が通るレンズ面30bの隣のレンズ面30bを通ったゴースト光線G2を、第二遮光部材21の端面の点Rにおいて遮ることが可能になる。 Further, in order to prevent the ghost light beam that has passed through the lens surface 30b 1 adjacent to the lens surface 30b 0 through which the target light beam passes from entering the through hole 211, the width of the opening 211a is set so that the entire bundle of target light beams passes through the through hole 211. The narrowest width that can be incident is set, or the width is set slightly wider than the width by the margin considering the tolerance. Thus, the ghost light G2 passing through the lens surface 30b 0 next to the lens surface 30b 1 through which the target light, it becomes possible to shield at a point R of the end face of the second light-shielding member 21.

また、対象物側の貫通孔211の内壁面は、すくなくとも、貫通孔211の開口211aから入射したターゲット光線と交わらない形状に設定すればよい。すなわち、対象物側の貫通孔211の内壁面とレンズ面30bの光軸とがなす角度をθ、レンズ面30bの配列間隔をd、レンズ面30bから像面40aまでの距離をdとすると、tanθ>d/dを満たすように設定すればよい。なお、貫通孔211は、像面側に向かって狭まっていてもよいし、広がっていてもよいし、ストレート孔でもよい。ただし、ストレート孔は射出成形を困難にするし、原稿面1点からの光を複数のレンズで集光する場合に貫通孔211の内壁面へのターゲット光の入射が起こりにくい。例えば、原稿面1点からの光を最大3つのレンズで集光するように設計する場合(図4の光線G4参照)、レンズ―受光面距離d10、レンズピッチd、後アパーチャ内壁テーパー角度θとすれば、tanθ>d/d10とすればよい。一方、貫通孔211の像面側の開口211bが広すぎる場合には、第二遮光部材21を成形できなくなるため、tanθ>d/dを満たし、かつ、第二遮光部材21を成形できる範囲でθを大きく設定して像面側に向かって貫通孔211を広げればよい。 Further, the inner wall surface of the through hole 211 on the object side may be set to a shape that does not intersect with the target light beam incident from the opening 211a of the through hole 211 at least. That is, the angle formed by the inner wall surface of the through hole 211 on the object side and the optical axis of the lens surface 30b is θ, the arrangement interval of the lens surfaces 30b is d 5 , and the distance from the lens surface 30b to the image surface 40a is d 8 . Then, you may be set so as to satisfy the tanθ> d 5 / d 8. The through hole 211 may be narrowed toward the image plane side, may be widened, or may be a straight hole. However, the straight hole makes injection molding difficult, and when the light from one point on the document surface is collected by a plurality of lenses, the target light does not easily enter the inner wall surface of the through hole 211. For example, when designing so that light from one point on the document surface is collected by a maximum of three lenses (see the light ray G4 in FIG. 4), the lens-light receiving surface distance d 10 , the lens pitch d 5 , and the rear aperture inner wall taper angle If θ 2 , tan θ 2 > d 5 / d 10 may be satisfied. On the other hand, if the opening 211b on the image plane side of the through-hole 211 is too wide, the second light shielding member 21 cannot be molded, so that tan θ> d 5 / d 8 is satisfied and the second light shielding member 21 can be molded. It is only necessary to increase θ in the range and widen the through hole 211 toward the image plane side.

以上の条件を満たす設定寸法の一例は次の通りである。
プラテンガラスの厚さd:2.8mm
プラテンガラスの屈折率:1.52
第一遮光部材の厚さd:0.66mm
第二遮光部材の厚さd:0.5mm
レンズ部材の厚さd:2.68mm
レンズ面の配列間隔d:0.35mm
レンズ部材の屈折率:1.53
レンズ面の直径:0.588mm
レンズ面の曲率半径:0.4mm(非球面係数は省略)
原稿面から像面までの距離d:10.81mm
原稿面からレンズ部材までの距離d:4.46mm
レンズ部材から像面までの距離d:3.45mm
レンズ部材から第一遮光部材までの距離d:0mm
レンズ部材から第二遮光部材までの距離d10:0.82mm
像面側の貫通孔の対象物側の開口寸法 (第2遮光部材21):0.3mm×0.15mm
像面側の貫通孔の像面側の開口寸法(同上):1.1mm×0.161mm
An example of set dimensions that satisfy the above conditions is as follows.
Platen glass thickness d 1 : 2.8 mm
Refractive index of platen glass: 1.52
Thickness d 2 of the first light shielding member: 0.66 mm
Second light shielding member thickness d 3 : 0.5 mm
Lens member thickness d 4 : 2.68 mm
Lens surface arrangement interval d 5 : 0.35 mm
Refractive index of lens member: 1.53
Lens surface diameter: 0.588mm
Radius of curvature of lens surface: 0.4mm (Aspheric coefficient is omitted)
Distance from document surface to image surface d 6 : 10.81 mm
Distance from document surface to lens member d 7 : 4.46 mm
Distance from lens member to image plane d 8 : 3.45 mm
Distance d 9 from the lens member to the first light shielding member: 0 mm
Distance d 10 from the lens member to the second light shielding member: 0.82 mm
Opening size on the object side of the through hole on the image plane side (second light shielding member 21): 0.3 mm × 0.15 mm
Opening size on the image plane side of the through hole on the image plane side (same as above): 1.1 mm × 0.161 mm

以上説明した実施例によると、ターゲット光線が通るレンズ面を通る光の中に含まれるゴースト光線を遮ることができる位置まで像面側の遮光部材がレンズ面から離れているため、従来に比べてゴーストを著しく抑制することができる。   According to the embodiment described above, since the light shielding member on the image plane side is away from the lens surface to a position where the ghost light included in the light passing through the lens surface through which the target light beam passes can be separated from the lens surface, Ghosts can be remarkably suppressed.

3.他の実施形態
尚、本発明の技術的範囲は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
3. Other Embodiments The technical scope of the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the scope of the present invention.

例えば、貫通孔211、211の副走査方向の幅を像面に向かって広げてもよい。これにより、ターゲット光線の原点から副走査方向にずれた点を原点とするゴースト光線が貫通孔211、211の内壁面で反射してリニアイメージセンサー40の受光面40aに入射することを抑制できる。また、tanθ>d/dを満たす範囲で、第一遮光部材20と第二遮光部材21の形状を一致させて製造コストを低減してもよい。また、遮光部材に2列以上の貫通孔を形成しても良い。 For example, the width in the sub-scanning direction of the through holes 211 and 211 may be increased toward the image plane. Thereby, it is possible to suppress the ghost beam having the point shifted from the origin of the target beam in the sub-scanning direction from being reflected by the inner wall surfaces of the through holes 211 and 211 and entering the light receiving surface 40a of the linear image sensor 40. Further, the manufacturing cost may be reduced by matching the shapes of the first light shielding member 20 and the second light shielding member 21 within a range satisfying tan θ> d 5 / d 8 . Further, two or more rows of through holes may be formed in the light shielding member.

むろん、レンズ部材、遮光部材、プラテン等の材質は例示であって、プラテンは樹脂で形成しても良いし、レンズ部材をガラスで形成しても良いし、遮光部材を金属で形成しても良い。また、レンズ面は、非球面で構成しても良いし、レンズ部材の端面のそれぞれにおいて2列以上に配置しても良い。また遮光部材に形成する貫通孔の光軸に直交する断面形状は、正方形でも、円形でも、他のいかなる形状であってもよい。
また、画像読取装置としては、単機能のスキャナ装置、複合機のスキャナ装置、ファクシミリの読取装置、複写機の読取装置などがあげられる。
Of course, materials such as a lens member, a light shielding member, and a platen are examples, and the platen may be formed of resin, the lens member may be formed of glass, or the light shielding member may be formed of metal. good. Further, the lens surfaces may be aspherical surfaces, or may be arranged in two or more rows on each end surface of the lens member. Moreover, the cross-sectional shape orthogonal to the optical axis of the through-hole formed in the light shielding member may be a square, a circle, or any other shape.
Examples of the image reading device include a single-function scanner device, a multifunction device scanner device, a facsimile reading device, and a copying machine reading device.

1…画像読み取り装置、2…結像光学装置、9…原稿、10…プラテンガラス、20…第一遮光部材、20a…貫通孔、21…第二遮光部材、21a…貫通孔、30…レンズ部材、30a…レンズ面、30b…レンズ面、40…リニアイメージセンサー、40a…像面、201…貫通孔、211…貫通孔、211a…開口、211b…開口、G1…ゴースト光線、G2…ゴースト光線、G3…ゴースト光線 DESCRIPTION OF SYMBOLS 1 ... Image reading apparatus, 2 ... Imaging optical apparatus, 9 ... Document, 10 ... Platen glass, 20 ... First light shielding member, 20a ... Through hole, 21 ... Second light shielding member, 21a ... Through hole, 30 ... Lens member 30a ... lens surface, 30b ... lens surface, 40 ... linear image sensor, 40a ... image surface, 201 ... through hole, 211 ... through hole, 211a ... opening, 211b ... opening, G1 ... ghost ray, G2 ... ghost ray, G3 ... Ghost rays

Claims (7)

所定の像面にそれぞれ対象物の正立等倍像を結ぶ複数のレンズ面が前記対象物側と前記像面側とにそれぞれ形成されたレンズ部材と、
前記レンズ部材の前記対象物側と前記像面側とにそれぞれ配置され、互いに異なる前記レンズ面の光軸が通る複数の貫通孔がそれぞれに形成された遮光部材と、
を備え、
前記像面側の前記貫通孔は、当該貫通孔を通る光軸上に形成された前記対象物側の前記貫通孔と当該光軸を持つ前記像面側のレンズ面の外周とを通るターゲット光線と、当該光軸を持つ前記像面側のレンズ面の外周を通る前記ターゲット光線でないゴースト光線との交点のうち、当該レンズ面から最も遠い交点からさらに所定のマージン距離だけ当該レンズ面から離れた位置において当該レンズ面側の開口を有する、
結像光学装置。
A plurality of lens surfaces respectively connecting the erecting equal-magnification image of the target object to a predetermined image plane on the target object side and the image plane side; and
A light-shielding member that is disposed on each of the object side and the image plane side of the lens member, and has a plurality of through-holes through which optical axes of the lens surfaces different from each other are formed;
With
The through hole on the image plane side is a target beam passing through the through hole on the object side formed on the optical axis passing through the through hole and the outer periphery of the lens surface on the image plane side having the optical axis. And the intersection of the ghost rays that are not the target rays passing through the outer periphery of the lens surface on the image plane side having the optical axis, and further away from the lens surface by a predetermined margin distance from the intersection farthest from the lens surface Having an opening on the lens surface side at a position,
Imaging optical device.
前記位置における前記ターゲット光線の束の幅を前記レンズ面側の貫通孔の開口の幅とする、
請求項1に記載の結像光学装置。
The width of the bundle of target rays at the position is the width of the opening of the through hole on the lens surface side,
The imaging optical device according to claim 1.
前記ゴースト光線は、前記像面側の同一の前記レンズ面を通る前記ターゲット光線が通る前記対象物側の前記貫通孔の隣の前記貫通孔を通った光線を含む、
請求項1または2に記載の結像光学装置。
The ghost light beam includes a light beam that has passed through the through hole adjacent to the through hole on the object side through which the target light beam passes through the same lens surface on the image plane side.
The imaging optical apparatus according to claim 1 or 2.
前記ゴースト光線は、前記像面側の同一の前記レンズ面を通る前記ターゲット光線が通る前記対象物側の前記貫通孔の内壁面で反射した光線を含む、
請求項1から3のいずれか一項に記載の結像光学装置。
The ghost ray includes a ray reflected by an inner wall surface of the through hole on the object side through which the target ray passing through the same lens surface on the image plane side passes.
The imaging optical apparatus according to any one of claims 1 to 3.
前記像面側の前記貫通孔の幅は、前記レンズ面側の開口を通った前記ターゲット光線の束よりも前記像面方向に広がっている、
請求項1から4のいずれか一項に記載の結像光学装置。
The width of the through hole on the image plane side is wider in the image plane direction than the bundle of target beams that have passed through the opening on the lens plane side.
The imaging optical apparatus according to claim 1.
請求項1から5のいずれか一項に記載の結像光学装置と、
前記像面を受光面とする撮像素子と、
を備える接触型イメージセンサーモジュール。
An imaging optical device according to any one of claims 1 to 5,
An image sensor having the image plane as a light-receiving surface;
A contact-type image sensor module.
請求項1から5のいずれか一項に記載の結像光学装置と、
前記像面を受光面とする撮像素子と、
前記結像光学装置に対して原稿を位置決めする位置決め部材と、
を備える画像読み取り装置。
An imaging optical device according to any one of claims 1 to 5,
An image sensor having the image plane as a light-receiving surface;
A positioning member for positioning a document with respect to the imaging optical device;
An image reading apparatus comprising:
JP2013057772A 2013-03-21 2013-03-21 Imaging optical device, contact type image sensor module and image reader Pending JP2014182325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013057772A JP2014182325A (en) 2013-03-21 2013-03-21 Imaging optical device, contact type image sensor module and image reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013057772A JP2014182325A (en) 2013-03-21 2013-03-21 Imaging optical device, contact type image sensor module and image reader

Publications (1)

Publication Number Publication Date
JP2014182325A true JP2014182325A (en) 2014-09-29

Family

ID=51701072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013057772A Pending JP2014182325A (en) 2013-03-21 2013-03-21 Imaging optical device, contact type image sensor module and image reader

Country Status (1)

Country Link
JP (1) JP2014182325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018363A (en) * 2019-07-23 2021-02-15 富士ゼロックス株式会社 Optical device, image reading device, and image forming apparatus
JP2021052361A (en) * 2019-09-26 2021-04-01 三菱電機株式会社 Image reading device and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018363A (en) * 2019-07-23 2021-02-15 富士ゼロックス株式会社 Optical device, image reading device, and image forming apparatus
JP7346970B2 (en) 2019-07-23 2023-09-20 富士フイルムビジネスイノベーション株式会社 Optical devices, image reading devices, and image forming devices
JP2021052361A (en) * 2019-09-26 2021-04-01 三菱電機株式会社 Image reading device and manufacturing method of the same
JP7211316B2 (en) 2019-09-26 2023-01-24 三菱電機株式会社 Image reading device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5802408B2 (en) Erecting equal-magnification lens array plate, optical scanning unit, image reading device, and image writing device
JP5243161B2 (en) Image reading device
JP2009139487A (en) Erecting equal-magnification lens array plate
JP2000221442A (en) Image-formation optical device
US8576459B2 (en) Erecting equal-magnification lens array plate, optical scanning unit, and image reading device
US20100238520A1 (en) Erecting equal-magnification lens array plate, optical scanning unit, and image reading device
JP5466456B2 (en) Erecting equal-magnification lens array plate, optical scanning unit, and image reading apparatus
JP2015108794A (en) Imaging optical element
JP2012163850A (en) Erecting equal-magnification lens array plate, optical scanning unit, image reading device, and image writing system
JP5802405B2 (en) Erecting equal-magnification lens array plate, optical scanning unit, image reading device, and image writing device
US20100315718A1 (en) Erecting equal-magnification lens array plate, optical scanning unit, and image reading device
JP6344933B2 (en) Photoelectric encoder
JP2010286741A (en) Erecting unit magnification lens array plate, optical scanning unit and image reader
JP6102091B2 (en) Image reading device
JP6107116B2 (en) Document illumination device, contact image sensor module, and image reading device
JP2010128361A (en) Erecting unmagnified lens array plate, image sensor unit, and image reading apparatus
JP2014182325A (en) Imaging optical device, contact type image sensor module and image reader
JP2011118122A (en) Erecting equal magnification lens array plate, optical scanning unit and image reading apparatus
US20110134495A1 (en) Erecting equal-magnification lens array plate, optical scanning unit, and image reading device
JP2014102413A (en) Image forming optical device, adhesion type image sensor module, and image reading device
JP2001119530A (en) Linear image sensor
JPWO2022064777A5 (en)
JP5186091B2 (en) Photoelectric encoder
JP6112977B2 (en) Rod lens array and image sensor
JP7216240B1 (en) Optical devices and image sensors

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150109