JP2014181995A - Three-dimensional shape measurement device - Google Patents

Three-dimensional shape measurement device Download PDF

Info

Publication number
JP2014181995A
JP2014181995A JP2013056449A JP2013056449A JP2014181995A JP 2014181995 A JP2014181995 A JP 2014181995A JP 2013056449 A JP2013056449 A JP 2013056449A JP 2013056449 A JP2013056449 A JP 2013056449A JP 2014181995 A JP2014181995 A JP 2014181995A
Authority
JP
Japan
Prior art keywords
light
dimensional shape
irradiation
cutting line
irradiation intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013056449A
Other languages
Japanese (ja)
Inventor
Xu Gang
剛 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Robotics Corp
Original Assignee
3D Media Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3D Media Co Ltd filed Critical 3D Media Co Ltd
Priority to JP2013056449A priority Critical patent/JP2014181995A/en
Publication of JP2014181995A publication Critical patent/JP2014181995A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional measurement device that enables three-dimensional measurement of a measurement object to be appropriately performed irrespective of magnitude of surface reflectance in the measurement object.SOLUTION: A three-dimensional measurement device 1 comprises: irradiation means 2 capable of changing irradiation intensity of slit light 11 with which a work 10 is irradiated; imaging means 3 for imaging a light cutting line 12 to be formed on a surface of the work 10 by the slit light 11 with which the work 10 is irradiated; and computation means 41 for measuring a three-dimensional shape of the work 10, using an image including the imaged light cutting line 12. The irradiation means 2 irradiates the work 10 by gradually changing the irradiation intensity of the slit light 11, and the imaging means 3 images the light cutting line 12 for each irradiation intensity. The computation means 41 measures the three-dimensional shape of the work 10 for each irradiation intensity, using the image including the light cutting line 12 for each irradiation intensity obtained by the imaging means 3, and calculates an optimal three-dimensional shape of the work 10 on the basis of a three-dimensional shape measurement result for each irradiation intensity.

Description

本発明は、光切断法による三次元形状計測装置に関する。   The present invention relates to a three-dimensional shape measuring apparatus using an optical cutting method.

従来、非接触による三次元形状計測の手法として、光切断法と呼ばれるものがある。かかる手法においては、計測対象物(以下「ワーク」とする)に対して、レーザ光等による薄いシート状の光(以下「スリット光」とする)を照射する。スリット光が照射されたワークの表面には、その断面形状に応じて反射光の輝線(以下「光切断線」とする)が形成される。ワークの表面に形成された光切断線は、PSD(Position Sensitive Detector,半導体位置検出素子)や、イメージセンサなどの撮像素子によって電気信号へと変換され、撮像される。この撮像された光切断線から形成される光切断線と撮像センサ間の視線の方程式と、スリット光と光切断線によって形成される平面の方程式を連立させることにより、三角測量の原理を用いて、光切断線、すなわちワークの表面上の各点の三次元座標が計測される。また、スライドテーブルでワーク全体を平行移動させる、回転ミラーを用いてスリット光を走査するなどの方法で、光切断線に対する一連の計測をワーク全体に対して行い、ワークの三次元形状を計測する。   Conventionally, there is a method called an optical cutting method as a non-contact three-dimensional shape measurement method. In such a technique, a thin sheet-like light (hereinafter referred to as “slit light”) by a laser beam or the like is irradiated onto an object to be measured (hereinafter referred to as “work”). A bright line of reflected light (hereinafter referred to as “light cutting line”) is formed on the surface of the work irradiated with the slit light in accordance with its cross-sectional shape. A light cutting line formed on the surface of the workpiece is converted into an electric signal by an image pickup device such as a PSD (Position Sensitive Detector) or an image sensor, and is imaged. Using the principle of triangulation by combining the equation of the line of sight between the optical cutting line formed from this imaged optical cutting line and the imaging sensor and the equation of the plane formed by the slit light and the optical cutting line The optical cutting line, that is, the three-dimensional coordinates of each point on the surface of the workpiece is measured. In addition, a series of measurements of the optical cutting line is performed on the entire workpiece by a method such as translating the entire workpiece with a slide table or scanning slit light using a rotating mirror, and measures the three-dimensional shape of the workpiece. .

ワークの表面に形成された光切断線を撮像する際、光に対する反射率の高い、鏡面反射する金属部品や、反対に、反射率の低い黒色物体など、様々な反射率を持つワーク表面に対して、形成される光切断線を適切かつ確実に抽出することが、三次元物体形状計測の精度を確保するために必要とされる。   When imaging the light cutting line formed on the surface of the workpiece, it can be applied to workpiece surfaces with various reflectivities, such as metal parts with high reflectivity and specular reflection, and black objects with low reflectivity. Thus, it is necessary to appropriately and reliably extract the formed light section line in order to ensure the accuracy of the three-dimensional object shape measurement.

撮像素子が計測可能な輝度の範囲には限界があり、スリット光源の照射強度とワーク表面の反射率の組合せによって、光切断線の抽出を適切に行えない場合がある。具体的には、高すぎる照射強度のスリット光は、高い反射率の素材を持つワーク表面へ照射した際、撮像素子へ到達する反射光の輝度が、撮像素子で計測可能な範囲の上限を超えてしまうため、撮像された二次元画像から適切な光切断線を抽出する事が困難になる。逆に、低すぎる照射強度のスリット光は、低い反射率の素材を持つワーク表面へ照射した際、撮像素子へ到達する反射光の輝度が、撮像素子で計測可能な範囲を下回ってしまうため、撮像された二次元画像から適切な光切断線を抽出する事が困難になる。   The range of luminance that can be measured by the image sensor is limited, and the light cutting line may not be appropriately extracted depending on the combination of the irradiation intensity of the slit light source and the reflectance of the workpiece surface. Specifically, when the slit light with too high irradiation intensity irradiates the workpiece surface with a material with high reflectivity, the brightness of the reflected light reaching the image sensor exceeds the upper limit of the range that can be measured by the image sensor. Therefore, it becomes difficult to extract an appropriate light section line from the captured two-dimensional image. Conversely, when the slit light with too low irradiation intensity irradiates the workpiece surface with a low reflectivity material, the brightness of the reflected light reaching the image sensor falls below the range that can be measured by the image sensor, It becomes difficult to extract an appropriate light section line from the captured two-dimensional image.

これらの問題は、複数の素材が混在するワーク表面において特に顕著となり、あるワーク表面素材に対して有効な光切断線を抽出できるスリット光の照射強度が、別の反射率を持つワーク表面素材に対して有効に機能しないため、ワークの三次元形状に対する計測が困難になるか、或いはワーク表面素材間の反射率の乖離が著しい場合、計測そのものが不可能になる場合もある。   These problems are particularly noticeable on the workpiece surface where multiple materials are mixed, and the irradiation intensity of slit light that can extract an effective light cutting line for a workpiece surface material is different from that of a workpiece surface material having a different reflectance. On the other hand, since it does not function effectively, measurement of the three-dimensional shape of the workpiece becomes difficult, or when the deviation of the reflectance between the workpiece surface materials is significant, measurement itself may be impossible.

従来、このような撮像画像における光切断線の抽出手法としては、撮像した二次元画像の画像データを解析し、解析結果に応じてフィードバック制御で撮像素子の露出を調整することにより、光切断線の抽出を適切かつ確実に行う手法がある。   Conventionally, as a method for extracting a light section line in such a captured image, the image data of the captured two-dimensional image is analyzed, and the exposure of the image sensor is adjusted by feedback control according to the analysis result. There is a method to extract the data appropriately and reliably.

例えば、特許文献1には、光切断法における断面形状の計測において、撮像した二次元画像の画像データに基づき輝度ヒストグラムを作成し、輝度レベルに応じた撮像素子の露出調整をフィードバック制御で行って、最適な露出を選択することにより、光切断線の抽出を適切かつ確実に行う手法が記載されている。   For example, in Patent Document 1, a luminance histogram is created based on image data of a captured two-dimensional image in measurement of a cross-sectional shape in the light section method, and exposure adjustment of the image sensor according to the luminance level is performed by feedback control. A method for appropriately and reliably extracting a light section line by selecting an optimum exposure is described.

また、特許文献2には、光切断法における断面形状の計測において、複数の露出状態で撮像した二次元画像の画像データに基づき、それぞれの画像データの輝度値の積算値に応じた撮像素子の露出調整をフィードバック制御で行って、最適な露出を選択し、光切断線の抽出を適切かつ確実に行う手法が記載されている。   Further, in Patent Document 2, in the measurement of the cross-sectional shape in the light cutting method, based on the image data of a two-dimensional image captured in a plurality of exposure states, the image sensor according to the integrated value of the luminance values of the respective image data. A method is described in which exposure adjustment is performed by feedback control, an optimal exposure is selected, and light cutting lines are extracted appropriately and reliably.

特開2009−250844号公報JP 2009-250844 A 特開2009−281815号公報JP 2009-281815 A

光切断法による物体の三次元形状の計測においては、ワーク表面にスリット光が照射される際、スリット光の最適な照射強度を選択することによって、撮像素子の計測可能輝度範囲を最大限に生かし、光切断線の抽出の精度が向上する。しかし、異なる反射率を持つ複数の素材によって構成されたワークにおいては、スリット光を照射するワーク表面の部位によって、スリット光の最適な照射強度が異なるため、単一の照射強度のスリット光で最適な計測を行うことが困難である。   In measurement of the three-dimensional shape of an object by the light cutting method, when the slit light is irradiated on the work surface, the optimum luminance intensity of the slit light is selected to maximize the measurable luminance range of the image sensor. The accuracy of the extraction of the light cutting line is improved. However, for workpieces composed of multiple materials with different reflectivities, the optimal illumination intensity of the slit light differs depending on the part of the workpiece surface that irradiates the slit light. It is difficult to make accurate measurements.

複数のワーク素材による表面反射率の多様性の問題は、特許文献1、及び特許文献2の各手法で行われている撮像素子の露出制御によって一定の緩和を期待できるものの、問題を完全に克服するには至っていない。具体的には、撮像された二次元画像において、反射光が撮像素子で計測可能な範囲の上限を超えた(露出オーバーに当たり、撮像素子の露出を下げる必要がある)領域と、反射光が撮像素子の計測可能範囲を下回った(露出アンダーに当たり、撮像素子の露出を上げる必要がある)領域の双方が同一画像内に発生した場合、露出を調整して対応する特許文献1、及び特許文献2の手法では光切断線を正常に抽出する事がきわめて困難である。   The problem of diversity of surface reflectivity due to multiple workpiece materials can be expected to be alleviated by exposure control of the image sensor performed by the methods of Patent Document 1 and Patent Document 2, but the problem is completely overcome. It has not been done. Specifically, in the captured two-dimensional image, the region where the reflected light exceeds the upper limit of the range that can be measured by the image sensor (the exposure of the image sensor needs to be lowered when overexposed) and the reflected light is captured. Patent Document 1 and Patent Document 2 corresponding to adjusting the exposure when both of the regions that are below the measurable range of the element (in the case of underexposure and need to increase the exposure of the image sensor) occur in the same image. In this method, it is extremely difficult to normally extract the light section line.

また、特許文献1、及び特許文献2のいずれの手法も、単一の照射強度のスリット光によって撮像された二次元画像を基に光切断線の抽出を行っている。単一照射強度のスリット光では、複数のワーク素材の混在によってもたらされる、多岐にわたる表面反射率の多様性への対応が困難である事は、前述の通りである。そのため、特許文献1、及び特許文献2では、複数の素材が混在しているワークの場合には、三次元形状計測が適切に行えない虞があった。   In both methods of Patent Document 1 and Patent Document 2, extraction of a light section line is performed based on a two-dimensional image captured by slit light having a single irradiation intensity. As described above, it is difficult for the slit light having a single irradiation intensity to cope with a wide variety of surface reflectivities caused by a mixture of a plurality of workpiece materials. For this reason, in Patent Document 1 and Patent Document 2, there is a possibility that three-dimensional shape measurement cannot be performed properly in the case of a workpiece in which a plurality of materials are mixed.

本発明は、上記のような問題点に鑑みてなされたものであって、計測対象物における表面反射率の大小、及びその多様性にかかわらず、適切に計測対象物の三次元計測を行うことができる三次元形状計測装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and appropriately performs three-dimensional measurement of a measurement object regardless of the surface reflectance of the measurement object and its diversity. It is an object to provide a three-dimensional shape measuring apparatus capable of

上記目的を達成するため、請求項1記載の三次元形状計測装置は、計測対象物に対して照射するスリット光の照射強度を変化させることが可能な照射手段と、前記照射手段が前記計測対象物に対して照射する前記スリット光によって、前記計測対象物の表面に形成される光切断線を撮像する撮像手段と、前記撮像手段によって撮像された前記光切断線を含む二次元画像を用いて、前記計測対象物の三次元形状を計測する演算手段と、を備える三次元形状計測装置であって、前記照射手段は、前記計測対象物に対して、前記スリット光の照射強度を段階的に変化させて照射し、前記撮像手段は、前記照射強度毎の光切断線を撮像し、前記演算手段は、前記撮像手段によって得られた前記照射強度毎の光切断線を含む二次元画像を用いて、前記照射強度毎に前記計測対象物の三次元形状を計測し、該照射強度毎の三次元形状計測結果に基づいて、前記計測対象物の最適な三次元形状を求めることを特徴としている。   In order to achieve the above object, the three-dimensional shape measuring apparatus according to claim 1, an irradiating unit capable of changing an irradiation intensity of slit light irradiated to a measurement object, and the irradiating unit being the measurement target. Using an imaging means for imaging a light cutting line formed on the surface of the measurement object by the slit light irradiated to an object, and a two-dimensional image including the light cutting line imaged by the imaging means A three-dimensional shape measuring apparatus comprising: an arithmetic means for measuring the three-dimensional shape of the measurement object, wherein the irradiation means stepwise irradiates the slit light with respect to the measurement object. Irradiation is performed, the imaging unit images a light cutting line for each irradiation intensity, and the calculation unit uses a two-dimensional image including the light cutting line for each irradiation intensity obtained by the imaging unit. And The three-dimensional shape of the measurement object is measured for each intensity, based on the three-dimensional shape measurement result for each said radiation intensity is characterized by obtaining an optimum three-dimensional shape of the measurement object.

請求項2記載の三次元形状計測装置は、前記演算手段が、前記撮像手段によって得られた前記照射強度毎の前記光切断線を含む前記二次元画像を基に最適な光切断線を算出し、該最適な光切断線を用いて、前記計測対象物の三次元形状を求めることを特徴としている。   The three-dimensional shape measurement apparatus according to claim 2, wherein the calculation unit calculates an optimal light section line based on the two-dimensional image including the light section line for each irradiation intensity obtained by the imaging unit. The three-dimensional shape of the measurement object is obtained using the optimum light cutting line.

請求項3記載の三次元形状計測装置は、前記照射手段は、前記計測対象物に対して所定の照射強度のスリット光を走査させた後、前記計測対象物に対して前記所定の照射強度と異なる照射強度のスリット光を走査させることを特徴としている。   The three-dimensional shape measurement apparatus according to claim 3, wherein the irradiation unit scans the measurement object with slit light having a predetermined irradiation intensity, and then applies the predetermined irradiation intensity to the measurement object. It is characterized by scanning slit light with different irradiation intensities.

請求項4記載の三次元形状計測装置は、前記照射手段が、前記照射強度を切り替えながら、前記スリット光を前記計測対象物に対して走査させることを特徴としている。   The three-dimensional shape measuring apparatus according to claim 4 is characterized in that the irradiation unit scans the measurement object with the slit light while switching the irradiation intensity.

請求項5記載の三次元形状計測装置は、前記撮像手段により撮像した前記光切断線の輝度が、前記撮像手段により得られる画像の各画素の有効輝度値の上限を超えた場合に、前記光切断線の輝度が、前記有効輝度値の上限以下になるように、前記照射手段から照射される前記スリット光の照射強度を調整し、前記撮像手段により撮像した前記光切断線の輝度が、前記撮像手段により得られる画像の各画素の有効輝度値の下限を下回った場合に、前記光切断線の輝度が、前記有効輝度値の下限以上になるように、前記照射手段から照射される前記スリット光の照射強度を調整することを特徴としている。   The three-dimensional shape measurement apparatus according to claim 5, wherein when the luminance of the light cutting line imaged by the imaging unit exceeds an upper limit of an effective luminance value of each pixel of an image obtained by the imaging unit, the light The intensity of the slit light emitted from the irradiation unit is adjusted so that the luminance of the cutting line is less than or equal to the upper limit of the effective luminance value, and the luminance of the light cutting line imaged by the imaging unit is The slit irradiated from the irradiation unit so that the luminance of the light cutting line is equal to or higher than the lower limit of the effective luminance value when the effective luminance value of each pixel of the image obtained by the imaging unit is lower than the lower limit. It is characterized by adjusting the irradiation intensity of light.

請求項6記載の三次元形状計測装置は、前記照射手段が、前記スリット光として赤外レーザを用いており、前記撮像手段には、可視光カットフィルタが設けられていることを特徴としている。   The three-dimensional shape measuring apparatus according to claim 6 is characterized in that the irradiation means uses an infrared laser as the slit light, and the imaging means is provided with a visible light cut filter.

請求項1記載の発明によれば、照射手段は、計測対象物に対してスリット光の照射強度を段階的に変化させて照射し、演算手段は、撮像手段によって撮像された照射強度毎の光切断線を含む二次元画像を用いて計測した照射強度毎の測定対象物の三次元形状計測結果に基づいて、最適な三次元形状を求めるので、計測対象物の素材の表面反射率、及び複数の素材で計測対象物が形成されているためにもたらされる表面反射率の多様性、計測環境の照明の明るさ等にかかわらず、適切に計測対象物の三次元形状を計測することができる。   According to the first aspect of the present invention, the irradiating means irradiates the measurement object with the irradiation intensity of the slit light in a stepwise manner, and the calculating means outputs the light for each irradiation intensity imaged by the imaging means. Based on the three-dimensional shape measurement result of the measurement object for each irradiation intensity measured using the two-dimensional image including the cutting line, the optimum three-dimensional shape is obtained. It is possible to appropriately measure the three-dimensional shape of the measurement object regardless of the variety of surface reflectivity caused by the measurement object formed of the above materials and the brightness of illumination in the measurement environment.

請求項2記載の発明によれば、演算手段は、撮像手段によって得られた照射強度毎の光切断線を含む二次元画像を基に最適な光切断線を算出し、該最適な光切断線を用いて、計測対象物の三次元形状を求めるので、計測対象物の素材の表面反射率、及び複数の素材で計測対象物が形成されているためにもたらされる表面反射率の多様性、計測環境の照明の明るさ等にかかわらず、光切断線を確実に抽出し、適切に計測対象物の三次元形状を計測することができる。   According to the second aspect of the present invention, the calculating means calculates an optimum light cutting line based on a two-dimensional image including the light cutting line for each irradiation intensity obtained by the imaging means, and the optimum light cutting line. Is used to determine the 3D shape of the measurement object, so that the surface reflectance of the material of the measurement object, and the diversity of surface reflectivity that results from the measurement object being formed of multiple materials, measurement Regardless of the brightness of the environmental lighting, etc., it is possible to reliably extract the light section line and appropriately measure the three-dimensional shape of the measurement object.

請求項3に記載の発明によれば、照射手段は、計測対象物に対して所定の照射強度のスリット光を走査させた後、前記計測対象物に対して前記所定の照射強度と異なる照射強度のスリット光を走査させるので、計測対象物の素材の表面反射率、及び複数の素材で計測対象物が形成されているためにもたらされる表面反射率の多様性、計測環境の照明の明るさ等にかかわらず、より確実に計測対象物の三次元形状を計測することができる。   According to the invention described in claim 3, the irradiation means scans the measurement object with slit light having a predetermined irradiation intensity, and then the irradiation intensity different from the predetermined irradiation intensity for the measurement object. Since the slit light is scanned, the surface reflectivity of the material of the measurement object, the diversity of surface reflectivity caused by the formation of the measurement object with multiple materials, the brightness of the illumination in the measurement environment, etc. Regardless of, the three-dimensional shape of the measurement object can be measured more reliably.

請求項4に記載の発明によれば、照射手段が、照射強度を切り替えながら、スリット光を計測対象物に対して走査させるので、一度の走査で撮像画像から光切断線を確実に抽出する事ができ、得られた光切断線を用いて、計測対象物の三次元形状の計測を適切に行うことができる。   According to the invention described in claim 4, since the irradiation means scans the measurement object while switching the irradiation intensity, the light cutting line can be surely extracted from the captured image by one scanning. The three-dimensional shape of the measurement object can be appropriately measured using the obtained light section line.

請求項5に記載の発明によれば、計測領域に応じた適切なスリット光の照射強度を自動的に算出して計測対象物の表面へスリット光を照射することができるので、撮像画像から光切断線を確実に抽出する事ができ、得られた光切断線を用いて、計測対象物の三次元形状の計測を適切に行うことができる。   According to the fifth aspect of the present invention, it is possible to automatically calculate an appropriate irradiation intensity of the slit light corresponding to the measurement region and irradiate the surface of the measurement object with the slit light. The cutting line can be reliably extracted, and the three-dimensional shape of the measurement target can be appropriately measured using the obtained light cutting line.

請求項6に記載の発明によれば、照射手段は、スリット光として赤外レーザを用いており、撮像手段には、可視光カットフィルタが設けられているので、強い環境光などの外部要因によって計測対象物の表面からの反射光の計測が阻害される事なく、撮像画像から光切断線を確実に抽出する事ができる。   According to the invention described in claim 6, since the irradiating means uses an infrared laser as the slit light, and the imaging means is provided with a visible light cut filter, it is caused by external factors such as strong ambient light. The optical cutting line can be reliably extracted from the captured image without hindering the measurement of the reflected light from the surface of the measurement object.

本発明の第1の実施形態に係る三次元形状計測装置の構成の一例を示す概略模式図である。It is a schematic diagram showing an example of composition of a three-dimensional shape measuring device concerning a 1st embodiment of the present invention. 撮像装置により得られる光切断線を含む二次元画像について説明するための概略説明図である。It is a schematic explanatory drawing for demonstrating the two-dimensional image containing the optical cutting line obtained by an imaging device. 本発明の第1の実施形態に係る三次元形状計測装置による処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process by the three-dimensional shape measuring apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る三次元形状計測装置による処理の流れの他の一例を示すフローチャートである。It is a flowchart which shows another example of the flow of a process by the three-dimensional shape measuring apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る三次元形状計測装置による処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process by the three-dimensional shape measuring apparatus which concerns on the 2nd Embodiment of this invention. スリット光の照射強度の自動調整の仕方の一例を示すフローチャートである。It is a flowchart which shows an example of the method of the automatic adjustment of the irradiation intensity | strength of slit light.

以下、本発明の第1の実施形態に係る三次元形状計測装置1ついて、図面を参照しつつ説明する。図1に示すように、本実施形態に係る三次元形状計測装置1は、所謂光切断法を用いて計測対象物(以下、「ワーク」とする)10の三次元計測を行うためのものであって、照射手段2と、撮像装置3と、演算手段としての演算部41を含む制御装置4とを備えている。   Hereinafter, the three-dimensional shape measuring apparatus 1 according to the first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, a three-dimensional shape measuring apparatus 1 according to this embodiment is for performing three-dimensional measurement of a measurement object (hereinafter referred to as “workpiece”) 10 using a so-called light cutting method. Thus, the irradiation unit 2, the imaging device 3, and the control device 4 including the calculation unit 41 as the calculation unit are provided.

照射手段2は、ワーク10上へスリット光11を照射するためのものであって、例えば、図1に示すように、レーザ光源21と、該レーザ光源21から入射される入射光に対して1軸方向のみ変化を与え線状のビームであるスリット光11を形成するシリンドリカルレンズ(円筒レンズ)22と、スリット光11をワーク10へと導くミラー23と、該ミラー23を回転させることによりワーク10に対してスリット光11を走査せるための走査機構24とを備えている。この照射手段2のスリット光11としては、例えば、赤外レーザ等を好適に用いることができる。尚、スリット光11は、赤外レーザに限定されるものではなく、ワーク10上に照射できるものであれば良く、照射する光の波長や可視性を問わない。照射手段2は、スリット光11の照射強度を任意に変化させることができるものであり、例えば、レーザ発信器等を有するレーザ出力ユニットであっても良い。また、照射手段12は、照射強度の異なる複数のレーザ光源21を有していても良く、複数のレーザ光源21のON/OFFをそれぞれ切り替えることにより、ワーク10に対して照射強度の異なるスリット光11を照射できるように構成されていても良い。   The irradiation means 2 is for irradiating the slit light 11 on the workpiece 10. For example, as shown in FIG. 1, the irradiation means 2 is 1 for the laser light source 21 and incident light incident from the laser light source 21. A cylindrical lens (cylindrical lens) 22 that changes only in the axial direction and forms slit light 11 that is a linear beam, a mirror 23 that guides the slit light 11 to the work 10, and the work 10 by rotating the mirror 23. And a scanning mechanism 24 for scanning the slit light 11. As the slit light 11 of the irradiation means 2, for example, an infrared laser or the like can be suitably used. Note that the slit light 11 is not limited to the infrared laser, and any slit light 11 can be used as long as it can irradiate the workpiece 10, and the wavelength and visibility of the light to be irradiated are not limited. The irradiation unit 2 can arbitrarily change the irradiation intensity of the slit light 11 and may be, for example, a laser output unit having a laser transmitter or the like. Further, the irradiation means 12 may have a plurality of laser light sources 21 having different irradiation intensities, and slit light having different irradiation intensities with respect to the workpiece 10 by switching ON / OFF of the plurality of laser light sources 21 respectively. 11 may be irradiated.

撮像装置3は、照射手段2から照射されるスリット光11によってワーク10の表面に形成される光切断線12を撮像するものであって、例えば、CMOSイメージセンサやPSD(Position Sensitive Detector)等を撮像素子として用いた装置、カメラ等を用いることができる。この撮像装置3で撮像された光切断線12は、図2に示すように、撮像素子の撮像面において二次元画像13として取得される。撮像装置3は、図2に示すように、撮像面に対する光切断線12の結像に際して、ワーク10の表面に由来する反射光を受けるレンズ14を有している。また、撮像装置3は、照射手段2からのスリット光11の照射方向(投光軸方向)に対して後軸(受光軸)が所定角度ずらされた位置に設定される。例えば、撮像装置3は、ワーク10の水平面となっている部分に形成される光切断線12の部分が、二次元画像13で同じように水平方向となるような姿勢で配置される。また、撮像装置3には、可視光カットフィルタ(不図示)が設けられており、この可視光可視光カットフィルタにより可視光をカットすることにより、強い環境光などの外部要因によってワーク10の表面からの反射光の検出が阻害されるのを抑制することができる。また、撮像装置3によって光切断線12を含む二次元画像13が取得されると、その画像データは、制御装置4へと送られる。   The image pickup device 3 picks up an optical cutting line 12 formed on the surface of the workpiece 10 by the slit light 11 irradiated from the irradiation means 2. For example, a CMOS image sensor, PSD (Position Sensitive Detector) or the like is used. An apparatus, a camera, or the like used as the image sensor can be used. As shown in FIG. 2, the light section line 12 imaged by the imaging device 3 is acquired as a two-dimensional image 13 on the imaging surface of the imaging device. As shown in FIG. 2, the imaging device 3 includes a lens 14 that receives reflected light derived from the surface of the workpiece 10 when the light cutting line 12 is imaged on the imaging surface. Further, the imaging device 3 is set at a position where the rear axis (light receiving axis) is shifted by a predetermined angle with respect to the irradiation direction (light projection axis direction) of the slit light 11 from the irradiation means 2. For example, the imaging device 3 is disposed in such a posture that the portion of the light cutting line 12 formed on the horizontal plane portion of the workpiece 10 is similarly horizontal in the two-dimensional image 13. Further, the imaging device 3 is provided with a visible light cut filter (not shown). By cutting visible light with the visible light visible light cut filter, the surface of the work 10 is caused by external factors such as strong ambient light. It can suppress that the detection of the reflected light from is inhibited. Further, when the two-dimensional image 13 including the light section line 12 is acquired by the imaging device 3, the image data is sent to the control device 4.

制御装置4は、各部の制御を行うためのものであって、例えば、照射手段2からワーク10の表面へ照射するスリット光11の照射強度や走査機構24を用いたスリット光11のワーク10に対する走査等の制御を行う。また、制御装置4に備えられる演算部41は、撮像装置3によって撮像された光切断線12を含む二次元画像13から光切断線12上の各点の三次元座標を計測し、この三次元座標に基づいてワーク10の三次元形状を計測する。すなわち、演算部41は、撮像装置3によって撮像された二次元画像13の画像データに基づいて、照射手段2の位置、受光レンズ14のレンズ中心O1の位置、ワーク10の表面からの反射光の撮像装置3に対する入射角度などから形成される光切断線12と撮像装置3の間における視線の方程式と、スリット光11と光切断線12によって形成される平面の方程式を連立させることにより、三角測量の原理を用いて、ワーク10の表面における光切断線12上の各点(照射点)についての三次元座標を算出する。つまり、この光切断線12上の各点の三次元座標が、演算部41による計測データ(ワーク10の断面形状に対応する位置データ)となる。一つの光切断線12についての計測データにより、ワーク10の物体としての輪郭線が計測されることとなる。   The control device 4 is for controlling each part. For example, the irradiation intensity of the slit light 11 applied to the surface of the work 10 from the irradiation means 2 or the work 10 of the slit light 11 using the scanning mechanism 24 is applied. Controls such as scanning. Further, the calculation unit 41 provided in the control device 4 measures the three-dimensional coordinates of each point on the light cutting line 12 from the two-dimensional image 13 including the light cutting line 12 imaged by the imaging device 3, and this three-dimensional The three-dimensional shape of the workpiece 10 is measured based on the coordinates. That is, the calculation unit 41 is based on the image data of the two-dimensional image 13 captured by the imaging device 3, the position of the irradiation unit 2, the position of the lens center O1 of the light receiving lens 14, and the reflected light from the surface of the workpiece 10. Triangulation by combining the equation of the line of sight between the optical cutting line 12 formed from the incident angle with respect to the imaging device 3 and the imaging device 3 and the equation of the plane formed by the slit light 11 and the optical cutting line 12. The three-dimensional coordinates for each point (irradiation point) on the light cutting line 12 on the surface of the workpiece 10 are calculated using the above principle. That is, the three-dimensional coordinates of each point on the light cutting line 12 become measurement data (position data corresponding to the cross-sectional shape of the workpiece 10) by the calculation unit 41. The contour line as the object of the workpiece 10 is measured by the measurement data for one light cutting line 12.

そして、制御装置4が制御する照射手段2によってワーク10に照射されるスリット光11の照射位置が走査され、ワーク10の所定間隔ごとに計測を行うことで、ワーク10に対するスリット光11の各照射位置に対応する光切断線12を含む二次元画像13が得られる。つまり、演算部41は、ワーク10に対するスリット光11の各照射位置における計測データを連続的に求め、得られたデータを組み合わせて、ワーク10の三次元形状を計測する。   Then, the irradiation position of the slit light 11 applied to the workpiece 10 is scanned by the irradiation means 2 controlled by the control device 4, and each irradiation of the slit light 11 to the workpiece 10 is performed by measuring at a predetermined interval of the workpiece 10. A two-dimensional image 13 including the light section line 12 corresponding to the position is obtained. That is, the calculation unit 41 continuously obtains measurement data at each irradiation position of the slit light 11 on the work 10 and combines the obtained data to measure the three-dimensional shape of the work 10.

以下、第1の実施形態に係る三次元形状計測装置1による処理の流れについて図3のフローチャートを用いながら説明する。第1の実施形態に係る三次元形状計測装置1では、図1に示すように、まず照射手段2からワーク10の表面へ所定の照射強度を有するスリット光11を照射する(S101)。これにより、ワーク10の表面には、その断面形状に応じて光切断線12が形成される。   Hereinafter, the flow of processing by the three-dimensional shape measurement apparatus 1 according to the first embodiment will be described with reference to the flowchart of FIG. In the three-dimensional shape measuring apparatus 1 according to the first embodiment, as shown in FIG. 1, first, the irradiation means 2 irradiates the surface of the workpiece 10 with the slit light 11 having a predetermined irradiation intensity (S101). Thereby, the optical cutting line 12 is formed in the surface of the workpiece | work 10 according to the cross-sectional shape.

次に、三次元形状計測装置1では、撮像装置3によって、ワーク10の表面に形成される光切断線12を含む二次元画像13を取得する(S102)。撮像装置3によって取得された二次元画像13は、制御装置4の演算部41へと送られる。   Next, in the three-dimensional shape measuring apparatus 1, the imaging apparatus 3 acquires a two-dimensional image 13 including the light section line 12 formed on the surface of the workpiece 10 (S102). The two-dimensional image 13 acquired by the imaging device 3 is sent to the calculation unit 41 of the control device 4.

演算部41では、S102により取得した二次元画像13について、画素(u,v)における輝度値の解析が行われる。すなわち、画素(u,v)において計測された輝度が、撮像素子で計測可能な範囲であった場合は、画素(u,v)および周辺領域における光切断線12の抽出を行う(S103)。光切断線12の抽出の仕方は、特に限定されるものではなく、従来公知の方法を用いることができる。尚、画素(u,v)において計測された輝度が、撮像装置3で計測可能な範囲を超えており、適切な計測が行われていなかった場合、画素(u,v)および周辺領域における光切断線12の抽出は行われず、当該領域のデータは破棄される。つまり、画素(u,v)および周辺領域において、撮像された光切断線12は存在しないものとみなす。画素(u,v)に対する一連の解析および光切断線12の抽出は、二次元画像13の全ての画素に対して行われる。   In the calculation unit 41, the luminance value of the pixel (u, v) is analyzed for the two-dimensional image 13 acquired in S102. That is, when the luminance measured at the pixel (u, v) is within a range that can be measured by the image sensor, the light section line 12 is extracted from the pixel (u, v) and the peripheral region (S103). The method of extracting the light cutting line 12 is not particularly limited, and a conventionally known method can be used. Note that when the luminance measured at the pixel (u, v) exceeds the range that can be measured by the imaging device 3 and appropriate measurement has not been performed, the light in the pixel (u, v) and the surrounding area The cutting line 12 is not extracted, and the data in the area is discarded. That is, it is considered that the imaged light section line 12 does not exist in the pixel (u, v) and the peripheral region. A series of analysis for the pixel (u, v) and extraction of the light section line 12 are performed for all the pixels of the two-dimensional image 13.

次に、制御装置4は、ワーク10の全ての領域に対して走査が行われたか否かを判断する(S104)。ワーク10の全ての領域に対して走査が行われたと判断した場合(S104:YES)には、演算部41は、S103の処理により得られた光切断線12上の各点の三次元座標を算出し、この三次元座標に基づいてワーク10の三次元形状を計測する(S105)。また、ワーク10の全ての領域に対して走査が行われていないと判断した場合(S104:NO)には、走査機構24によりスリット光11をワーク10に対して走査し(S106)、ワーク10の全ての領域に対する走査が終了する(S104:YES)まで、S101からS103までの一連の処理を繰り返し行う。   Next, the control device 4 determines whether or not scanning has been performed on all regions of the workpiece 10 (S104). When it is determined that scanning has been performed on all areas of the workpiece 10 (S104: YES), the calculation unit 41 calculates the three-dimensional coordinates of each point on the light section line 12 obtained by the process of S103. The three-dimensional shape of the workpiece 10 is measured based on the three-dimensional coordinates (S105). If it is determined that the entire area of the workpiece 10 has not been scanned (S104: NO), the scanning mechanism 24 scans the workpiece 10 with the slit light 11 (S106). A series of processing from S101 to S103 is repeated until scanning of all the regions is completed (S104: YES).

このようにして演算部41では、照射手段2から所定の照射強度のスリット光11をワーク10の全ての領域に対して走査することによって、各照射位置における光切断線12を含む二次元画像を用いてワーク10の三次元形状の計測を行うことができる(S105)。   In this way, the calculation unit 41 scans the slit light 11 having a predetermined irradiation intensity from the irradiation unit 2 over the entire area of the work 10, thereby generating a two-dimensional image including the light cutting line 12 at each irradiation position. It is possible to measure the three-dimensional shape of the workpiece 10 (S105).

次に制御装置4では、予め設定した全ての照射強度のスリット光11を用いてワーク10の三次元形状計測が行われたか否かを判断する(S107)。そして、制御装置4は、予め設定した全ての照射強度のスリット光11を用いてワーク10の三次元形状計測が行われたと判断した場合(S107:YES)には、照射強度毎に得られた三次元形状計測結果に基づいて、ワーク10の最適な三次元形状を計測する(S108)。   Next, the control device 4 determines whether or not the three-dimensional shape measurement of the workpiece 10 has been performed using the slit light 11 having all the irradiation intensities set in advance (S107). And when the control apparatus 4 judges that the three-dimensional shape measurement of the workpiece | work 10 was performed using the slit light 11 of all the preset irradiation intensity | strengths (S107: YES), it obtained for every irradiation intensity | strength. Based on the three-dimensional shape measurement result, the optimum three-dimensional shape of the workpiece 10 is measured (S108).

一方、制御装置4は、予め設定した全ての照射強度のスリット光11を用いて三次元形状計測が行われていないと判断した場合(S107:NO)には、照射手段2の照射強度を、既に三次元形状計測に用いた所定の照射強度とは別の所定の照射強度に変更し(S109)、予め設定した全ての照射強度のスリット光11を用いたワーク10の三次元形状計測が終了するまで、S101からS105までの一連の処理を繰り返し行うことにより、複数の照射強度毎の三次元形状計測結果を得る。そして、照射強度毎に得られた三次元形状計測結果に基づいて、ワーク10の最適な三次元形状を計測する(S108)。S108では、スリット光11の照射強度が異なる複数の三次元計測結果を合成することにより、特定の照射強度では反射強度が強すぎる、または弱すぎるといった理由で光切断線12を抽出できず、三次元形状の計測に適さないようなワーク10の表面素材の多用性下においても、最適な三次元形状を計測することが出来る。   On the other hand, when the control device 4 determines that the three-dimensional shape measurement is not performed using the slit light 11 having all the preset irradiation intensities (S107: NO), the irradiation intensity of the irradiation unit 2 is The irradiation intensity is changed to a predetermined irradiation intensity different from the predetermined irradiation intensity already used for the three-dimensional shape measurement (S109), and the three-dimensional shape measurement of the workpiece 10 using the slit light 11 having all the predetermined irradiation intensity is completed. Until then, a series of processing from S101 to S105 is repeated to obtain a three-dimensional shape measurement result for each of a plurality of irradiation intensities. Then, based on the three-dimensional shape measurement result obtained for each irradiation intensity, the optimum three-dimensional shape of the workpiece 10 is measured (S108). In S108, by combining a plurality of three-dimensional measurement results with different irradiation intensities of the slit light 11, the light cutting line 12 cannot be extracted because the reflection intensity is too strong or too weak at a specific irradiation intensity, and the tertiary Even under the versatility of the surface material of the workpiece 10 that is not suitable for measuring the original shape, an optimal three-dimensional shape can be measured.

また、本発明の第1の実施形態に係る三次元形状計測装置1では、図3に示す処理の代わりに、図4のフローチャートに示すような処理により三次元形状計測を行うこともできる。ここでは、まず、図3の処理と同様に照射手段2からワーク10の表面へ所定の照射強度を有するスリット光11を照射し(S201)、撮像装置3によってワーク10の表面に形成された光切断線12を含む二次元画像13を取得し(S202)、演算部41では、S202により取得した二次元画像13から光切断線12を抽出する(S203)。   Further, in the three-dimensional shape measurement apparatus 1 according to the first embodiment of the present invention, three-dimensional shape measurement can be performed by the process shown in the flowchart of FIG. 4 instead of the process shown in FIG. Here, first, the slit light 11 having a predetermined irradiation intensity is irradiated from the irradiation unit 2 to the surface of the work 10 as in the process of FIG. 3 (S201), and the light formed on the surface of the work 10 by the imaging device 3 The two-dimensional image 13 including the cutting line 12 is acquired (S202), and the calculation unit 41 extracts the optical cutting line 12 from the two-dimensional image 13 acquired in S202 (S203).

次に制御装置4では、予め設定した全ての照射強度のスリット光11を用いてワーク10の表面に形成された光切断線12の抽出(S203)が行われたか否かを判断する(S204)。そして、制御装置4は、予め設定した全ての照射強度のスリット光11を用いてワーク10の三次元形状計測が行われたと判断した場合(S204:YES)には、照射強度毎に抽出された光切断線12に基づいて、最適な光切断線12を算出する(S205)。   Next, the control device 4 determines whether or not extraction (S203) of the light cutting line 12 formed on the surface of the workpiece 10 has been performed using the slit light 11 having all of the preset irradiation intensities (S204). . When the control device 4 determines that the three-dimensional shape measurement of the workpiece 10 has been performed using the slit light 11 having all of the preset irradiation intensities (S204: YES), the control device 4 is extracted for each irradiation intensity. Based on the light cutting line 12, the optimum light cutting line 12 is calculated (S205).

一方、制御装置4は、予め設定した全ての照射強度のスリット光11を用いてワーク10の表面に形成された光切断線12の抽出が行われていないと判断した場合(S204:NO)には、照射手段2の照射強度を、既に三次元形状計測に用いた所定の照射強度とは別の所定の照射強度に変更し(S206)、予め設定した全ての照射強度のスリット光11を用いた光切断線12の抽出(S203)が終了するまで、S201からS203までの一連の処理を繰り返し行う。   On the other hand, when it is determined that the light cutting line 12 formed on the surface of the workpiece 10 is not extracted using the slit light 11 having all the irradiation intensities set in advance (S204: NO). Changes the irradiation intensity of the irradiation means 2 to a predetermined irradiation intensity different from the predetermined irradiation intensity already used for the three-dimensional shape measurement (S206), and uses slit light 11 of all the predetermined irradiation intensity. The series of processing from S201 to S203 is repeated until the extraction of the light cutting line 12 (S203) is completed.

次に、制御装置4は、ワーク10の全ての領域に対して走査が行われたか否かを判断する(S207)。ワーク10の全ての領域に対して走査が行われたと判断した場合(S207:YES)には、演算部41は、S205の処理により得られた最適な光切断線12上の各点の三次元座標を算出し、この三次元座標に基づいて、ワーク10の三次元形状を計測する(S208)。また、ワーク10の全ての領域に対して走査が行われていないと判断した場合(S207:NO)には、走査機構24によりスリット光11をワーク10に対して走査し(S209)、ワーク10の全ての領域に対する走査が終了する(S207:YES)まで、S201からS205までの一連の処理を繰り返し行う。   Next, the control device 4 determines whether or not scanning has been performed on all regions of the workpiece 10 (S207). When it is determined that scanning has been performed on all regions of the workpiece 10 (S207: YES), the calculation unit 41 determines the three-dimensional of each point on the optimum light section line 12 obtained by the processing of S205. The coordinates are calculated, and the three-dimensional shape of the workpiece 10 is measured based on the three-dimensional coordinates (S208). If it is determined that the entire area of the workpiece 10 has not been scanned (S207: NO), the scanning mechanism 24 scans the workpiece 10 with the slit light 11 (S209). A series of processing from S201 to S205 is repeated until scanning of all the regions is completed (S207: YES).

次に、第2の実施形態に係る三次元形状計測装置1aによるワーク10の三次元形状計測の処理の流れについて図5のフローチャートを用いながら説明する。第2の実施形態に係る三次元形状計測装置1aは、第1の実施形態に係る三次元形状計測1と略同様の構成を備えるものであり、照射手段2のスリット光11の照射の仕方および演算部41による処理の流れが異なるものである。   Next, the flow of the process of measuring the three-dimensional shape of the workpiece 10 by the three-dimensional shape measuring apparatus 1a according to the second embodiment will be described with reference to the flowchart of FIG. The three-dimensional shape measurement apparatus 1a according to the second embodiment has substantially the same configuration as the three-dimensional shape measurement 1 according to the first embodiment, and the irradiation method of the slit light 11 of the irradiation unit 2 and The flow of processing by the calculation unit 41 is different.

三次元形状計測装置1aでは、まず、第1の実施形態と同じように、照射手段2からワーク10の表面へ所定の照射強度を有するスリット光11を照射し(S301)、撮像装置3によってワーク10の表面に形成された光切断線12を含む二次元画像13を取得し(S302)、演算部41では、S302により取得した二次元画像13から光切断線12を抽出する(S303)。   In the three-dimensional shape measuring apparatus 1a, first, as in the first embodiment, the irradiation means 2 irradiates the surface of the workpiece 10 with the slit light 11 having a predetermined irradiation intensity (S301), and the imaging device 3 causes the workpiece to be measured. The two-dimensional image 13 including the light cutting line 12 formed on the surface of 10 is acquired (S302), and the calculation unit 41 extracts the light cutting line 12 from the two-dimensional image 13 acquired in S302 (S303).

次に、制御装置4は、ワーク10の全ての領域に対して走査が行われたか否かを判断する(S304)。ワーク10の全ての領域に対して走査が行われたと判断した場合(S304:YES)には、演算部41は、S303の処理により得られた光切断線12上の各点の三次元座標を算出し、この三次元座標に基づいてワーク10の三次元形状を計測する(S307)。また、ワーク10の全ての領域に対して走査が行われていないと判断した場合(S307:NO)には、照射手段2の照射強度を、現在の処理で三次元形状計測に用いている所定の照射強度とは別の所定の照射強度へ段階的に変更し(S305)、更に、走査機構24によりスリット光11をワーク10に対して走査して(S306)、ワーク10の全ての領域に対する走査が終了する(S304:YES)まで、S301からS303までの一連の処理を繰り返し行う。S305及びS306の処理としては、例えば、照射強度の高いスリット光11と照射強度の低いスリット光11とを交互に切り替ながら走査を行う。これにより、ワーク10が表面反射率の異なる複数の素材で形成されているような場合でも、S302により取得した二次元画像13から光切断線12を抽出することができる。尚、スリット光11の照射強度の変更は、2段階に限定されるものではなく、3段階以上の複数段階に変更されるものであっても良い。   Next, the control device 4 determines whether or not scanning has been performed on all regions of the workpiece 10 (S304). When it is determined that scanning has been performed on all areas of the workpiece 10 (S304: YES), the calculation unit 41 calculates the three-dimensional coordinates of each point on the light section line 12 obtained by the process of S303. The three-dimensional shape of the workpiece 10 is measured based on the three-dimensional coordinates (S307). If it is determined that scanning has not been performed on all areas of the workpiece 10 (S307: NO), the irradiation intensity of the irradiation means 2 is a predetermined value used for three-dimensional shape measurement in the current process. In step S305, the scanning beam 24 is scanned with the slit light 11 by the scanning mechanism 24 (S306), and the entire area of the workpiece 10 is scanned. Until the scanning is completed (S304: YES), a series of processing from S301 to S303 is repeated. As the processing of S305 and S306, for example, scanning is performed while alternately switching the slit light 11 having a high irradiation intensity and the slit light 11 having a low irradiation intensity. Thereby, even when the workpiece 10 is formed of a plurality of materials having different surface reflectances, the light section line 12 can be extracted from the two-dimensional image 13 acquired in S302. Note that the change of the irradiation intensity of the slit light 11 is not limited to two steps, and may be changed to a plurality of steps of three or more steps.

このようにして演算部41では、照射手段2から所定の照射強度のスリット光11をワーク10の全ての領域に対して走査することによって、各照射位置における光切断線12を含む二次元画像を用いてワーク10の三次元形状の計測を行うことができる(S307)。第1の実施形態では、スリット光11の所定の照射強度の段階数に応じて、光切断線12の抽出回数が増大し、それに伴ってワーク10の三次元形状の計測に要する時間が増加するが、第2の実施形態においては、光切断線12の抽出回数はスリット光11の所定の照射強度の段階数に左右されないため、一回の走査でワーク10の三次元形状を計測することができるので、計測時間を短縮することができる。   In this way, the calculation unit 41 scans the slit light 11 having a predetermined irradiation intensity from the irradiation unit 2 over the entire area of the work 10, thereby generating a two-dimensional image including the light cutting line 12 at each irradiation position. It is possible to measure the three-dimensional shape of the workpiece 10 (S307). In the first embodiment, the number of extractions of the light cutting line 12 increases according to the number of steps of the predetermined irradiation intensity of the slit light 11, and accordingly, the time required for measuring the three-dimensional shape of the workpiece 10 increases. However, in the second embodiment, since the number of extractions of the light cutting line 12 is not affected by the number of steps of the predetermined irradiation intensity of the slit light 11, the three-dimensional shape of the workpiece 10 can be measured by one scan. As a result, measurement time can be shortened.

次に、第1、第2の実施形態で共通して行われる、撮像装置3を用いた二次元画像13の取得(S102、S202、S302)において適用できるスリット光11の照射強度を自動調整する方法について、図6のフローチャートを用いながら説明する。   Next, the irradiation intensity of the slit light 11 that can be applied in the acquisition (S102, S202, S302) of the two-dimensional image 13 using the imaging device 3 performed in common in the first and second embodiments is automatically adjusted. The method will be described with reference to the flowchart of FIG.

まず、S102、S202、S302と同様に、撮像装置3によって二次元画像13を取得する(S401)。制御装置4は、得られた二次元画像13内における画素の最高輝度が、撮像装置3に用いられている撮像素子の有効輝度値の上限を上回ったかどうかを判断する(S402)。有効輝度値の上限を上回っていた場合(S402:YES)、制御装置4は、照射手段2を調整し、照射されるスリット光11の最高照射強度を有効輝度値の上限以下になるように下げる(S404)。有効輝度値の上限を上回っていなかった場合(S402:NO)、制御装置4による処理は行われない。   First, similarly to S102, S202, and S302, the two-dimensional image 13 is acquired by the imaging device 3 (S401). The control device 4 determines whether or not the maximum luminance of the pixels in the obtained two-dimensional image 13 exceeds the upper limit of the effective luminance value of the image sensor used in the imaging device 3 (S402). When the upper limit of the effective luminance value is exceeded (S402: YES), the control device 4 adjusts the irradiation means 2 and lowers the maximum irradiation intensity of the irradiated slit light 11 so as to be lower than the upper limit of the effective luminance value. (S404). When the upper limit of the effective luminance value is not exceeded (S402: NO), the processing by the control device 4 is not performed.

次に、制御装置4は、得られた二次元画像13内における画素の最低輝度が、撮像装置3に用いられている撮像素子の有効輝度値の下限を下回ったかどうかを判断する(S403)。有効輝度値の下限を下回っていた場合(S403:YES)、制御装置4は、照射手段2を調整し、照射されるスリット光11の最低照射強度を有効輝度値の下限以上になるように上げる(S405)。有効輝度値の下限を上回っていなかった場合(S403:NO)、制御装置4による処理は行われない。   Next, the control device 4 determines whether or not the minimum luminance of the pixels in the obtained two-dimensional image 13 is lower than the lower limit of the effective luminance value of the image sensor used in the imaging device 3 (S403). When the effective brightness value is below the lower limit of the effective luminance value (S403: YES), the control device 4 adjusts the irradiation means 2 and increases the minimum irradiation intensity of the irradiated slit light 11 to be equal to or higher than the lower limit of the effective luminance value. (S405). When the lower limit of the effective luminance value is not exceeded (S403: NO), the process by the control device 4 is not performed.

画像内の画素の輝度に対する撮像素子の有効輝度値に対する判断(S402、S403)の結果如何に関わらず、処理が終了した後、二次元画像13は制御装置4の演算部41へと送られる。   Regardless of the result of the determination of the effective luminance value of the image sensor with respect to the luminance of the pixels in the image (S402, S403), the two-dimensional image 13 is sent to the calculation unit 41 of the control device 4 after the processing is completed.

このようにして、二次元画像13内の最高輝度および最低輝度を基準として照射手段2を調整することによって、光切断線12の抽出に最適なスリット光11の照射強度を自動的に設定することができる。   In this way, by adjusting the irradiation means 2 with reference to the highest luminance and the lowest luminance in the two-dimensional image 13, the optimum irradiation intensity of the slit light 11 for extraction of the light cutting line 12 can be automatically set. Can do.

尚、本発明の実施の形態は上述の形態に限るものではなく、本発明の思想の範囲を逸脱しない範囲で適宜変更することができる。   The embodiment of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the scope of the idea of the present invention.

本発明に係る三次元形状計測装置は、非破壊検査によって三次元形状を有する計測対象物の三次元形状を計測するための技術として有効に利用することができる。   The three-dimensional shape measurement apparatus according to the present invention can be effectively used as a technique for measuring a three-dimensional shape of a measurement object having a three-dimensional shape by nondestructive inspection.

1 三次元形状計測装置
2 照射手段
3 撮像装置(撮像手段)
41 演算部(演算手段)
10 ワーク(計測対象物)
11 スリット光
12 光切断線
13 二次元画像
DESCRIPTION OF SYMBOLS 1 Three-dimensional shape measuring apparatus 2 Irradiation means 3 Imaging device (imaging means)
41 Calculation unit (calculation means)
10 Workpiece (object to be measured)
11 Slit light 12 Optical cutting line 13 Two-dimensional image

Claims (6)

計測対象物に対して照射するスリット光の照射強度を変化させることが可能な照射手段と、
前記照射手段が前記計測対象物に対して照射する前記スリット光によって、前記計測対象物の表面に形成される光切断線を撮像する撮像手段と、
前記撮像手段によって撮像された前記光切断線を含む二次元画像を用いて、前記計測対象物の三次元形状を計測する演算手段と、を備える三次元形状計測装置であって、
前記照射手段は、前記計測対象物に対して、前記スリット光の照射強度を段階的に変化させて照射し、
前記撮像手段は、前記照射強度毎の光切断線を撮像し、
前記演算手段は、前記撮像手段によって得られた前記照射強度毎の光切断線を含む二次元画像を用いて、前記照射強度毎に前記計測対象物の三次元形状を計測し、該照射強度毎の三次元形状計測結果に基づいて、前記計測対象物の最適な三次元形状を求めることを特徴とする三次元形状計測装置。
An irradiation means capable of changing the irradiation intensity of the slit light applied to the measurement object;
Imaging means for imaging a light cutting line formed on the surface of the measurement object by the slit light irradiated to the measurement object by the irradiation means;
A three-dimensional shape measurement apparatus comprising: a calculation unit that measures a three-dimensional shape of the measurement object using a two-dimensional image including the light cutting line imaged by the imaging unit;
The irradiation means irradiates the measurement object by changing the irradiation intensity of the slit light stepwise,
The imaging means images a light cutting line for each irradiation intensity,
The calculation means measures a three-dimensional shape of the measurement object for each irradiation intensity using a two-dimensional image including a light section line for each irradiation intensity obtained by the imaging means, and for each irradiation intensity. An optimal three-dimensional shape of the measurement object is obtained based on the three-dimensional shape measurement result.
前記演算手段は、前記撮像手段によって得られた前記照射強度毎の前記光切断線を含む前記二次元画像を基に最適な光切断線を算出し、該最適な光切断線を用いて、前記計測対象物の三次元形状を求めることを特徴とする請求項1に記載の三次元形状計測装置。   The calculation means calculates an optimal light cutting line based on the two-dimensional image including the light cutting line for each irradiation intensity obtained by the imaging means, and uses the optimal light cutting line, 2. The three-dimensional shape measurement apparatus according to claim 1, wherein the three-dimensional shape of the measurement object is obtained. 前記照射手段は、前記計測対象物に対して所定の照射強度のスリット光を走査させた後、前記計測対象物に対して前記所定の照射強度と異なる照射強度のスリット光を走査させることを特徴とする請求項1又は2に記載の三次元形状計測装置。   The irradiation means scans the measurement object with slit light having a predetermined irradiation intensity and then causes the measurement object to scan with slit light having an irradiation intensity different from the predetermined irradiation intensity. The three-dimensional shape measuring apparatus according to claim 1 or 2. 前記照射手段は、前記照射強度を切り替えながら、前記スリット光を前記計測対象物に対して走査させることを特徴とする請求項1又は2に記載の三次元形状計測装置。   The three-dimensional shape measuring apparatus according to claim 1, wherein the irradiation unit scans the measurement object with the slit light while switching the irradiation intensity. 前記撮像手段により撮像した前記光切断線の輝度が、前記撮像手段により得られる画像の各画素の有効輝度値の上限を超えた場合に、前記光切断線の輝度が、前記有効輝度値の上限以下になるように、前記照射手段から照射される前記スリット光の照射強度を調整し、前記撮像手段により撮像した前記光切断線の輝度が、前記撮像手段により得られる画像の各画素の有効輝度値の下限を下回った場合に、前記光切断線の輝度が、前記有効輝度値の下限以上になるように、前記照射手段から照射される前記スリット光の照射強度を調整することを特徴とする請求項1から4のいずれかに記載の三次元形状計測装置。   When the luminance of the light cutting line imaged by the imaging means exceeds the upper limit of the effective luminance value of each pixel of the image obtained by the imaging means, the luminance of the light cutting line is the upper limit of the effective luminance value. The luminance of the light cutting line imaged by the imaging unit is adjusted so that the intensity of the slit light irradiated from the irradiation unit is adjusted so that the effective luminance of each pixel of the image obtained by the imaging unit is as follows: The irradiation intensity of the slit light irradiated from the irradiation unit is adjusted so that the luminance of the light cutting line is equal to or higher than the lower limit of the effective luminance value when the value is lower than the lower limit of the value. The three-dimensional shape measuring apparatus according to claim 1. 前記照射手段は、前記スリット光として赤外レーザを用いており、
前記撮像手段には、可視光カットフィルタが設けられていることを特徴とする請求項1から5のいずれかに記載の三次元形状計測装置。
The irradiation means uses an infrared laser as the slit light,
The three-dimensional shape measuring apparatus according to claim 1, wherein the imaging unit is provided with a visible light cut filter.
JP2013056449A 2013-03-19 2013-03-19 Three-dimensional shape measurement device Pending JP2014181995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013056449A JP2014181995A (en) 2013-03-19 2013-03-19 Three-dimensional shape measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013056449A JP2014181995A (en) 2013-03-19 2013-03-19 Three-dimensional shape measurement device

Publications (1)

Publication Number Publication Date
JP2014181995A true JP2014181995A (en) 2014-09-29

Family

ID=51700847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013056449A Pending JP2014181995A (en) 2013-03-19 2013-03-19 Three-dimensional shape measurement device

Country Status (1)

Country Link
JP (1) JP2014181995A (en)

Similar Documents

Publication Publication Date Title
CN104416290B (en) Laser processing apparatus
JP5547105B2 (en) Dimension measuring apparatus, dimension measuring method and program for dimension measuring apparatus
JP6519265B2 (en) Image processing method
JP5133626B2 (en) Surface reflection characteristic measuring device
JP2002131016A (en) Apparatus and method of distance measurement
EP2463618A1 (en) Surface profile inspection device
JP2013186100A (en) Shape inspection method and device
WO2017104271A1 (en) Three-dimensional object inspecting device
CA3061440C (en) Optical scanning arrangement and method
JP2019194670A (en) Range differentiators for auto-focusing in optical imaging systems
JP2009250844A (en) Three-dimensional shape measurement method and three-dimensional shape measurement apparatus
US20200025559A1 (en) Apparatus and method for capturing an object surface by electromagnetic radiation
US10365227B2 (en) Detection device and detection method
TW201809778A (en) Auto-focus system, method and optical imaging inspection apparatus
JP6781969B1 (en) Measuring device and measuring method
JP2009058459A (en) Profile measuring system
US20170069110A1 (en) Shape measuring method
KR101465996B1 (en) Method for measurement of high speed 3d shape using selective long period
KR20080099431A (en) Imaging system for shape measurement of partially-specular object and method thereof
JP2014238299A (en) Measurement device, calculation device, and measurement method for inspected object, and method for manufacturing articles
JP6362058B2 (en) Test object measuring apparatus and article manufacturing method
JP2017181114A (en) Radiation intensity distribution measurement system and method
JP2014181995A (en) Three-dimensional shape measurement device
JP2019211310A (en) Surface property inspection method and surface property inspection device
JP2022031956A (en) Method for determining scan range