JP2014181951A - Method for discriminating foreign substances in metal - Google Patents

Method for discriminating foreign substances in metal Download PDF

Info

Publication number
JP2014181951A
JP2014181951A JP2013055323A JP2013055323A JP2014181951A JP 2014181951 A JP2014181951 A JP 2014181951A JP 2013055323 A JP2013055323 A JP 2013055323A JP 2013055323 A JP2013055323 A JP 2013055323A JP 2014181951 A JP2014181951 A JP 2014181951A
Authority
JP
Japan
Prior art keywords
characteristic
inclusions
precipitates
correlation
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013055323A
Other languages
Japanese (ja)
Other versions
JP6033716B2 (en
Inventor
Nobufumi Kasai
宣文 笠井
Akishige Kanno
晃慈 菅野
Akira Taniyama
明 谷山
Masato Hamanaka
真人 浜中
Tetsuya Uchiyama
徹也 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel and Sumikin Technology Co Ltd
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Nippon Steel and Sumikin Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp, Nippon Steel and Sumikin Technology Co Ltd filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013055323A priority Critical patent/JP6033716B2/en
Publication of JP2014181951A publication Critical patent/JP2014181951A/en
Application granted granted Critical
Publication of JP6033716B2 publication Critical patent/JP6033716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To identify and discriminate foreign substances such as inclusion and deposition in a metal in a large amount and in a short time.SOLUTION: Elements and intensities thereof included in characteristic X-ray information obtained from inclusion or deposition in a metal are acquired. An intensity correlation between one element except elements O, S, N, C included in the characteristic X-ray information and the elements O, S, N, C is obtained, and a correlation between both of the elements is obtained except data equal to or less than a specified value of the one element. A prescribed correlation range is applied to a characteristic X-ray intensity ratio table of oxide, sulfide, nitride, and carbide, and it is determined whether the correlation between both of the elements satisfies the prescribed correlation range to the characteristic X-ray intensity ratio table of the oxide, sulfide, nitride, and carbide of the one element. When the prescribed correlation is satisfied, the inclusion or the deposition is identified understanding that there is any of the oxide, sulfide, nitride, and carbide of the one element or a composite thereof. Such an identification is repeated for the elements (except the elements O, S, N, C) included in the characteristic X-ray information except the one element.

Description

本発明は、走査電子顕微鏡(SEM)、電子プローブマイクロアナライザー等の形態観察と組成分析が可能な特性X線を用いる物理分析装置によって得られる組成情報、並びに画像分析による粒子サイズ情報及び位置情報を解析して、金属内に存在する介在物や析出物の種類別の大きさや個数分布を精度良く導出する方法に関するものである。   The present invention provides composition information obtained by a physical analyzer using characteristic X-rays capable of morphological observation and composition analysis such as scanning electron microscope (SEM) and electron probe microanalyzer, and particle size information and position information by image analysis. The present invention relates to a method for accurately deriving the size and number distribution of each type of inclusions and precipitates present in a metal by analysis.

近年、清浄鋼の製造技術が確立しつつあるのに伴い、製造された鋼の清浄性評価に対しても、評価精度を向上させた上での迅速かつ大量に処理する技術が極めて強く求められてきている。   In recent years, with the establishment of clean steel manufacturing technology, there is a strong demand for technology for rapid and large-scale processing with improved evaluation accuracy for the evaluation of cleanliness of manufactured steel. It is coming.

特に各種鋼材の素材となる連続鋳造(以下、略して連鋳ともいう。)鋳片の清浄性の迅速な評価は、大量の製品不良発生を未然に防止する上で今後さらにニーズが大きくなることが考えられる。   In particular, rapid evaluation of the cleanability of continuous casting (hereinafter also referred to as continuous casting), which is the raw material of various steel materials, will further increase the needs in the future to prevent the occurrence of a large number of product defects. Can be considered.

ところで、鋳片の内部欠陥は、ピンホールと呼ばれる空洞状の欠陥と、非金属介在物(以下、単に介在物ともいう。)に大別される。このうち、非金属介在物には、その生成要因によって、球状介在物と塊状介在物が存在する。また、非金属介在物とは生成要因が異なる粒内析出物及び粒界析出物(以下、単に析出物という。)が存在する。   By the way, the internal defects of the slab are roughly classified into hollow defects called pinholes and non-metallic inclusions (hereinafter also simply referred to as inclusions). Among these, non-metallic inclusions include spherical inclusions and massive inclusions due to the generation factors. In addition, there are intragranular precipitates and grain boundary precipitates (hereinafter simply referred to as precipitates) having different generation factors from nonmetallic inclusions.

例えば、タンディッシュから鋳型へ溶鋼を注入する浸漬管には、アルミナ詰まりを防止するためにArガスが吹込まれるが、この吹込み量が適切でない場合、そのArガスが鋳型内に持ち込まれる場合がある。このArガスが前記ピンホールの主な生成原因である。   For example, Ar gas is blown into a dip tube that injects molten steel from a tundish into a mold to prevent clogging of alumina, but if this blowing amount is not appropriate, the Ar gas is brought into the mold. There is. This Ar gas is the main cause of the pinhole.

また、連続鋳造においては、鋳型と鋳片が焼き付かないように、その間にモールドパウダーを介在させ、潤滑を図ることが一般的である。しかしながら、鋳型内の湯面変動が大きい場合、鋳片のメニスカス(凝固初期の鋳片の端部)に未溶融状態のモールドパウダーが捕捉されてしまう。このモールドパウダーが塊状介在物の生成原因であることが分かっている。   Further, in continuous casting, it is common to provide lubrication by interposing mold powder between the mold and the slab so as not to be seized. However, when the molten metal surface fluctuation in the mold is large, unmelted mold powder is trapped by the meniscus of the slab (the end of the slab at the initial stage of solidification). This mold powder has been found to be the cause of the formation of massive inclusions.

また、一般的な溶銑の精錬では、転炉にて溶鋼に大量の酸素を吹き込んでCを低減させるが、この時、同時に様々な非金属介在物が生成される。通常、非金属介在物は溶鋼より比重が軽いため、連続鋳造される前に溶鋼鍋の上部に浮上するが、浮上しきれずにタンディッシュに持ち込まれる場合もある。非金属介在物がアルミナ系の酸化物であって、これがネットワーク状になったものがアルミナクラスターの主な生成原因である。   In general hot metal refining, a large amount of oxygen is blown into molten steel in a converter to reduce C. At this time, various non-metallic inclusions are generated at the same time. Usually, non-metallic inclusions have a lower specific gravity than molten steel, so they float on the top of the molten steel pan before continuous casting, but may be brought to the tundish without being able to float. The non-metallic inclusions are alumina-based oxides that are networked, which is the main cause of the formation of alumina clusters.

一方、連続鋳造機内において鋼が凝固する過程において、溶鋼中に含まれるMn,Al,S,Nb,Ti等の元素が化合物を生成することで粒界に析出する現象が生じる。これらの粒界析出物は析出する組成によっては粒界強度を脆弱にすることが知られている。   On the other hand, in the process of solidifying steel in a continuous casting machine, a phenomenon occurs in which elements such as Mn, Al, S, Nb, and Ti contained in the molten steel form compounds and precipitate at grain boundaries. These grain boundary precipitates are known to weaken the grain boundary strength depending on the composition of precipitation.

これらの粒界析出物と上述した非金属介在物を効果的に除去若しくは無害化するためには、形態や組成別に、大きさ別の個数分布を正確に把握することが重要となってくる。   In order to effectively remove or detoxify these grain boundary precipitates and the non-metallic inclusions described above, it is important to accurately grasp the number distribution by size according to form and composition.

従来、これらの要求に対して、以下のいくつかの清浄性評価手法が用いられてきたが、それぞれ問題を有している。   Conventionally, the following several cleanliness evaluation methods have been used for these requirements, but each has its own problems.

例えば、全酸素分析法やサンドアルミナ分析法は、迅速かつ大量の分析が可能であるが、清浄鋼の介在物評価に必要な、粒度分布や形状、種類を判別することができない。   For example, the total oxygen analysis method and the sand alumina analysis method allow rapid and large-scale analysis, but cannot determine the particle size distribution, shape, and type necessary for inclusion evaluation of clean steel.

一方、ミクロ検鏡法や、鋳片から切り出した試料を電解溶融して抽出した介在物を実体顕微鏡やSEMを用いて直接観察する電解スライム抽出法等の確性手法では、形状や種類の判別が可能である。しかしながら、これらの方法は、サンプル加工や結果算出の自動化が難しいことから、人為的な作業となるため作業者の作業負荷が大きく、また判別に時間を要する。よって、大量の介在物を統計的な手法を用いて解析するのには不向きであり、少数のサンプル数を評価することしかできず、鋳片全体の評価は困難である。   On the other hand, in the microscopic method and the accuracy method such as the electrolytic slime extraction method that directly observes the inclusion extracted by electrolytic melting of the sample cut out from the slab using a stereomicroscope or SEM, the shape and type can be distinguished. Is possible. However, these methods are difficult to automate sample processing and result calculation. Therefore, since these methods are man-made operations, the workload of the operator is large, and it takes time for the determination. Therefore, it is unsuitable for analyzing a large amount of inclusions using a statistical method, and only a small number of samples can be evaluated, and it is difficult to evaluate the entire slab.

これらの問題点を解消して迅速かつ大量に清浄性の評価試験を行うために、高周波超音波Cスコープ探傷装置に信号解析機能とニュートラルネットワークを用いた疵判別機能を導入した全自動探傷システムが特許文献1で提案されている。しかしながら、特許文献1で提案された探傷システムの場合、ピンホールと介在物の認識は可能であるが、介在物の種類を識別することができない。以下、高周波超音波Cスコープ探傷を、単に高周波超音波探傷という。   In order to solve these problems and to perform a cleanness evaluation test quickly and in large quantities, a fully automatic flaw detection system that introduces a signal analysis function and a flaw detection function using a neutral network to a high-frequency ultrasonic C-scope flaw detector This is proposed in Patent Document 1. However, in the flaw detection system proposed in Patent Document 1, pinholes and inclusions can be recognized, but the type of inclusion cannot be identified. Hereinafter, high-frequency ultrasonic C-scope flaw detection is simply referred to as high-frequency ultrasonic flaw detection.

また、極値統計法を応用した手法を用いて、高周波超音波探傷で得られた欠陥情報を介在物の形態別に弁別する手法が特許文献2で提案されている。しかしながら、特許文献2で提案された方法は、介在物を形態別に弁別した上で大きさ別個数分布を求めることは可能であるが、介在物の組成を把握することは不可能である。   Further, Patent Document 2 proposes a technique for discriminating defect information obtained by high-frequency ultrasonic flaw detection according to the form of inclusions using a technique applying an extreme value statistical method. However, although the method proposed in Patent Document 2 can determine the number-specific number distribution after discriminating inclusions by form, it is impossible to grasp the composition of inclusions.

さらに、X線を利用して介在物の形態や平均組成を求める手法が特許文献3や特許文献4で提案されている。しかしながら、特許文献3で提案された手法は、検出した介在物を形態別に分類するだけであり、詳細に同定することはできていない。また、特許文献4で提案された手法も、介在物の平均組成を示すのみであり、同定することまでには至っていない。   Furthermore, Patent Document 3 and Patent Document 4 propose methods for obtaining the form and average composition of inclusions using X-rays. However, the technique proposed in Patent Document 3 only classifies the detected inclusions according to the form, and cannot be identified in detail. Moreover, the method proposed in Patent Document 4 only shows the average composition of inclusions, and has not yet been identified.

特開平10−62357号公報Japanese Patent Laid-Open No. 10-62357 特開2006−184101公報JP 2006-184101 A 特表2012−507002号公報Special table 2012-507002 gazette 特開2004−191060号公報JP 2004-191060 A

本発明が解決しようとする問題点は、従来方法の場合、金属内に存在する介在物や析出物等の異物を、迅速かつ大量に、形態や組成別に、大きさ別の個数分布を把握することができないという点である。   The problem to be solved by the present invention is that in the case of the conventional method, it is possible to grasp the foreign matter such as inclusions and precipitates existing in the metal quickly and in large quantities, and the number distribution by size according to form and composition. It is a point that cannot be done.

本発明は、上述した課題を解決するために、金属内に存在する介在物や析出物を同定して弁別する方法、例えば鋼の清浄性評価のための非金属介在物や粒界析出物測定における迅速でかつ大量の種類別評価を可能とする金属内の異物弁別方法を提案するものである。   In order to solve the above-mentioned problems, the present invention is a method for identifying and discriminating inclusions and precipitates present in a metal, for example, measurement of non-metallic inclusions and grain boundary precipitates for evaluating the cleanliness of steel. The present invention proposes a method for discriminating foreign substances in metals that enables rapid and large-scale evaluation by type.

なお、同定とは、介在物や析出物にどのような元素が含まれているかを確認(分析)したものが、どのような種類の介在物或いは析出物であるのかを判定することをいう。   The identification refers to determining what kind of inclusion or precipitate is what is confirmed (analyzed) what kind of element is contained in the inclusion or precipitate.

本発明の金属内の異物弁別方法は、
金属材料中に含まれる介在物又は析出物を、以下の(1)〜(7)の工程により同定することを最も主要な特徴とするものである。
The foreign matter discrimination method in the metal of the present invention,
The most important feature is to identify inclusions or precipitates contained in the metal material by the following steps (1) to (7).

(1)走査電子顕微鏡又は電子線マイクロアナライザーを用いて個々の介在物又は析出物に電子線を照射し、前記個々の介在物又は析出物から得られた特性X線情報に含まれる元素とその強度を取得する工程。
(2)前記個々の介在物又は析出物から得られた特性X線情報に含まれる、O,S,N,Cの元素を除く一の元素と、O,S,N,Cのそれぞれの元素との強度相関を求める工程。
(3)前記強度相関において、前記特性X線情報に含まれる前記一の元素の所定値以下のデータを除いて、前記一の元素とO,S,N,Cのそれぞれの元素の相関関係を求める工程。
(4)酸化物、硫化物、窒化物、炭化物の特性X線強度比のテーブルに所定の相関関係の範囲を付与する工程。
(5)(3)の工程における前記一の元素とO,S,N,Cのそれぞれの元素の相関関係が前記一の元素の酸化物、硫化物、窒化物、炭化物の特性X線強度比のテーブルに所定の相関関係の範囲を満たしているか否かを判定する工程。
(6)前記所定の相関関係を満たしている場合には、前記一の元素の酸化物、硫化物、窒化物、炭化物の何れか、又は複合物があるとして、介在物又は析出物を同定する工程。
(7)前記一の元素と該当するO,S,N,Cの強度を(1)の工程から除く演算を行い、前記一の元素を除いて、特性X線情報に含まれる元素(O,S,N,Cの元素は除く)について(2)から(6)を繰返す工程。
(1) An element included in the characteristic X-ray information obtained from the individual inclusions or precipitates by irradiating the individual inclusions or precipitates with an electron beam using a scanning electron microscope or an electron beam microanalyzer The process of acquiring strength.
(2) One element excluding O, S, N, and C elements and each element of O, S, N, and C included in the characteristic X-ray information obtained from the individual inclusions or precipitates The process of calculating the intensity correlation.
(3) In the intensity correlation, except for data less than a predetermined value of the one element included in the characteristic X-ray information, the correlation between the one element and each element of O, S, N, and C The process to seek.
(4) A step of giving a predetermined correlation range to the table of characteristic X-ray intensity ratios of oxides, sulfides, nitrides, and carbides.
(5) The characteristic X-ray intensity ratio of the oxide, sulfide, nitride and carbide of the one element is the correlation between the one element and each of O, S, N and C in the process of (3) Determining whether or not a predetermined correlation range is satisfied in the table.
(6) When the predetermined correlation is satisfied, an inclusion or a precipitate is identified as any one of the oxide, sulfide, nitride, carbide, or composite of the one element. Process.
(7) The calculation is performed by removing the intensity of the one element and the corresponding O, S, N, and C from the process of (1), and excluding the one element, the elements included in the characteristic X-ray information (O, Steps (2) to (6) are repeated for (except S, N, and C elements).

上記本発明方法によれば、金属内に存在する大量の介在物単体や析出物単体は元より複合化された介在物や析出物も短時間で分析し、その分析した介在物、析出物の種類を同定することが可能になる。   According to the method of the present invention described above, a large amount of inclusions and precipitates present in the metal are analyzed in a short time from inclusions and precipitates that have been originally combined, and the analyzed inclusions and precipitates are analyzed. It becomes possible to identify the type.

上記本発明において、走査電子顕微鏡または電子線マイクロアナライザーに反射電子検出器又は角度選択反射電子検出器をさらに備え、前記検出器の画像データとこの画像データの解析により、介在物又は析出物の、サイズ又は配置或いはサイズ及び位置を計測し、前記特性X線情報から介在物又は析出物の組成を同定することで、粒界析出物の評価が迅速に行える。   In the present invention, the scanning electron microscope or the electron beam microanalyzer further comprises a backscattered electron detector or an angle selective backscattered electron detector. By analyzing the image data of the detector and the image data, inclusions or precipitates, By measuring the size or arrangement or size and position and identifying the composition of inclusions or precipitates from the characteristic X-ray information, it is possible to quickly evaluate the grain boundary precipitates.

本発明では、金属材料中に存在する大量の非金属介在物や析出物、複合介在物の種類を迅速に同定して測定材料における各介在物や析出物の種類ごとに粒度分布を評価でき、製品の不良発生を未然に防ぐことに寄与することができる。   In the present invention, a large amount of non-metallic inclusions and precipitates present in the metal material can be quickly identified and the particle size distribution can be evaluated for each type of inclusion and precipitate in the measurement material, This can contribute to preventing the occurrence of product defects.

また、反射電子(BSE)像や、角度選択反射電子(AsB)像など結晶粒の粒界位置の情報を反映させた画像と、前記判定した各介在物や結晶物の位置情報との対応を確認することで、迅速に粒界析出物を評価することができる。   Also, the correspondence between the image of the grain boundary position of the crystal grains such as the backscattered electron (BSE) image and the angle selective backscattered electron (AsB) image, and the determined position information of each inclusion or crystal By confirming, the grain boundary precipitates can be quickly evaluated.

複合介在物や析出物の同定過程の一例を示した図である。It is the figure which showed an example of the identification process of a composite inclusion and a precipitate. TiNとして解析した粒子の位置情報を反映させた分布図である。It is a distribution map reflecting the position information of particles analyzed as TiN. AsB像による測定範囲の結晶粒の画像である。It is an image of the crystal grain of the measurement range by an AsB image. 図2と図3を重ね合わせて粒内析出物を計数した結果を示した図である。It is the figure which showed the result of having overlapped FIG. 2 and FIG. 3 and having counted the intragranular precipitate. TiNにおける粒内析出物並びに粒界析出物を粒度解析した結果を示した図である。It is the figure which showed the result of carrying out the particle size analysis of the intragranular precipitate and grain boundary precipitate in TiN. 特性X線情報を基に統計処理によって相関が得られた元素対の一例を示した図である。It is the figure which showed an example of the element pair by which the correlation was acquired by statistical processing based on characteristic X-ray information. 図6で分類した粒子中で、他の元素対との相関を示した図で、(a)はMnとSの相関を示した図、(b)はTiとNの相関を示した図である。6A and 6B are diagrams showing correlations with other element pairs in the particles classified in FIG. 6, wherein FIG. 6A shows the correlation between Mn and S, and FIG. 6B shows the correlation between Ti and N. FIG. is there. 相関係数の閾値Rtによる検出されるべき介在物および析出物のヒット率の変化を示した図である。It is a view showing a change in the hit rate of the inclusions and precipitates to be detected by the threshold R t of the correlation coefficient.

一般的に、鋼中において介在物や析出物は単体で存在していることは少なく、複数のものが混在していることが多い。   In general, inclusions and precipitates are rarely present alone in steel, and a plurality of inclusions are often mixed.

これら鋼中の介在物や析出物の同定は、主にSEMとそれに付属するエネルギー分散型X線分析装置(EDX)や電子線マイクロアナライザ(EPMA)によって分析可能である。しかしながら、特に複合化された介在物や析出物の同定は、元素マッピングにて検出された各元素の位置関係や濃度プロファイルによって分析するため、1粒子を同定するのに長い時間を要していた。   The inclusions and precipitates in these steels can be identified mainly by SEM and the attached energy dispersive X-ray analyzer (EDX) and electron microanalyzer (EPMA). However, in particular, identification of complex inclusions and precipitates is analyzed based on the positional relationship and concentration profile of each element detected by element mapping, and thus it takes a long time to identify one particle. .

ところで、粒子をEDX等でポイント分析すると、OやS,N等が他のどの元素と化合しているのかを特定することは困難である。また、複数の介在物や析出物が混在している場合、ポイント分析のみでは複合化された介在物や析出物の同定は困難である。   By the way, when point analysis is performed on particles using EDX or the like, it is difficult to identify which other element O, S, N, etc. are combined with. Further, when a plurality of inclusions and precipitates are mixed, it is difficult to identify complex inclusions and precipitates only by point analysis.

一方、粒界析出物の評価は、測定者がSEMの像より個々の粒子が粒界にあるかどうかを判断していた。   On the other hand, in the evaluation of the grain boundary precipitates, the measurer judged whether or not each particle was at the grain boundary from the SEM image.

また、電子線後方散乱回折法(走査電顕−結晶方位解析:EBSD)を利用して、結晶粒界と介在物や析出物の粒子との位置関係を明確にさせることは可能であるが、いずれの方法も長時間を要する。   In addition, it is possible to clarify the positional relationship between the grain boundaries and inclusions and precipitates using the electron backscatter diffraction method (scanning electron microscope-crystal orientation analysis: EBSD). Both methods take a long time.

つまり、従来の粒子測定では、測定者は、粒子サイズや組成の分析結果等の測定粒子情報を一覧表示した上で、予め規定された条件に合う粒子のみを弁別する手法が主であり、条件の設定が主観的になってしまう欠点があった。また、設定した条件に合わない粒子は測定者が再度判断をする必要があり、膨大な作業工数が必要であった。   In other words, in the conventional particle measurement, the measurer mainly displays a list of measurement particle information such as particle size and composition analysis results, and discriminates only particles that meet a predetermined condition. There was a drawback that the setting of became subjective. In addition, particles that do not meet the set conditions have to be judged again by the measurer, and a huge amount of work is required.

本発明は、上記従来の欠点を改善して、金属材料中に存在する介在物や析出物等の異物を短時間で大量に同定して弁別するという目的を、特性X線情報に閾値を設けて相関の無い粒子群を除外することにより実現した。   The present invention provides a threshold value in the characteristic X-ray information for the purpose of improving the above-mentioned conventional defects and identifying and discriminating a large amount of foreign substances such as inclusions and precipitates existing in a metal material in a short time. This is achieved by excluding uncorrelated particles.

すなわち、本発明では、複数の粒子から検出された組成情報を基に、組成比率の相関を利用して結合元素を特定し、単体で存在する介在物や析出物から複合化して存在するものまで弁別する。   That is, in the present invention, based on the composition information detected from a plurality of particles, the binding element is specified by utilizing the correlation of the composition ratio, and from the inclusions and precipitates that exist as a single element to the composite elements Discriminate.

また、各粒子の組成情報を統計処理することで、短時間で大量の粒子の組成判定ならびに介在物、析出物を同定する。実際には、統計処理によって相関が認められる元素同士で介在物や析出物を構成していることを利用して大まかに分類し、構成元素比率から予め決定した閾値を利用して介在物や析出物を細かく弁別する。   Further, by statistically processing the composition information of each particle, the composition determination of a large amount of particles and the inclusions and precipitates are identified in a short time. In practice, it is roughly classified by using inclusions and precipitates composed of elements that are correlated by statistical processing, and inclusions and precipitation are determined using thresholds determined in advance from the constituent element ratios. Discriminate objects finely.

以下、発明者らが知見した発明を実施するための形態について以下に説明する。
試料はダイヤモンドで表面を研磨し、鏡面に仕上げたものを使用する。さらに、観察面の結晶粒界並びに対象とする介在物粒子や析出物粒子が検出できるように適切なエッチング処理を行う。この処理を行うことで、粒界析出物と粒界若しくは金属粒との相関を求めることが可能になる。
Hereinafter, modes for carrying out the invention discovered by the inventors will be described below.
Use a sample whose surface is polished with diamond and mirror finished. Further, an appropriate etching process is performed so that the crystal grain boundaries on the observation surface and the inclusion particles and precipitate particles to be detected can be detected. By performing this process, it becomes possible to obtain the correlation between the grain boundary precipitates and the grain boundaries or metal grains.

分析試料は任意の倍率にて観察し、介在物粒子や析出物粒子の粒子サイズ情報及び位置情報を取得できる画像解析用アプリケーションを利用して以下の手順で行う。   The analysis sample is observed at an arbitrary magnification, and an image analysis application capable of acquiring particle size information and position information of inclusion particles and precipitate particles is used in the following procedure.

(a)前記観察により、BSE像又はAsB像といった存在元素によってコントラストが異なる像を取得する。また、コントラストが異なって画像化される介在物や析出物を、画像処理して粒子サイズ等の粒子形状情報を取得する。 (A) By the observation, an image such as a BSE image or an AsB image having different contrasts depending on the existing elements is acquired. In addition, inclusions and precipitates that are imaged with different contrasts are subjected to image processing to obtain particle shape information such as particle size.

(b)介在物粒子や析出物粒子は、主にEDXを用いて、分析領域内の特性X線情報から介在物や析出物を同定することを基本とする。 (B) Inclusion particles and precipitate particles are basically based on identifying inclusions and precipitates from characteristic X-ray information in the analysis region using EDX.

(c)複数の粒子から検出された特性X線情報を基に各元素を統計処理し、例えば相関関係R≧0.4を示す元素対でグラフにプロットする。なお、特性X線検出結果からは、スペクトル強度、定量値(質量%、atomic%)等の複数の情報が得られるため、特性X線検出結果から得られる情報を特性X線情報という。 (C) Each element is statistically processed based on characteristic X-ray information detected from a plurality of particles, and plotted on a graph with element pairs exhibiting a correlation R ≧ 0.4, for example. Since a plurality of pieces of information such as spectrum intensity and quantitative values (mass%, atomic%) are obtained from the characteristic X-ray detection result, information obtained from the characteristic X-ray detection result is referred to as characteristic X-ray information.

(d)相関の精度を向上する目的で特性X線情報により閾値を設けて、相関のない粒子群を除外する。この閾値は、測定サンプルの化学組成や測定条件により異なるが、下記表1に示す範囲内で閾値を設定することが可能である。また、検出数が少ないために十分な相関が得られない介在物や析出物が存在する場合、検出した全元素に対する組成情報の割合が高い元素を抽出し、下記表1に示す範囲内で特性X線強度の閾値を設けることにより、相関の無い粒子を除外することができる。 (D) For the purpose of improving the accuracy of correlation, a threshold value is set based on characteristic X-ray information, and particles having no correlation are excluded. This threshold value varies depending on the chemical composition of the measurement sample and the measurement conditions, but the threshold value can be set within the range shown in Table 1 below. In addition, when there are inclusions and precipitates for which sufficient correlation cannot be obtained due to the small number of detections, elements having a high ratio of composition information to all detected elements are extracted, and the characteristics are within the ranges shown in Table 1 below. By providing an X-ray intensity threshold, uncorrelated particles can be excluded.

(e)相関がみられた元素同士の特性X線情報の比率(質量比率:質量%、原子質量比率:atomic%、特性X線強度)や粒子形状などから組成を同定する。下記表2に主な介在物や析出物を同定する場合の判定基準について、特性X線強度、質量%、atomic%を用いた場合を示した。すなわち、下記表2に示す判定基準で組成比率が判明する。次いで、その定量的な介在物量や析出物量は各種類別に量を算出する。なお、特性X線強度は特性X線を検出した全量(Count)と、1秒間に検出された量(Count per second:CPS)があり、表1、表2では全量で表現した。 (E) The composition is identified from the characteristic X-ray information ratio (mass ratio: mass%, atomic mass ratio: atomic%, characteristic X-ray intensity), particle shape, etc. of the elements in which the correlation is observed. Table 2 below shows the case where the characteristic X-ray intensity, mass%, and atomic% are used as criteria for identifying main inclusions and precipitates. That is, the composition ratio is determined according to the criteria shown in Table 2 below. Next, the quantitative inclusion amount and the precipitate amount are calculated for each type. The characteristic X-ray intensity includes the total amount (Count) in which characteristic X-rays are detected and the amount detected per second (Count per second: CPS). Tables 1 and 2 indicate the total amount.

(f)複合介在物系に関しては、同様の処理を図1に示すような順序で段階的に処理することで同定する。 (F) The complex inclusion system is identified by performing the same process step by step in the order shown in FIG.

(g)同定をした各介在物や各析出物の位置情報(図2参照)とBSE像、又はAsB像で得られた結晶粒の情報(図3参照)を照らし合わせて、図4で示す粒界析出物の計数処理、並びに図5に示すような粒度解析処理を行う。 (G) The positional information (see FIG. 2) of each identified inclusion and each precipitate is compared with the information on the crystal grains obtained in the BSE image or AsB image (see FIG. 3) and shown in FIG. A grain boundary precipitate counting process and a grain size analysis process as shown in FIG. 5 are performed.

上記(a)〜(g)の手順で実施する本発明方法により、各介在物や各析出物の種類別粒度分布評価や粒界析出物の迅速な定量評価が可能となる。特に、特性X線情報に閾値を設けて、相関の無い粒子群を除外することで、従来方法ではできなかった、非金属介在物や粒界析出物測定における迅速な種類別評価が可能になる。   According to the method of the present invention carried out in the above procedures (a) to (g), it is possible to evaluate the particle size distribution of each inclusion and each precipitate and to quickly quantitatively evaluate the grain boundary precipitate. In particular, by setting a threshold value for characteristic X-ray information and excluding uncorrelated particles, it is possible to quickly evaluate by type in measuring non-metallic inclusions and grain boundary precipitates, which was not possible with conventional methods. .

介在物または析出物は、酸化物や硫化物、窒化物などが複合して存在する場合が多いため、相関係数Rを高く設定すると複合化した粒子を見落としてしまう。逆に、相関係数Rを0.4未満などのように低く設定してしまうと、介在物または析出物とは無関係の余計なデータが多くなってしまい、迅速な評価が困難となる。   Inclusions or precipitates are often present in a composite of oxides, sulfides, nitrides, and the like, and when the correlation coefficient R is set high, the composite particles are overlooked. On the other hand, if the correlation coefficient R is set to a low value such as less than 0.4, excessive data unrelated to inclusions or precipitates increases, making rapid evaluation difficult.

図8に相関係数の閾値Rtによる検出されるべき介在物および析出物のヒット率の変化を示した。図8に示すように、相関係数の閾値Rtとして0.4以下の値を選択し、相関係数RをRt以上、1.0以下とすると、ヒット率が100%となる。一方、相関係数の閾値Rtとして0.4より大きい値を選択して相関係数RをRt以上、1.0以下とした場合は、ヒット率は100%から減少してしまう。 It shows the change in the hit rate of the inclusions and precipitates to be detected by the threshold R t of the correlation coefficient in FIG. As shown in FIG. 8, select the 0.4 value as the threshold R t of the correlation coefficient, the correlation coefficient R R t or more, when a 1.0 or less, the hit rate is 100%. On the other hand, when a value greater than 0.4 is selected as the correlation coefficient threshold value R t and the correlation coefficient R is set to R t or more and 1.0 or less, the hit rate decreases from 100%.

また、相関係数の上限の閾値Rtに0.4以下の値を選択し、相関係数RをそのRt以下、0以上とするとヒット率が0%となってしまう。一方、相関係数の上限の閾値Rtに0.4より大きい値を選択し、相関係数RをそのRt以下、0以上とするとヒット率は0%から増加し、相関係数Rが1.0でヒット率は100%になる。 Also, select the upper limit 0.4 the following values to the threshold R t of the correlation coefficient, below its R t correlation coefficient R, 0 or more to the hit rate becomes 0%. On the other hand, select the 0.4 value greater than the threshold value R t in the upper limit of the correlation coefficient, below its R t correlation coefficient R, the hit rate when the zero or increases from 0%, the correlation coefficient R At 1.0, the hit rate is 100%.

以上から、発明者らは、相関係数が1.0以下となるデータを対象とし、且つ、相関係数の下限の閾値Rtを0.4とした。これにより、介在物または析出物をヒット率は100%で漏れなく解析することができる。よって、本発明方法の効果は、ヒット率が100%を実現する相関係数Rが、0.4≦R≦1.0を示す元素対を選定することでより顕著になる。 From the above, it directed to a data correlation coefficient is 1.0 or less, and the threshold value R t in the lower limit of the correlation coefficient is 0.4. Thereby, inclusions or precipitates can be analyzed without omission with a hit rate of 100%. Therefore, the effect of the method of the present invention becomes more prominent by selecting an element pair whose correlation coefficient R that achieves a hit rate of 100% satisfies 0.4 ≦ R ≦ 1.0.

次に、本発明を鉄鋼材料に適用した実施例について具体的に説明する。
試料はダイヤモンドで表面を鏡面研磨し、適切なエッチング処理を行ったものを使用した。測定は、介在物粒子や析出物粒子を画像解析して粒子サイズ情報及び位置情報を取得できる解析用アプリケーションを有する電界放射型走査電子顕微鏡(FE-SEM)を用いて行った。測定条件は、加速電圧12KVにてCu−Kα線で10000cps得られる電流及び絞りを選択し、EDXスペクトルを較正した。また、倍率は2000倍で、画像処理によって対象とする介在物や析出物が検出し易いように撮影画像の調整を行った。また、EDX分析によって検出される元素を選択し、粒子サイズ0.01〜10μm2を示す粒子を測定視野3mm2について測定を実施した。
Next, an example in which the present invention is applied to a steel material will be specifically described.
The sample used was a diamond whose surface was mirror-polished and appropriately etched. The measurement was performed using a field emission scanning electron microscope (FE-SEM) having an analysis application capable of acquiring particle size information and position information by image analysis of inclusion particles and precipitate particles. As the measurement conditions, an electric current and a diaphragm obtained by 10000 cps with Cu-Kα ray at an acceleration voltage of 12 KV were selected, and the EDX spectrum was calibrated. The magnification was 2000 times, and the captured image was adjusted so that the inclusions and precipitates to be detected can be easily detected by image processing. Further, an element detected by EDX analysis was selected, and a particle having a particle size of 0.01 to 10 μm 2 was measured for a measurement field of view 3 mm 2 .

測定によって得た下記表3に示すデータを汎用のデータ解析ソフトに出力し、各元素の特性X線情報を統計処理した。   The data shown in Table 3 below obtained by measurement was output to general-purpose data analysis software, and the characteristic X-ray information of each element was statistically processed.

相関がみられる元素対をグラフにプロットし、相関がみられない部位(粒子)を除去するため、図6に示すようにスペクトル情報に閾値を設定した。このように閾値を設定して相関のある粒子のみを選択することで、相関のみられる元素対とのスペクトルデータの比率より、その粒子の組成を同定する。図6は、AlとOの相関関係からAl2O3と同定した本発明の実施例を示す。 In order to remove the part (particles) in which the correlation is not observed and plot the element pairs in which the correlation is observed in the graph, a threshold is set in the spectrum information as shown in FIG. In this way, by setting a threshold value and selecting only correlated particles, the composition of the particles is identified from the ratio of spectral data with the correlated element pairs. FIG. 6 shows an embodiment of the present invention identified as Al 2 O 3 from the correlation between Al and O.

複合介在物についても同様にスペクトルデータを統計処理して解析した。例えば図6で分類したAl2O3中でさらに統計処理したところ、図7に示すMnとS、TiとNの元素対で相関が得られた。 The composite inclusions were similarly analyzed by analyzing the spectrum data. For example, when further statistical processing was performed in Al 2 O 3 classified in FIG. 6, a correlation was obtained between the element pairs of Mn and S and Ti and N shown in FIG.

図7のデータに閾値を設定して複合化されたものを同定した。図7は、MnSとTiNに同定した本発明の実施例で、これら図6及び図7より最終的にAl2O3+MnS+TiNの複合介在物であると同定できる。 A composite was identified by setting a threshold value in the data of FIG. FIG. 7 shows an embodiment of the present invention identified as MnS and TiN. From these FIGS. 6 and 7, it can be finally identified as a composite inclusion of Al 2 O 3 + MnS + TiN.

上記したように、本発明方法によれば、単体の介在物や析出物も含め、図1に示すような順序で段階的に解析を繰り返していくだけで、迅速に複合化合物を同定することが可能となる。   As described above, according to the method of the present invention, it is possible to quickly identify a complex compound simply by repeating the analysis step by step in the order shown in FIG. 1 including single inclusions and precipitates. It becomes.

一方、粒界析出物の評価は、同定した介在物や析出物の位置情報(図2参照)とBSE像またはAsB像などで得られた結晶粒の情報(図3参照)を照らし合わせて、粒界に析出しているものと粒内に析出しているものを識別して評価する。   On the other hand, the evaluation of grain boundary precipitates is performed by comparing the positional information of the identified inclusions and precipitates (see Fig. 2) with the information on the crystal grains obtained from the BSE image or AsB image (see Fig. 3). What is precipitated in the grain boundary and what is precipitated in the grain are distinguished and evaluated.

さらに、表3で示した粒子形状情報の面積項目を使用して、粒内析出物と粒界析出物の粒度分布を図5で示すように評価する。   Furthermore, using the area item of the particle shape information shown in Table 3, the particle size distribution of the intragranular precipitate and the grain boundary precipitate is evaluated as shown in FIG.

本発明は上記した例に限らないことは勿論であり、請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   Needless to say, the present invention is not limited to the above-described examples, and the embodiments may be appropriately changed within the scope of the technical idea described in the claims.

例えば、本願の請求項1〜3に係る発明は、鋼に含まれる介在物や析出物分析だけでなく、電解抽出残渣に含まれる介在物や析出物の分析にも適用できる。   For example, the invention according to claims 1 to 3 of the present application can be applied not only to the analysis of inclusions and precipitates contained in steel, but also to the analysis of inclusions and precipitates contained in electrolytic extraction residues.

Claims (4)

金属材料中に含まれる介在物又は析出物を、以下の(1)〜(7)の工程により同定することを特徴とする金属内の異物弁別方法。
(1)走査電子顕微鏡又は電子線マイクロアナライザーを用いて個々の介在物又は析出物に電子線を照射し、前記個々の介在物又は析出物から得られた特性X線情報に含まれる元素とその強度を取得する工程。
(2)前記個々の介在物又は析出物から得られた特性X線情報に含まれる、O,S,N,Cの元素を除く一の元素と、O,S,N,Cのそれぞれの元素との強度相関を求める工程。
(3)前記強度相関において、前記特性X線情報に含まれる前記一の元素の所定値以下のデータを除いて、前記一の元素とO,S,N,Cのそれぞれの元素の相関関係を求める工程。
(4)酸化物、硫化物、窒化物、炭化物の特性X線強度比のテーブルに所定の相関関係の範囲を付与する工程。
(5)(3)の工程における前記一の元素とO,S,N,Cのそれぞれの元素の相関関係が前記一の元素の酸化物、硫化物、窒化物、炭化物の特性X線強度比のテーブルに所定の相関関係の範囲を満たしているか否かを判定する工程。
(6)前記所定の相関関係を満たしている場合には、前記一の元素の酸化物、硫化物、窒化物、炭化物の何れか、又は複合物があるとして、介在物又は析出物を同定する工程。
(7)前記一の元素と該当するO,S,N,Cの強度を(1)の工程から除く演算を行い、前記一の元素を除いて、特性X線情報に含まれる元素(O,S,N,Cの元素は除く)について(2)から(6)を繰返す工程。
A method for discriminating foreign matter in a metal, characterized in that inclusions or precipitates contained in the metal material are identified by the following steps (1) to (7).
(1) An element included in the characteristic X-ray information obtained from the individual inclusions or precipitates by irradiating the individual inclusions or precipitates with an electron beam using a scanning electron microscope or an electron beam microanalyzer The process of acquiring strength.
(2) One element excluding O, S, N, and C elements and each element of O, S, N, and C included in the characteristic X-ray information obtained from the individual inclusions or precipitates The process of calculating the intensity correlation.
(3) In the intensity correlation, except for data less than a predetermined value of the one element included in the characteristic X-ray information, the correlation between the one element and each element of O, S, N, and C The process to seek.
(4) A step of giving a predetermined correlation range to the table of characteristic X-ray intensity ratios of oxides, sulfides, nitrides, and carbides.
(5) The characteristic X-ray intensity ratio of the oxide, sulfide, nitride and carbide of the one element is the correlation between the one element and each of O, S, N and C in the process of (3) Determining whether or not a predetermined correlation range is satisfied in the table.
(6) When the predetermined correlation is satisfied, an inclusion or a precipitate is identified as any one of the oxide, sulfide, nitride, carbide, or composite of the one element. Process.
(7) The calculation is performed by removing the intensity of the one element and the corresponding O, S, N, and C from the process of (1), and excluding the one element, the elements included in the characteristic X-ray information (O, Steps (2) to (6) are repeated for (except S, N, and C elements).
前記(2)の工程において、前記個々の介在物又は析出物から得られたX線情報に含まれる前記一の元素を特性X線情報に含まれる元素(O,S,N,Cの元素は除く)の積算強度の高い順に選択する工程をさらに含むことを特徴とする請求項1に記載の金属内の異物弁別方法。   In the step (2), the element included in the characteristic X-ray information (the elements of O, S, N, and C are the elements included in the X-ray information obtained from the individual inclusions or precipitates are The method for discriminating foreign matter in metal according to claim 1, further comprising a step of selecting in order from the highest integrated intensity of (except). 相関係数の下限閾値をRtとした時、前記所定の相関係数Rが、Rt≦R≦1.0の範囲であって、かつ、Rtが0.4以下を満たす元素対であることを特徴とする請求項1又は2に記載の金属内の異物弁別方法。 When the lower limit threshold value of the correlation coefficient is R t , the predetermined correlation coefficient R is an element pair that satisfies R t ≦ R ≦ 1.0 and R t is 0.4 or less. The method for discriminating foreign matter in metal according to claim 1 or 2, wherein the foreign matter is discriminated. 前記走査電子顕微鏡又は電子線マイクロアナライザーに反射電子検出器又は角度選択反射電子検出器をさらに備え、前記検出器の画像データとこの画像データの解析により前記介在物又は析出物のサイズ及び/又は位置を計測し、前記特性X線情報から前記介在物又は析出物の組成を同定することを特徴とする請求項1〜3の何れかに記載の金属内の異物弁別方法。   The scanning electron microscope or electron beam microanalyzer further includes a backscattered electron detector or an angle selective backscattered electron detector, and the size and / or position of the inclusions or precipitates by image data of the detector and analysis of the image data. The metal foreign matter discrimination method according to claim 1, wherein the composition of the inclusions or precipitates is identified from the characteristic X-ray information.
JP2013055323A 2013-03-18 2013-03-18 Foreign object discrimination method in metal Active JP6033716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013055323A JP6033716B2 (en) 2013-03-18 2013-03-18 Foreign object discrimination method in metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013055323A JP6033716B2 (en) 2013-03-18 2013-03-18 Foreign object discrimination method in metal

Publications (2)

Publication Number Publication Date
JP2014181951A true JP2014181951A (en) 2014-09-29
JP6033716B2 JP6033716B2 (en) 2016-11-30

Family

ID=51700813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013055323A Active JP6033716B2 (en) 2013-03-18 2013-03-18 Foreign object discrimination method in metal

Country Status (1)

Country Link
JP (1) JP6033716B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173302A (en) * 2016-03-22 2017-09-28 住友金属鉱山株式会社 Method for analyzing foreign matter in powder of metal oxide
JP2017173303A (en) * 2016-03-22 2017-09-28 住友金属鉱山株式会社 Method for analyzing foreign matter in powder of metal oxide
JP2017173301A (en) * 2016-03-22 2017-09-28 住友金属鉱山株式会社 Method for analyzing foreign matter in powder of metal oxide
JP2018072120A (en) * 2016-10-27 2018-05-10 新日鐵住金株式会社 Method for identifying inclusion of steel
JP2018194539A (en) * 2017-02-06 2018-12-06 Jfeスチール株式会社 Deposit particle size distribution evaluation method, and manufacturing method of steel plate
JP2020042004A (en) * 2018-09-10 2020-03-19 日本製鉄株式会社 Precipitate identification method, precipitate information acquisition method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142551A (en) * 1981-02-27 1982-09-03 Nippon Steel Corp Determination of foreign matter in metal
JPS6162850A (en) * 1984-07-18 1986-03-31 Nippon Steel Corp Density analysis processing system for automatic multifunctional analyzer
JPH01314956A (en) * 1988-06-16 1989-12-20 Shimadzu Corp Data processing method in x-ray spectrum analysis
EP0742434A1 (en) * 1995-05-09 1996-11-13 Acerinox S.A. X-ray quantative microanalysis method for metal alloys
JP2004191060A (en) * 2002-12-06 2004-07-08 Jfe Steel Kk Average composition analytical method of inclusion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142551A (en) * 1981-02-27 1982-09-03 Nippon Steel Corp Determination of foreign matter in metal
JPS6162850A (en) * 1984-07-18 1986-03-31 Nippon Steel Corp Density analysis processing system for automatic multifunctional analyzer
JPH01314956A (en) * 1988-06-16 1989-12-20 Shimadzu Corp Data processing method in x-ray spectrum analysis
EP0742434A1 (en) * 1995-05-09 1996-11-13 Acerinox S.A. X-ray quantative microanalysis method for metal alloys
JP2004191060A (en) * 2002-12-06 2004-07-08 Jfe Steel Kk Average composition analytical method of inclusion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173302A (en) * 2016-03-22 2017-09-28 住友金属鉱山株式会社 Method for analyzing foreign matter in powder of metal oxide
JP2017173303A (en) * 2016-03-22 2017-09-28 住友金属鉱山株式会社 Method for analyzing foreign matter in powder of metal oxide
JP2017173301A (en) * 2016-03-22 2017-09-28 住友金属鉱山株式会社 Method for analyzing foreign matter in powder of metal oxide
JP2018072120A (en) * 2016-10-27 2018-05-10 新日鐵住金株式会社 Method for identifying inclusion of steel
JP2018194539A (en) * 2017-02-06 2018-12-06 Jfeスチール株式会社 Deposit particle size distribution evaluation method, and manufacturing method of steel plate
JP2020042004A (en) * 2018-09-10 2020-03-19 日本製鉄株式会社 Precipitate identification method, precipitate information acquisition method, and program
JP7277729B2 (en) 2018-09-10 2023-05-19 日本製鉄株式会社 Precipitate Identification Method, Precipitate Information Acquisition Method and Program

Also Published As

Publication number Publication date
JP6033716B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6033716B2 (en) Foreign object discrimination method in metal
Atkinson et al. Characterization of inclusions in clean steels: a review including the statistics of extremes methods
CN111157620B (en) Traceability analysis method for large-size inclusions in steel
Bartosiaki et al. Assessment of inclusion analysis via manual and automated SEM and total oxygen content of steel
CN112986298B (en) In-situ statistical distribution characterization method for dendrite structure of single-crystal superalloy
JP2010060389A (en) Particle analyzer, data analyzer, x-ray analyzer, particle analysis method and computer program
CN114324437B (en) Characterization method and system for in-situ statistical distribution of inclusions in steel
Kennedy et al. Additive manufacturing: Assessing metal powder quality through characterizing feedstock and contaminants
Harris et al. Improved methodology for automated SEM/EDS non-metallic inclusion analysis of mini-mill and foundry steels
CN108072747B (en) Quantitative estimation method for inclusion area of high-temperature alloy
JP7381890B2 (en) Sintered ore observation evaluation method and sintered ore reducibility evaluation method
Brown et al. Microstructure analysis for additive manufacturing: A review of existing standards
JP6673147B2 (en) Method of identifying inclusions in steel
JP2021099257A (en) Material evaluation method
JP6032166B2 (en) Method for estimating hydrogen-resistant cracking characteristics of calcium-added steel
JP4577614B2 (en) Method for inspecting non-metallic inclusions in steel and method for producing steel using the same
JP2013238454A (en) Cleaning degree evaluation method of steel and manufacturing method
CN114740030A (en) Identification and in-situ quantitative statistical distribution characterization method for microcracks on surface of metal material
Romano et al. Quality control of cast iron: extreme value statistics applied to CT measurements
Kerber et al. Automated feature analysis as a tool for non-metallic inclusion analysis in solidified metals
JP2013096954A (en) Method and device for analyzing inclusion in steel
KR101207662B1 (en) Method for analyzing non-metallic inclusion in stianless steel sheet
Kang et al. Microstructural characterization of cemented carbide samples by image analysis techniques
JP2004045366A (en) Analytical method and analytical device of cluster-like amorphous inclusion
JP7388344B2 (en) Steel center segregation evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161026

R150 Certificate of patent or registration of utility model

Ref document number: 6033716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250