JP2014180684A - Roll for transportation of metallic material and manufacturing method therefor - Google Patents

Roll for transportation of metallic material and manufacturing method therefor Download PDF

Info

Publication number
JP2014180684A
JP2014180684A JP2013056489A JP2013056489A JP2014180684A JP 2014180684 A JP2014180684 A JP 2014180684A JP 2013056489 A JP2013056489 A JP 2013056489A JP 2013056489 A JP2013056489 A JP 2013056489A JP 2014180684 A JP2014180684 A JP 2014180684A
Authority
JP
Japan
Prior art keywords
shaft core
roll
groove
outer cylinder
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013056489A
Other languages
Japanese (ja)
Other versions
JP5910552B2 (en
Inventor
Akinori Omori
章規 大森
Makoto Naito
誠 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013056489A priority Critical patent/JP5910552B2/en
Publication of JP2014180684A publication Critical patent/JP2014180684A/en
Application granted granted Critical
Publication of JP5910552B2 publication Critical patent/JP5910552B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a roll for transportation of a metallic material which is hard to occur a crack damage.SOLUTION: A roll 1 for transportation of a metallic material comprises a columnar shaft core 2, and an external cylinder 3 covering a peripheral surface of the shaft core 2. The external cylinder 3 is divided in an axial direction of the roll. Between the divided parts of the external cylinder 3, a clearance 31 for exposing a part of the peripheral surface of the shaft core 2 in a circumferential direction of the roll is formed. A groove 2a is formed in the exposed peripheral surface of the shaft core 2. At both ends of the groove 2a, a curve surface, which connects the groove 2a to the peripheral surface of the shaft core 2, is formed.

Description

本発明は、割損が生じにくい金属材料搬送用ロール及びその製造方法に関する。   The present invention relates to a roll for transporting a metal material that is unlikely to cause breakage and a method for manufacturing the roll.

製鉄所で用いられている設備、例えば、連続鋳造設備や熱延設備などでは、金属材料搬送用ロールが用いられる。その金属材料搬送用ロールとしては、ヒートクラックなどによるロールの割損を抑えるために、軸芯と外筒とを焼き嵌めするなどして、これらを結合して形成される組立式のロールがある。その組立式のロールは、ヒートクラックが、外筒の表面から発生し、軸芯との境界までで停止するような機構になっているので、ロール全体にヒートクラックが生じることが抑えられている。   In equipment used at steelworks, such as continuous casting equipment and hot rolling equipment, rolls for conveying metal materials are used. As a roll for transporting the metal material, there is an assembly-type roll formed by joining the shaft core and the outer cylinder, for example, by shrink-fitting in order to suppress breakage of the roll due to heat crack or the like. . The assembly-type roll has a mechanism in which heat cracks are generated from the surface of the outer cylinder and stop at the boundary with the shaft core, so that occurrence of heat cracks in the entire roll is suppressed. .

このような組立式のロールでは、外筒の材料として耐摩耗性に優れた金属が用いられ、軸芯の材料として疲労強度及び靱性に優れた金属が用いられるので、外筒と軸芯とで熱膨張率が異なっている。特許文献1には、この組立式のロールとして、熱膨張率やヤング率などの物性から算出される熱衝撃係数が所定の値以上となる材料からなる外筒を有する板圧延用超硬合金製複合ロールが提案されており、これにより、熱衝撃による初期クラックを防止している。   In such an assembly-type roll, a metal having excellent wear resistance is used as the material of the outer cylinder, and a metal having excellent fatigue strength and toughness is used as the material of the shaft core. The coefficient of thermal expansion is different. In Patent Document 1, as this assembly-type roll, made of cemented carbide for sheet rolling having an outer cylinder made of a material having a thermal shock coefficient calculated from physical properties such as a coefficient of thermal expansion and Young's modulus equal to or higher than a predetermined value. Composite rolls have been proposed, which prevent initial cracking due to thermal shock.

上述の組立式のロールは、円筒状の外筒を加熱し膨張させて、加熱していない円柱状の軸芯を外筒内に挿入し、この外筒を冷却して製造される。これにより、外筒の内周面は軸芯の周面に接触している状態となるが、単に、外筒に軸芯を挿入した後に、この外筒を冷却しただけでは、これらがスリップする可能性がある。そこで、このスリップを防止するために、ロールの軸方向の両端部における軸芯と外筒との境界を溶接して、外筒と軸芯とがともに回転するようにしている。特許文献1の発明のロールの構造では、外筒と軸芯とで熱膨張率が異なっているため、ロールの使用環境にもよるが熱によっては、外筒及び軸芯の一方が、もう一方より大きく膨張してしまい、軸芯と外筒との溶接部分に応力が掛かり、該溶接部分が破損するおそれがある。   The assembly type roll described above is manufactured by heating and expanding a cylindrical outer cylinder, inserting an unheated columnar shaft core into the outer cylinder, and cooling the outer cylinder. As a result, the inner peripheral surface of the outer cylinder comes into contact with the peripheral surface of the shaft core. However, simply inserting the shaft core into the outer cylinder and then cooling the outer cylinder causes them to slip. there is a possibility. Therefore, in order to prevent this slip, the boundary between the shaft core and the outer cylinder at both ends in the axial direction of the roll is welded so that the outer cylinder and the shaft core rotate together. In the roll structure of the invention of Patent Document 1, since the coefficient of thermal expansion differs between the outer cylinder and the shaft core, depending on the heat, depending on the heat, one of the outer cylinder and the shaft core is the other. If it expands more, stress is applied to the welded portion between the shaft core and the outer cylinder, and the welded portion may be damaged.

そこで、外筒がロールの軸方向に分割され、分割された外筒の間で、ロールの円周方向に沿って軸芯の周面の一部が露出している間隔を形成して、その間隔へ外筒が膨張することを可能とし、溶接部分が破損することを防いでいる。図4は、この間隔が形成された外筒を有する従来の金属材料搬送用ロールである。この従来の金属材料搬送用ロール101において、外筒102に間隔103を形成すると、溶接部分106で外筒102と溶接された軸芯104の、外筒102のコーナー部分105に対応する部分に凹み傷が発生し、そこから軸芯104にクラックが生じる現象が観察された。このようなクラックの発生は、例えば、連続鋳造設備におけるダウンタイムトラブルに繋がる。   Therefore, the outer cylinder is divided in the axial direction of the roll, and an interval in which a part of the peripheral surface of the shaft core is exposed along the circumferential direction of the roll is formed between the divided outer cylinders. The outer cylinder can be expanded to the interval, and the welded portion is prevented from being damaged. FIG. 4 shows a conventional metal material transport roll having an outer cylinder in which the gap is formed. In this conventional metal material transporting roll 101, when the interval 103 is formed in the outer cylinder 102, the shaft core 104 welded to the outer cylinder 102 at the welded portion 106 is recessed in a portion corresponding to the corner portion 105 of the outer cylinder 102. It was observed that a flaw occurred and a crack occurred in the shaft core 104 therefrom. Generation | occurrence | production of such a crack leads to the downtime trouble in a continuous casting installation, for example.

特許2004−268140号公報Japanese Patent No. 2004-268140

本発明は上記現象に鑑みてなされたもので、その目的とするところは、割損が生じにくい金属材料搬送用ロール及びその製造方法を提供することである。   This invention is made | formed in view of the said phenomenon, The place made into the objective is to provide the roll for metal material conveyance which is hard to produce a crack, and its manufacturing method.

本発明者らは、従来の金属材料搬送用ロールにおけるコーナー部分に凹み傷が発生する理由を鋭意検討した結果、金属材料を搬送する際に外筒に荷重が掛かった状態で、その金属材料搬送用ロールが回転すると、外筒の端面のうちの内周端となるコーナー部分に対応する軸芯の部分に応力が集中する可能性があると推察し、そのコーナー部分に対応する部分の形状を変更することで、その部分に掛かる応力を抑える本発明を完成した。   As a result of earnestly examining the reason why a dent is generated at a corner portion of a conventional roll for transporting metal material, the present inventors have transported the metal material in a state where a load is applied to the outer cylinder when transporting the metal material. When the roll for rotation is rotated, it is assumed that stress may concentrate on the portion of the shaft core corresponding to the corner portion that becomes the inner peripheral end of the end surface of the outer cylinder, and the shape of the portion corresponding to the corner portion is The present invention was completed by changing the stress to suppress the stress applied to the portion.

すなわち、上記課題を解決するための本発明の要旨は以下の通りである。
(1)円柱状の軸芯と該軸芯の周面を覆う外筒とを備える金属材料搬送用ロールであって、前記外筒はロールの軸方向に分割され、分割された外筒間には、ロールの円周方向に沿って前記軸芯の周面の一部を露出している間隔が設けられ、露出した前記軸芯の周面には溝が形成されており、該溝の両端部には、前記溝の底部と前記軸芯の周面とを結ぶ曲面が形成されていることを特徴とする金属材料搬送用ロール。
(2)前記間隔を形成している前記外筒の端面は前記軸芯の周面側へ面取りされていることを特徴とする上記(1)に記載の金属材料搬送用ロール。
(3)円柱状の軸芯と該軸芯の周面を覆う外筒とを備える金属材料搬送用ロールの製造方法であって、前記軸芯の円周方向に沿って前記軸芯の周面に溝を形成し、前記溝の両端部に、前記溝の底部と前記軸芯の周面とを結ぶ曲面を形成し、前記溝が露出する間隔を形成するように、ロールの軸方向に分割された外筒の内部に前記軸芯を装入することを特徴とする金属材料搬送用ロールの製造方法。
(4)前記間隔を形成することとなる前記外筒の端面を前記軸芯の周面側へ面取りしておくことを特徴とする上記(3)に記載の金属材料搬送用ロールの製造方法。
That is, the gist of the present invention for solving the above problems is as follows.
(1) A metal material transport roll comprising a cylindrical shaft core and an outer cylinder covering the peripheral surface of the shaft core, the outer cylinder being divided in the axial direction of the roll, and between the divided outer cylinders Is provided with an interval in which a part of the peripheral surface of the shaft core is exposed along the circumferential direction of the roll, and a groove is formed in the exposed peripheral surface of the shaft core, and both ends of the groove are formed. The metal material transporting roll is characterized in that a curved surface connecting the bottom of the groove and the peripheral surface of the shaft core is formed in the part.
(2) The metal material transport roll according to (1), wherein an end surface of the outer cylinder forming the gap is chamfered toward a peripheral surface side of the shaft core.
(3) A manufacturing method of a roll for conveying a metal material comprising a cylindrical shaft core and an outer cylinder covering the peripheral surface of the shaft core, the peripheral surface of the shaft core along the circumferential direction of the shaft core A groove is formed on both ends of the groove, and a curved surface connecting the bottom of the groove and the peripheral surface of the shaft core is formed, and the roll is divided in the axial direction so as to form an interval at which the groove is exposed. A manufacturing method of a roll for conveying a metal material, wherein the shaft core is inserted into an outer cylinder.
(4) The method for manufacturing a roll for conveying a metal material according to (3), wherein an end surface of the outer cylinder that forms the interval is chamfered toward the peripheral surface side of the shaft core.

本発明によれば、円柱状の軸芯と該軸芯の周面を覆う外筒とを備える金属材料搬送用ロールにおいて、分割された外筒の間に設けられている間隔に露出している軸芯部分に掛かる応力が抑えられて、軸芯の割損が生じにくくなり、その結果、この金属材料搬送用ロールの長寿命化を図ることができる。   According to the present invention, in a roll for conveying a metal material that includes a cylindrical shaft core and an outer cylinder that covers the peripheral surface of the shaft core, the roll is exposed at an interval provided between the divided outer cylinders. The stress applied to the shaft core portion is suppressed, so that the shaft core is less likely to break. As a result, the life of the metal material transport roll can be extended.

本発明の金属材料搬送用ロールを示す説明図である。It is explanatory drawing which shows the roll for metal material conveyance of this invention. 溝の両端部に曲面を形成する方法を示す説明図である。It is explanatory drawing which shows the method of forming a curved surface in the both ends of a groove | channel. 本発明における、溝の両端及び溝の中央で発生する応力と、曲率半径ρと、の関係を示すグラフである。It is a graph which shows the relationship between the stress which generate | occur | produces in the both ends of a groove | channel, and the center of a groove | channel, and curvature radius (rho) in this invention. 従来の金属材料搬送用ロールを示す説明図である。It is explanatory drawing which shows the conventional roll for metal material conveyance.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明の金属材料搬送用ロールを示す説明図であり、金属材料搬送用ロールの側面断面図でもある。金属材料搬送用ロール1は、円柱状の軸芯2と、該軸芯2の周面を覆う円筒状の外筒3とを備えている。金属材料が搬送される搬送方向に、金属材料搬送用ロール1が複数並べられ、鋼片などの金属材料を、回転する複数の金属材料搬送用ロール1で搬送する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is an explanatory view showing a metal material transport roll of the present invention, and is also a side sectional view of the metal material transport roll. The metal material transfer roll 1 includes a columnar shaft core 2 and a cylindrical outer tube 3 that covers the peripheral surface of the shaft core 2. A plurality of metal material conveyance rolls 1 are arranged in the conveyance direction in which the metal material is conveyed, and a metal material such as a steel piece is conveyed by a plurality of rotating metal material conveyance rolls 1.

軸芯2は、胴部21と、該胴部21の両端から外側へ突設された軸部22と、を有している。軸部22には軸受23が取り付けられており、軸芯2はこの軸受23で支えられつつ回転する。   The shaft core 2 includes a body portion 21 and a shaft portion 22 projecting outward from both ends of the body portion 21. A bearing 23 is attached to the shaft portion 22, and the shaft core 2 rotates while being supported by the bearing 23.

外筒3は、ロールの軸方向に分割された2つの第1の外筒3aと第2の外筒3bとからなり、第1の外筒3a内と第2の外筒3b内とに軸芯2が嵌装されている。軸芯2の周面となる胴部21が外筒3で覆われているが、第1の外筒3aと第2の外筒3bとの間には、金属材料搬送用ロール1の円周方向に沿って胴部21の周面の一部を露出させる間隔31が設けられている。   The outer cylinder 3 includes two first outer cylinders 3a and a second outer cylinder 3b divided in the axial direction of the roll. The outer cylinder 3 is arranged in the first outer cylinder 3a and the second outer cylinder 3b. A core 2 is fitted. The body portion 21 serving as the peripheral surface of the shaft core 2 is covered with the outer cylinder 3, and the circumference of the roll 1 for transporting the metal material is provided between the first outer cylinder 3 a and the second outer cylinder 3 b. An interval 31 is provided along the direction to expose a part of the peripheral surface of the body portion 21.

図1に示すように、ロールの軸方向の両端部では、軸芯2と外筒3との境界が溶接された溶接部分4が形成されている。この溶接部分4で軸芯2と外筒3とが固着しているので、軸芯2とともに外筒3も回転する。金属材料搬送用ロール1の使用環境にもよるが熱によって、外筒3が軸芯2より大きく膨張しても、外筒3が間隔31に膨張するため、該間隔31が狭くなるに過ぎず、このようにして、間隔31は、軸芯2または外筒3の熱膨張による力が溶接部分4に掛かることを防止している。   As shown in FIG. 1, welded portions 4 are formed by welding the boundary between the shaft core 2 and the outer cylinder 3 at both ends in the axial direction of the roll. Since the shaft core 2 and the outer cylinder 3 are fixed at the welded portion 4, the outer cylinder 3 also rotates together with the shaft core 2. Although depending on the usage environment of the metal material transporting roll 1, even if the outer cylinder 3 expands larger than the shaft core 2 due to heat, the outer cylinder 3 expands to the interval 31, so the interval 31 is only narrowed. In this way, the interval 31 prevents the force due to thermal expansion of the shaft core 2 or the outer cylinder 3 from being applied to the welded portion 4.

図1に示すように、間隔31に対応する軸芯2の周面には、その円周方向に沿って溝2aが形成されており、該溝2aの両端部には、溝2aの底部と軸芯2との周面とを結ぶ曲面が形成されている。すなわち、溝2aの両端24に対応する軸芯2の周面の縁から溝2aの底に向けて傾斜する曲面が形成されている。図4に示すように、従来の金属材料搬送用ロール101では、このロールに荷重が掛かると、コーナー部分105に対応する軸芯104の部分に、間隔103を形成する外筒102の端面の内周端が接触して、その部分に応力が集中すると推察される。これに対して、本発明では、コーナー部分105に対応する周面部分で、外筒3の間隔31を形成する端面32の端面内端32aに接触する部分を溝2aの縁(両端)としている。これにより、端面内端32aが、面でなく軸芯2の曲面の縁に接触することになるので、端面内端32aの接触による力が、軸芯2の周面ではなく周線(曲面の縁)に掛かることになり、両端24に掛かる応力が抑えられる。   As shown in FIG. 1, a groove 2a is formed along the circumferential direction of the circumferential surface of the shaft core 2 corresponding to the interval 31, and the bottom of the groove 2a is formed at both ends of the groove 2a. A curved surface connecting the peripheral surface with the shaft core 2 is formed. That is, the curved surface which inclines toward the bottom of the groove | channel 2a from the edge of the surrounding surface of the axial core 2 corresponding to the both ends 24 of the groove | channel 2a is formed. As shown in FIG. 4, in the conventional metal material transport roll 101, when a load is applied to this roll, the inner surface of the end surface of the outer cylinder 102 that forms the interval 103 is formed in the portion of the shaft core 104 corresponding to the corner portion 105. It is inferred that the peripheral ends come into contact with each other and stress concentrates on that portion. On the other hand, in this invention, the part which contacts the end surface inner end 32a of the end surface 32 which forms the space | interval 31 of the outer cylinder 3 in the peripheral surface part corresponding to the corner part 105 is made into the edge (both ends) of the groove | channel 2a. . As a result, the end surface inner end 32a comes into contact with the curved surface edge of the shaft core 2 instead of the surface, so that the force caused by the contact of the end surface inner end 32a is not the peripheral surface of the shaft core 2 but the circumferential line (curved surface). The stress applied to both ends 24 is suppressed.

更には、溝2aの両端24から間隔31へ外筒3の外周面が突出するように、外筒3の端面32を傾斜させることが好ましい。すなわち、外筒3の端面32を軸芯2の周面側へ
面取りすることが好ましい。なぜならば、間隔31を覆いかつ軸芯2に近い外筒3の部分が少ないほど、両端24には応力が掛かりにくいからである。
Furthermore, it is preferable to incline the end surface 32 of the outer cylinder 3 so that the outer peripheral surface of the outer cylinder 3 protrudes from the both ends 24 of the groove 2a to the interval 31. That is, it is preferable to chamfer the end surface 32 of the outer cylinder 3 toward the peripheral surface side of the shaft core 2. This is because the smaller the portion of the outer cylinder 3 that covers the interval 31 and is closer to the shaft core 2, the less stress is applied to both ends 24.

特に、製鉄所における連続鋳造装置に、この金属材料搬送用ロール1を用いる場合には、軸芯2は、ロールの内部部材となり、疲労強度及び靱性に優れた金属からなることが望ましい。この金属としては、例えば、SCM材などの機械構造用合金鋼がある。外筒3は、金属材料搬送用ロール1の外部部材となり、搬送される金属材料に接触するので、耐摩耗性に優れた金属からなることが望ましい。この金属としては、例えば、ハイス系やSUS材などの合金鋼がある。   In particular, when the roll 1 for transporting a metal material is used in a continuous casting apparatus in an ironworks, the shaft core 2 is preferably an internal member of the roll and is made of a metal having excellent fatigue strength and toughness. An example of this metal is alloy steel for mechanical structure such as SCM material. Since the outer cylinder 3 becomes an external member of the roll 1 for conveying a metal material and comes into contact with the conveyed metal material, the outer cylinder 3 is preferably made of a metal having excellent wear resistance. Examples of the metal include alloy steels such as high speed steel and SUS material.

次に、本発明の金属材料搬送用ロールの製造方法を説明する。この製造方法は、大きく下記の3つの工程を備えている。
工程1:軸芯2の周面に、その円周方向に沿って溝を形成する。
工程2:溝2aの両端部に、溝の底部と軸芯2の周面とを結ぶ曲面を形成する。
工程3:円筒状の第1の外筒3a及び第2の外筒3bを準備し、これらの間に溝2aが露出させる間隔31を形成するように、第1の外筒3a及び第2の外筒3bの内部に軸芯2を装入する(焼き嵌める)。
Next, the manufacturing method of the roll for metal material conveyance of this invention is demonstrated. This manufacturing method generally includes the following three steps.
Step 1: Grooves are formed in the circumferential surface of the shaft core 2 along the circumferential direction.
Step 2: A curved surface connecting the bottom of the groove and the peripheral surface of the shaft core 2 is formed at both ends of the groove 2a.
Step 3: A cylindrical first outer cylinder 3a and a second outer cylinder 3b are prepared, and the first outer cylinder 3a and the second outer cylinder 3b are formed so as to form an interval 31 between which the groove 2a is exposed. The shaft core 2 is inserted into the outer cylinder 3b (shrink fit).

以下、工程1〜3の各々を説明する。   Hereinafter, each of the steps 1 to 3 will be described.

<工程1>
軸芯2において、図1に示した間隔31に露出する溝2aを形成する。図2は、溝の両端部に曲面を形成する方法を示す説明図である。まず、金属材料搬送用ロール1の使用用途に応じて、軸芯2において溝2aを形成する位置を決める。次いで、溝2aのうち、金属柱の周面に平行な平行部分の溝平行部分長さx及び軸芯2の周面から溝2aのその平行部分までの溝深さzを決めて、その長さx及び深さzで決まる空間(溝)を形成する。
<Step 1>
In the shaft core 2, grooves 2 a exposed at the intervals 31 shown in FIG. 1 are formed. FIG. 2 is an explanatory diagram showing a method of forming curved surfaces at both ends of the groove. First, the position at which the groove 2 a is formed in the shaft core 2 is determined according to the intended use of the metal material transport roll 1. Next, in the groove 2a, the groove parallel part length x of the parallel part parallel to the peripheral surface of the metal column and the groove depth z from the peripheral surface of the shaft core 2 to the parallel part of the groove 2a are determined, and the length A space (groove) determined by the depth x and the depth z is formed.

具体的には、旋盤などで、軸芯2の円周方向に沿って、その周面を溝平行部分長さx及び溝深さz分削ってもよいし、そのような寸法を有する凹みが形成されるように金属柱を成型加工し、それを軸芯2としてもよい。   Specifically, with a lathe or the like, the circumferential surface of the shaft core 2 may be cut by the groove parallel portion length x and the groove depth z, or a dent having such dimensions may be formed. The metal pillar may be molded so as to be formed and used as the shaft core 2.

<工程2>
工程1と共に、及び/または、工程1に次いで、図2に示すように、前述の長さxと深さzとで決まる空間における、軸芯2の軸方向に沿った両端部分を加工して、その両端部分が、溝の底部と軸芯2の周面とを結ぶ曲面となるように曲率半径ρを有する曲率円41を想定し、この曲率半径ρに沿った円周に沿った曲面をその両端部分に形成して、溝2aを形成する。
<Process 2>
Together with step 1 and / or after step 1, as shown in FIG. 2, both end portions along the axial direction of the shaft core 2 in the space determined by the length x and the depth z are processed. Assuming a curvature circle 41 having a curvature radius ρ so that both end portions thereof are curved surfaces connecting the bottom of the groove and the peripheral surface of the shaft core 2, a curved surface along the circumference along the curvature radius ρ is assumed. Grooves 2a are formed at both end portions.

軸芯2を薄くすることは、軸芯2自体が脆くなる応力が集中する部分をロールに作ることと同義であり、かつ、ロールの軸方向に垂直な断面積を小さくして負荷応力を高くする行為でもあるので、従前行われることはなかった。しかしながら、本発明者らは、図4に示すように、従来の金属材料搬送用ロール101では、コーナー部分105に対応する軸芯104の部分に応力が集中している可能性を考えて、図1に示すように、溝2aの両端部に、曲面を形成するために、敢えて最初から軸芯2の一部を薄くするという思想に至った。曲面を形成する方法としては、工程1で得られた軸芯2を、曲率円41の円周に沿って削ってもよいし、そのような円周に沿った曲面が、その両端部に形成された溝を有する金属柱を成型加工して、それを軸芯2としてもよい。   Making the shaft core 2 thin is synonymous with making the roll a portion where stress that causes the core core 2 itself to become brittle, and reducing the cross-sectional area perpendicular to the axial direction of the roll to increase the load stress. Since it was also an act to do, it was never done before. However, as shown in FIG. 4, the present inventors consider the possibility that stress is concentrated on the portion of the shaft core 104 corresponding to the corner portion 105 in the conventional metal material transfer roll 101. As shown in FIG. 1, in order to form curved surfaces at both ends of the groove 2a, the idea of deliberately reducing a part of the shaft core 2 from the beginning has been reached. As a method of forming a curved surface, the shaft core 2 obtained in step 1 may be scraped along the circumference of the curvature circle 41, or curved surfaces along such a circumference are formed at both ends thereof. The metal pillar having the groove formed may be molded and used as the shaft core 2.

<工程3>
円筒状の第1,2の外筒3a,3bを準備し、これらを熱膨張させておく。一方で、軸芯2は加熱しないでおく。次いで、溝2aが露出している間隔31を形成するように、第1の外筒3a内及び第2の外筒3b内に軸芯2を挿入する。軸芯2が挿入された状態で第1,2の外筒3a,3bを冷却することで、これらが収縮して、軸芯2が第1,2の外筒3a,3bに嵌装される。このようにして、外筒3に軸芯2が装入される。
<Step 3>
Cylindrical first and second outer cylinders 3a and 3b are prepared and thermally expanded. On the other hand, the shaft core 2 is not heated. Next, the shaft core 2 is inserted into the first outer cylinder 3a and the second outer cylinder 3b so as to form an interval 31 where the groove 2a is exposed. By cooling the first and second outer cylinders 3a and 3b in a state where the shaft core 2 is inserted, these are contracted and the shaft core 2 is fitted into the first and second outer cylinders 3a and 3b. . In this way, the shaft core 2 is inserted into the outer cylinder 3.

工程3の前に、間隔31を形成することとなる第1,2の外筒3a,3bの端面32を、軸芯2の周面側へ面取りしておくことが好ましい。   Prior to step 3, it is preferable to chamfer the end surfaces 32 of the first and second outer cylinders 3 a and 3 b that form the interval 31 toward the peripheral surface side of the shaft core 2.

[曲率半径ρの設定]
図2からわかるように、溝平行部分長さx及び曲率半径ρを大きくすれば、軸方向に沿った間隔31の長さが大きくなり、溝深さzを大きくすれば、径方向に沿う間隔31の深さが大きくなってしまうため、金属材料搬送用ロール1の金属材料に接触する外筒の面積も小さくなってしまう。このため、溝平行部分長さxは、胴部21の軸方向に沿った全長X(図1参照)の1/20〜1/10とし、溝深さzは、胴部21の径方向における全長(軸芯2の直径)Z(図1参照)の1/20〜1/10とする。
[Setting of radius of curvature ρ]
As can be seen from FIG. 2, when the groove parallel part length x and the curvature radius ρ are increased, the length of the interval 31 along the axial direction is increased, and when the groove depth z is increased, the interval along the radial direction is increased. Since the depth of 31 will become large, the area of the outer cylinder which contacts the metal material of the roll 1 for metal material conveyance will also become small. For this reason, the groove parallel portion length x is 1/20 to 1/10 of the total length X (see FIG. 1) along the axial direction of the trunk portion 21, and the groove depth z is in the radial direction of the trunk portion 21. It is set to 1/20 to 1/10 of the total length (diameter of the shaft core 2) Z (see FIG. 1).

曲率半径ρは、例えば、次のように決めることが可能である。
(1)まずは、溝深さzを決める。
(2)次いで、有限要素法に基づく3次元モデルなどによって、金属材料搬送ロール1に負荷荷重を与える計算シミュレーションを行なう。決められた溝深さz以外のシミュレーションの条件は、金属材料搬送ロール1の形状などによって適宜決めればよい。
(3)負荷荷重を与えている間に、曲率半径ρおよび溝平行部長さxを変化させて、溝の両端24に発生する応力と、溝2aの中央部分に発生する応力と、を計算し、いずれか大きい方の応力(「最大発生応力」という)の分布を、ρ−x平面で表した等値線図(コンター図)を作成する。
(4)等値線図から、最大発生応力を最小化するρ−xの範囲を求める。
(5)この最大発生応力の最小値に基づいて、許容し得る応力の限界値を決めておく。例えば、最小値より、その最小値の絶対値の20%程度大きい応力を、許容し得る応力の限界値とすることができる。
(6)上記(5)で求めた限界値を与えるρ−xの範囲とから、溝平行部分長さxと曲率半径ρとを求めることができる。
また、上記(2)〜(6)を、(1)で決める溝深さzを適宜変更して行ない、更に、溝深さz及び溝平行部分長さxに応じた最適な曲率半径ρを求めてもよい。
The curvature radius ρ can be determined as follows, for example.
(1) First, the groove depth z is determined.
(2) Next, a calculation simulation for applying a load to the metal material transport roll 1 is performed using a three-dimensional model based on the finite element method. Simulation conditions other than the determined groove depth z may be determined as appropriate depending on the shape of the metal material transport roll 1 and the like.
(3) While applying the load, the curvature radius ρ and the groove parallel part length x are changed to calculate the stress generated at both ends 24 of the groove and the stress generated at the central part of the groove 2a. Then, an isoline diagram (contour diagram) representing the distribution of the larger stress (referred to as “maximum generated stress”) on the ρ-x plane is created.
(4) From the contour map, the range of ρ−x that minimizes the maximum generated stress is obtained.
(5) The allowable stress limit value is determined based on the minimum value of the maximum generated stress. For example, a stress that is about 20% larger than the absolute value of the minimum value than the minimum value can be set as an allowable stress limit value.
(6) The groove parallel part length x and the radius of curvature ρ can be obtained from the range of ρ−x that gives the limit value obtained in (5) above.
Further, the above (2) to (6) are performed by appropriately changing the groove depth z determined in (1), and further, an optimal curvature radius ρ according to the groove depth z and the groove parallel part length x is set. You may ask for it.

図3は、本発明における、溝の両端及び溝の中央で発生する応力と、曲率半径ρと、の関係を示すグラフである。図3のグラフは、胴部21の長さが1981mmであり、軸芯2の直径が255mmである寸法を有する金属材料搬送用ロール1を想定し、溝平行部分長さxを20mm、溝深さzを3mmと想定し、曲率半径ρを変化させて、溝2aの両端24及び溝2aの軸方向に沿った中央で発生した応力を有限要素法で求めた結果である。   FIG. 3 is a graph showing the relationship between the stress generated at both ends of the groove and the center of the groove and the radius of curvature ρ in the present invention. The graph of FIG. 3 assumes a roll 1 for conveying a metal material having a length of the body portion 21 of 1981 mm and a diameter of the shaft core 2 of 255 mm, a groove parallel part length x is 20 mm, and a groove depth. This is a result of obtaining the stress generated at the center along the axial direction of the both ends 24 of the groove 2a and the groove 2a by changing the radius of curvature ρ, assuming that the length z is 3 mm.

図3からわかるように、曲率半径ρが20mmを超えると、溝2aの中央で発生した応力は上昇し始める。一方で、両端24で発生した応力は、曲率半径ρが4mmから20mm程度までは急激に低下するが、20mmを超えたあたりから一定値に漸近する。また、曲率半径ρを大きくし続けると、両端24で発生した応力は漸減し続け、溝2aの中央で発生する応力は増大し続けて、これらの応力が一致する。この応力が一致する曲率半径ρは58mmであった。   As can be seen from FIG. 3, when the radius of curvature ρ exceeds 20 mm, the stress generated at the center of the groove 2a starts to increase. On the other hand, the stress generated at both ends 24 sharply decreases when the radius of curvature ρ is about 4 mm to 20 mm, but gradually approaches a constant value when the radius exceeds 20 mm. Further, if the radius of curvature ρ is continuously increased, the stress generated at both ends 24 continues to decrease gradually, the stress generated at the center of the groove 2a continues to increase, and these stresses coincide. The curvature radius ρ with which the stress coincides was 58 mm.

曲率半径ρが58mmから大きくなると、溝2aの中央で発生する応力は、両端24で発生し漸減している応力を超えて、増大していく。この増大していく応力が、前述の曲率半径ρが20mmのときの両端24で発生する応力を超える曲率半径ρは90mmであった(図3のグラフには示さず)。このため、この寸法の金属材料搬送用ロール1であれば、これらの部位で発生する応力を考慮して曲率半径ρを20〜90mmとすることが好ましい。このようにして、間隔31の寸法と、溝平行部分長さxと溝深さzと曲率半径ρと、の関係、及び、溝2aの両端24と溝2aの中央とで発生する応力を考慮して、これらの応力が一致する曲率半径ρ以下となるように、曲率半径ρを設定することが好ましい。   As the radius of curvature ρ increases from 58 mm, the stress generated at the center of the groove 2 a increases beyond the stress generated at both ends 24 and gradually decreasing. This increasing stress was 90 mm in radius of curvature ρ exceeding the stress generated at both ends 24 when the aforementioned radius of curvature ρ was 20 mm (not shown in the graph of FIG. 3). For this reason, if it is the roll 1 for metal material conveyance of this dimension, it is preferable that the curvature radius (rho) shall be 20-90 mm in consideration of the stress which generate | occur | produces in these parts. In this way, the dimension of the interval 31, the relationship between the groove parallel part length x, the groove depth z, and the curvature radius ρ, and the stress generated at both ends 24 of the groove 2a and the center of the groove 2a are taken into consideration. Then, it is preferable to set the curvature radius ρ so that these stresses are equal to or less than the matching curvature radius ρ.

以上のように、円柱状の軸芯2と該軸芯2の周面を覆う外筒3とを備える金属材料搬送用ロール1において、ロールの軸方向の両端部における軸芯2と外筒3との溶接部分4が破損することを防止しつつ、間隔31を形成している溝2aの両端24に過度な応力が発生することを抑えて、この金属材料搬送用ロール1の長寿命化を図ることができる。   As described above, in the metal material transporting roll 1 including the cylindrical shaft core 2 and the outer cylinder 3 covering the peripheral surface of the shaft core 2, the shaft core 2 and the outer cylinder 3 at both ends in the axial direction of the roll. This prevents the welded portion 4 from being damaged and suppresses the occurrence of excessive stress at both ends 24 of the groove 2a forming the gap 31, thereby extending the life of the roll 1 for conveying a metal material. Can be planned.

図1に示すような金属材料搬送用ロール1を準備した(本発明例)。金属材料搬送用ロール1の寸法は、次の通りである。
金属材料搬送用ロール1の全長 :2426mm
金属材料搬送用ロール1の直径 : 330mm
胴部21の全長X :1981mm
軸芯2の直径Z : 255mm
溝平行部分長さx : 20mm
溝深さz : 3mm
曲率半径ρ : 20mm
軸芯2の材料はSCM440であり、外筒3の材料はSUS431Mである。
A metal material conveying roll 1 as shown in FIG. 1 was prepared (example of the present invention). The dimensions of the metal material transport roll 1 are as follows.
Total length of roll 1 for conveying metal material: 2426 mm
Diameter of metal material transfer roll 1: 330 mm
Total length X of the body part 21: 1981 mm
Diameter Z of shaft core 2: 255 mm
Groove parallel part length x: 20 mm
Groove depth z: 3 mm
Curvature radius ρ: 20mm
The material of the shaft core 2 is SCM440, and the material of the outer cylinder 3 is SUS431M.

一方で、図4に示すような従来の金属材料搬送用ロール101を準備した(比較例)。金属材料搬送用ロール101の外筒102及び軸芯104の寸法は、本発明例の金属材料搬送用ロール1に準ずる。   Meanwhile, a conventional metal material transport roll 101 as shown in FIG. 4 was prepared (comparative example). The dimensions of the outer cylinder 102 and the shaft core 104 of the metal material transport roll 101 are the same as those of the metal material transport roll 1 of the present invention.

金属材料搬送用ロール1,101に加熱冷却を繰り返す間に荷重100kgf/mmを加えつつ、これらを回転させて、金属材料搬送用ロール1,101にクラックが発生するかの試験を確認した。金属材料搬送用ロール101は、試験開始から481時間経過後に、コーナー部分105に対応する軸芯104の部分にクラックが発生したが、金属材料搬送用ロール1は、試験開始から900時間経過してもクラックが発生しなかった。このことからも、間隔31を形成している溝2aの両端24に過度な応力が発生することを抑えて、この金属材料搬送用ロール1の長寿命化が図れたことがわかる。 While repeatedly applying heating and cooling to the metal material conveying rolls 1 and 101, while applying a load of 100 kgf / mm 2 , these were rotated to check whether cracks occurred in the metal material conveying rolls 1 and 101. In the metal material transport roll 101, cracks occurred in the portion of the shaft core 104 corresponding to the corner portion 105 after 481 hours from the start of the test. However, the metal material transport roll 1 passed 900 hours from the start of the test. No cracks occurred. Also from this, it can be seen that the life of the roll 1 for transporting the metal material can be extended by suppressing the generation of excessive stress at both ends 24 of the groove 2a forming the interval 31.

1 金属材料搬送用ロール
2 軸芯
2a 溝
3 外筒
3a 第1の外筒
3b 第2の外筒
4 溶接部分
21 胴部
22 軸部
23 軸受
24 溝の両端
31 間隔
32 端面
32a 端面内端
41 曲率円
101 従来の金属材料搬送用ロール
102 外筒
103 間隔
104 軸芯
105 コーナー部分
106 溶接部分
DESCRIPTION OF SYMBOLS 1 Metal material conveyance roll 2 Shaft core 2a Groove 3 Outer cylinder 3a 1st outer cylinder 3b 2nd outer cylinder 4 Welding part 21 Trunk part 22 Shaft part 23 Bearing 24 Both ends of groove 31 Space | interval 32 End surface 32a End surface inner end 41 Curvature circle 101 Conventional roll for conveying metal material 102 Outer cylinder 103 Spacing 104 Shaft core 105 Corner portion 106 Welded portion

Claims (4)

円柱状の軸芯と該軸芯の周面を覆う外筒とを備える金属材料搬送用ロールであって、
前記外筒はロールの軸方向に分割され、分割された外筒間には、ロールの円周方向に沿って前記軸芯の周面の一部を露出している間隔が設けられ、
露出した前記軸芯の周面には溝が形成されており、該溝の両端部には、前記溝の底部と前記軸芯の周面とを結ぶ曲面が形成されていることを特徴とする金属材料搬送用ロール。
A roll for conveying a metal material comprising a cylindrical shaft core and an outer cylinder covering the peripheral surface of the shaft core,
The outer cylinder is divided in the axial direction of the roll, and between the divided outer cylinders, an interval exposing a part of the peripheral surface of the shaft core is provided along the circumferential direction of the roll,
Grooves are formed on the exposed peripheral surface of the shaft core, and curved surfaces connecting the bottom of the groove and the peripheral surface of the shaft core are formed at both ends of the groove. Roll for conveying metal materials.
前記間隔を形成している前記外筒の端面は前記軸芯の周面側へ面取りされていることを特徴とする請求項1に記載の金属材料搬送用ロール。   2. The metal material transport roll according to claim 1, wherein an end surface of the outer cylinder forming the gap is chamfered toward a peripheral surface side of the shaft core. 円柱状の軸芯と該軸芯の周面を覆う外筒とを備える金属材料搬送用ロールの製造方法であって、
前記軸芯の円周方向に沿って前記軸芯の周面に溝を形成し、
前記溝の両端部に、前記溝の底部と前記軸芯の周面とを結ぶ曲面を形成し、
前記溝が露出する間隔を形成するように、ロールの軸方向に分割された外筒の内部に前記軸芯を装入することを特徴とする金属材料搬送用ロールの製造方法。
A manufacturing method of a roll for transporting a metal material comprising a cylindrical shaft core and an outer cylinder covering a peripheral surface of the shaft core,
Forming a groove in a circumferential surface of the shaft core along a circumferential direction of the shaft core;
Forming a curved surface connecting the bottom of the groove and the peripheral surface of the shaft core at both ends of the groove;
A manufacturing method of a roll for conveying a metal material, wherein the shaft core is inserted into an outer cylinder divided in an axial direction of the roll so as to form an interval at which the groove is exposed.
前記間隔を形成することとなる前記外筒の端面を前記軸芯の周面側へ面取りしておくことを特徴とする請求項3に記載の金属材料搬送用ロールの製造方法。   The manufacturing method of the roll for metal material conveyance of Claim 3 which chamfers the end surface of the said outer cylinder which will form the said space | interval to the surrounding surface side of the said shaft core.
JP2013056489A 2013-03-19 2013-03-19 Roll for conveying metal material and method for producing the same Active JP5910552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013056489A JP5910552B2 (en) 2013-03-19 2013-03-19 Roll for conveying metal material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013056489A JP5910552B2 (en) 2013-03-19 2013-03-19 Roll for conveying metal material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014180684A true JP2014180684A (en) 2014-09-29
JP5910552B2 JP5910552B2 (en) 2016-04-27

Family

ID=51699893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013056489A Active JP5910552B2 (en) 2013-03-19 2013-03-19 Roll for conveying metal material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5910552B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130505A1 (en) * 2017-12-27 2019-07-04 日鉄住金ハード株式会社 Method for manufacturing roller, and roller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040832U (en) * 1973-08-10 1975-04-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040832U (en) * 1973-08-10 1975-04-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130505A1 (en) * 2017-12-27 2019-07-04 日鉄住金ハード株式会社 Method for manufacturing roller, and roller

Also Published As

Publication number Publication date
JP5910552B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP6262166B2 (en) Bending press mold
EP2622238B1 (en) Flanged bearing ring and method for producing such a flanged bearing ring
CN105378312A (en) Outer ring and roller bearing comprising type of outer ring
JP5845746B2 (en) Manufacturing method of bearing inner and outer rings
JP5910552B2 (en) Roll for conveying metal material and method for producing the same
Noda et al. Proposal for new hearth roller consisting of ceramic sleeve and steel shafts used in the heat treat furnace
JP6130862B2 (en) Method and tool for increasing the strength of a shaft, in particular a crankshaft
JP5165757B2 (en) Method for manufacturing a hot-finished seamless tube constructed to provide optimum fatigue properties in the welded state
KR20110128864A (en) A roller comprising a drive shaft and a roller ring, as well as a method for assembling such a roller
JP5659530B2 (en) Rolling roll and method of reusing rolling roll
JP2016117588A (en) Suction roller
JP2007071344A (en) Outboard motor engine and crank shaft support structure for outboard motor engine
JP2006194320A (en) Method of manufacturing roller bearing and roller bearing
KR101469656B1 (en) Fabricating method high strengthened roller
JP4931549B2 (en) Conveyor roller
JP4767622B2 (en) Roll for continuous casting and method for producing the same
WO2018171811A1 (en) Method for preparing sectional-type high abrasion resistant double-layered straight pipe and corresponding abrasion resistant straight pipe
KR20160053660A (en) Regeneration method for the crane wheels
JP7460901B2 (en) Segment roll with sleeve for conveying slabs in continuous casting
CN104001722A (en) Roll for hot rolling
KR102372264B1 (en) Multi-pipe manufacturing method
JP3186534U (en) Suction roller
JP5803281B2 (en) Manufacturing method of split race
JP3955778B2 (en) Roller cored bar and manufacturing method thereof
JP5109477B2 (en) Rolling roll and rolling mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250