JP2014180143A - Dc power supply device - Google Patents

Dc power supply device Download PDF

Info

Publication number
JP2014180143A
JP2014180143A JP2013052609A JP2013052609A JP2014180143A JP 2014180143 A JP2014180143 A JP 2014180143A JP 2013052609 A JP2013052609 A JP 2013052609A JP 2013052609 A JP2013052609 A JP 2013052609A JP 2014180143 A JP2014180143 A JP 2014180143A
Authority
JP
Japan
Prior art keywords
power supply
cross point
zero
switching
input current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013052609A
Other languages
Japanese (ja)
Inventor
Koji Takeda
幸二 竹田
Atsushi Okuyama
敦 奥山
Tatsuya Toizume
達也 樋爪
Yoshio Yoshida
嘉雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013052609A priority Critical patent/JP2014180143A/en
Publication of JP2014180143A publication Critical patent/JP2014180143A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a DC power supply device for suppressing a power supply harmonic current.SOLUTION: This DC power supply device is provided with switching control means for turning switching means on and off in synchronism with a zero-cross point. The switching control means turns switching on twice or more between a zero-cross point of an AC power supply detected by zero-cross detection means to the next zero-cross point; turns the last pulse of switching on in the latter half of a period between the zero-cross point of the AC power supply to the next zero-cross point; increases a delay time from the zero-cross point of the last pulse in correspondence with an increase in an input current, and increases the ON time of the last pulse in correspondence with an increase in the input current and also reduces an increase rate in correspondence with an increase in the input current.

Description

本発明は電源高調波電流を抑制する直流電源装置に関する。   The present invention relates to a DC power supply device that suppresses power supply harmonic current.

交流電力を直流電力に変換して負荷に供給する直流電源装置において、多くの有効電力を電源から供給するためには、力率を改善することが有効である。   In a DC power supply device that converts AC power into DC power and supplies it to a load, it is effective to improve the power factor in order to supply a large amount of active power from the power supply.

特許文献1では、交流電源の半周期毎にゼロクロス点を検出し、ゼロクロス点から所定の時間だけ遅延してスイッチング素子をオンし、所定のオン時間後オフする。このような直流電源装置においては、交流電源からの入力電流の通電幅を拡大し、力率を改善するとともにリアクタに蓄えられたエネルギーを平滑コンデンサへ供給することで高い直流電圧を得ることができ、1回しかオンしないことで高い効率で力率改善できる。   In Patent Document 1, the zero cross point is detected every half cycle of the AC power source, the switching element is turned on with a predetermined time delay from the zero cross point, and turned off after the predetermined on time. In such a DC power supply device, it is possible to obtain a high DC voltage by expanding the conduction width of the input current from the AC power supply, improving the power factor and supplying the energy stored in the reactor to the smoothing capacitor. Power factor can be improved with high efficiency by turning it on only once.

また、直流電源装置には低高調波電流も求められており、高力率と低高調波電流を満足するために、リアクタを接続し複数回スイッチング素子をオンすることで、入力電流の波形と直流電圧を制御する方法が提案されている。   In addition, the DC power supply is also required to have a low harmonic current. To satisfy the high power factor and the low harmonic current, connect the reactor and turn on the switching element multiple times to A method for controlling a DC voltage has been proposed.

特許文献2では、ある第1期間が直流電源装置の負荷の状態に応じて設定され、直流電源装置の負荷が予め設定された第1閾値以上である場合に、設定された第1期間内において、予め設定された所定のタイミングでスイッチング素子を2以上の予め設定された所定回数だけオン状態とするべく、スイッチング素子に対して指示信号が出力される。そして、所定回数のスイッチング素子をオン状態とする期間であるオン期間が、それぞれ第1期間内において前回設定されたオン期間よりも短いオン期間に設定され、設定された所定回数分のオン期間だけスイッチング素子をオン状態とるべく、スイッチング素子に対して指示信号が出力されるため、負荷が変動する場合にも簡素な構成で力率を適正値とすることができる。   In Patent Document 2, when a certain first period is set according to the load state of the DC power supply device and the load of the DC power supply device is equal to or greater than a preset first threshold value, within the set first period. An instruction signal is output to the switching element so that the switching element is turned on two or more predetermined times at a predetermined timing set in advance. Then, the ON period, which is a period for turning on the switching element a predetermined number of times, is set to an ON period that is shorter than the previously set ON period in the first period, and only the ON period corresponding to the predetermined number of times set. Since an instruction signal is output to the switching element to turn the switching element on, the power factor can be set to an appropriate value with a simple configuration even when the load fluctuates.

特許文献3では、力率の向上と電源高調波電流の抑制の両立させるためには第1のオン時間と第2のオン時間との間の開放時間が重要であることを見出し、目標直流電圧と電源電圧との比の値が所定値未満の場合に、ゼロクロス検出手段で検出された交流電源のゼロクロス点からの半周期中に、スイッチング手段を2回オンし、この2回短絡の1回目と2回目の短絡間隔を、電源周波数が50Hzの時には0.2〜0.4msで、電源周波数が60Hzの時には0.16〜0.33msとし、その後に前記比の値が所定値以上の場合にスイッチング手段の短絡回数を前記比の値に応じて2回よりも多い回数で且つ、組み込まれる機器のモータの運転騒音周波数に対して直流電源装置の騒音周波数が超えない短絡回数に切り替える。このような直流電源装置においては、電源高調波電流を抑制しつつ低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現できる。   In Patent Document 3, it is found that the open time between the first on-time and the second on-time is important in order to achieve both improvement of the power factor and suppression of the power supply harmonic current. When the value of the ratio between the power supply voltage and the power supply voltage is less than a predetermined value, the switching means is turned on twice during the half cycle from the zero cross point of the AC power supply detected by the zero cross detection means. And the second short-circuit interval is 0.2 to 0.4 ms when the power supply frequency is 50 Hz, 0.16 to 0.33 ms when the power supply frequency is 60 Hz, and then the value of the ratio is a predetermined value or more. In addition, the number of short-circuits of the switching means is switched to a number of short-circuits that is greater than two times according to the value of the ratio and that does not exceed the noise frequency of the DC power supply device with respect to the operating noise frequency of the motor of the apparatus to be incorporated. In such a DC power supply device, high efficiency and appropriate power factor can be realized at low loads while suppressing power supply harmonic current, and high power factor and appropriate efficiency can be realized at high loads.

特開平10−201248号公報Japanese Patent Laid-Open No. 10-201248 特開2009−100499号広報JP 2009-1000049 特開2011−101505号広報JP 2011-101505 PR

現在、家庭用の空気調和機は、環境への配慮が求められ、省資源,省エネを強く要求されるようになった。これは、力率を改善することで、交流電源の供給者の設備負担を軽減することに加えて、機器を接続するブレーカー、またはコンセントの容量を目いっぱいに活用して機器の能力を最大限に発揮させ、実質的に使用者のコストパフォーマンスを良くすることができるためである。しかし、闇雲に短絡すれば良いわけではなく、短絡の仕方や負荷の状況により、電源高調波電流が増加する場合がある。加えて、電子制御機器の急増に伴い電源に悪影響を与える高調波電流の規制に適合する製品が求められている。   Currently, home air conditioners are required to be environmentally friendly, and resource and energy savings are strongly demanded. In addition to reducing the facility burden on AC power supply suppliers by improving the power factor, the capacity of the circuit breaker or outlet is fully utilized to maximize the capacity of the equipment. This is because the cost performance of the user can be substantially improved. However, it is not necessary to short-circuit to the dark clouds, and the power supply harmonic current may increase depending on the short-circuiting method and load conditions. In addition, there is a need for products that meet the regulations on harmonic currents that adversely affect power supplies due to the rapid increase in electronic control devices.

特に海外では早くから高調波電流の強制規制を始めており、日本固有の事情は配慮されていないので規制値が厳しい。強制規制を行っている国は年々増加しており、各国はIEC規格を準拠して策定を行っているため、輸出機種にはIEC規格を満足する製品の開発が必要である。   In particular, forcible regulation of harmonic currents has been started overseas since early times, and since the circumstances unique to Japan are not taken into consideration, the regulation value is strict. The number of countries that enforce compulsory regulations is increasing year by year, and each country formulates in compliance with IEC standards. Therefore, it is necessary to develop products that satisfy IEC standards for export models.

上記先行技術文献ではこれらの要求を部分的に満たすだけであり、次のような問題がある。特許文献1では、直流電圧を高くしようとした場合、短絡した波形は歪んでしまうため、電源高調波電流が多くなり、高い力率を得ながらもIEC規格値を満足できない。また、この発明は電源の半周期に1回だけスイッチングのオン動作をするもので、パルス間隔についての言及が無い。また、IEC規格を満足する製品においては、特許文献2、特許文献3よりも高調波規制を特に優先した制御を行う必要があり、交流電源のゼロクロス点から次のゼロクロス点までの間の後半部についての言及がない。   The above prior art documents only partially satisfy these requirements and have the following problems. In Patent Document 1, when the DC voltage is increased, the short-circuited waveform is distorted, so that the power supply harmonic current increases and the IEC standard value cannot be satisfied while obtaining a high power factor. Further, the present invention turns on the switching only once in a half cycle of the power supply, and there is no mention of the pulse interval. In addition, in a product that satisfies the IEC standard, it is necessary to perform control with priority given to harmonic regulation over Patent Document 2 and Patent Document 3, and the latter half part between the zero cross point of the AC power supply and the next zero cross point. There is no mention of.

本発明は、IEC規格を満足するために電源高調波電流を抑制する直流電源装置を提供することを課題とする。   It is an object of the present invention to provide a DC power supply device that suppresses power supply harmonic current in order to satisfy the IEC standard.

本発明の直流電源装置は、交流電源より入力された交流電力を直流電力に変換する整流回路と、交流電源と整流回路との間に接続されたリアクタと、リアクタを介して交流電源を短絡するスイッチング手段と、直流電力の目標電圧を設定する目標電圧設定手段と、交流電源の周波数を検出する周波数検出手段と、交流電源の電源電圧を検出する電源電圧検出手段と、交流電源のゼロクロス点を検出するゼロクロス検出手段と、ゼロクロス点に同期させてスイッチング手段をオン/オフ制御するスイッチング制御手段と、を備え、スイッチング制御手段は、ゼロクロス検出手段で検出された交流電源のゼロクロス点から次のゼロクロス点までの間に複数回スイッチングをオンし、交流電源のゼロクロス点から次のゼロクロス点までの間のうちの後半部にスイッチングの最終パルスをオンさせ、最終パルスのゼロクロス点からの遅延時間は入力電流が大きいほど増加させ、最終パルスのオン時間は入力電流が大きいほど増加させるとともに入力電流が大きいほど増加率を減少させる。   A DC power supply device of the present invention short-circuits an AC power supply via a rectifier that converts AC power input from an AC power supply into DC power, a reactor connected between the AC power supply and the rectifier circuit, and the reactor. Switching means, target voltage setting means for setting a target voltage of DC power, frequency detection means for detecting the frequency of the AC power supply, power supply voltage detection means for detecting the power supply voltage of the AC power supply, and zero cross point of the AC power supply. A zero-cross detecting means for detecting, and a switching control means for controlling on / off of the switching means in synchronization with the zero-cross point. The switching control means includes the next zero-cross from the zero-cross point of the AC power source detected by the zero-cross detecting means. The switching is turned on several times during the period from the zero point to the next zero point. The last pulse of switching is turned on in half, the delay time from the zero crossing point of the final pulse is increased as the input current is increased, and the ON time of the final pulse is increased as the input current is increased and the rate of increase is increased as the input current is increased. Decrease.

本発明によれば、電源高調波電流を抑制する直流電源装置を提供することができる。特に、入力電流増加により高調波の3次成分が大きくなるために、最終パルスのゼロクロス点からの遅延時間及びオン時間を入力電流が大きいほど増加させたとしても、最終パルスのオン時間を入力電流が大きいほど増加率を減少させながら増加させるので、高調波の高次の項を抑制させて規格値を満たすことができる。   ADVANTAGE OF THE INVENTION According to this invention, the DC power supply device which suppresses a power supply harmonic current can be provided. In particular, since the third-order component of the harmonic increases as the input current increases, even if the delay time and on-time from the zero-crossing point of the final pulse are increased as the input current increases, the on-time of the final pulse is changed to the input current. Since the increase rate is increased while decreasing, the higher-order term of the harmonic can be suppressed and the standard value can be satisfied.

実施例1の電源装置の回路構成を示すブロック図The block diagram which shows the circuit structure of the power supply device of Example 1. FIG. 8パルス目のオン時間を0.03ms、0.08ms、0.13msに設定した時の入力電流、高調波3次成分、5次成分、11次成分の波形Waveform of input current, harmonic 3rd order component, 5th order component, 11th order component when ON time of 8th pulse is set to 0.03ms, 0.08ms, 0.13ms 入力電流を3A、6A、8A時の入力電流の波形Input current waveform at 3A, 6A and 8A 電源高調波電流の規格の余裕度を大きく取れる8パルス目のオン時間(a)と遅延時間(b)On-time (a) and delay time (b) of the 8th pulse that allow a large margin of power harmonic current standards

本実施例の直流電源装置は、交流電源より入力された交流電力を直流電力に変換する整流回路と、交流電源と整流回路との間に接続されたリアクタと、リアクタを介して交流電源を短絡するスイッチング手段と、直流電力の目標電圧を設定する目標電圧設定手段と、交流電源の周波数を検出する周波数検出手段と、交流電源の電源電圧を検出する電源電圧検出手段と、交流電源のゼロクロス点を検出するゼロクロス検出手段と、ゼロクロス点に同期させてスイッチング手段をオン/オフ制御するスイッチング制御手段と、を備え、スイッチング制御手段は、ゼロクロス検出手段で検出された交流電源のゼロクロス点から次のゼロクロス点までの間に複数回スイッチングをオンし、交流電源のゼロクロス点から次のゼロクロス点までの間のうちの後半部に、スイッチングの最終パルスをオンさせ、最終パルスのゼロクロス点からの遅延時間は、入力電流が大きいほど増加させ、最終パルスのオン時間は、入力電流が大きいほど増加させるとともに、入力電流が大きいほど増加率を減少させる。   The DC power supply device of the present embodiment includes a rectifier circuit that converts AC power input from an AC power source into DC power, a reactor connected between the AC power source and the rectifier circuit, and a short circuit between the AC power source via the reactor. Switching means, target voltage setting means for setting the target voltage of the DC power, frequency detection means for detecting the frequency of the AC power supply, power supply voltage detection means for detecting the power supply voltage of the AC power supply, and zero cross point of the AC power supply And a switching control means for controlling on / off of the switching means in synchronization with the zero cross point. The switching control means includes the following from the zero cross point of the AC power source detected by the zero cross detection means: Switching is turned on several times during the period from the zero cross point to the next zero cross point of the AC power supply. In the second half, the final pulse of switching is turned on, the delay time from the zero crossing point of the final pulse is increased as the input current is increased, and the on-time of the final pulse is increased as the input current is increased and the input current is increased. The larger the value, the lower the increase rate.

本発明によれば、電源高調波電流を抑制する直流電源装置を提供することができる。ここで、最終パルスのオン時間の増加は、高調波の抑制に関して、高調波の低次の項(特に3次成分)と高調波の高次の項とでトレードオフの関係になる。例えば、最終パルスのパルスオン時間を入力電流に対して直線的に増やした場合、高調波の高次の項が増加してしまい規格値を満たすことができない可能性がある。そこで本実施例においては、さらに、最終パルスのオン時間を入力電流が大きいほど増加率を減少させながら増加させるので、高調波の高次の項を抑制させて規格値を満たすことができる。さらに、例えば、特許文献2のように、規格値を満たすために負荷に応じて後半部のパルス数を増加させる場合、パルス数を増加させると、ダイオードスタックやIGBT等の温度が上昇したり、電器品のノイズが生じる可能性がある。本実施例においては、交流電源のゼロクロス点から次のゼロクロス点までの間のうちの後半部にスイッチングの最終パルスをオンさせ、最終パルスのゼロクロス点からの遅延時間は入力電流が大きいほど増加させ、最終パルスのオン時間は入力電流が大きいほど増加させるとともに入力電流が大きいほど増加率を減少させるので、パルス数を増加させることなく(パルス数の増加を抑制しつつ)、パルス遅延時間とパルスオン時間を変更することで、高調波の高次の項を抑制させて規格値を満たすことができる。   ADVANTAGE OF THE INVENTION According to this invention, the DC power supply device which suppresses a power supply harmonic current can be provided. Here, the increase in the on-time of the final pulse has a trade-off relationship between the lower harmonic term (especially the third-order component) and the higher harmonic harmonic term in terms of harmonic suppression. For example, when the pulse-on time of the final pulse is increased linearly with respect to the input current, higher-order terms of harmonics may increase and the standard value may not be satisfied. Therefore, in the present embodiment, the ON time of the final pulse is increased while decreasing the increase rate as the input current is increased, so that higher-order terms of harmonics can be suppressed and the standard value can be satisfied. Further, for example, as in Patent Document 2, when the number of pulses in the latter half is increased according to the load in order to satisfy the standard value, when the number of pulses is increased, the temperature of the diode stack, the IGBT, or the like increases. Electrical equipment noise may occur. In this embodiment, the last pulse of switching is turned on in the latter half of the period from the zero cross point of the AC power supply to the next zero cross point, and the delay time from the zero cross point of the final pulse is increased as the input current increases. Since the ON time of the final pulse is increased as the input current is increased and the increase rate is decreased as the input current is increased, the pulse delay time and the pulse on time are suppressed without increasing the number of pulses (while suppressing the increase in the number of pulses). By changing the time, higher-order terms of harmonics can be suppressed and the standard value can be satisfied.

まず、本実施例の直流電源装置の全体構成について図1を用いて説明する。図1は実施例1の電源装置の回路構成を示すブロック図である。直流電源装置100は図1に示すように、交流電源101と負荷104に接続され、交流電圧を整流回路102で整流し、平滑コンデンサ103で平滑して直流電圧に変換し、負荷104に電力を供給する。   First, the overall configuration of the DC power supply device of this embodiment will be described with reference to FIG. FIG. 1 is a block diagram illustrating a circuit configuration of the power supply device according to the first embodiment. As shown in FIG. 1, the DC power supply device 100 is connected to an AC power supply 101 and a load 104, rectifies an AC voltage by a rectifier circuit 102, smoothes it by a smoothing capacitor 103, converts it to a DC voltage, and supplies power to the load 104. Supply.

通常平滑コンデンサ103に蓄えられた電荷による直流電圧のため、交流電圧がこの直流電圧を超えたときにしか電流は流れないので、通電区間は短く、電流波形は鋭くとがって力率が悪くなってしまう。これを改善するためリアクタ105を接続すると、電流波形の波高値は低くなり、通電区間が後ろに伸び力率が改善される。   Since the current flows only when the AC voltage exceeds this DC voltage because the DC voltage is usually a charge stored in the smoothing capacitor 103, the energization section is short, the current waveform is sharp and the power factor is poor. End up. When the reactor 105 is connected to improve this, the peak value of the current waveform becomes low, and the extension power factor is improved after the energization section.

交流電源101がリアクタ105を介して短絡されるようにスイッチング手段106が設けられる。また、交流電源101のゼロクロス点を検出するゼロクロス検出手段107が接続される。ゼロクロス検出手段107で検出されたゼロクロス点に同期させて、スイッチング制御手段108でスイッチング手段106を駆動する駆動信号を生成し、スイッチング手段106を短絡する。   Switching means 106 is provided so that AC power supply 101 is short-circuited through reactor 105. Further, a zero cross detecting means 107 for detecting a zero cross point of the AC power supply 101 is connected. In synchronization with the zero cross point detected by the zero cross detecting means 107, the switching control means 108 generates a drive signal for driving the switching means 106, and the switching means 106 is short-circuited.

電源高調波電流を抑制するため、スイッチングのオン/オフを複数回行えば、短絡電流のピークが下がるため有効である。シミュレーションによれば、力率に関係してくる3次〜15次の高調波の抑制にはスイッチング回数を多くすることが有効であるが、15次〜40次の高調波電流は逆に増えやすい傾向となる。   In order to suppress the power supply harmonic current, switching on / off a plurality of times is effective because the peak of the short circuit current decreases. According to the simulation, it is effective to increase the number of times of switching to suppress the 3rd to 15th harmonics related to the power factor, but the 15th to 40th harmonic currents tend to increase conversely. It becomes a trend.

日本からの輸出機種向けの製品においては電源として220Vが使用されることが多い。   In products for export models from Japan, 220V is often used as a power source.

また、負荷の最も大きい条件は早朝の暖房の立上がり時であり、圧縮機を高速で駆動し、大きな暖房能力で急速に室内を暖める。このように、暖房能力,冷房能力の大小は負荷量の大小と連動し、空気調和機には負荷量の大小と連動する圧縮機回転数、直流電圧、入力電流、機体各部の温度、冷凍サイクルの温度等に応じた運転が要求される。   Also, the condition with the greatest load is when the heating starts in the early morning, the compressor is driven at high speed, and the room is heated rapidly with a large heating capacity. In this way, the heating capacity and cooling capacity are linked to the magnitude of the load, and the air conditioner has a compressor speed, DC voltage, input current, temperature of each part of the machine, refrigeration cycle linked to the magnitude of the load. The operation according to the temperature etc. is required.

電源周波数が50Hz,定格8Aで15mHのリアクタ,電源220V,スイッチングオン回数8回で入力電流を3A〜8Aまで1A間隔で変化させ高調波のIEC規格余裕度(「100−(最も高い高調波/IEC規格基準)×100」)を最も大きく取れる設定を検証した。その結果、8回目のスイッチング短絡のみを後半部に行うことで入力電流3A〜8AにおいてIEC規格高調波余裕度を15%以上保つことができた。   Reactor with power supply frequency 50Hz, rated 8A, 15mH, power supply 220V, switching-on frequency 8 times, input current is changed from 3A to 8A at 1A interval, IEC standard margin of harmonics ("100- (highest harmonic / The setting which can take the largest (IEC standard standard) × 100 ”) was verified. As a result, the IEC standard harmonic margin was maintained at 15% or more in the input currents 3A to 8A by performing only the eighth switching short circuit in the second half.

この後半部に一回スイッチングをオンさせるオン時間と遅延時間について以下に説明する。   The on time and delay time for turning on switching once in the latter half will be described below.

入力電流の変化に対する高調波余裕度は一般的に高負荷になるにつれて厳しくなる。8パルス目のオン時間(後半部のスイッチングオン時間)を0.03msで固定した時の3次成分の高調波余裕度を表1に示す。入力電流が大きくなるにつれて波高値が高くなるため波高値とほぼ同じ位置になる3次成分が特に大きくなる。   Harmonic margins for changes in input current generally become more severe as the load increases. Table 1 shows the harmonic margin of the third-order component when the ON time of the eighth pulse (switching ON time of the second half) is fixed at 0.03 ms. Since the peak value increases as the input current increases, the third-order component at the same position as the peak value becomes particularly large.

ここで入力電流8A時について、8パルス目のオン時間を長く取り入力電流の波形を調整することで、3次、5次成分を小さくすることができる。しかし、このスイッチングオン時間を長く取り過ぎると、高次の項に悪影響を及ぼす。そのため高調波余裕度の高調波次数の切り替わる値が設定点にふさわしくなる。   Here, when the input current is 8 A, the third-order and fifth-order components can be reduced by increasing the ON time of the eighth pulse and adjusting the waveform of the input current. However, if this switching on time is too long, the higher order terms are adversely affected. Therefore, the switching value of the harmonic order of the harmonic margin becomes appropriate for the set point.

この入力電流8A時の後半部のスイッチングのオン時間に対する高調波余裕度を表2に示す。また、0.03ms、0.08ms、0.13msの時の入力電流、高調波3次成分、5次成分、11次成分の波形を図2に示す。この時、波形から8パルス目の位置が11次成分の波高値の位置に来るため、オン時間が大きくなりすぎると、11次成分の高調波が大きくなる。そのため8パルス目のオン時間に対する遅延時間について最良な設定がある。   Table 2 shows the harmonic margin with respect to the switching ON time of the latter half when the input current is 8A. FIG. 2 shows waveforms of the input current, the harmonic third-order component, the fifth-order component, and the eleventh-order component at 0.03 ms, 0.08 ms, and 0.13 ms. At this time, the position of the eighth pulse from the waveform comes to the position of the peak value of the 11th-order component, so that the harmonic of the 11th-order component increases if the on-time becomes too long. Therefore, there is the best setting for the delay time with respect to the ON time of the eighth pulse.

入力電流が増えるに従い通電区間が後ろに伸び、またリアクタの飽和特性などにより電流波形がより急峻になる。そのため、パルスの遅延時間も入力電流に合わせる必要がある。パルスの遅延時間をゼロクロス点から7.35ms、また、パルスオン時間を0.03msにした時の入力電流の3A、6A、8A時の波形を図3に示す。   As the input current increases, the energization section extends backward, and the current waveform becomes steeper due to the saturation characteristics of the reactor. Therefore, it is necessary to match the pulse delay time to the input current. FIG. 3 shows waveforms at 3A, 6A and 8A of the input current when the pulse delay time is 7.35 ms from the zero cross point and the pulse on time is 0.03 ms.

上記の事をふまえ、入力電流3A〜8AにおいてIEC規格高調波余裕度が最も大きくとれる8パルス目のオン時間と遅延時間の最適な解を見つけ、入力電流とオン時間との関係を図4(a)に示し、入力電流と遅延時間との関係を図4(b)に示す。また、各入力電流の高調波余裕度を表3に示す。   Based on the above, the optimum solution of the on-time and delay time of the 8th pulse where the IEC standard harmonic margin can be maximized in the input currents 3A to 8A is found, and the relationship between the input current and the on-time is shown in FIG. FIG. 4B shows the relationship between the input current and the delay time. Table 3 shows the harmonic margin of each input current.

入力電流に対して8パルス目のオン時間の傾き(増加率)を少しずつ減らしながら増加させることにより(最終パルスのオン時間を、入力電流が大きいほど増加させるとともに、入力電流が大きいほど増加率を減少させることにより)、少ないパルスでより効果的に高調波余裕度を抑制することができる。また、入力電流が大きいほど遅延時間を長くする(最終パルスのゼロクロス点からの遅延時間を、入力電流が大きいほど増加させる。)。   By increasing the on-time slope (increase rate) of the 8th pulse gradually with respect to the input current (by increasing the on-time of the final pulse as the input current increases, the increase rate as the input current increases) Can be reduced more effectively with fewer pulses. In addition, the delay time is lengthened as the input current increases (the delay time from the zero cross point of the final pulse is increased as the input current increases).

100 直流電源装置
101 交流電源
102 整流回路
103 平滑コンデンサ
104 負荷
104a インバータ
104b 外部負荷
105 リアクタ
106 スイッチング手段
107 電源電圧・ゼロクロス検出手段
108 スイッチング制御手段
109 直流電圧検出手段
110 インバータドライバ
111 マイクロコンピュータ
111a 周波数検出手段
111b,111d A/D変換部
111c,111e PWM出力部
111f コンバータ制御手段
111g インバータ制御手段
111h 目標電圧設定手段
112 入力電流検出手段
113 負荷量検出手段
114 モータ
115 モータ印加電圧検出手段
116 モータ回転数検出手段
118 周辺情報検出手段
DESCRIPTION OF SYMBOLS 100 DC power supply device 101 AC power supply 102 Rectifier circuit 103 Smoothing capacitor 104 Load 104a Inverter 104b External load 105 Reactor 106 Switching means 107 Power supply voltage / zero cross detection means 108 Switching control means 109 DC voltage detection means 110 Inverter driver 111 Microcomputer 111a Frequency detection Means 111b, 111d A / D converters 111c, 111e PWM output part 111f Converter control means 111g Inverter control means 111h Target voltage setting means 112 Input current detection means 113 Load amount detection means 114 Motor 115 Motor applied voltage detection means 116 Motor rotation speed Detection means 118 Peripheral information detection means

Claims (1)

交流電源より入力された交流電力を直流電力に変換する整流回路と、
前記交流電源と前記整流回路との間に接続されたリアクタと、
前記リアクタを介して前記交流電源を短絡するスイッチング手段と、
前記直流電力の目標電圧を設定する目標電圧設定手段と、
前記交流電源の周波数を検出する周波数検出手段と、
前記交流電源の電源電圧を検出する電源電圧検出手段と、
前記交流電源のゼロクロス点を検出するゼロクロス検出手段と、
前記ゼロクロス点に同期させて前記スイッチング手段をオン/オフ制御するスイッチング制御手段と、を備え、
前記スイッチング制御手段は、
前記ゼロクロス検出手段で検出された前記交流電源のゼロクロス点から次のゼロクロス点までの間に複数回スイッチングをオンし、
前記交流電源のゼロクロス点から次のゼロクロス点までの間のうちの後半部に、前記スイッチングの最終パルスをオンさせ、
前記最終パルスのゼロクロス点からの遅延時間は、入力電流が大きいほど増加させ、
前記最終パルスのオン時間は、入力電流が大きいほど増加させるとともに、入力電流が大きいほど増加率を減少させる
直流電源装置。
A rectifier circuit that converts AC power input from an AC power source into DC power;
A reactor connected between the AC power source and the rectifier circuit;
Switching means for short-circuiting the AC power supply through the reactor;
Target voltage setting means for setting a target voltage of the DC power;
Frequency detection means for detecting the frequency of the AC power supply;
Power supply voltage detecting means for detecting a power supply voltage of the AC power supply;
Zero-cross detection means for detecting a zero-cross point of the AC power supply;
Switching control means for controlling on / off of the switching means in synchronization with the zero-cross point,
The switching control means includes
Switching on a plurality of times between the zero cross point of the AC power source detected by the zero cross detection means and the next zero cross point,
In the latter half of the period from the zero cross point of the AC power supply to the next zero cross point, the final pulse of the switching is turned on,
The delay time from the zero cross point of the final pulse is increased as the input current is increased,
The DC power supply device that increases the ON time of the final pulse as the input current increases and decreases the increase rate as the input current increases.
JP2013052609A 2013-03-15 2013-03-15 Dc power supply device Pending JP2014180143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052609A JP2014180143A (en) 2013-03-15 2013-03-15 Dc power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052609A JP2014180143A (en) 2013-03-15 2013-03-15 Dc power supply device

Publications (1)

Publication Number Publication Date
JP2014180143A true JP2014180143A (en) 2014-09-25

Family

ID=51699502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052609A Pending JP2014180143A (en) 2013-03-15 2013-03-15 Dc power supply device

Country Status (1)

Country Link
JP (1) JP2014180143A (en)

Similar Documents

Publication Publication Date Title
US9240737B2 (en) Control device for switching power supply circuit, and heat pump unit
JP4784207B2 (en) DC power supply
US9929670B2 (en) Power conversion device, motor drive control device equipped with power conversion device, compressor and blower equipped with motor drive control device, and air conditioner equipped with compressor or blower
JP3422218B2 (en) converter
JP5928946B2 (en) Rectification circuit and motor drive device using the same
JP2013538544A (en) AC / DC power conversion method and apparatus
US20090309525A1 (en) Drive for motor
US10020768B2 (en) Driving apparatus for an electric motor, a method for actuation thereof and a motor unit which comprises the driving apparatus
CN112019019A (en) Drive control method, device, household appliance and computer readable storage medium
Amudhavalli et al. Improved Z source inverter for speed control of an induction motor
JP4885603B2 (en) DC power supply
CN112019029B (en) Operation control method, circuit, household appliance and computer readable storage medium
Kommula et al. PFC based SEPIC converter fed BLDC motor with torque ripple minimization approach
CN105305839A (en) Auxiliary power converter for railway vehicle
Shin et al. Active DC-link circuit for single-phase diode rectifier system with small capacitance
JPH11206130A (en) Power unit
KR20110077801A (en) Apparatus and method for supplying dc power source
CN201328095Y (en) Mineral flame-proof type variable-frequency high-voltage soft start device
JP2014180143A (en) Dc power supply device
Singh et al. Power factor correction in permanent magnet brushless DC motor drive using single-phase Cuk converter
Mishima et al. A bridgeless BHB ZVS-PWM AC-AC converter for high-frequency induction heating applications and non-smoothed DC-Link characteristics
JP5891593B2 (en) Power converter
JP2020096527A (en) Dc power supply unit and air conditioner
CN217486375U (en) Sputtering power supply
CN211352072U (en) Variable frequency air conditioner rectifying circuit and variable frequency air conditioner