JP2014177883A - Control method of reductant supply device - Google Patents

Control method of reductant supply device Download PDF

Info

Publication number
JP2014177883A
JP2014177883A JP2013051540A JP2013051540A JP2014177883A JP 2014177883 A JP2014177883 A JP 2014177883A JP 2013051540 A JP2013051540 A JP 2013051540A JP 2013051540 A JP2013051540 A JP 2013051540A JP 2014177883 A JP2014177883 A JP 2014177883A
Authority
JP
Japan
Prior art keywords
reducing agent
injection valve
agent injection
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013051540A
Other languages
Japanese (ja)
Other versions
JP6088865B2 (en
Inventor
Eiji Nakao
英志 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2013051540A priority Critical patent/JP6088865B2/en
Publication of JP2014177883A publication Critical patent/JP2014177883A/en
Application granted granted Critical
Publication of JP6088865B2 publication Critical patent/JP6088865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method of a reductant supply device for efficiently executing movement for dissolving such a state that an opening and closing movement of a reductant injection valve is impossible in the starting of an internal combustion engine.SOLUTION: In a control method of a reductant supply device for controlling the reductant supply device which is configured so as to recover remaining liquid reductant into a storage tank upon stoppage of an internal combustion engine, a primary estimation with respect to availability of the opening and closing movement of a reductant ejection valve is performed based on the state of preceding internal combustion engine stoppage, when it is estimated that the opening and closing movement is impossible as the result of the primary estimation, the reductant injection valve is driven a plurality of times to perform secondary determination with respect to availability of the opening and closing movement of the reductant injection valve and, when it is determined that the opening and closing movement is impossible as the result of secondary determination, melting control of the liquid reductant on the reductant injection valve is executed.

Description

本発明は、内燃機関の排気通路にアンモニア由来の液体還元剤を供給するための還元剤供給装置を制御するための還元剤供給装置の制御方法に関するものである。   The present invention relates to a control method for a reducing agent supply device for controlling a reducing agent supply device for supplying an ammonia-derived liquid reducing agent to an exhaust passage of an internal combustion engine.

車両等に搭載されたディーゼルエンジン等の内燃機関の排気には窒素酸化物(NOX)が含まれている。このNOXを浄化する排気浄化装置の一つとして、内燃機関の排気通路中に配置される選択還元触媒と、選択還元触媒の上流側で尿素水溶液等のアンモニア由来の液体還元剤を噴射するための還元剤供給装置とを備えた排気浄化装置が知られている。この排気浄化装置は、選択還元触媒中で、排気中のNOXとアンモニアとを効率的に還元反応させ、NOXを窒素や水等に分解するものとなっている。 Nitrogen oxides (NO x ) are contained in the exhaust of internal combustion engines such as diesel engines mounted on vehicles and the like. As one of exhaust purifying apparatus for purifying the NO X, the selective reduction catalyst disposed in an exhaust passage of an internal combustion engine, for injecting liquid reducing agent from ammonia, such as urea aqueous solution on the upstream side of the selective reduction catalyst There is known an exhaust emission control device including a reducing agent supply device. This exhaust purification device efficiently reduces NO x and ammonia in exhaust in a selective reduction catalyst and decomposes NO x into nitrogen or water.

このような排気浄化装置に用いられる還元剤供給装置の一態様として、ポンプ及び還元剤噴射弁を備え、貯蔵タンク内の液体還元剤をポンプによって圧送するとともに、排気管に固定された還元剤噴射弁を介して液体還元剤を排気管内に供給する直接噴射式の還元剤供給装置がある。   As one aspect of the reducing agent supply device used in such an exhaust purification device, a reducing agent injection device that includes a pump and a reducing agent injection valve, pumps the liquid reducing agent in the storage tank by the pump, and is fixed to the exhaust pipe. There is a direct injection type reducing agent supply device that supplies liquid reducing agent into an exhaust pipe through a valve.

ここで、液体還元剤として尿素水溶液を使用する場合、尿素水溶液ができる限り凍結しないように、凍結温度が最も低くなる濃度の尿素水溶液が用いられる。ただし、尿素水溶液の凍結温度は低くても−11℃程度であり、寒冷地等においては還元剤供給装置による尿素水溶液の供給が停止されている期間において尿素水溶液が凍結するおそれがある。また、尿素水溶液中の水分が蒸発して濃度が上昇した場合においても、尿素水溶液の凍結温度が上昇し凍結するおそれがある。   Here, when the urea aqueous solution is used as the liquid reducing agent, the urea aqueous solution having the lowest freezing temperature is used so that the urea aqueous solution is not frozen as much as possible. However, the freezing temperature of the aqueous urea solution is about −11 ° C. even at a low temperature, and the aqueous urea solution may freeze in a cold region or the like during a period when the supply of the aqueous urea solution by the reducing agent supply device is stopped. Further, even when water in the urea aqueous solution evaporates and the concentration increases, the freezing temperature of the urea aqueous solution may rise and freeze.

尿素水溶液が凍結すると、ポンプや還元剤噴射弁を正常に動作させることができないために、次回の始動時に長時間の解凍時間が必要となるおそれがある。そのため、内燃機関の停止時には、還元剤供給装置内に残留する尿素水溶液を貯蔵タンク内に回収する制御が行われることが一般的である。尿素水溶液の回収は、尿素水溶液を圧送するポンプを逆回転させたり、あるいは、尿素水溶液の流路の接続を切り換えたりすることで、尿素水溶液の供給通路内を減圧し、尿素水溶液を貯蔵タンク側に送ることによって行われる。(例えば、特許文献1を参照)。   If the urea aqueous solution is frozen, the pump and the reducing agent injection valve cannot be operated normally, so that a long thawing time may be required at the next start. Therefore, when the internal combustion engine is stopped, control is generally performed to recover the urea aqueous solution remaining in the reducing agent supply device into the storage tank. To recover the urea aqueous solution, reverse the rotation of the pump that pumps the urea aqueous solution, or switch the connection of the urea aqueous solution flow path to depressurize the urea aqueous solution supply passage, and store the urea aqueous solution on the storage tank side. Done by sending to. (For example, see Patent Document 1).

特開2010−007617号公報(段落[0037]、[0047]等)JP 2010-007617 A (paragraphs [0037], [0047], etc.)

しかしながら、液体還元剤の回収制御を実行するとしても、還元剤噴射弁の内部の液体還元剤を完全に回収することが困難な場合がある。特に、液体還元剤の回収制御は、還元剤噴射弁を開弁して、排気通路内の空気(排ガス)を還元剤供給装置内部に取り入れながら行われるが、この回収制御中に、還元剤噴射弁の噴孔付近に付着した液体還元剤の水分が、残留する排気熱によって加熱されて蒸発して結晶化し、噴孔の詰まりを生じる場合がある。噴孔の詰まりを生じると、還元剤噴射弁内の液体還元剤を完全に回収することはさらに困難になる。仮に、内燃機関の始動時に、液体還元剤の結晶化等によって還元剤噴射弁の開閉動作が行われない状態であれば、これを速やかに解消させる必要がある。   However, even if the liquid reducing agent recovery control is executed, it may be difficult to completely recover the liquid reducing agent inside the reducing agent injection valve. In particular, the recovery control of the liquid reducing agent is performed while opening the reducing agent injection valve and taking in air (exhaust gas) in the exhaust passage into the reducing agent supply device. During the recovery control, the reducing agent injection is performed. In some cases, the water in the liquid reducing agent adhering to the vicinity of the nozzle hole of the valve is heated by residual exhaust heat and evaporated to crystallize, resulting in clogging of the nozzle hole. When the nozzle hole is clogged, it becomes more difficult to completely recover the liquid reducing agent in the reducing agent injection valve. If the opening / closing operation of the reducing agent injection valve is not performed due to crystallization of the liquid reducing agent at the time of starting the internal combustion engine, it is necessary to quickly resolve this.

したがって、本発明は、内燃機関の始動時において、還元剤噴射弁の開閉動作が不可能な状態を解消するための動作を効率的に実行するための還元剤供給装置の制御方法を提供することを目的としている。   Therefore, the present invention provides a control method for a reducing agent supply apparatus for efficiently executing an operation for eliminating a state where the opening / closing operation of the reducing agent injection valve is impossible at the time of starting the internal combustion engine. It is an object.

本発明によれば、内燃機関の運転中に、貯蔵タンク内の液体還元剤をポンプによって圧送して還元剤噴射弁に供給するとともに、前記還元剤噴射弁により前記内燃機関の排気通路に前記液体還元剤を噴射する一方、前記内燃機関の停止時に、残留する前記液体還元剤を前記貯蔵タンク内へ回収するように構成された還元剤供給装置を制御するための還元剤供給装置の制御方法において、前記内燃機関の始動時に、前回の内燃機関停止時の状態に基づいて前記還元剤噴射弁の開閉動作の可否の一次推定を行い、前記一次推定の結果、前記開閉動作が不可能と推定された場合には、前記還元剤噴射弁を複数回駆動させて前記還元剤噴射弁の開閉動作の可否の二次判定を行い、前記二次判定の結果、前記開閉動作が不可能と判定された場合には、前記還元剤噴射弁での前記液体還元剤の融解制御を実行することを特徴とする還元剤供給装置の制御方法が提供され、上述した問題を解決することができる。   According to the present invention, during operation of the internal combustion engine, the liquid reducing agent in the storage tank is pumped by the pump and supplied to the reducing agent injection valve, and the liquid is introduced into the exhaust passage of the internal combustion engine by the reducing agent injection valve. In a control method of a reducing agent supply device for controlling a reducing agent supply device configured to inject a reducing agent while recovering the remaining liquid reducing agent into the storage tank when the internal combustion engine is stopped. When the internal combustion engine is started, a primary estimation is made as to whether or not the reducing agent injection valve can be opened and closed based on the previous state when the internal combustion engine was stopped. As a result of the primary estimation, it is estimated that the opening and closing operation is impossible. In such a case, the reducing agent injection valve is driven a plurality of times to make a secondary determination as to whether or not the reducing agent injection valve can be opened and closed. As a result of the secondary determination, it is determined that the opening and closing operation is impossible. In case, before Is provided a control method of the reducing agent supply apparatus characterized by performing said melting control of the liquid reducing agent in the reducing agent injection valve, it is possible to solve the problems described above.

すなわち、本発明の還元剤供給装置の制御方法によれば、前回の内燃機関の停止時の状態に基づく一次推定、及び、還元剤噴射弁の駆動状態に基づく二次判定を経た上で、還元剤噴射弁の開閉動作が不可能と判定された場合にのみ、液体還元剤の融解制御を実行することとしている。したがって、液体還元剤の結晶化の可能性が極めて高い場合にのみ融解制御が実行されることとなるために、不要な融解制御が省略され、融解制御の効率化が図られる。   That is, according to the control method of the reducing agent supply apparatus of the present invention, after performing the primary estimation based on the previous state when the internal combustion engine was stopped and the secondary determination based on the driving state of the reducing agent injection valve, the reduction is performed. Only when it is determined that the opening / closing operation of the agent injection valve is impossible, the melting control of the liquid reducing agent is executed. Therefore, melting control is executed only when the possibility of crystallization of the liquid reducing agent is extremely high, so unnecessary melting control is omitted, and efficiency of melting control is achieved.

また、本発明の還元剤供給装置の制御方法を実施するにあたり、前記二次判定を、前記還元剤噴射弁を駆動させた際に前記還元剤噴射弁に流れる電流の波形に基づいて行うことが好ましい。このように二次判定を実行することとすれば、追加の装置等を増やすことなく、還元剤噴射弁の開閉動作の可否を判定することができる。   Further, in carrying out the control method of the reducing agent supply apparatus of the present invention, the secondary determination is performed based on a waveform of a current flowing through the reducing agent injection valve when the reducing agent injection valve is driven. preferable. By executing the secondary determination in this way, it is possible to determine whether or not the reducing agent injection valve can be opened and closed without increasing the number of additional devices.

また、本発明の還元剤供給装置の制御方法を実施するにあたり、前記融解制御を、前記還元剤噴射弁を複数回駆動させ、前記還元剤噴射弁内を発熱させることによって行うことが好ましい。このように融解制御を実行することとすれば、追加の装置等を増やすことなく、還元剤噴射弁内で生じた液体還元剤の結晶化を解消することができる。また、この融解制御は、液体還元剤の結晶化の可能性が極めて高い場合にのみ実行されるものであるため、仮に液体還元剤が還元剤噴射弁にまで到達する前に実行される回数が抑えられ、還元剤噴射弁のシート部の損傷のおそれを低減することができる。   Moreover, when implementing the control method of the reducing agent supply apparatus of this invention, it is preferable to perform the said melting control by driving the said reducing agent injection valve in multiple times and making the inside of the said reducing agent injection valve generate heat | fever. If the melting control is executed in this way, the crystallization of the liquid reducing agent generated in the reducing agent injection valve can be eliminated without increasing the number of additional devices. Further, since this melting control is executed only when the possibility of crystallization of the liquid reducing agent is extremely high, the number of times that the liquid reducing agent is executed before reaching the reducing agent injection valve is assumed. Therefore, the risk of damage to the seat portion of the reducing agent injection valve can be reduced.

また、本発明の還元剤供給装置の制御方法を実施するにあたり、前記融解制御の実行後に前記二次判定を再度行うようにし、前記融解制御を所定回数繰り返しても前記開閉動作が可能にならない場合には、前記還元剤噴射弁の恒久的故障と判定することが好ましい。このように恒久的故障を判定することにより、液体還元剤の結晶化によらない還元剤噴射弁の固着が生じている場合には、運転者等に対して対策を促すことができるようになる。   Further, when performing the control method of the reducing agent supply apparatus of the present invention, the secondary determination is performed again after the melting control is performed, and the opening / closing operation is not possible even if the melting control is repeated a predetermined number of times. It is preferable to determine that the reducing agent injection valve has a permanent failure. By determining the permanent failure in this way, when the reducing agent injection valve is not fixed due to the crystallization of the liquid reducing agent, the driver can be urged to take measures. .

また、本発明の還元剤供給装置の制御方法を実施するにあたり、前記一次推定は、前回の内燃機関停止時の排気温度に基づいて前記還元剤噴射弁内での前記液体還元剤の結晶化の可能性を推定するものであることが好ましい。このように一次推定を実行することにより、液体還元剤の結晶化が発生しやすい状態で内燃機関が停止したときに次の二次判定を実行することとなり、液体還元剤の結晶化の可能性が極めて高い状態を正確に判定することができるようになる。   In carrying out the control method of the reducing agent supply apparatus of the present invention, the primary estimation is based on the crystallization of the liquid reducing agent in the reducing agent injection valve based on the exhaust temperature when the internal combustion engine was stopped last time. It is preferable to estimate the possibility. By performing the primary estimation in this way, the next secondary determination is performed when the internal combustion engine is stopped in a state where crystallization of the liquid reducing agent is likely to occur, and the possibility of crystallization of the liquid reducing agent is likely to occur. Can be accurately determined.

還元剤供給装置が備えられた排気浄化装置の一例を示す全体図である。It is a general view which shows an example of the exhaust gas purification apparatus provided with the reducing agent supply apparatus. 還元剤供給装置の制御方法を実行する電子制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the electronic controller which performs the control method of a reducing agent supply apparatus. 一次推定に用いるマップの一例を示す図である。It is a figure which shows an example of the map used for primary estimation. 二次判定について説明するために示す図である。It is a figure shown in order to demonstrate secondary determination. 本実施の形態にかかる還元剤供給装置の制御方法の一例を示すフローチャートである。It is a flowchart which shows an example of the control method of the reducing agent supply apparatus concerning this Embodiment.

以下、適宜図面を参照して、本発明の還元剤供給装置の制御方法に関する実施の形態について具体的に説明する。
なお、それぞれの図中、同じ符号を付してあるものについては、特に説明がない限り同一の部材を示しており、適宜説明が省略されている。
Embodiments relating to a control method for a reducing agent supply apparatus of the present invention will be specifically described below with reference to the drawings as appropriate.
In addition, in each figure, about the thing which attached | subjected the same code | symbol, the same member is shown unless there is particular description, and description is abbreviate | omitted suitably.

1.排気浄化装置の全体構成
図1は、還元剤供給装置20が備えられた排気浄化装置10の全体構成の一例を説明するために示す図である。
この排気浄化装置10は、排気中のNOXを浄化するための装置であり、図示しないディーゼルエンジン等の内燃機関の排気通路11に設けられている。排気浄化装置10は、排気通路11の途中に介装された還元触媒13と、還元触媒13よりも上流側の排気通路11内に液体還元剤を供給するための還元剤供給装置20とを備えている。図1中、排気通路11内に記載された矢印は排気が流れる方向を示している。
1. Overall Configuration of Exhaust Gas Purification Device FIG. 1 is a diagram shown for explaining an example of the overall configuration of an exhaust gas purification device 10 provided with a reducing agent supply device 20.
The exhaust purification device 10 is a device for purifying NO x in exhaust gas, and is provided in an exhaust passage 11 of an internal combustion engine such as a diesel engine (not shown). The exhaust purification device 10 includes a reduction catalyst 13 interposed in the middle of the exhaust passage 11 and a reducing agent supply device 20 for supplying a liquid reducing agent into the exhaust passage 11 upstream of the reduction catalyst 13. ing. In FIG. 1, an arrow written in the exhaust passage 11 indicates a direction in which the exhaust flows.

還元触媒13は、排気中のNOXの還元を促進する機能を有する触媒であり、液体還元剤から生成される還元成分を吸着するとともに、触媒に流れ込む排気中のNOXを還元成分によって選択的に還元する触媒である。還元剤供給装置20は、液体還元剤として尿素水溶液が用いられるものであり、尿素水溶液が排気通路11中で分解されることにより還元成分としてのアンモニアが生成されるようになっている。また、還元触媒13の上流側において、還元剤供給装置20のさらに上流側には排気温度センサ15が設けられている。 The reduction catalyst 13 is a catalyst having a function of promoting the reduction of NO x in the exhaust, adsorbs the reducing component generated from the liquid reducing agent, and selectively reduces the NO x in the exhaust flowing into the catalyst by the reducing component. It is a catalyst that reduces to The reducing agent supply device 20 uses a urea aqueous solution as a liquid reducing agent, and ammonia as a reducing component is generated when the urea aqueous solution is decomposed in the exhaust passage 11. An exhaust temperature sensor 15 is provided upstream of the reduction catalyst 13 and further upstream of the reducing agent supply device 20.

2.還元剤供給装置
(1)基本的構成
図1において、還元剤供給装置20は、液体還元剤が収容される貯蔵タンク21と、液体還元剤を圧送するためのポンプユニット30と、液体還元剤を排気通路11内に噴射するための還元剤噴射弁25とを備えている。ポンプユニット30は、ポンプ23及び流路切換弁33を備えている。還元剤噴射弁25、ポンプ23、及び、流路切換弁33は、電子制御装置(ECU)40によって駆動制御が行われるものとなっている。
2. 1. Reducing agent supply device (1) Basic configuration In FIG. 1, a reducing agent supply device 20 includes a storage tank 21 in which a liquid reducing agent is stored, a pump unit 30 for pumping the liquid reducing agent, and a liquid reducing agent. And a reducing agent injection valve 25 for injecting into the exhaust passage 11. The pump unit 30 includes a pump 23 and a flow path switching valve 33. The reducing agent injection valve 25, the pump 23, and the flow path switching valve 33 are controlled by an electronic control unit (ECU) 40.

ポンプ23と貯蔵タンク21とは第1の供給通路27によって接続され、ポンプ23と還元剤噴射弁25とは第2の供給通路28によって接続されている。このうち、第2の供給通路28には、第2の供給通路28内の圧力、すなわち、還元剤噴射弁25に圧送される液体還元剤の圧力を検出するための圧力センサ31が設けられている。ポンプ23と、第1の供給通路27及び第2の供給通路28とは、流路切換弁33を介して接続されている。第1の供給通路27の貯蔵タンク21側の端部は、液体還元剤の吸い上げを可能にするために、貯蔵タンク21の底面近傍に位置している。   The pump 23 and the storage tank 21 are connected by a first supply passage 27, and the pump 23 and the reducing agent injection valve 25 are connected by a second supply passage 28. Among these, the second supply passage 28 is provided with a pressure sensor 31 for detecting the pressure in the second supply passage 28, that is, the pressure of the liquid reducing agent fed to the reducing agent injection valve 25. Yes. The pump 23 is connected to the first supply passage 27 and the second supply passage 28 via a flow path switching valve 33. The end of the first supply passage 27 on the side of the storage tank 21 is located in the vicinity of the bottom surface of the storage tank 21 so that the liquid reducing agent can be sucked up.

流路切換弁33は、ポンプ23によって圧送される液体還元剤が流れる方向を、貯蔵タンク21側から還元剤噴射弁25側に流れる方向(以下「正方向」という。)と、還元剤噴射弁25側から貯蔵タンク21側に流れる方向(以下「逆方向」という。)とに切換える機能を有している。還元剤供給装置20において、流路切換弁33は、非通電状態で第1の供給通路27をポンプ23の入り口側23aに連通するとともに第2の供給通路28をポンプ23の出口側23bに連通する一方、通電状態で第1の供給通路27をポンプ23の出口側23bに連通するとともに第2の供給通路28をポンプ23の入り口側23aに連通するように構成されている。   The flow path switching valve 33 has a direction in which the liquid reducing agent pumped by the pump 23 flows from the storage tank 21 side to the reducing agent injection valve 25 side (hereinafter referred to as “positive direction”), and a reducing agent injection valve. It has a function of switching from the 25 side to the direction of flowing to the storage tank 21 side (hereinafter referred to as “reverse direction”). In the reducing agent supply device 20, the flow path switching valve 33 communicates the first supply passage 27 to the inlet side 23 a of the pump 23 and the second supply passage 28 to the outlet side 23 b of the pump 23 in a non-energized state. On the other hand, the first supply passage 27 communicates with the outlet side 23b of the pump 23 and the second supply passage 28 communicates with the inlet side 23a of the pump 23 in an energized state.

すなわち、液体還元剤の噴射制御を行う際には、液体還元剤を還元剤噴射弁25側に供給するために、流路切換弁33への通電は行われない。このとき、液体還元剤は正方向に流れる。一方、内燃機関の停止時において、還元剤供給装置20内の液体還元剤を貯蔵タンク21に回収する場合には、流路切換弁33に対して通電される。このとき、液体還元剤は逆方向に流れる。   That is, when the liquid reducing agent injection control is performed, the flow path switching valve 33 is not energized in order to supply the liquid reducing agent to the reducing agent injection valve 25 side. At this time, the liquid reducing agent flows in the positive direction. On the other hand, when the internal combustion engine is stopped, when the liquid reducing agent in the reducing agent supply device 20 is collected in the storage tank 21, the flow path switching valve 33 is energized. At this time, the liquid reducing agent flows in the reverse direction.

なお、液体還元剤を貯蔵タンク21に回収可能とする構成は、流路切換弁33を設ける例に限られない。例えば、逆回転可能なポンプ23を用いることによって液体還元剤を回収可能に構成することもできる。   The configuration that enables the liquid reducing agent to be collected in the storage tank 21 is not limited to the example in which the flow path switching valve 33 is provided. For example, the liquid reducing agent can be configured to be recoverable by using a pump 23 that can rotate in reverse.

また、第2の供給通路28の途中には、他端が貯蔵タンク21に接続されたリターン通路29が分岐して設けられている。リターン通路29の貯蔵タンク21側の端部は、液体還元剤の逆流を防ぐために、貯蔵タンク21内の気相部分に接続されている。リターン通路29が分岐する位置は、第2の供給通路28の途中ではなく、ポンプ23の出口側23bとなっていてもよい。
なお、貯蔵タンク21にはエアブリザード等が設けられており、内部の圧力が大気圧で保たれるように構成されている。
In addition, a return passage 29 having the other end connected to the storage tank 21 is provided in the middle of the second supply passage 28. The end of the return passage 29 on the storage tank 21 side is connected to a gas phase portion in the storage tank 21 in order to prevent the back flow of the liquid reducing agent. The position where the return passage 29 branches may be not the middle of the second supply passage 28 but the outlet side 23 b of the pump 23.
The storage tank 21 is provided with an air blizzard or the like, and is configured so that the internal pressure is maintained at atmospheric pressure.

リターン通路29の途中には、流路面積が小さくされた絞り部37が設けられ、第2の供給通路28内の圧力を保持できるようになっている。また、絞り部37よりも貯蔵タンク21側のリターン通路29には、液体還元剤が貯蔵タンク21側から第2の供給通路28側に流れないようにするための一方向弁35が設けられている。一方向弁35は省略されていても構わない。   In the middle of the return passage 29, a throttle portion 37 having a reduced flow passage area is provided so that the pressure in the second supply passage 28 can be maintained. The return passage 29 closer to the storage tank 21 than the throttling portion 37 is provided with a one-way valve 35 for preventing the liquid reducing agent from flowing from the storage tank 21 side to the second supply passage 28 side. Yes. The one-way valve 35 may be omitted.

なお、図1に示す還元剤供給装置20においてはポンプユニット30内に圧力センサ31が設けられているが、第2の供給通路28内の圧力を検出できる位置であれば、どの位置に設けられていても構わない。   In the reducing agent supply device 20 shown in FIG. 1, the pressure sensor 31 is provided in the pump unit 30, but at any position as long as the pressure in the second supply passage 28 can be detected. It does not matter.

ポンプ23は、ECU40による通電制御によって、所定の流量の液体還元剤を圧送する。図1の還元剤供給装置20において、ポンプ23は電磁式ポンプが用いられており、駆動デューティ比が大きいほどポンプ23の出力(吐出流量)が大きくなるものとなっている。このポンプ23が、液体還元剤を貯蔵タンク21に回収するための手段としての機能も有する。   The pump 23 pumps a liquid reducing agent at a predetermined flow rate by energization control by the ECU 40. In the reducing agent supply apparatus 20 of FIG. 1, an electromagnetic pump is used as the pump 23, and the output (discharge flow rate) of the pump 23 increases as the drive duty ratio increases. The pump 23 also has a function as a means for recovering the liquid reducing agent in the storage tank 21.

還元剤噴射弁25は、内燃機関の運転状態において、ECU40による通電制御によって開閉制御が行われ、所定量の液体還元剤を排気通路11内に噴射する。還元剤噴射弁25は、非通電状態で閉弁し、通電状態で開弁する、電磁式のオンオフ弁が用いられている。ECU40は、所定の演算式に基づいて目標噴射量Qdv_tgtを求めるとともに、第2の供給通路28内の検出圧力Puが目標圧力Pu_tgtとなっていることを前提として、あらかじめ定められた噴射サイクルごとに、目標噴射量Qdv_tgtに応じた駆動デューティ比を決定して、還元剤噴射弁25の通電制御を行う。還元剤噴射弁25の駆動デューティ比とは、一噴射サイクル中の開弁時間の割合を意味する。   In the operating state of the internal combustion engine, the reducing agent injection valve 25 is controlled to be opened and closed by energization control by the ECU 40 and injects a predetermined amount of liquid reducing agent into the exhaust passage 11. The reducing agent injection valve 25 is an electromagnetic on / off valve that closes in a non-energized state and opens in an energized state. The ECU 40 obtains the target injection amount Qdv_tgt based on a predetermined arithmetic expression, and assumes that the detected pressure Pu in the second supply passage 28 is the target pressure Pu_tgt for each predetermined injection cycle. Then, the drive duty ratio corresponding to the target injection amount Qdv_tgt is determined, and energization control of the reducing agent injection valve 25 is performed. The drive duty ratio of the reducing agent injection valve 25 means the ratio of the valve opening time during one injection cycle.

一方、還元剤噴射弁25は、内燃機関の停止時において、液体還元剤を回収する際には、還元剤噴射弁25を開弁した状態で維持される。これにより、還元剤噴射弁25の噴孔を介して空気(排ガス)が第2の供給通路28に導入され、液体還元剤が貯蔵タンク21内に回収されやすくなる。   On the other hand, the reducing agent injection valve 25 is maintained in a state in which the reducing agent injection valve 25 is opened when recovering the liquid reducing agent when the internal combustion engine is stopped. As a result, air (exhaust gas) is introduced into the second supply passage 28 through the nozzle hole of the reducing agent injection valve 25, and the liquid reducing agent is easily collected in the storage tank 21.

3.電子制御装置(ECU)
(1)電子制御装置の構成
図2は、ECU40のうち、内燃機関の停止時及び始動時に実行される制御に関連する部分を機能的なブロックで表した構成例を示している。
このECU40は、公知のマイクロコンピュータを中心に構成されたものであり、ポンプ制御部41と、還元剤噴射弁制御部43と、流路切換弁制御部45と、一次推定部47と、二次判定部49と、回収制御部51、融解制御部53とにより構成されている。具体的に、これらの各部はマイクロコンピュータによるプラグラムの実行によって実現されるものとなっている。
3. Electronic control unit (ECU)
(1) Configuration of Electronic Control Unit FIG. 2 shows a configuration example in which a part related to control executed when the internal combustion engine is stopped and started in the ECU 40 is represented by functional blocks.
The ECU 40 is configured around a known microcomputer, and includes a pump control unit 41, a reducing agent injection valve control unit 43, a flow path switching valve control unit 45, a primary estimation unit 47, and a secondary. The determination part 49, the collection | recovery control part 51, and the melting control part 53 are comprised. Specifically, each of these units is realized by executing a program by a microcomputer.

この他、ECU40には、RAM(Random Access Memory)及びROM(Read Only Memory)等の図示しない記憶素子やタイマカウンタ、さらにポンプ23、流路切換弁33、還元剤噴射弁25への通電制御を行うための駆動回路等が備えられている。また、ECU40には、内燃機関のキースイッチのオンオフ信号や、圧力センサ31、排気温度センサ15のセンサ信号が入力され、検出圧力Puや排気温度Temp_g,Temp_e等の値が記憶素子に記憶されるようになっている。   In addition to this, the ECU 40 has control of energization to a memory element (not shown) such as a RAM (Random Access Memory) and a ROM (Read Only Memory), a timer counter, the pump 23, the flow path switching valve 33, and the reducing agent injection valve 25. A drive circuit and the like are provided. The ECU 40 receives an on / off signal of a key switch of the internal combustion engine and sensor signals of the pressure sensor 31 and the exhaust temperature sensor 15, and stores values such as the detected pressure Pu and the exhaust temperatures Temp_g and Temp_e in a storage element. It is like that.

このうち、回収制御部51は、内燃機関のキースイッチがオンからオフにされると、液体還元剤の回収制御の開始指令を出す。   Among these, the recovery control unit 51 issues a command to start recovery control of the liquid reducing agent when the key switch of the internal combustion engine is turned off from on.

ポンプ制御部41は、内燃機関の運転中においては、圧力センサ31による検出圧力Puが所定の目標圧力となるように、ポンプ23の出力をフィードバック制御する。また、内燃機関の停止時においては、内燃機関のキースイッチがオフにされたことをきっかけとして回収制御部51から液体還元剤の回収制御の開始指令が出されたときに、一定の、又は、適宜変動する出力でポンプ23の駆動制御を行う。   During the operation of the internal combustion engine, the pump control unit 41 feedback-controls the output of the pump 23 such that the detected pressure Pu detected by the pressure sensor 31 becomes a predetermined target pressure. Further, when the internal combustion engine is stopped, when the recovery control unit 51 issues a start command for the recovery control of the liquid reducing agent triggered by the key switch of the internal combustion engine being turned off, The drive of the pump 23 is controlled with an output that varies as appropriate.

還元剤噴射弁制御部43は、内燃機関の運転中においては、還元触媒13におけるアンモニアの吸着可能量や、排気中のNOX量などに基づいて得られる液体還元剤の要求噴射量に応じて、還元剤噴射弁25の通電時間を制御する。また、内燃機関の停止時においては、回収制御部51から液体還元剤の回収制御の開始指令が出されたときに、還元剤噴射弁25を開弁状態として、液体還元剤の回収制御時に、空気(排気)が還元剤供給経路内に導入されるようにする。これ以外に、還元剤噴射弁制御部43は、二次判定部49又は融解制御部53からの指令にしたがって還元剤噴射弁25に対して所定の通電制御を実行するようになっている。 During the operation of the internal combustion engine, the reducing agent injection valve control unit 43 responds to the required injection amount of the liquid reducing agent obtained based on the amount of ammonia that can be adsorbed by the reduction catalyst 13 and the amount of NO x in the exhaust gas. The energization time of the reducing agent injection valve 25 is controlled. Further, when the internal combustion engine is stopped, when the recovery control unit 51 issues a liquid reductant recovery control start command, the reductant injection valve 25 is opened, and during the liquid reductant recovery control, Air (exhaust gas) is introduced into the reducing agent supply path. In addition to this, the reducing agent injection valve control unit 43 performs predetermined energization control on the reducing agent injection valve 25 in accordance with a command from the secondary determination unit 49 or the melting control unit 53.

流路切換弁制御部45は、内燃機関の運転中においては流路切換弁33を非通電状態として、ポンプ23によって圧送される液体還元剤が正方向に流れるようにする。一方、内燃機関の停止時においては、回収制御部51から液体還元剤の回収制御の開始指令が出されたときに、流路切換弁33を通電状態とし、ポンプ23によって圧送される液体還元剤が逆方向に流れるようにする。   The flow path switching valve controller 45 keeps the flow path switching valve 33 in a non-energized state during operation of the internal combustion engine so that the liquid reducing agent pumped by the pump 23 flows in the forward direction. On the other hand, when the internal combustion engine is stopped, when the recovery control unit 51 issues a command to start recovery control of the liquid reducing agent, the liquid switching agent 33 is energized and is pumped by the pump 23. To flow in the opposite direction.

一次推定部47は、内燃機関の始動時、すなわち、キースイッチがオフからオンにされたときに、前回の内燃機関停止時の状態に基づいて、還元剤噴射弁25の開閉動作の可否を推定する。例えば、前回の内燃機関の停止時においてキースイッチがオフにされたときの排気温度Temp_gや、前回の内燃機関の停止時から今回の内燃機関の始動時までの時間Ts等に基づいて、還元剤噴射弁25内で液体還元剤が結晶化しているおそれがあるか否かを判別する。   The primary estimation unit 47 estimates whether or not the reducing agent injection valve 25 can be opened and closed based on the previous state when the internal combustion engine was stopped when the internal combustion engine was started, that is, when the key switch was turned on. To do. For example, based on the exhaust temperature Temp_g when the key switch was turned off at the time of the previous stop of the internal combustion engine, the time Ts from the previous stop of the internal combustion engine to the start of the current internal combustion engine, etc. It is determined whether or not the liquid reducing agent may be crystallized in the injection valve 25.

内燃機関の停止時には内燃機関の冷却水や空冷手段による還元剤噴射弁25の冷却機能が停止するため、内燃機関の停止時の排気温度Temp_gが高い場合には、内燃機関の停止後に残留する排気熱によって還元剤噴射弁25が加熱され、残留する液体還元剤の濃度が上昇することによって、液体還元剤の凝固点(融点)が上昇する場合がある。この場合、その後還元剤噴射弁25が自然冷却されるにしたがって、内部に残留する液体還元剤の温度が、上昇した凝固点を下回って、結晶化しやすくなる。   When the internal combustion engine is stopped, the cooling function of the reducing agent injection valve 25 by cooling water or air cooling means of the internal combustion engine is stopped. Therefore, if the exhaust temperature Temp_g at the time of stop of the internal combustion engine is high, the exhaust gas remaining after the internal combustion engine is stopped The reducing agent injection valve 25 is heated by heat, and the concentration of the remaining liquid reducing agent increases, so that the freezing point (melting point) of the liquid reducing agent may increase. In this case, as the reducing agent injection valve 25 is naturally cooled thereafter, the temperature of the liquid reducing agent remaining inside falls below the raised freezing point and becomes easier to crystallize.

したがって、一次推定部47では、液体還元剤の凝固点と相関関係を有する前回の内燃機関の停止時の排気温度Temp_gと、内燃機関の停止時間Ts等から、液体還元剤が実際に結晶化しているおそれがあるかを判別している。例えば、本実施の形態においては、図3に示すような判定マップを準備して、前回の内燃機関の停止時の排気温度Temp_gと内燃機関の停止時間Tsとに基づいて、開閉の可不可を推定している。   Therefore, in the primary estimation unit 47, the liquid reducing agent is actually crystallized from the exhaust temperature Temp_g at the time of the previous stop of the internal combustion engine having a correlation with the freezing point of the liquid reducing agent, the stop time Ts of the internal combustion engine, and the like. It is determined whether there is a risk. For example, in the present embodiment, a determination map as shown in FIG. 3 is prepared, and whether or not to open / close is determined based on the exhaust temperature Temp_g at the previous stop of the internal combustion engine and the stop time Ts of the internal combustion engine. Estimated.

つまり、前回の内燃機関の停止時の排気温度Temp_gが低い場合には、液体還元剤の凝固点が変化する可能性が低く、還元剤噴射弁25の開閉動作が可能であると推定する。内燃機関の停止時の排気温度Temp_gが高く、液体還元剤の凝固点が上昇する可能性が高い場合においても、内燃機関の停止時間Tsが短い間は還元剤噴射弁25の開閉動作が可能であると推定する。
一方、内燃機関の停止時の排気温度Temp_gが高い場合においては、内燃機関の停止時間Tsが長くなればなるほど液体還元剤がより低い温度に晒されて還元剤噴射弁25の開閉動作が不可能になる可能性が高くなる。この場合、内燃機関の停止時の排気温度Temp_gに応じて液体還元剤の凝固点が変動するため、当該排気温度Temp_gが高いほど、開閉の可不可の境界となる停止時間が短くなるようになっている。
That is, when the exhaust gas temperature Temp_g at the time of the previous stop of the internal combustion engine is low, it is estimated that the freezing point of the liquid reducing agent is unlikely to change and that the reducing agent injection valve 25 can be opened and closed. Even when the exhaust gas temperature Temp_g when the internal combustion engine is stopped is high and the freezing point of the liquid reducing agent is likely to rise, the reducing agent injection valve 25 can be opened and closed while the internal combustion engine stop time Ts is short. Estimated.
On the other hand, when the exhaust temperature Temp_g when the internal combustion engine is stopped is high, the liquid reducing agent is exposed to a lower temperature as the stop time Ts of the internal combustion engine becomes longer, and the opening and closing operation of the reducing agent injection valve 25 is impossible. Is likely to become. In this case, since the freezing point of the liquid reducing agent fluctuates according to the exhaust temperature Temp_g when the internal combustion engine is stopped, the higher the exhaust temperature Temp_g, the shorter the stop time that becomes an open / close boundary. Yes.

ただし、前回の内燃機関の停止時の状態に基づく還元剤噴射弁の開閉動作の可否の推定方法は、上述した例に限られるものではない。特に、前回の内燃機関の停止時の排気温度Temp_gは、一点で検出される温度である必要はなく、停止後のある期間内での最高温度とするなど適宜設定することが可能である。   However, the method of estimating whether or not the reducing agent injection valve can be opened / closed based on the previous stop state of the internal combustion engine is not limited to the above-described example. In particular, the exhaust temperature Temp_g at the time of the previous stop of the internal combustion engine does not have to be a temperature detected at a single point, and can be set as appropriate, such as the maximum temperature within a certain period after the stop.

二次判定部49は、一次推定部47において還元剤噴射弁25の開閉動作が不可能と推定される場合に、還元剤噴射弁25を複数回駆動させて還元剤噴射弁25の物理的開閉動作の可否を判定する。具体的には、還元剤噴射弁25は電磁弁形式のものであり、通電を開始した後に実際に弁体が動き出すときには電流波形に変化が現れるため、二次判定部49では、そのような電流波形の変化が現れたか否かを見ることによって、還元剤噴射弁25の開閉動作の可否を判定する。このとき、一回の駆動のみでは、液体還元剤の結晶化による弁体の固着を解消できないおそれがあることから、還元剤噴射弁25を複数回駆動させることとしている。   When the primary estimating unit 47 estimates that the opening / closing operation of the reducing agent injection valve 25 is impossible, the secondary determination unit 49 drives the reducing agent injection valve 25 a plurality of times to physically open / close the reducing agent injection valve 25. Judge whether operation is possible. Specifically, the reducing agent injection valve 25 is of a solenoid valve type, and when the valve body actually starts moving after energization starts, a change appears in the current waveform. Whether or not the reducing agent injection valve 25 can be opened and closed is determined by checking whether or not a waveform change has occurred. At this time, there is a possibility that the sticking of the valve body due to the crystallization of the liquid reducing agent cannot be eliminated by only one driving, and therefore the reducing agent injection valve 25 is driven a plurality of times.

図4は、還元剤噴射弁25を複数回駆動させたときの電流波形を示している。この図4に示すように、還元剤噴射弁25に通電を開始した後、弁体が動き出すときに一瞬電流値が低下するポイントPが現れる。したがって、この低下ポイントPが現れれば、弁体が物理的に動作可能であると判定することができる一方、低下ポイントPが見られないときには弁体が固着しており、物理的に開閉できない状態になっていると判定することができる。   FIG. 4 shows a current waveform when the reducing agent injection valve 25 is driven a plurality of times. As shown in FIG. 4, after the energization of the reducing agent injection valve 25 is started, a point P at which the current value decreases momentarily appears when the valve body starts to move. Therefore, if this lowering point P appears, it can be determined that the valve body is physically operable. On the other hand, when the lowering point P is not seen, the valve body is fixed and cannot be physically opened and closed. It can be determined that

融解制御部53は、二次判定部49による判定結果として還元剤噴射弁25の開閉動作が不可能と判定された場合に、還元剤噴射弁25での液体還元剤の融解制御を実行する。具体的に、本実施の形態においては、電磁弁形式の還元剤噴射弁25に対して駆動指令を複数回発して、コイルに通電させたときに発生する熱によって、結晶化した液体還元剤を凝固点以上にして融解させるようにしている。   The melting control unit 53 executes the melting control of the liquid reducing agent in the reducing agent injection valve 25 when it is determined that the opening / closing operation of the reducing agent injection valve 25 is impossible as a determination result by the secondary determination unit 49. Specifically, in the present embodiment, the liquid reducing agent crystallized by the heat generated when the drive command is issued a plurality of times to the electromagnetic valve type reducing agent injection valve 25 and the coil is energized. It is made to melt above the freezing point.

(2)フローチャート
次に、ECU40によって実行される本実施の形態の還元剤供給装置20の制御方法の具体例について、図5のフローチャート図に基づいて説明する。以下のフローチャートに示される還元剤供給装置の制御方法は、内燃機関の始動時において常時実行されるものとなっている。
(2) Flowchart Next, a specific example of the control method of the reducing agent supply device 20 of the present embodiment executed by the ECU 40 will be described based on the flowchart of FIG. The control method of the reducing agent supply device shown in the following flowchart is always executed when the internal combustion engine is started.

まず、図5のステップS1において、ECU40は、記憶手段に記憶された前回の内燃機関の停止時の排気温度Temp_g及び内燃機関の停止時間Tsを読み込んだ後、ステップS2において、還元剤噴射弁25の開閉の可否の一次推定を行う。上述のとおり、本実施の形態においては、あらかじめ準備されて格納されているマップ(図3を参照。)を用いて、記録されている前回の内燃機関停止時の排気温度Temp_gと、内燃機関の停止時間Tsとに基づいて、還元剤噴射弁25の開閉の可否を推定する。   First, in step S1 of FIG. 5, the ECU 40 reads the exhaust temperature Temp_g at the time of the previous stop of the internal combustion engine and the stop time Ts of the internal combustion engine stored in the storage means, and then in step S2, the reducing agent injection valve 25. The primary estimation of whether or not to open and close is performed. As described above, in the present embodiment, using the map prepared and stored in advance (see FIG. 3), the recorded exhaust temperature Temp_g at the previous stop of the internal combustion engine and the internal combustion engine Based on the stop time Ts, whether the reducing agent injection valve 25 can be opened or closed is estimated.

次いで、ECU40はステップS3において、一次推定の結果、還元剤噴射弁25の開閉が不可能な状態か否かを判別する。開閉が可能と推定される場合(No判定)には、そのままステップS10に進み、液体還元剤の噴射開始の許可を与え、図示しない液体還元剤の噴射制御のメインルーチンに進む。   Next, in step S3, the ECU 40 determines whether or not the reducing agent injection valve 25 cannot be opened and closed as a result of the primary estimation. When it is estimated that opening and closing is possible (No determination), the process proceeds to step S10 as it is, permission to start injection of the liquid reducing agent is given, and the process proceeds to a main routine of liquid reducing agent injection control (not shown).

一方、ステップS3において、一次推定の結果、還元剤噴射弁25の開閉が不可能と推定される場合(Yes判定)には、ステップS4に進み、還元剤噴射弁25に対して開閉指示を出力する。このときに還元剤噴射弁25に流れた電流値は記憶手段に記憶される。この開閉指示は、1回のみであってもよいが、複数回実行させることで、次ステップの二次判定の精度を上げることができる。   On the other hand, in step S3, when it is estimated that the reducing agent injection valve 25 cannot be opened and closed as a result of the primary estimation (Yes determination), the process proceeds to step S4, and an opening / closing instruction is output to the reducing agent injection valve 25. To do. At this time, the current value flowing through the reducing agent injection valve 25 is stored in the storage means. Although the opening / closing instruction may be performed only once, the accuracy of the secondary determination in the next step can be improved by executing the opening / closing instruction a plurality of times.

ステップS5において、ECU40は、還元剤噴射弁25の開閉動作中の電流値を読み込み、還元剤噴射弁25の物理的開閉が可能か否かの二次判定を行う。上述のとおり、本実施の形態においては、開閉動作中の電流波形において、弁体が動き出すときに現れる電流値の低下ポイントPが現れたか否かによって物理的開閉の可否を判定する(図4を参照。)。   In step S5, the ECU 40 reads a current value during the opening / closing operation of the reducing agent injection valve 25, and performs a secondary determination as to whether the reducing agent injection valve 25 can be physically opened or closed. As described above, in the present embodiment, whether or not physical opening / closing is possible is determined based on whether or not the current value drop point P that appears when the valve body starts moving appears in the current waveform during the opening / closing operation (see FIG. 4). reference.).

次いで、ECU40は、ステップS6において、二次判定の結果、還元剤噴射弁25の物理的開閉が不可能な状態か否かを判別する。物理的開閉が可能となっている場合(No判定)には、ステップS10に進み、液体還元剤の噴射開始の許可を与え、図示しない液体還元剤の噴射制御のメインルーチンに進む。   Next, in step S6, the ECU 40 determines whether or not the reducing agent injection valve 25 is physically open / closed as a result of the secondary determination. If physical opening / closing is possible (No determination), the process proceeds to step S10, permission to start the injection of the liquid reducing agent is given, and the process proceeds to a main routine of liquid reducing agent injection control (not shown).

一方、ステップS6において、二次判定の結果、還元剤噴射弁25の物理的開閉が不可能と判定された場合(Yes判定)には、ステップS7に進み、物理的開閉が不可能と判定された回数Nが閾値N0に到達したか否かを判別する。回数Nが閾値N0未満の場合には、ステップS9に進み、ECU40は、還元剤噴射弁25内で結晶化した液体還元剤の融解制御を実行する。上述のとおり、本実施の形態においては、電磁弁形式の還元剤噴射弁25に対して駆動指令を複数回発して、コイルに通電させたときに発生する熱によって、結晶化した液体還元剤を凝固点以上にして融解させるようにしている。   On the other hand, if it is determined in step S6 that the physical opening / closing of the reducing agent injection valve 25 is impossible as a result of the secondary determination (Yes determination), the process proceeds to step S7, where it is determined that the physical opening / closing is impossible. It is determined whether or not the number N of times reached the threshold value N0. When the number N is less than the threshold value N0, the process proceeds to step S9, and the ECU 40 executes the melting control of the liquid reducing agent crystallized in the reducing agent injection valve 25. As described above, in the present embodiment, the liquid reducing agent crystallized by the heat generated when the drive command is issued multiple times to the electromagnetic valve type reducing agent injection valve 25 and the coil is energized. It is made to melt above the freezing point.

融解制御を実行した後、ECU40は、ステップS4に戻り、還元剤噴射弁25の物理的開閉の可否の二次判定を行う。還元剤噴射弁25の物理的開閉が不可能となっていた原因が液体還元剤の結晶化であれば、これを数回繰り返すうちに、還元剤噴射弁25の物理的開閉が可能となって、液体還元剤の噴射を開始させることができるようになる。すなわち、ステップS6においてNo判定となり、ステップS10において、液体還元剤の噴射開始の許可が与えられる。   After executing the melting control, the ECU 40 returns to step S4 to make a secondary determination as to whether the reducing agent injection valve 25 can be physically opened or closed. If the reason why the reducing agent injection valve 25 cannot be physically opened and closed is the crystallization of the liquid reducing agent, the reducing agent injection valve 25 can be physically opened and closed by repeating this several times. Then, the injection of the liquid reducing agent can be started. That is, a No determination is made in step S6, and permission to start injection of the liquid reducing agent is given in step S10.

一方、二次判定を複数回繰り返しても還元剤噴射弁25の物理的開閉が可能とならず、ステップS7において回数Nが閾値N0に到達した場合(Yes判定)には、ステップS8に進み、還元剤噴射弁25が故障しているものと判定し、警告ランプの点灯等によって運転者等に知らせるとともに、液体還元剤の噴射を許可しないで本ルーチンを終了させる。   On the other hand, when the secondary determination is repeated a plurality of times, the reducing agent injection valve 25 cannot be physically opened and closed, and when the number N reaches the threshold value N0 in Step S7 (Yes determination), the process proceeds to Step S8. It is determined that the reducing agent injection valve 25 is out of order, and the driver is notified by turning on a warning lamp or the like, and this routine is terminated without permitting the injection of the liquid reducing agent.

4.本実施の形態による効果
以上説明した本実施の形態にかかる還元剤供給装置の制御方法によれば、前回の内燃機関の停止時の状態、例えば、排気温度Temp_g及び内燃機関の停止時間Tsに基づく一次推定、及び、還元剤噴射弁25の駆動状態、例えば、還元剤噴射弁25の開閉指示時の電流波形に基づく二次判定を経た上で、還元剤噴射弁25の開閉動作が不可能と判定された場合にのみ、液体還元剤の融解制御を実行することとしている。したがって、液体還元剤の結晶化の可能性が極めて高い場合にのみ融解制御が実行されることとなるために、不要な融解制御が省略され、融解制御の効率化が図られる。
4). Advantageous Effects of the Present Embodiment According to the control method of the reducing agent supply apparatus according to the present embodiment described above, based on the previous stop state of the internal combustion engine, for example, the exhaust temperature Temp_g and the stop time Ts of the internal combustion engine. After the primary estimation and the secondary determination based on the driving state of the reducing agent injection valve 25, for example, the current waveform at the time of opening / closing instruction of the reducing agent injection valve 25, the opening / closing operation of the reducing agent injection valve 25 is impossible. Only when the determination is made, the melting control of the liquid reducing agent is executed. Therefore, melting control is executed only when the possibility of crystallization of the liquid reducing agent is extremely high, so unnecessary melting control is omitted, and efficiency of melting control is achieved.

また、本実施の形態にかかる還元剤供給装置の制御方法においては、二次判定を、還元剤噴射弁25を駆動させた際に還元剤噴射弁25に流れる電流の波形に基づいて行うこととしているために、追加の装置等を増やすことなく、還元剤噴射弁25の物理的開閉動作の可否を判定することができる。   Moreover, in the control method of the reducing agent supply apparatus according to the present embodiment, the secondary determination is performed based on the waveform of the current flowing through the reducing agent injection valve 25 when the reducing agent injection valve 25 is driven. Therefore, it is possible to determine whether the physical opening / closing operation of the reducing agent injection valve 25 is possible without increasing the number of additional devices.

また、本実施の形態にかかる還元剤供給装置の制御方法においては、融解制御を、還元剤噴射弁25を複数回駆動させ、還元剤噴射弁25内を発熱させることによって行うこととしているために、追加の装置等を増やすことなく、還元剤噴射弁25内で生じた液体還元剤の結晶化を解消することができる。また、このような融解制御は、液体還元剤の結晶化の可能性が極めて高い場合にのみ実行されるものであるため、仮に液体還元剤が還元剤噴射弁25にまで到達する前に実行される回数が抑えられ、還元剤噴射弁25のシート部の損傷のおそれを低減することができる。   Further, in the control method of the reducing agent supply device according to the present embodiment, the melting control is performed by driving the reducing agent injection valve 25 a plurality of times and generating heat in the reducing agent injection valve 25. The crystallization of the liquid reducing agent generated in the reducing agent injection valve 25 can be eliminated without increasing the number of additional devices. Further, such melting control is executed only when the possibility of crystallization of the liquid reducing agent is extremely high, and therefore is executed before the liquid reducing agent reaches the reducing agent injection valve 25. Thus, the risk of damage to the seat portion of the reducing agent injection valve 25 can be reduced.

また、本実施の形態にかかる還元剤供給装置の制御方法においては、融解制御の実行後に二次判定を再度行うようにし、還元剤噴射弁25の物理的開閉が不可能と判定された回数Nが閾値N0に到達した場合には、還元剤噴射弁25の恒久的故障と判定することとしているために、液体還元剤の結晶化によらない還元剤噴射弁25の固着が生じている場合には、運転者等に対して対策を促すことができるようになっている。   In the control method of the reducing agent supply apparatus according to the present embodiment, the secondary determination is performed again after the melting control is performed, and the number N of times when it is determined that the reducing agent injection valve 25 cannot be physically opened and closed. When the value reaches the threshold value N0, it is determined that the reducing agent injection valve 25 has a permanent failure. Therefore, when the reducing agent injection valve 25 is stuck due to crystallization of the liquid reducing agent. Can encourage the driver to take measures.

また、本実施の形態にかかる還元剤供給装置の制御方法においては、一次推定が、前回の内燃機関停止時の排気温度Temp_g、さらには内燃機関の停止時間Tsに基づいて、還元剤噴射弁25内での液体還元剤の結晶化の可能性を推定するものとなっているため、液体還元剤の結晶化が発生しやすい状態で内燃機関が停止したときに次の二次判定を実行することとなって、液体還元剤の結晶化の可能性が極めて高い状態を正確に判定することができるようになる。   Further, in the control method for the reducing agent supply apparatus according to the present embodiment, the primary estimation is based on the exhaust temperature Temp_g at the previous stop of the internal combustion engine and further the stop time Ts of the internal combustion engine. In order to estimate the possibility of crystallization of the liquid reducing agent in the engine, the next secondary determination is executed when the internal combustion engine is stopped in a state where crystallization of the liquid reducing agent is likely to occur. Thus, it is possible to accurately determine a state where the possibility of crystallization of the liquid reducing agent is extremely high.

なお、これまでに説明した実施の形態は、本発明の一態様を示すものであって本発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。   The embodiment described so far shows one embodiment of the present invention and does not limit the present invention, and can be arbitrarily changed within the scope of the present invention.

例えば、一次推定や二次判定の具体的方法については、上述した例以外の方法も可能である。特に、一次推定を実行するに際し、前回の内燃機関停止時の排気温度Temp_g、内燃機関の停止時間Tsだけでなく、現在の外気温度や貯蔵タンク21内の温度の情報を考慮して、液体還元剤の結晶化を推定することもできる。また、還元剤噴射弁25の恒久的故障と判定するための閾値N0については、液体還元剤の噴射開始までに待機可能な時間や、判定精度等を考慮して、適宜の値に設定することができる。   For example, as a specific method of primary estimation or secondary determination, methods other than the above-described examples are possible. In particular, when performing the primary estimation, the liquid reduction is performed in consideration of not only the exhaust temperature Temp_g at the previous stop time of the internal combustion engine and the stop time Ts of the internal combustion engine, but also the current outside air temperature and the temperature in the storage tank 21. The crystallization of the agent can also be estimated. Further, the threshold value N0 for determining a permanent failure of the reducing agent injection valve 25 should be set to an appropriate value in consideration of the time that can be waited until the liquid reducing agent injection starts, the determination accuracy, and the like. Can do.

10:排気浄化装置、11:排気通路、13:還元触媒、15:排気温度センサ、20:還元剤供給装置、21:貯蔵タンク、23:ポンプ、23a:入り口側、23b:出口側、25:還元剤噴射弁、27:第1の供給通路、28:第2の供給通路、29:リターン通路、30:ポンプユニット、31:圧力センサ、33:流路切換弁、35:一方向弁、37:絞り部、40:ECU(電子制御装置)、41:ポンプ制御部、43:還元剤噴射弁制御部、45:流路切換弁制御部、47:一次推定部、49:二次判定部、51:回収制御部、53:融解制御部 10: exhaust purification device, 11: exhaust passage, 13: reduction catalyst, 15: exhaust temperature sensor, 20: reducing agent supply device, 21: storage tank, 23: pump, 23a: inlet side, 23b: outlet side, 25: Reducing agent injection valve, 27: first supply passage, 28: second supply passage, 29: return passage, 30: pump unit, 31: pressure sensor, 33: flow path switching valve, 35: one-way valve, 37 : Throttle unit, 40: ECU (electronic control unit), 41: pump control unit, 43: reducing agent injection valve control unit, 45: flow path switching valve control unit, 47: primary estimation unit, 49: secondary determination unit, 51: Recovery control unit, 53: Melting control unit

Claims (5)

内燃機関の運転中に、貯蔵タンク内の液体還元剤をポンプによって圧送して還元剤噴射弁に供給するとともに、前記還元剤噴射弁により前記内燃機関の排気通路に前記液体還元剤を噴射する一方、前記内燃機関の停止時に、残留する前記液体還元剤を前記貯蔵タンク内へ回収するように構成された還元剤供給装置を制御するための還元剤供給装置の制御方法において、
前記内燃機関の始動時に、前回の内燃機関停止時の状態に基づいて前記還元剤噴射弁の開閉動作の可否の一次推定を行い、
前記一次推定の結果、前記開閉動作が不可能と推定された場合には、前記還元剤噴射弁を複数回駆動させて前記還元剤噴射弁の開閉動作の可否の二次判定を行い、
前記二次判定の結果、前記開閉動作が不可能と判定された場合には、前記還元剤噴射弁での前記液体還元剤の融解制御を実行することを特徴とする還元剤供給装置の制御方法。
While the internal combustion engine is in operation, the liquid reducing agent in the storage tank is pumped by a pump and supplied to the reducing agent injection valve, and the liquid reducing agent is injected into the exhaust passage of the internal combustion engine by the reducing agent injection valve. In the control method of the reducing agent supply device for controlling the reducing agent supply device configured to recover the remaining liquid reducing agent into the storage tank when the internal combustion engine is stopped.
When starting the internal combustion engine, based on the previous stop state of the internal combustion engine, primary estimation of whether or not the reducing agent injection valve can be opened and closed,
As a result of the primary estimation, when it is estimated that the opening / closing operation is impossible, the reducing agent injection valve is driven a plurality of times to make a secondary determination as to whether the opening / closing operation of the reducing agent injection valve is possible,
As a result of the secondary determination, when it is determined that the opening / closing operation is impossible, a melting control of the liquid reducing agent at the reducing agent injection valve is executed. .
前記二次判定を、前記還元剤噴射弁を駆動させた際に前記還元剤噴射弁に流れる電流の波形に基づいて行うことを特徴とする請求項1に記載の還元剤供給装置の制御方法。   The method for controlling a reducing agent supply apparatus according to claim 1, wherein the secondary determination is performed based on a waveform of a current flowing through the reducing agent injection valve when the reducing agent injection valve is driven. 前記融解制御を、前記還元剤噴射弁を複数回駆動させ、前記還元剤噴射弁内を発熱させることによって行うことを特徴とする請求項1又は2に記載の還元剤供給装置の制御方法。   The method of controlling a reducing agent supply apparatus according to claim 1 or 2, wherein the melting control is performed by driving the reducing agent injection valve a plurality of times and generating heat in the reducing agent injection valve. 前記融解制御の実行後に前記二次判定を再度行うようにし、前記融解制御を所定回数繰り返しても前記開閉動作が可能にならない場合には、前記還元剤噴射弁の恒久的故障と判定することを特徴とする請求項1〜3のいずれか一項に記載の還元剤供給装置の制御方法。   The secondary determination is performed again after the melting control is performed, and when the opening / closing operation is not possible even after the melting control is repeated a predetermined number of times, it is determined that the reducing agent injection valve has a permanent failure. The control method of the reducing agent supply apparatus as described in any one of Claims 1-3 characterized by the above-mentioned. 前記一次推定は、前回の内燃機関停止時の排気温度に基づいて前記還元剤噴射弁内での前記液体還元剤の結晶化の可能性を推定するものであることを特徴とする請求項1〜4のいずれか一項に記載の還元剤供給装置の制御方法。   The primary estimation is for estimating the possibility of crystallization of the liquid reducing agent in the reducing agent injection valve based on the exhaust gas temperature when the internal combustion engine was stopped last time. The control method of the reducing agent supply apparatus as described in any one of 4.
JP2013051540A 2013-03-14 2013-03-14 Control method for reducing agent supply device Active JP6088865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013051540A JP6088865B2 (en) 2013-03-14 2013-03-14 Control method for reducing agent supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013051540A JP6088865B2 (en) 2013-03-14 2013-03-14 Control method for reducing agent supply device

Publications (2)

Publication Number Publication Date
JP2014177883A true JP2014177883A (en) 2014-09-25
JP6088865B2 JP6088865B2 (en) 2017-03-01

Family

ID=51698076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013051540A Active JP6088865B2 (en) 2013-03-14 2013-03-14 Control method for reducing agent supply device

Country Status (1)

Country Link
JP (1) JP6088865B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063697A1 (en) * 2014-10-23 2016-04-28 ボッシュ株式会社 Control device and control method for reducing agent injection device, and reducing agent injection device
WO2016076256A1 (en) * 2014-11-13 2016-05-19 いすゞ自動車株式会社 Urea water injection system and method for preventing crystallization in urea water injection device
JP2016142249A (en) * 2015-02-05 2016-08-08 株式会社デンソー Control device of exhaust emission control system
JP2017078345A (en) * 2015-10-20 2017-04-27 ボッシュ株式会社 Control device for reducing agent injection device
JP2017115887A (en) * 2015-12-21 2017-06-29 ジェイ・シー・バムフォード・エクスカヴェイターズ・リミテッドJ.C.Bamford Excavators Limited Dosing module
US10012170B2 (en) 2015-04-17 2018-07-03 Continental Automotive Systems, Inc. Method, system and apparatus for detecting injector closing time
JP2019027364A (en) * 2017-07-31 2019-02-21 株式会社Soken Urea water injector
JP2019148252A (en) * 2018-02-28 2019-09-05 株式会社デンソー Electronic control device of exhaust emission control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074889A (en) * 2009-10-01 2011-04-14 Hitachi Constr Mach Co Ltd Exhaust emission control device
JP2012082819A (en) * 2010-09-13 2012-04-26 Bosch Corp Reducing agent injection device and control method therefor
WO2012090801A1 (en) * 2010-12-27 2012-07-05 ボッシュ株式会社 Exhaust purification system and method for controlling exhaust purification system
JP2012127214A (en) * 2010-12-13 2012-07-05 Bosch Corp Reducing agent supplying system, and exhaust gas purifying system of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074889A (en) * 2009-10-01 2011-04-14 Hitachi Constr Mach Co Ltd Exhaust emission control device
JP2012082819A (en) * 2010-09-13 2012-04-26 Bosch Corp Reducing agent injection device and control method therefor
JP2012127214A (en) * 2010-12-13 2012-07-05 Bosch Corp Reducing agent supplying system, and exhaust gas purifying system of internal combustion engine
WO2012090801A1 (en) * 2010-12-27 2012-07-05 ボッシュ株式会社 Exhaust purification system and method for controlling exhaust purification system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015334175B2 (en) * 2014-10-23 2018-12-06 Bosch Corporation Control device and control method for reducing agent injection device, and reducing agent injection device
US10240504B2 (en) 2014-10-23 2019-03-26 Bosch Corporation Control device and control method for reducing agent injection device, and reducing agent injection device
JPWO2016063697A1 (en) * 2014-10-23 2017-07-27 ボッシュ株式会社 Control device and control method for reducing agent injection device and reducing agent injection device
CN107076001A (en) * 2014-10-23 2017-08-18 博世株式会社 The control device and control method and reducing agent injection apparatus of reducing agent injection apparatus
WO2016063697A1 (en) * 2014-10-23 2016-04-28 ボッシュ株式会社 Control device and control method for reducing agent injection device, and reducing agent injection device
WO2016076256A1 (en) * 2014-11-13 2016-05-19 いすゞ自動車株式会社 Urea water injection system and method for preventing crystallization in urea water injection device
US10450922B2 (en) 2014-11-13 2019-10-22 Isuzu Motors Limited Urea water injection system and method for preventing crystallization in urea water injection device
CN107109982A (en) * 2014-11-13 2017-08-29 五十铃自动车株式会社 Urea water injection system and urea water injection device prevent crystallization method
JP2016142249A (en) * 2015-02-05 2016-08-08 株式会社デンソー Control device of exhaust emission control system
US10012170B2 (en) 2015-04-17 2018-07-03 Continental Automotive Systems, Inc. Method, system and apparatus for detecting injector closing time
KR101938935B1 (en) * 2015-04-17 2019-01-15 컨티넨탈 오토모티브 시스템즈 인코포레이티드 Method, system and apparatus for detecting injector closing time
US10871120B2 (en) 2015-04-17 2020-12-22 Vitesco Technologies USA, LLC. Method, system and apparatus for detecting injector closing time
JP2017078345A (en) * 2015-10-20 2017-04-27 ボッシュ株式会社 Control device for reducing agent injection device
JP2017115887A (en) * 2015-12-21 2017-06-29 ジェイ・シー・バムフォード・エクスカヴェイターズ・リミテッドJ.C.Bamford Excavators Limited Dosing module
JP2019027364A (en) * 2017-07-31 2019-02-21 株式会社Soken Urea water injector
JP2019148252A (en) * 2018-02-28 2019-09-05 株式会社デンソー Electronic control device of exhaust emission control system
JP7035625B2 (en) 2018-02-28 2022-03-15 株式会社デンソー Electronic control device for exhaust purification system

Also Published As

Publication number Publication date
JP6088865B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP6088865B2 (en) Control method for reducing agent supply device
JP5139765B2 (en) Control device and control method for reducing agent supply system
JP5547815B2 (en) Reducing agent injection valve abnormality determination device and reducing agent supply device
JP6663680B2 (en) Control device for reducing agent injection device
JP6274698B2 (en) Control device and control method for reducing agent injection device and reducing agent injection device
US9816416B2 (en) Control apparatus and control method for reducing agent supply apparatus
WO2014061377A1 (en) Reducing agent recovery control method, reducing agent supply device, and electronic control device
EP3533978B1 (en) Urea water supply system and control method therefor
US10844768B2 (en) Abnormality determination device
JP6017866B2 (en) Reducing agent supply device, liquid reducing agent recovery control method, and exhaust purification device
JP2012127214A (en) Reducing agent supplying system, and exhaust gas purifying system of internal combustion engine
JP5533363B2 (en) SCR system
JP6693408B2 (en) Urea water stirring controller
JP6012086B2 (en) Control method for reducing agent supply device and reducing agent supply device
JP2012127308A (en) Reducing agent supply device, and exhaust emission control device for internal combustion engine
WO2015001858A1 (en) Reducing agent supply device and method of controlling same
JP2019073976A (en) Diagnosis device and diagnosis method
JP7200735B2 (en) Exhaust purification control device
JP2014015856A (en) Reductant agent supply device, recovery control method of liquid reductant agent, and exhaust emission control device
JP6753949B2 (en) Heater control device and heater control method
JP2015017576A (en) Reducer feeding device
JP5914151B2 (en) Reducing agent injection valve abnormality detection device and reducing agent supply device
JP6493953B2 (en) Control device and control method for reducing agent injection device and reducing agent injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R151 Written notification of patent or utility model registration

Ref document number: 6088865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250