JP2014175533A - Laser element - Google Patents

Laser element Download PDF

Info

Publication number
JP2014175533A
JP2014175533A JP2013048167A JP2013048167A JP2014175533A JP 2014175533 A JP2014175533 A JP 2014175533A JP 2013048167 A JP2013048167 A JP 2013048167A JP 2013048167 A JP2013048167 A JP 2013048167A JP 2014175533 A JP2014175533 A JP 2014175533A
Authority
JP
Japan
Prior art keywords
dielectric constant
waveguide
gain medium
medium
negative dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013048167A
Other languages
Japanese (ja)
Inventor
Ryota Sekiguchi
亮太 関口
Toshihiko Onouchi
敏彦 尾内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013048167A priority Critical patent/JP2014175533A/en
Priority to US14/195,926 priority patent/US20140254615A1/en
Publication of JP2014175533A publication Critical patent/JP2014175533A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1046Comprising interactions between photons and plasmons, e.g. by a corrugated surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • H01S5/3402Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2302/00Amplification / lasing wavelength
    • H01S2302/02THz - lasers, i.e. lasers with emission in the wavelength range of typically 0.1 mm to 1 mm

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique related to optimization of the waveguide cross-sectional shape for improving the net gain in a laser element.SOLUTION: A laser element has a waveguide including a resonance structure for resonating electromagnetic wave. The waveguide includes a gain medium 103, a first negative permittivity medium 104 of a negative permittivity real part in contact with the gain medium, a second negative permittivity medium 102 of a negative permittivity real part in contact with the gain medium, and a side face structure 105 on a positive permittivity real part in contact with the side face of the gain medium, and held by the first and second negative permittivity media. The waveguide includes a section where the width w between the side faces of the gain media 103 is equal to or less than two times of the thickness h of the side face structure 105 held by the first and second negative permittivity media.

Description

本発明は、レーザ素子に関する。特には、例えば、ミリ波帯からテラヘルツ帯まで(30GHz乃至30THz)の周波数領域内の周波数帯の電磁波(以下、テラヘルツ波などとも記す)における電流注入型のレーザ素子に関する。更に詳細には、例えば、表面プラズモンの伝搬する導波路を備えた電流注入型のレーザ素子に関する。 The present invention relates to a laser element. In particular, the present invention relates to a current injection type laser element in an electromagnetic wave (hereinafter also referred to as a terahertz wave or the like) in a frequency band in a frequency region from a millimeter wave band to a terahertz band (30 GHz to 30 THz). More specifically, for example, the present invention relates to a current injection type laser device including a waveguide through which surface plasmons propagate.

新しい種類の半導体レーザ発振器として、伝導帯或いは価電子帯の同一エネルギー帯内におけるキャリアのエネルギー準位間遷移(サブバンド間遷移)に基づく量子カスケードレーザ、トンネルダイオードを導波路状に加工した発振器、が知られている。最近では、生体センシングなどに有用と考えられているテラヘルツ帯の電磁波資源の需要もある。これに伴って、量子カスケードレーザにおいては、発振波長をより長波長側にする開発が、導波路状のトンネルダイオード発振器においては、発振周波数をより高周波側にする開発が、行われる様になっている。 As a new kind of semiconductor laser oscillator, quantum cascade laser based on transition between energy levels (intersubband transition) of carriers in the same energy band of conduction band or valence band, oscillator which processed tunnel diode into waveguide, It has been known. Recently, there is also a demand for electromagnetic resources in the terahertz band that are considered useful for biological sensing and the like. Along with this, development has been carried out to make the oscillation wavelength longer in the quantum cascade laser, and development to make the oscillation frequency higher in the waveguide-shaped tunnel diode oscillator. Yes.

非特許文献1は、量子カスケードレーザをテラヘルツ帯で発振させる幾つかの方法を開示している。その一つが、半導体の利得媒質を金属と金属で挟み込む金属−金属導波路である。金属は、この周波数帯において誘電率実部が負である負誘電率媒質として機能する。このとき、負誘電率媒質のクラッドに導かれる導波モードは、表面プラズモンと呼ばれる負誘電率媒質内の荷電キャリアの分極振動が寄与した電磁波である。表面プラズモンには回折限界が存在しないため、モード強度の多くを、利得媒質へ閉じ込めることが可能である。この様な手法を用いることによって、発振周波数が1.2THz(発振波長λ=250μm)のレーザ発振を達成している。 Non-Patent Document 1 discloses several methods for causing a quantum cascade laser to oscillate in the terahertz band. One of them is a metal-metal waveguide in which a semiconductor gain medium is sandwiched between metals. The metal functions as a negative dielectric constant medium in which the real part of the dielectric constant is negative in this frequency band. At this time, the waveguide mode guided to the cladding of the negative dielectric constant medium is an electromagnetic wave contributed by polarization oscillation of charge carriers in the negative dielectric constant medium called surface plasmon. Since surface plasmons have no diffraction limit, much of the mode intensity can be confined in the gain medium. By using such a method, laser oscillation with an oscillation frequency of 1.2 THz (oscillation wavelength λ = 250 μm) is achieved.

特許文献1は、半導体の利得媒質と側面構造である誘電体とを、ミリ波帯からテラヘルツ帯において誘電率実部が負である負誘電率媒質(構成材料は金属ないし高濃度ドーピングされた半導体)で挟み込む構造を開示している。このときも、負誘電率媒質のクラッドに導かれる導波モードは表面プラズモンであるが、誘電体側面構造を導入することによって、導波路損失を効果的に低減することが可能になっている。この様な手法を用いることによって、例えば、トンネルダイオード等でも発振可能な、発振周波数が0.3THz(発振波長λ=1000μm)の導波路状の発振器を達成している。 Patent Document 1 discloses that a semiconductor gain medium and a dielectric having a side structure are a negative dielectric constant medium having a negative dielectric constant in a millimeter wave band to a terahertz band (a constituent material is a metal or a highly doped semiconductor). ) Is disclosed. At this time as well, the waveguide mode guided to the cladding of the negative dielectric constant medium is surface plasmon. However, by introducing a dielectric side surface structure, it is possible to effectively reduce the waveguide loss. By using such a technique, for example, a waveguide oscillator having an oscillation frequency of 0.3 THz (oscillation wavelength λ = 1000 μm) that can oscillate even with a tunnel diode or the like is achieved.

特許第4857027号Japanese Patent No.48557027

Benjamin S. Williams,Nat.Photonics, Vol. 1(2007), 97Benjamin S. Williams, Nat. Photonics, Vol. 1 (2007), 97

しかしながら、ミリ波帯からテラヘルツ帯までのレーザ素子の更なる特性改良が求められており、その一要素としての導波路断面形状の改良が必要となっていた。ところが、非特許文献1では、導波路の幅方向についての記載はなく、幅方向が考慮されている特許文献1でも導波路の幅は発振波長以下としか開示されていなかった。したがって、従来のレーザ発振器における、正味の利得(=利得から導波路損失を引いた差分)を改良する導波路の幅については、良く知られていなかった。本発明は、こうした課題について鑑みたものであり、その目的は、従来のミリ波帯からテラヘルツ帯までの周波数領域内の周波数帯のレーザ素子などの素子における導波路断面形状の最適化を行う技術を提供することである。 However, further improvements in the characteristics of laser elements from the millimeter wave band to the terahertz band have been demanded, and improvement of the waveguide cross-sectional shape as one element has been required. However, in Non-Patent Document 1, there is no description about the width direction of the waveguide, and even in Patent Document 1 in which the width direction is taken into account, the width of the waveguide is only disclosed to be equal to or less than the oscillation wavelength. Therefore, the width of the waveguide for improving the net gain (= the difference obtained by subtracting the waveguide loss from the gain) in the conventional laser oscillator has not been well known. The present invention has been made in view of such problems, and the object thereof is a technique for optimizing the cross-sectional shape of a waveguide in an element such as a laser element in a frequency band in a frequency region from a conventional millimeter wave band to a terahertz band. Is to provide.

本発明のレーザ素子は、電磁波を共振させるための共振構造を含む導波路を有するレーザ素子であって、前記導波路は、電磁波を発生させるための利得媒質と、前記利得媒質に電気的に接して設けられた前記電磁波に対する誘電率実部が負である第一の負誘電率媒質と、前記利得媒質に電気的に接して設けられ、該利得媒質を介して前記第一の負誘電率媒質の反対側に設けられた前記電磁波に対する誘電率実部が負である第二の負誘電率媒質と、前記利得媒質の側面に接して設けられ、前記第一及び第二の負誘電率媒質で挟まれた前記電磁波に対する誘電率実部が正である側面構造と、を備える。そして、前記導波路は、前記利得媒質の側面間の幅wが、前記側面構造の前記第一及び第二の負誘電率媒質で挟まれた厚さhの二倍以下の区間を備える。 The laser element of the present invention is a laser element having a waveguide including a resonance structure for resonating an electromagnetic wave, and the waveguide is in electrical contact with a gain medium for generating the electromagnetic wave and the gain medium. A first negative dielectric constant medium having a negative real part of the dielectric constant with respect to the electromagnetic wave provided in contact with the gain medium, and the first negative dielectric constant medium via the gain medium. A second negative dielectric constant medium having a negative dielectric constant relative to the electromagnetic wave provided on the opposite side, and a side surface of the gain medium, the first and second negative dielectric constant media being A side structure in which a real part of a dielectric constant for the sandwiched electromagnetic wave is positive. The waveguide includes a section in which the width w between the side surfaces of the gain medium is equal to or less than twice the thickness h sandwiched between the first and second negative dielectric constant media of the side structure.

本発明によれば、従来のレーザ素子において、正味の利得が存在する周波数帯、すなわち、利得が導波路損失を上回る周波数帯を拡大することができる。例えば、量子カスケードレーザであれば更なる発振波長帯の拡大、導波路状のトンネルダイオード発振器においては、発振周波数帯の更なる高周波化が行える。 According to the present invention, in the conventional laser element, it is possible to expand the frequency band where the net gain exists, that is, the frequency band where the gain exceeds the waveguide loss. For example, in the case of a quantum cascade laser, the oscillation wavelength band can be further expanded, and in a waveguide-shaped tunnel diode oscillator, the oscillation frequency band can be further increased.

第一の実施形態に係るレーザ素子の構造を示す断面図。Sectional drawing which shows the structure of the laser element which concerns on 1st embodiment. 第一の実施形態の変形例に係るレーザ素子の構造を示す断面図。Sectional drawing which shows the structure of the laser element which concerns on the modification of 1st embodiment. 第二の実施形態に係るレーザ素子の構造を示す断面図。Sectional drawing which shows the structure of the laser element which concerns on 2nd embodiment. 第三の実施形態に係るレーザ素子の構造を示す断面図。Sectional drawing which shows the structure of the laser element which concerns on 3rd embodiment. 第四の実施形態に係るレーザ素子の構造を示す上面図。The top view which shows the structure of the laser element which concerns on 4th embodiment. 実施例1に係るレーザ素子の構造を示す断面図、及び導波路損失α、伝搬方向の波数βの計算結果を示すグラフ。Sectional drawing which shows the structure of the laser element which concerns on Example 1, and the graph which shows the calculation result of waveguide loss (alpha) and the wave number (beta) of a propagation direction.

本発明のレーザ素子は、導波路の利得媒質の側面間の幅wが、側面構造の第一及び第二の負誘電率媒質で挟まれた厚さhの二倍以下の区間を備えることを特徴とする。本発明により、従来のレーザ素子に求められていた正味の利得を改良するための導波路断面形状の最適化を行うことができる。 The laser element of the present invention is provided with a section in which the width w between the side surfaces of the gain medium of the waveguide is not more than twice the thickness h sandwiched between the first and second negative dielectric constant media of the side structure. Features. According to the present invention, the waveguide cross-sectional shape can be optimized to improve the net gain required for the conventional laser element.

導波路断面形状の問題は、従来のレーザ素子の利得媒質における電磁波利得を負の微分コンダクタンスGd(<0)に置き換えることによって、電気回路的に検討することが可能である。量子カスケードレーザであれば、利得は、波長λの関数として負の光学伝導度σ(λ)としても表現することが出来る。Gd(λ)とσ(λ)とは比例関係にある。トンネルダイオードの場合は、DC(直流)からテラヘルツ帯辺りに至る周波数領域における負性コンダクタンスGdはあまり変化しないのでDCにおけるGdをミリ波帯からテラヘルツ帯の周波数領域に拡張すればよい。こうした置き換えは、特に、導波路に保持される表面プラズモンモードがシングルモードのときに良い近似となる。 The problem of the waveguide cross-sectional shape can be examined in terms of an electric circuit by replacing the electromagnetic wave gain in the gain medium of the conventional laser element with a negative differential conductance Gd (<0). For quantum cascade lasers, gain can also be expressed as negative optical conductivity σ (λ) as a function of wavelength λ. Gd (λ) and σ (λ) are in a proportional relationship. In the case of a tunnel diode, the negative conductance Gd in the frequency region from DC (direct current) to around the terahertz band does not change so much, so it is only necessary to extend Gd in DC from the millimeter wave band to the terahertz band. Such replacement is a good approximation especially when the surface plasmon mode held in the waveguide is a single mode.

シングルモードを伝搬する様な導波路の幅が比較的細いとき、比例係数を介して、電磁波利得∝−Gdの関係がある。導波路損失は、同様に比例定数を介して、導波路単位長さあたりの長手方向の電気抵抗Rsと導波路単位長さあたりの厚さ方向のコンダクタンスGpとに分解される。このときの導波路損失αは、分布定数回路理論より、第一近似として、次の如く記載することができる。
α=Rs/Zc+GpZc
ここで、Zcは、導波路の特性インピーダンスであり、導波路を伝搬する電磁波の電界と磁界の比に比例する。従来のレーザ素子の導波路における負誘電率媒質は、金属ないし高濃度ドーピングされた半導体など電気伝導率が比較的大きな材料で形成されるため、右辺第二項はGp〜Gd(<0)と考えてよい。この項は負になる。αはm-1の単位を持ち、右辺第二項の絶対値が右辺第一項の絶対値を上回ると、αは負、つまり正味の電磁波利得を意味する。Rsは負誘電率媒質の導体損失で決まってしまうが、Zcは導波路断面形状で調整することができる。したがって、この部分に最適化の余地がある。
When the width of a waveguide that propagates a single mode is relatively narrow, there is a relationship of electromagnetic wave gain ∝−Gd through a proportional coefficient. Similarly, the waveguide loss is decomposed into the electrical resistance Rs in the longitudinal direction per unit length of the waveguide and the conductance Gp in the thickness direction per unit length of the waveguide through the proportionality constant. The waveguide loss α at this time can be described as the first approximation from the distributed constant circuit theory as follows.
α = Rs / Zc + GpZc
Here, Zc is the characteristic impedance of the waveguide, and is proportional to the ratio of the electric field to the magnetic field of the electromagnetic wave propagating through the waveguide. Since the negative dielectric constant medium in the waveguide of the conventional laser element is made of a material having a relatively large electrical conductivity such as a metal or a highly doped semiconductor, the second term on the right side is Gp to Gd (<0). You can think about it. This term is negative. α has a unit of m −1 , and when the absolute value of the second term on the right side exceeds the absolute value of the first term on the right side, α means negative, that is, a net electromagnetic wave gain. Rs is determined by the conductor loss of the negative dielectric constant medium, but Zc can be adjusted by the waveguide cross-sectional shape. Therefore, there is room for optimization in this part.

特性インピーダンスZcは、別の表現では、導波路単位長さあたりの長手方向のインダクタンスLsと、導波路単位長さあたりの厚さ方向の容量Cpを用いて、次の如く記載することができる。
Zc=√(Ls/Cp)
従来のレーザ素子において、Lsは導波路幅wに反比例し、Cpは導波路幅wに比例するため、Zc∝1/w(∝は比例するという意味)である。
In another expression, the characteristic impedance Zc can be described as follows using the inductance Ls in the longitudinal direction per unit length of the waveguide and the capacitance Cp in the thickness direction per unit length of the waveguide.
Zc = √ (Ls / Cp)
In the conventional laser element, Ls is inversely proportional to the waveguide width w, and Cp is proportional to the waveguide width w, and thus is Zc∝1 / w (meaning that ∝ is proportional).

同様に、導波路損失αの要素を導波路幅w依存性で整理すると、次の様になる。
場合1)利得媒質が側面構造を伴わずに負誘電率媒質に挟まれた場合。
Rs∝1/w
Rs/Zc∝const.(右辺第一項はwに依らずに定数)
Gd∝w
GdZc∝const.(右辺第二項はwに依らずに定数)
上記の如くであるから、導波路幅wを最適化するスケールメリットは第一近似的には考えにくい。
Similarly, the elements of the waveguide loss α are arranged as follows depending on the waveguide width w dependency.
Case 1) The gain medium is sandwiched between negative dielectric constant media without a side structure.
Rs∝1 / w
Rs / Zc∝const. (The first term on the right side is a constant regardless of w)
Gd∝w
GdZc∝const. (The second term on the right side is a constant regardless of w)
As described above, the merit of scale for optimizing the waveguide width w is hardly considered in the first approximation.

一方で、場合2)利得媒質と側面構造とが、負誘電率媒質に挟まれた場合。
Rs=const.
Rs/Zc∝w(右辺第一項はwに比例)
Gd∝w
GdZc∝const.(右辺第二項はwに依らずに定数)
上記の如くであるから、導波路幅wは細い方がRs/Zcが小さくなるスケールメリットがあり、正味の電磁波利得を大きくすることができる。より正確には、Rsのw依存性は、詳細な構造によって若干変化するが、wの一次よりは依存性が小さくなるだけ(w依存性がゼロ次に近づくが定数にはならない)であるため、同じ結論に帰着する。本発明は、こうした電気回路的な定性的検討に基づいて導波路断面形状を最適化するものであり、以下のような実施形態がある。
On the other hand, Case 2) The gain medium and the side structure are sandwiched between negative dielectric constant media.
Rs = const.
Rs / Zc∝w (The first term on the right side is proportional to w)
Gd∝w
GdZc∝const. (The second term on the right side is a constant regardless of w)
As described above, the narrower the waveguide width w, the smaller the Rs / Zc, there is a merit of scale, and the net electromagnetic wave gain can be increased. More precisely, the w dependence of Rs varies slightly depending on the detailed structure, but it is only less dependent than the first order of w (w dependence approaches zero but does not become a constant). , Resulting in the same conclusion. The present invention optimizes the cross-sectional shape of the waveguide based on such qualitative examination in terms of electric circuit, and includes the following embodiments.

(第一の実施形態)
第一の実施形態に係るレーザ素子について、図1を用いて説明する。図1は本実施形態の導波路断面を示す模式図であり、導波路はz方向(紙面と垂直方向)に沿って伸びている。z方向は導波路の長手方向で且つ電磁波の伝搬方向を指している。x方向は、導波路の幅方向、y方向は導波路の厚さ方向に対応する。
(First embodiment)
The laser element according to the first embodiment will be described with reference to FIG. FIG. 1 is a schematic diagram showing a cross section of a waveguide according to the present embodiment, and the waveguide extends along the z direction (direction perpendicular to the paper surface). The z direction indicates the longitudinal direction of the waveguide and the propagation direction of the electromagnetic wave. The x direction corresponds to the width direction of the waveguide, and the y direction corresponds to the thickness direction of the waveguide.

第一の実施形態において、101、102は、ミリ波帯からテラヘルツ帯までの周波数領域内の発振周波数帯における負誘電率媒質である。金属あるいは高濃度ドーピングされた半導体、あるいはその両方から構成される。103は、同周波数帯における電磁波を発生する利得媒質である。負誘電率媒質101、102は、利得媒質103を挟んで互いに反対側に配置される。典型的には、電流注入を行って利得を有する様な半導体多層膜構造が採用される。利得媒質103は、負誘電率媒質101、102に挟まれており、且つ負誘電率媒質101、102を通じて利得媒質103に電流注入できる様に電気的にも接している。図示しない外部電界印加手段によって供給される電圧は、負誘電率媒質101、102を介して利得媒質103の上下に印加され、こうして、利得媒質103へ電流注入を行うことが出来る。負誘電率媒質101、102それぞれは、第一の負誘電率媒質のクラッド、第二の負誘電率媒質のクラッドであり、導波路には表面プラズモンモードがz方向に伝搬することが出来る。また、105は誘電率実部が正の正誘電率媒質である。誘電体で構成されたり、あるいは空気つまりエアブリッジで構成されたりしてもよい。正誘電率媒質105は、利得媒質103の側面に隣接して側面構造を形成するとともに、同様に負誘電率媒質101、102に挟まれている。 In the first embodiment, reference numerals 101 and 102 denote negative dielectric constant media in an oscillation frequency band in a frequency region from the millimeter wave band to the terahertz band. It consists of a metal, a heavily doped semiconductor, or both. Reference numeral 103 denotes a gain medium that generates electromagnetic waves in the same frequency band. The negative dielectric constant media 101 and 102 are arranged on opposite sides of the gain medium 103. Typically, a semiconductor multilayer structure is employed in which current injection is performed and gain is obtained. The gain medium 103 is sandwiched between the negative dielectric constant media 101 and 102 and is also in electrical contact so that current can be injected into the gain medium 103 through the negative dielectric constant media 101 and 102. A voltage supplied by an external electric field applying means (not shown) is applied above and below the gain medium 103 via the negative dielectric constant media 101 and 102, and thus current can be injected into the gain medium 103. Each of the negative dielectric constant media 101 and 102 is a cladding of a first negative dielectric constant medium and a cladding of a second negative dielectric constant medium, and a surface plasmon mode can propagate in the z direction in the waveguide. Reference numeral 105 denotes a positive dielectric constant medium having a positive real part of dielectric constant. It may be composed of a dielectric, or it may be composed of air, that is, an air bridge. The positive dielectric constant medium 105 forms a side structure adjacent to the side face of the gain medium 103 and is similarly sandwiched between the negative dielectric constant media 101 and 102.

本実施形態の負誘電率媒質101、102は、少なくとも一方には利得媒質103の幅にわたる部分において利得媒質103側に突出したリブ形状104を含んでいる。このような導波路断面形状において、導波路の幅wは、利得媒質103のx方向の一方の側面からもう一方の側面までの幅で定義する。負誘電率媒質101、102に挟まれた側面構造の正誘電率媒質105のy方向の高さをhと定義する。 At least one of the negative dielectric constant media 101 and 102 of the present embodiment includes a rib shape 104 that protrudes toward the gain medium 103 in a portion extending over the width of the gain medium 103. In such a waveguide cross-sectional shape, the width w of the waveguide is defined by the width from one side surface of the gain medium 103 in the x direction to the other side surface. The height in the y direction of the positive dielectric constant medium 105 having a side structure sandwiched between the negative dielectric constant media 101 and 102 is defined as h.

本実施形態の場合、導波路の長手方向の電気抵抗Rsは負誘電率媒質101、102の幅方向に広い部分で決まるから、Rs=const.といえる。また、利得媒質の電磁波利得に比例する負の微分コンダクタンスGdは、導波路の幅wでその大きさが決まり、Gd∝wである。本実施形態の場合、電磁波の磁力線は側面構造に漏洩するため、導波路の長手方向のインダクタンスLsは、むしろ側面構造の高さhで決まるようになり、導波路幅w依存性は比較的小さくなる。導波路単位長さあたりの厚さ方向の容量Cpは、利得媒質103が比較的誘電率の高い半導体であるから導波路の幅wで決まる。ゆえに、特性インピーダンスZcは、おおまかにはZc∝√(h/w)と考えられる。ここで再び、導波路損失α=Rs/Zc+GpZcを整理し直すと、次の様になる。
Rs=const.
Rs/Zc∝√(w/h)
Gd∝w
GdZc∝√(h/w)
側面構造の高さhを考慮したため、先の議論とは構造依存性は異なっているが、結論として、導波路幅wは細い方が、Rs/Zcが小さくGdZcが大きくなるため、正味の電磁波利得を大きくすることができることには変わりない。すなわち、正のRs/Zcが小さくなり負のGdZcの絶対値が大きくなって、導波路損失αが小さくなる(正のαが小さくなるか、負のαの絶対値が大きくなる)ので正味の電磁波利得が大きくなる。本実施形態のように側面構造の高さhを規定した際、導波路幅wは側面構造高さh以下であると正味の利得を効果的に大きくできるため、好ましい。より広い許容範囲で言えば、導波路幅wは側面構造高さhの二倍以下であると良い。すなわち、導波路は、利得媒質の側面間の幅wが、側面構造の第一及び第二の負誘電率媒質で挟まれた厚さh以下の区間、或いは厚さhの二倍以下の区間を備える。導波路は、共振構造の全長に亘って、幅wが厚さh以下であったり、厚さhの二倍以下であったりしてもよい。
In the case of this embodiment, since the electrical resistance Rs in the longitudinal direction of the waveguide is determined by a wide portion in the width direction of the negative dielectric constant media 101 and 102, it can be said that Rs = const. The negative differential conductance Gd proportional to the electromagnetic wave gain of the gain medium is determined by the width w of the waveguide and is Gd∝w. In the case of the present embodiment, since the magnetic field lines of electromagnetic waves leak to the side structure, the longitudinal inductance Ls of the waveguide is rather determined by the height h of the side structure, and the dependence on the waveguide width w is relatively small. Become. The capacitance Cp in the thickness direction per waveguide unit length is determined by the waveguide width w because the gain medium 103 is a semiconductor having a relatively high dielectric constant. Therefore, the characteristic impedance Zc is roughly considered to be Zc∝√ (h / w). Here again, the waveguide loss α = Rs / Zc + GpZc is rearranged as follows.
Rs = const.
Rs / Zc∝√ (w / h)
Gd∝w
GdZc∝√ (h / w)
Considering the height h of the side structure, the structure dependence is different from the previous discussion, but as a result, the narrower the waveguide width w, the smaller Rs / Zc and the larger GdZc. The gain can be increased. That is, the positive Rs / Zc decreases and the absolute value of negative GdZc increases and the waveguide loss α decreases (positive α decreases or the absolute value of negative α increases). The electromagnetic wave gain increases. When the height h of the side structure is defined as in the present embodiment, it is preferable that the waveguide width w be equal to or smaller than the side structure height h because the net gain can be effectively increased. Speaking of a wider tolerance, the waveguide width w is preferably not more than twice the side structure height h. That is, in the waveguide, the width w between the side surfaces of the gain medium is a section of the thickness h or less sandwiched between the first and second negative dielectric constant media of the side structure, or a section of twice or less the thickness h. Is provided. The waveguide may have a width w that is less than or equal to thickness h or less than or equal to twice the thickness h over the entire length of the resonant structure.

第一の実施形態の変形例として、図2のような導波路断面も可能である。上述の議論において、利得媒質103の導波路における厚さ方向の位置には任意性がある。例えば、図2(a)のように利得媒質203が第二の負誘電率媒質202の側に偏心してもよいし、逆に、第一の負誘電率媒質201の側に偏心してもよい。さらにいえば、負誘電率媒質のクラッドのリブ形状についても任意性がある。これは、利得媒質203から側面構造205に向かう磁力線の漏洩の程度より小さなスケールでの議論になるが、図2(a)の様な短冊状でなくてもよく、例えば、図2(b)、(c)の様な台形状リブ204でも、かまぼこ状リブ204でもよい。つまり、磁力線が漏洩している範囲内のクラッドのリブ形状の縁部の形状は任意である。 As a modification of the first embodiment, a waveguide cross section as shown in FIG. 2 is also possible. In the above discussion, the position of the gain medium 103 in the thickness direction in the waveguide is arbitrary. For example, as shown in FIG. 2A, the gain medium 203 may be eccentric to the second negative dielectric constant medium 202 side, or conversely, may be eccentric to the first negative dielectric constant medium 201 side. Furthermore, the rib shape of the cladding of the negative dielectric constant medium is also arbitrary. This is a discussion on a scale smaller than the degree of leakage of magnetic lines of force from the gain medium 203 toward the side structure 205, but it does not have to be a strip shape as shown in FIG. 2A. For example, FIG. The trapezoidal rib 204 as shown in FIG. That is, the shape of the rib-shaped edge of the clad within the range in which the magnetic field lines are leaking is arbitrary.

(第二の実施形態)
第二の実施形態に係るレーザ素子について、図3を用いて説明する。図3は本実施形態の導波路断面を示す模式図であり、第一の実施形態と同様に、導波路はz方向に沿って伸びている。
(Second embodiment)
A laser element according to the second embodiment will be described with reference to FIG. FIG. 3 is a schematic diagram showing a cross section of the waveguide according to the present embodiment. Like the first embodiment, the waveguide extends along the z direction.

本実施形態は、第一の実施形態をより実際的に構成した一例を示すものである。311、312は、利得媒質303に接する負誘電率媒質で、高濃度ドーピングされた半導体が選ばれる。301、302は、高濃度ドーピングされた半導体311、312に接する負誘電率媒質で、金属が選ばれる。これには2つの理由がある。作製の容易化のためと、側面構造305の高さhを大きく設定可能として導波路幅w(=or<h或いは=or<2h)の選択自由度を大きくするためと、である。利得媒質303は、典型的には、量子カスケードレーザやトンネルダイオード、共鳴トンネルダイオードのような半導体多層膜構造が採用される。負誘電率媒質311、312は高濃度ドーピングされた半導体であるから、連続成膜などの手段によって負誘電率媒質311、利得媒質303、負誘電率媒質312の積層構造は容易に形成することが出来る。負誘電率媒質311、利得媒質303、負誘電率媒質312の等しい幅wは、ほぼ選択比が同じ半導体を採用することが出来るため、ドライエッチングあるいはウェットエッチングなどによって容易に形成することが出来る。ただし、通常、こうした構造の実現のためには金属圧着プロセスが必要となる。 The present embodiment shows an example in which the first embodiment is configured more practically. Reference numerals 311 and 312 denote negative dielectric constant media in contact with the gain medium 303, and a highly doped semiconductor is selected. Reference numerals 301 and 302 denote negative dielectric constant media in contact with the heavily doped semiconductors 311 and 312, and a metal is selected. There are two reasons for this. This is because the height h of the side structure 305 can be set large and the degree of freedom in selecting the waveguide width w (= or <h or = or <2h) is increased. The gain medium 303 typically employs a semiconductor multilayer structure such as a quantum cascade laser, a tunnel diode, or a resonant tunnel diode. Since the negative dielectric constant media 311 and 312 are highly doped semiconductors, the laminated structure of the negative dielectric constant medium 311, the gain medium 303, and the negative dielectric constant medium 312 can be easily formed by means such as continuous film formation. I can do it. The same width w of the negative dielectric constant medium 311, the gain medium 303, and the negative dielectric constant medium 312 can be easily formed by dry etching or wet etching because semiconductors having substantially the same selection ratio can be employed. However, a metal crimping process is usually required to realize such a structure.

本実施形態で重要なことは、上述した定数のRs(長手方向の電気抵抗)を構造上で実現することである。そのためには、負誘電率媒質301、302の幅方向の広い部分へ電磁波を浸透させる必要がある。本実施形態における発振周波数帯において、金属は表皮深さが薄く、半導体は表皮深さが厚い。こうした性質を利用すると、負誘電率媒質のリブ311、312の部分には半導体を用いる方が、定数のRsを実現しやすい。側面構造305の高さhを大きく選択可能とするためには、リブ311、312に高濃度ドーピングされた半導体を用いる。典型的には、キャリア濃度1×1019cm‐3程度を選択するとよい。 What is important in the present embodiment is to realize the above-described constant Rs (electric resistance in the longitudinal direction) on the structure. For that purpose, it is necessary to permeate electromagnetic waves into wide portions of the negative dielectric constant media 301 and 302 in the width direction. In the oscillation frequency band in the present embodiment, the metal has a thin skin depth, and the semiconductor has a thick skin depth. If such a property is used, it is easier to realize a constant Rs if a semiconductor is used for the ribs 311 and 312 of the negative dielectric constant medium. In order to make the height h of the side structure 305 large, a semiconductor in which the ribs 311 and 312 are highly doped is used. Typically, a carrier concentration of about 1 × 10 19 cm −3 should be selected.

また、本実施形態では、金属の負誘電率媒質301、302を通じて利得媒質303に電流注入するための二電極321、322を備えている。本実施形態の素子のレーザ発振動作は、二電極321、322へ図示しない電圧源を接続することによって達成される。 In the present embodiment, two electrodes 321 and 322 for injecting current into the gain medium 303 through the metal negative dielectric constant media 301 and 302 are provided. The laser oscillation operation of the element of this embodiment is achieved by connecting a voltage source (not shown) to the two electrodes 321 and 322.

(第三の実施形態)
第三の実施形態に係るレーザ素子について、図4を用いて説明する。図4は本実施形態の導波路断面を示す模式図であり、第一の実施形態と同様に、導波路はz方向に沿って伸びている。
(Third embodiment)
A laser element according to the third embodiment will be described with reference to FIG. FIG. 4 is a schematic diagram showing a cross section of the waveguide according to the present embodiment. Like the first embodiment, the waveguide extends along the z direction.

本実施形態は、第一の実施形態をより実際的に構成した一例を示すものである。400は導電性半導体基板である。例えば、キャリア濃度を1×1018cm‐3以上とするのが好ましい。さらに、負誘電率媒質401は高濃度キャリアドープされた半導体を用いる。半導体層401は、本実施形態の発振周波数帯における表皮深さより厚いことが望ましく、例えば厚さ数μm(たとえば2μm、3μm)のキャリア濃度1×1020cm‐3の半導体が好ましい。また、金属421は、負誘電率媒質のクラッドと電極を兼ねている。こうした構成は、利得媒質403から下方向への電気力線の漏洩を低減しつつ、作製を容易化することのできる好適な構成の一つである。金属402、高濃度キャリアドープされた半導体411、412、利得媒質403、電極422は第二の実施形態と同様である。正誘電率媒質405には、ミリ波帯からテラヘルツ帯までの周波数領域内において比較的低損失で低誘電率の誘電体であるBCB(ベンゾシクロブテン)を利用してもよい。 The present embodiment shows an example in which the first embodiment is configured more practically. Reference numeral 400 denotes a conductive semiconductor substrate. For example, the carrier concentration is preferably 1 × 10 18 cm −3 or more. Further, the negative dielectric constant medium 401 uses a highly doped semiconductor. The semiconductor layer 401 is desirably thicker than the skin depth in the oscillation frequency band of the present embodiment, and is preferably a semiconductor having a carrier concentration of 1 × 10 20 cm −3 having a thickness of several μm (for example, 2 μm and 3 μm), for example. The metal 421 also serves as a cladding and an electrode for a negative dielectric constant medium. Such a configuration is one of the preferable configurations that can facilitate manufacture while reducing leakage of electric lines of force downward from the gain medium 403. The metal 402, the semiconductors 411 and 412 doped with high concentration carriers, the gain medium 403, and the electrode 422 are the same as in the second embodiment. As the positive dielectric constant medium 405, BCB (benzocyclobutene) which is a dielectric having a relatively low loss and a low dielectric constant in a frequency region from the millimeter wave band to the terahertz band may be used.

本実施形態において、基板400、負誘電率媒質401、411、利得媒質403、負誘電率媒質412(第二の負誘電率媒質の利得媒質に電気的に接する部分)は全て半導体である。半導体基板400上のこうした積層構造は、半導体ヘテロエピタキシャル成膜技術を用いることによって容易に形成することが出来る。さらにいえば、金属圧着プロセスも不要である。 In the present embodiment, the substrate 400, the negative dielectric constant media 401 and 411, the gain medium 403, and the negative dielectric constant medium 412 (portions that are in electrical contact with the gain medium of the second negative dielectric constant medium) are all semiconductors. Such a laminated structure on the semiconductor substrate 400 can be easily formed by using a semiconductor heteroepitaxial film formation technique. Furthermore, no metal crimping process is required.

(第四の実施形態)
第四の実施形態に係るレーザ素子について、図5を用いて説明する。図5は本実施形態の導波路上面を示す模式図である。導波路はz方向に沿って伸びており、その端面はカットされている。
(Fourth embodiment)
A laser element according to the fourth embodiment will be described with reference to FIG. FIG. 5 is a schematic view showing the upper surface of the waveguide according to this embodiment. The waveguide extends along the z direction, and its end face is cut.

本実施形態は、第一の実施形態の表面プラズモンの伝搬方向に沿った構成の一例を示すもので、レーザ共振器は、導波路をカットして形成された端面に挟まれたファブリペロー共振器によって構成されている。端面からの反射を利用して電磁波を定在波とする。すなわち、導波路は、電磁波の伝搬方向において少なくとも二つの端面を備えて共振構造を構成し、端面からの反射を利用して電磁波を定在波とする。上面図で重なって描かれている利得媒質503aと負誘電率媒質のリブ504aは、第一の実施形態と同様の断面形状を有する。506、507は端面である。端面506からもう一方の端面507までの長さLは、表面プラズモンモードの伝搬方向の波数の大きさをβとすると、半導体レーザ技術で知られる様に、π/βの整数倍をLと一致させることで発振波長を選択することが出来る。整数倍の因子には、典型的には1〜100倍程度を用いるため、典型的な長さLは数十μmから数mm程度となる。 The present embodiment shows an example of a configuration along the propagation direction of the surface plasmon of the first embodiment, and the laser resonator is a Fabry-Perot resonator sandwiched between end faces formed by cutting a waveguide. It is constituted by. The electromagnetic wave is made a standing wave by utilizing reflection from the end face. That is, the waveguide has a resonance structure having at least two end faces in the propagation direction of the electromagnetic wave, and uses the reflection from the end face to make the electromagnetic wave a standing wave. The gain medium 503a and the negative dielectric constant medium rib 504a which are drawn to overlap in the top view have the same cross-sectional shape as in the first embodiment. Reference numerals 506 and 507 denote end faces. The length L from the end face 506 to the other end face 507 is equal to L, which is an integral multiple of π / β, as known in semiconductor laser technology, where β is the wave number in the propagation direction of the surface plasmon mode. This makes it possible to select the oscillation wavelength. Since the factor of an integer multiple is typically about 1 to 100 times, the typical length L is about several tens of μm to several mm.

本実施形態でも、側面構造の高さhを規定した際、導波路幅wは、側面構造高さh以下であると、正味の利得−αのため好ましい。図5(a)は、導波路幅wが伝播方向、つまりz方向に沿って一定である一例を示している。この例は、導波路の伝搬方向の全区間にわたって、正味の利得−αが大きい。しかしながら、細い導波路幅は、レーザ発振器の出力向上には貢献しない。こうした理由のため、上面図で重なって描かれている利得媒質503bと負誘電率媒質のリブ504bを示す図5(b)のように、導波路幅w(z)が伝播方向zの関数となっている構成も考えられる。w(z)=or<h(或いは=or<2h)の区間は正味の利得−αが大きく、w(z)>h(或いは>2h)の区間は、電流注入を大きくできるため、正味の利得と発振器出力を最適化できる構造として、こうした構造は都合が良い。金属502は第二の実施形態と同様である。 Also in this embodiment, when the height h of the side structure is defined, it is preferable that the waveguide width w is equal to or less than the side structure height h because of the net gain −α. FIG. 5A shows an example in which the waveguide width w is constant along the propagation direction, that is, the z direction. In this example, the net gain −α is large over the entire section in the propagation direction of the waveguide. However, the narrow waveguide width does not contribute to improving the output of the laser oscillator. For this reason, the waveguide width w (z) is a function of the propagation direction z as shown in FIG. 5B showing the gain medium 503b and the rib 504b of the negative dielectric constant medium which are drawn to overlap each other in the top view. The structure which becomes is also considered. The net gain -α is large in the interval of w (z) = or <h (or = or <2h), and the current injection can be increased in the interval of w (z)> h (or> 2h). Such a structure is convenient as a structure that can optimize the gain and the oscillator output. The metal 502 is the same as in the second embodiment.

さらに具体的なレーザ素子について、以下の実施例において説明する。
(実施例1)
第三の実施形態に対応するより具体的な実施例1を説明する。本実施例に係るレーザ素子について、図6を用いて説明する。導波路断面を示す模式図6(a)とともに、本実施例では、図6(b)、(c)の如く電気回路計算も行っており、上述の定性的な議論を具体的にしている。
More specific laser elements will be described in the following examples.
Example 1
A more specific example 1 corresponding to the third embodiment will be described. The laser element according to this example will be described with reference to FIG. In addition to the schematic diagram 6A showing the cross section of the waveguide, in this embodiment, the electric circuit calculation is also performed as shown in FIGS. 6B and 6C, and the above-described qualitative discussion is made concrete.

図6(a)において、600は基板である。利得媒質603としては、InP基板に格子整合するInGaAs/InAlAs多重量子井戸が選択される。例えば、−y方向に向かって5.0/1.3/5.6/2.6/7.6/1.3/5.0の半導体多層膜構造から構成された共鳴トンネルダイオードが選択される。ここで、数字は単位nmによる各部の厚さ、下線がない部分はInGaAsによる井戸、下線部はInAlAsによるポテンシャル障壁である。これらの層には意図的にキャリアドープを行わないアンドープとする。負誘電率媒質611において、共鳴トンネルダイオード603との電気的接触は、例えば、n‐InGaAsの半導体膜(厚さ50nm)を用いる。リブ611の大部分は電子濃度1×1019cm‐3のn‐InGaAsの半導体膜(厚さ440nm)を用いるが、これは導体損を低減するためである。負誘電率媒質612も負誘電率媒質611と同様である。 In FIG. 6A, reference numeral 600 denotes a substrate. As the gain medium 603, an InGaAs / InAlAs multiple quantum well lattice-matched to the InP substrate is selected. For example, a resonant tunnel diode composed of a semiconductor multilayer structure of 5.0 / 1.3 / 5.6 / 2.6 / 7.6 / 1.3 / 5.0 in the −y direction is selected. Here, the number is the thickness of each part in the unit of nm, the part without an underline is a well made of InGaAs, and the underlined part is a potential barrier made of InAlAs. These layers are undoped without intentional carrier doping. In the negative dielectric constant medium 611, for example, an n-InGaAs semiconductor film (thickness 50 nm) is used for electrical contact with the resonant tunneling diode 603. Most of the ribs 611 use an n-InGaAs semiconductor film (thickness: 440 nm) having an electron concentration of 1 × 10 19 cm −3 in order to reduce the conductor loss. The negative dielectric constant medium 612 is similar to the negative dielectric constant medium 611.

本実施例では、負誘電率媒質601には導体損を小さくするためのAu薄膜(厚さ500nm)を用いる。したがって、同図においてInP基板上のInGaAs/InAlAs多重量子井戸におけるInP基板はすでに除去されている。こうした構造は、Au圧着プロセスを用いて作製されるが、具体的には、InGaAs/InAlAs多重量子井戸上に成膜したAu601(厚さ250nm)と、導電性Si基板600上に成膜したAu601(厚さ250nm)を圧着して作製することが出来る。InP基板の除去には塩酸などのウェットエッチングを用いればよい。 In this embodiment, the negative dielectric constant medium 601 uses an Au thin film (thickness: 500 nm) for reducing the conductor loss. Therefore, the InP substrate in the InGaAs / InAlAs multiple quantum well on the InP substrate has already been removed. Such a structure is manufactured using an Au pressure bonding process. Specifically, Au 601 (thickness 250 nm) formed on an InGaAs / InAlAs multiple quantum well and Au 601 formed on a conductive Si substrate 600 are used. (Thickness 250 nm) can be produced by pressure bonding. For removing the InP substrate, wet etching such as hydrochloric acid may be used.

その後、半導体部分611、603、612のウェットエッチングを行い、導波路の幅はw=1μmに加工する。利得媒質603の側面構造605にはBCBを用いる。BCBの厚さはh=1μmを選択する。最後に、n‐InGaAs612とBCB605の上の負誘電率媒質602として、Au薄膜(厚さ500nm)を成膜すれば、導波路断面構造は完成する。 Thereafter, wet etching is performed on the semiconductor portions 611, 603, and 612, and the width of the waveguide is processed to w = 1 μm. BCB is used for the side structure 605 of the gain medium 603. The thickness of BCB is selected as h = 1μm. Finally, if an Au thin film (thickness 500 nm) is formed as the negative dielectric constant medium 602 on the n-InGaAs 612 and the BCB 605, the waveguide cross-sectional structure is completed.

本実施例で、負誘電率媒質のクラッドと電極を兼ねるAu602と裏面電極621との間に0.8Vのバイアスを印加した場合、共鳴トンネルダイオード603で得られる利得は、DCから1THz付近の周波数帯で700cm‐1程度と計算される。これは、負の微分コンダクタンスに換算すると、Gd=-12mS/μm2となる。このようなパラメータを考慮し、導波路損失αを電気回路計算した結果が図6(b)である。同図において正味の利得が得られるのは縦軸が負の領域である。すなわち、DC付近から1.6THz付近まで正味の利得が得られることが分かった。参考までに同様の構成においてw=5μm、h=2μmの場合と比較した。w/hを小さく設計することで、発振可能領域が拡大し、w=5μm、h=2μmの構成では発振不可能であった0.5THzより高い周波数でも発振可能になっていることが分かる。 In the present embodiment, when a bias of 0.8 V is applied between the Au 602 serving as the cladding and electrode of the negative dielectric constant medium and the back electrode 621, the gain obtained by the resonant tunneling diode 603 is in the frequency band near 1 THz from DC. It is calculated to be about 700cm- 1 . This is Gd = -12 mS / μm 2 in terms of negative differential conductance. FIG. 6B shows the result of the electric circuit calculation of the waveguide loss α in consideration of such parameters. In the figure, the net gain is obtained in the negative region on the vertical axis. That is, it was found that a net gain was obtained from around DC to around 1.6 THz. For reference, the same configuration was compared with the case of w = 5 μm and h = 2 μm. It can be seen that by designing w / h to be small, the oscillatable region is expanded and oscillation is possible even at a frequency higher than 0.5 THz, which was impossible to oscillate in the configuration of w = 5 μm and h = 2 μm.

本実施例のレーザ共振器は、簡単のため、第四の実施形態のファブリペロー共振器を用いた。もちろん、半導体レーザ技術でよく知られる様に分布帰還型のDFB共振器を用いてもよい。さらに、本実施例では、テラヘルツレーザ発振器を用いて大腸がんのセンシングを行うため、0.8THzを発振周波数として選択した。0.8THzでは、大腸がんと正常部位とのコントラストが明瞭にとれるためがん診断で有用であるからである。図6(b)と同じパラメータを考慮し、表面プラズモンモードの伝搬方向の波数の大きさβを電気回路計算した結果が図6(c)である。同図より、発振周波数0.8THzにおける波数の大きさβは750cm‐1と計算されたため、導波路の長さについては、本実施例ではπ/βの1倍の、L=42μmを選択した。もちろん、この長さの整数倍のLを選択してもよい。端面はへき開をしてもよいし、ドライエッチングを用いた加工でも、ミリ波帯からテラヘルツ帯までの電磁波(30GHz以上30THz以下の周波数領域の一部を含む電磁波)にとっての面精度は十分、確保できる。 The laser resonator of this example uses the Fabry-Perot resonator of the fourth embodiment for simplicity. Of course, a distributed feedback type DFB resonator may be used as is well known in the semiconductor laser technology. Furthermore, in this example, 0.8 THz was selected as the oscillation frequency because colon cancer sensing was performed using a terahertz laser oscillator. This is because 0.8THz is useful in cancer diagnosis because the contrast between colorectal cancer and a normal site is clear. FIG. 6C shows the result of electric circuit calculation of the wave number magnitude β in the propagation direction of the surface plasmon mode in consideration of the same parameters as in FIG. 6B. Since the wave number magnitude β at the oscillation frequency of 0.8 THz was calculated to be 750 cm −1 from the figure, the length of the waveguide was selected to be L = 42 μm, which is one time of π / β in this embodiment. Of course, L which is an integral multiple of this length may be selected. Even if the end face may be cleaved or processed using dry etching, sufficient surface accuracy is secured for electromagnetic waves from the millimeter wave band to the terahertz band (electromagnetic waves including part of the frequency range of 30 GHz to 30 THz). it can.

w/hを小さく設計することで、本実施例のようにβを比較的小さくすることもできるのが本発明のもう一つの特徴でもある。言い換えれば、Lを比較的大きく設計できるため、レーザ発振器の出力を大きくするのには都合が良い。さらに言えば、w/hを小さく設計することで、ファブリペロー共振器の端面からの自由空間への電磁波の取り出し効率も良くなる。こうした理由のため、w/h=or<1の導波路断面形状は、ミリ波帯からテラヘルツ帯までのレーザ素子にとって非常に好ましい。 Another feature of the present invention is that β can be made relatively small as in this embodiment by designing w / h to be small. In other words, since L can be designed relatively large, it is convenient to increase the output of the laser oscillator. Furthermore, by designing w / h to be small, the efficiency of extracting electromagnetic waves from the end face of the Fabry-Perot resonator to free space is improved. For these reasons, the waveguide cross-sectional shape of w / h = or <1 is very preferable for laser elements from the millimeter wave band to the terahertz band.

本実施例のように利得媒質がトンネルダイオードの場合、電磁波利得のある周波数帯はDCから高周波側に向かって伸びているが、量子カスケードレーザの場合、電磁波利得のある周波数帯は、数THzを中心として、幅がサブテラヘルツのローレンツ関数型である。量子カスケードレーザの利得媒質を持ったレーザ素子に本実施例を適用すると、正味の利得がその高周波側と低周波側に拡大される。また、本実施例ではw/hを1以下に設定したが、がん診断のためにはw/hが2以下であっても(つまり幅wが厚さhの二倍以下)、発振波長0.8THz(λ=375μm)の実現ためには十分である。 When the gain medium is a tunnel diode as in this embodiment, the frequency band with electromagnetic wave gain extends from DC to the high frequency side, but in the case of a quantum cascade laser, the frequency band with electromagnetic wave gain is several THz. The center is a Lorentz function type with a width of sub-terahertz. When this embodiment is applied to a laser element having a gain medium of a quantum cascade laser, the net gain is expanded to its high frequency side and low frequency side. In this example, w / h is set to 1 or less, but for cancer diagnosis, even if w / h is 2 or less (that is, width w is less than twice the thickness h), the oscillation wavelength It is sufficient to realize 0.8 THz (λ = 375 μm).

本発明に係るレーザ素子は、製造管理、医療画像診断、安全管理などに用いることができる要素デバイスとして応用が期待されている。 The laser element according to the present invention is expected to be applied as an element device that can be used for manufacturing management, medical image diagnosis, safety management, and the like.

101・・・第一の負誘電率媒質、102・・・第二の負誘電率媒質、103・・・利得媒質、104・・・負誘電率媒質のリブ形状(第一の負誘電率媒質)、105・・・側面構造(正誘電率媒質) DESCRIPTION OF SYMBOLS 101 ... 1st negative dielectric constant medium, 102 ... 2nd negative dielectric constant medium, 103 ... Gain medium, 104 ... Rib shape of negative dielectric constant medium (1st negative dielectric constant medium ), 105 ... Side structure (positive dielectric constant medium)

Claims (9)

電磁波を共振させるための共振構造を含む導波路を有するレーザ素子であって、
前記導波路は、
電磁波を発生させるための利得媒質と、
前記利得媒質に電気的に接して設けられた前記電磁波に対する誘電率実部が負である第一の負誘電率媒質と、
前記利得媒質に電気的に接して設けられ、該利得媒質を介して前記第一の負誘電率媒質の反対側に設けられた前記電磁波に対する誘電率実部が負である第二の負誘電率媒質と、
前記利得媒質の側面に接して設けられ、前記第一及び第二の負誘電率媒質で挟まれた前記電磁波に対する誘電率実部が正である側面構造と、
を備え、
前記利得媒質の側面間の幅wが、前記側面構造の前記第一及び第二の負誘電率媒質で挟まれた厚さhの二倍以下の区間を備えることを特徴とするレーザ素子。
A laser element having a waveguide including a resonance structure for resonating electromagnetic waves,
The waveguide is
A gain medium for generating electromagnetic waves;
A first negative dielectric constant medium having a negative real dielectric constant for the electromagnetic wave provided in electrical contact with the gain medium;
A second negative dielectric constant provided in electrical contact with the gain medium and having a negative real part of the dielectric constant for the electromagnetic wave provided on the opposite side of the first negative dielectric constant medium via the gain medium; Medium,
A side surface structure that is provided in contact with the side surface of the gain medium and that has a positive real part of the dielectric constant for the electromagnetic wave sandwiched between the first and second negative dielectric constant media;
With
A laser element comprising a width w between side surfaces of the gain medium having a section equal to or less than twice a thickness h sandwiched between the first and second negative dielectric constant media of the side structure.
前記導波路は、
前記利得媒質の側面間の幅wが、前記側面構造の前記第一及び第二の負誘電率媒質で挟まれた厚さh以下の区間を備えることを特徴とする請求項1に記載のレーザ素子。
The waveguide is
2. The laser according to claim 1, wherein a width w between side surfaces of the gain medium includes a section having a thickness h or less sandwiched between the first and second negative dielectric constant media of the side structure. element.
前記導波路は、
共振構造の全長に亘って、前記利得媒質の幅wが前記側面構造の厚さhの二倍以下であることを特徴とする請求項1または2に記載のレーザ素子。
The waveguide is
3. The laser device according to claim 1, wherein the width w of the gain medium is not more than twice the thickness h of the side structure over the entire length of the resonant structure.
前記導波路は、
共振構造の全長に亘って、前記利得媒質の幅wが前記側面構造の厚さh以下であることを特徴とする請求項3に記載のレーザ素子。
The waveguide is
4. The laser element according to claim 3, wherein a width w of the gain medium is equal to or less than a thickness h of the side structure over the entire length of the resonant structure.
前記導波路は、
前記電磁波の伝搬方向において少なくとも二つの端面を備えて前記共振構造を構成し、前記端面からの反射を利用して前記電磁波を定在波とすることを特徴とする請求項1から4のいずれか1項に記載のレーザ素子。
The waveguide is
5. The structure according to claim 1, wherein the resonance structure is configured to include at least two end surfaces in a propagation direction of the electromagnetic wave, and the electromagnetic wave is made a standing wave by using reflection from the end surface. 2. The laser element according to item 1.
前記利得媒質は、共鳴トンネルダイオードまたは量子カスケードレーザであることを特徴とする請求項1から5のいずれか1項に記載のレーザ素子。 6. The laser element according to claim 1, wherein the gain medium is a resonant tunnel diode or a quantum cascade laser. 前記第一及び第二の負誘電率媒質は、それぞれ、前記利得媒質に接する高濃度ドーピングされた半導体と該半導体に接する金属から構成されることを特徴とする請求項1から6のいずれか1項に記載のレーザ素子。 The first and second negative dielectric constant media are each composed of a heavily doped semiconductor in contact with the gain medium and a metal in contact with the semiconductor. The laser device according to Item. 前記第一の負誘電率媒質、前記利得媒質、前記第二の負誘電率媒質の前記利得媒質に電気的に接する部分は、全て半導体であることを特徴とする請求項1から6のいずれか1項に記載のレーザ素子。 The portion of the first negative dielectric constant medium, the gain medium, and the second negative dielectric constant medium that are in electrical contact with the gain medium are all semiconductors. 2. The laser element according to item 1. 前記電磁波の周波数は、30GHz以上30THz以下の周波数領域の一部を含むことを特徴とする請求項1から8のいずれか1項に記載のレーザ素子。 9. The laser element according to claim 1, wherein the frequency of the electromagnetic wave includes a part of a frequency region of 30 GHz to 30 THz.
JP2013048167A 2013-03-11 2013-03-11 Laser element Pending JP2014175533A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013048167A JP2014175533A (en) 2013-03-11 2013-03-11 Laser element
US14/195,926 US20140254615A1 (en) 2013-03-11 2014-03-04 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013048167A JP2014175533A (en) 2013-03-11 2013-03-11 Laser element

Publications (1)

Publication Number Publication Date
JP2014175533A true JP2014175533A (en) 2014-09-22

Family

ID=51487759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048167A Pending JP2014175533A (en) 2013-03-11 2013-03-11 Laser element

Country Status (2)

Country Link
US (1) US20140254615A1 (en)
JP (1) JP2014175533A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219796A (en) * 2015-05-22 2016-12-22 キヤノン株式会社 Element, and oscillator and information acquisition device including the element
JP2017005690A (en) * 2015-06-15 2017-01-05 キヤノン株式会社 Semiconductor element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857027B2 (en) * 2006-05-31 2012-01-18 キヤノン株式会社 Laser element
JP4873746B2 (en) * 2006-12-21 2012-02-08 キヤノン株式会社 Oscillating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219796A (en) * 2015-05-22 2016-12-22 キヤノン株式会社 Element, and oscillator and information acquisition device including the element
JP2017005690A (en) * 2015-06-15 2017-01-05 キヤノン株式会社 Semiconductor element

Also Published As

Publication number Publication date
US20140254615A1 (en) 2014-09-11

Similar Documents

Publication Publication Date Title
JP4857027B2 (en) Laser element
Curwen et al. Terahertz quantum cascade VECSEL with watt-level output power
Xu et al. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures
Kumar et al. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides
Qin et al. MEMS-based tunable terahertz wire-laser over 330 GHz
JP3848841B2 (en) Apparatus having a surface plasmon laser structure
JP5127430B2 (en) Laser element
EP3293838B1 (en) Terahertz quantum cascade laser device
Mahler et al. High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell
EP2198491B1 (en) Laser device
JP2008177551A (en) Oscillation element
Kundu et al. Continuous frequency tuning with near constant output power in coupled Y-branched terahertz quantum cascade lasers with photonic lattice
Kim et al. Double-metal waveguide terahertz difference-frequency generation quantum cascade lasers with surface grating outcouplers
Teissier et al. Electrical modulation of the complex refractive index in mid-infrared quantum cascade lasers
Bahriz et al. InAs/AlSb quantum cascade lasers operating near 20 µm
Maisons et al. Directional single mode quantum cascade laser emission using second-order metal grating coupler
JP2014175533A (en) Laser element
Brandstetter et al. Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides
Schrottke et al. Intrinsic frequency tuning of terahertz quantum-cascade lasers
Numai High resonance frequency in a coupled cavity DFB-LD with phase-shifted/uniform gratings by photon-photon resonance
US10985532B2 (en) Semiconductor optical waveguide and optical integrated element
US11456573B2 (en) Tapered-grating single mode lasers and method of manufacturing
Walker et al. Gallium arsenide modulator technology
Schartner et al. Surface emission from episide-down short distributed-feedback quantum cascade lasers
Duan et al. Enhanced optical nonlinearities in epitaxial quantum dots lasers on silicon for future photonic integrated systems