JP2014175227A - Ultraviolet light generator - Google Patents

Ultraviolet light generator Download PDF

Info

Publication number
JP2014175227A
JP2014175227A JP2013048507A JP2013048507A JP2014175227A JP 2014175227 A JP2014175227 A JP 2014175227A JP 2013048507 A JP2013048507 A JP 2013048507A JP 2013048507 A JP2013048507 A JP 2013048507A JP 2014175227 A JP2014175227 A JP 2014175227A
Authority
JP
Japan
Prior art keywords
oxygen
ultraviolet
electrodes
discharge
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013048507A
Other languages
Japanese (ja)
Inventor
Kazunori Matsumoto
和憲 松本
Eiji Uchiyama
英史 内山
Seiji Oda
誠二 織田
Nobuyuki Nojima
信行 能島
Koji Shimizu
弘慈 清水
Shigeharu EIKOSHI
茂治 永越
Tadahide Kato
征秀 加藤
Katsutoshi Hoshino
勝俊 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO QUARTZ KK
Toyama Prefecture
Tateyama Machine Co Ltd
Original Assignee
TECHNO QUARTZ KK
Toyama Prefecture
Tateyama Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO QUARTZ KK, Toyama Prefecture, Tateyama Machine Co Ltd filed Critical TECHNO QUARTZ KK
Priority to JP2013048507A priority Critical patent/JP2014175227A/en
Publication of JP2014175227A publication Critical patent/JP2014175227A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an energy saving ultraviolet light generator which can cure a coating film uniformly from the surface to the depths, while suppressing light curing failure due to oxygen in air, and to provide an ultraviolet light generator in which the ultraviolet radiation distribution is made uniform in the length direction by controlling discharge plasma emission in the length direction.SOLUTION: A mixture gas containing oxygen (O2) of 0-18 for nitrogen (N2) of 100, at a pressure ratio of normal temperature, is enclosed in a discharge space. Furthermore, argon (Ar) of 0.5-5 is added to the mixture gas 1, at a pressure ratio of normal temperature. The discharge space is formed in the shape of a cylindrical body, and electrode is arranged in the length direction thereof while being divided. A multi-phase AC power supply, adjusting the voltage being applied to these electrodes by phase setting, is connected with these electrodes.

Description

本発明は、光硬化に適した紫外線の発生装置に関する。   The present invention relates to an ultraviolet ray generator suitable for photocuring.

今日、エネルギー及び地球環境問題が国内外において大きな関心事になっている。光硬化塗布膜は、臭気が少なく秒単位で硬化するので、近年、多種多様な用途で広く使用されている。しかし、光硬化時に、大きな電力を消費し且つ大量の水銀を含む高圧水銀ランプの使用が大きな問題である。省エネルギー及び脱水銀の観点から新たなランプの開発が切望されている。   Today, energy and global environmental issues are of great concern both at home and abroad. The photo-cured coating film has a low odor and is cured in units of seconds. Therefore, the photo-cured coating film has been widely used in various applications in recent years. However, the use of a high-pressure mercury lamp that consumes a large amount of power and contains a large amount of mercury during photocuring is a major problem. Development of a new lamp is anxious from the viewpoint of energy saving and mercury removal.

本発明者等は特許文献1において、窒素ガスで希釈した一酸化窒素ガスから成る分子性混合ガスを用いると、200nm〜300nmの波長域に強い紫外線放射をできることを見出した。しかし、放電プラズマ内では分子性ガスが容易に解離してしまうという問題があり、常に新しいガスを大量に流し続けるか、解離したガスから元のガスを合成するかなどの手段を講ずる必要がある。   In the patent document 1, the present inventors have found that when a molecular mixed gas composed of nitric oxide gas diluted with nitrogen gas is used, strong ultraviolet radiation can be emitted in a wavelength range of 200 nm to 300 nm. However, there is a problem that molecular gas easily dissociates in the discharge plasma, and it is necessary to always take measures such as whether to keep a large amount of new gas flowing or to synthesize the original gas from the dissociated gas. .

光硬化分野において、広く使われているアクリレート系硬化液は液中に溶存する空気中の酸素により光硬化反応が大きく阻害され、それを克服するには、非常に強い紫外線の照射が必要であるという問題がある。この問題の解決には、窒素雰囲気などの酸素の無い或いは少ない状態で光硬化処理をしたり、塗布膜液の上に空気が透過しない薄いカバーシートを貼るなどの方法が提案されている。しかし、新たな設備が必要になる為にあまり利用されていない。   In the photo-curing field, acrylate-based curing solutions that are widely used are greatly hindered by the oxygen in the air dissolved in the solution, and in order to overcome it, very strong UV irradiation is required. There is a problem. In order to solve this problem, a method has been proposed in which a photocuring treatment is performed in a state where there is no or little oxygen such as a nitrogen atmosphere, or a thin cover sheet that does not allow air to pass through is applied on the coating film solution. However, it is not used much because it requires new equipment.

一方、幅広の被照射物へ紫外線を照射する為に長い直管タイプの紫外線ランプが広く用いられている。通常、放電ランプは、長さ方向の中央部分が強く端部に向かって弱くなる空間分布となる。このため、被照射物をベルトコンベア上などに広げた状態で移動しながら紫外線を照射する場合、ベルトコンベアの左右両側辺付近の照射強度が不十分になるという問題がある。そのため従来は、端部に新たな紫外線ランプを設置するなどの対策が取られている。   On the other hand, long straight tube type ultraviolet lamps are widely used to irradiate a wide irradiation object with ultraviolet rays. Normally, the discharge lamp has a spatial distribution in which the central portion in the length direction is strong and weakens toward the end. For this reason, when irradiating ultraviolet rays while moving the irradiated object on a belt conveyor or the like, there is a problem that the irradiation intensity near the left and right sides of the belt conveyor becomes insufficient. Therefore, conventionally, measures such as installing a new ultraviolet lamp at the end have been taken.

特開2011−23112号公報JP 2011-23112 A

そこで本発明は、空気中の酸素による光硬化阻害を抑制し、且つ光硬化すべき塗布膜を表面から奥まで一様に硬化できる省エネルギーの紫外線発生装置と、長さ方向の放電プラズマ発光を制御して長さ方向の紫外線放射分布を一様にする紫外線発生装置を提供することを目的になされたものである。   Therefore, the present invention controls an energy-saving ultraviolet ray generator capable of suppressing photocuring inhibition by oxygen in the air and uniformly curing the coating film to be photocured from the surface to the back, and discharge plasma emission in the length direction. Thus, an object of the present invention is to provide an ultraviolet generator that makes the ultraviolet radiation distribution in the longitudinal direction uniform.

そのため本発明の紫外線発生装置は、常温の圧力比で、窒素(N2)100に対し酸素(O2)0〜18を含む混合ガスを放電空間に密閉して成ることを第1の特徴とする。
また、前記混合ガス1に対し、常温の圧力比で、アルゴン(Ar)を0.5〜5加えて成ることを第2の特徴とする。
さらに、放電空間を筒体に形成して窒素(N2)と酸素(O2)の混合ガスを密閉し、この筒体の長さ方向に沿って電極を分割して配置し、これらの電極へ電極間にかかる電圧を位相設定により調整した多相交流電源を接続して成ることを第3の特徴とする。
Therefore, the ultraviolet generator of the present invention is characterized in that a mixed gas containing oxygen (O2) 0-18 with respect to nitrogen (N2) 100 is sealed in a discharge space at a normal temperature pressure ratio.
The second feature is that 0.5 to 5 argon (Ar) is added to the mixed gas 1 at a normal pressure ratio.
Further, a discharge space is formed in the cylinder, and a mixed gas of nitrogen (N2) and oxygen (O2) is sealed. The electrodes are divided and arranged along the length direction of the cylinder, and the electrodes are connected to these electrodes. A third feature is that a multiphase AC power source in which the voltage applied between them is adjusted by phase setting is connected.

本発明の紫外線発生装置は、放電空間に窒素(N2)と酸素(O2)の混合ガスを密閉するので、放電空間内の窒素(N2)と酸素(O2)はその一部がプラズマにより解離してNとOを生成し、このNとOから励起状態のNOができ、この一酸化窒素ガス(NO)から短波長成分(200〜300nm)がまた窒素ガス(N2)から中波長成分(300〜400nm)の紫外線が発生する。
そしてこの放射スペクトルが短波長域の紫外線は、塗布膜のごく浅く狭い領域に吸収され光硬化反応を起こし、これが空気中の酸素の塗布膜内部への侵入を阻止するため、塗布膜全体の光硬化が速やかに進行する。NOからの短波長域の放射強度は、N2に対するO2分圧(濃度)を調整することにより、変えることができる。
また混合ガスにArを加えると、放電により寿命の長い準安定状態のArが生成され、これがN2に作用してN2の、放射スペクトルが中波長域の紫外線の放射を抑制する。
窒素に対する酸素分圧(濃度)、及びこれら混合ガスに対するAr分圧(濃度)を調整することにより、NOからの短波長域の放射とN2からの中波長域の放射の相対強度比を、光硬化すべき塗布膜に合うように、変えることができる。またArは放電開始電圧を下げるので放電管の寿命を延ばせる。
また、直管タイプランプの長さ方向に電極を分割して配置し、それらの電極へ電極間にかかる電圧を位相設定により調整した多相交流電力を給電することにより、長さ方向の放電プラズマ発光を制御して長さ方向の紫外線放射分布を一様にできる。
Since the ultraviolet ray generator of the present invention seals a mixed gas of nitrogen (N2) and oxygen (O2) in the discharge space, part of the nitrogen (N2) and oxygen (O2) in the discharge space is dissociated by the plasma. N and O are generated, and NO in the excited state can be generated from the N and O. The short wavelength component (200 to 300 nm) from the nitrogen monoxide gas (NO) and the medium wavelength component (300 from the nitrogen gas (N2)) UV light of ~ 400nm) is generated.
Ultraviolet rays with a short wavelength range in this radiation spectrum are absorbed in a very shallow and narrow region of the coating film and cause a photocuring reaction, which prevents the penetration of oxygen in the air into the coating film. Curing proceeds quickly. The radiation intensity in the short wavelength region from NO can be changed by adjusting the O2 partial pressure (concentration) for N2.
Further, when Ar is added to the mixed gas, a metastable Ar having a long lifetime is generated by discharge, which acts on N2 and suppresses the emission of ultraviolet rays having a radiation spectrum of N2 in the middle wavelength region.
By adjusting the oxygen partial pressure (concentration) with respect to nitrogen and the Ar partial pressure (concentration) with respect to these mixed gases, the relative intensity ratio between short-wavelength radiation from NO and medium-wavelength radiation from N2 can It can be varied to suit the coating film to be cured. Moreover, Ar lowers the discharge start voltage, so that the life of the discharge tube can be extended.
In addition, by arranging the electrodes in the length direction of the straight tube type lamp and supplying multiphase AC power with the voltage applied between the electrodes adjusted by phase setting to the electrodes, discharge plasma in the length direction By controlling the light emission, the ultraviolet radiation distribution in the length direction can be made uniform.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1に、本発明を実施した光硬化用の紫外線発生装置の断面図を示す。
光硬化用の紫外線発生装置は、12枚のシート状の分割電極1を僅かな間隙aを空けてバリア層2の中に埋め込み、平面容器3の底面の基板31に密着固定する。
基板31の対向面は光取り出し窓32で覆い、平面容器3を密閉して低圧放電室を形成する。分割電極1は、できるだけ面積を大きくして基板31全体を覆うように配置する。
バリア層2は、例えば石英ガラスや窒化ホウ素のような電気絶縁性と熱伝導性の良好な材質のものを使用して絶縁体層を形成する。
FIG. 1 shows a cross-sectional view of a photocuring ultraviolet ray generating apparatus embodying the present invention.
In the ultraviolet curing device for photocuring, twelve sheet-like divided electrodes 1 are embedded in the barrier layer 2 with a slight gap a, and are closely fixed to the substrate 31 on the bottom surface of the flat container 3.
The opposing surface of the substrate 31 is covered with a light extraction window 32, and the flat vessel 3 is sealed to form a low-pressure discharge chamber. The divided electrodes 1 are arranged so as to cover the entire substrate 31 with as large an area as possible.
The barrier layer 2 is made of a material having good electrical insulation and thermal conductivity, such as quartz glass or boron nitride, to form an insulator layer.

基板31の外側は、隣り合う極性を逆にして配列した12+1本の棒状の磁石4を間隙aに沿って密着して固定する。磁石4の矢印は磁極の方向を示す。これにより、磁力線4aが分割電極1の表面を覆うように多極磁場を形成する。
磁石4を取り付けた基板31の外側は磁気シールド板5で覆い、磁力線を外部に発散させないで内部に集中させる。
On the outside of the substrate 31, 12 + 1 bar-shaped magnets 4 arranged with the adjacent polarities reversed are closely fixed along the gap a and fixed. The arrow of the magnet 4 indicates the direction of the magnetic pole. As a result, a multipolar magnetic field is formed so that the magnetic lines of force 4 a cover the surface of the split electrode 1.
The outside of the substrate 31 to which the magnet 4 is attached is covered with a magnetic shield plate 5 so that the lines of magnetic force are concentrated inside without diverging outside.

多極磁場の磁石4は、永久磁石の代わりに電磁コイルを用いてもよい。
あるいは、ラバー・マグネットなどのシート状の磁石4をバリア層2と基板31の間に挟み込んだり、基板31の外側に張り付けて多極磁場を形成してもよい。これにより、磁石4の厚みが薄くなる分、紫外線発生装置の形状を薄くコンパクトに形成できる。
The magnet 4 with a multipolar magnetic field may use an electromagnetic coil instead of a permanent magnet.
Alternatively, a sheet-like magnet 4 such as a rubber magnet may be sandwiched between the barrier layer 2 and the substrate 31 or may be attached to the outside of the substrate 31 to form a multipolar magnetic field. Thereby, the shape of the ultraviolet ray generator can be made thin and compact as the thickness of the magnet 4 is reduced.

ここで、磁石4と分割電極1との位置関係は任意であるが、図1では磁石4を分割電極1と分割電極1との間隙aの真後ろに置く場合を示す。このとき、多極磁場は分割電極1の表面が磁力線で覆われるように形成されるので、プラズマPが分割電極1の表面近傍に効果的に閉じ込められる。 Here, the positional relationship between the magnet 4 and the divided electrode 1 is arbitrary, but FIG. 1 shows a case where the magnet 4 is placed immediately behind the gap a between the divided electrode 1 and the divided electrode 1. At this time, since the multipolar magnetic field is formed so that the surface of the split electrode 1 is covered with the lines of magnetic force, the plasma P is effectively confined in the vicinity of the surface of the split electrode 1.

12枚の分割電極1には、図2に示すように、分割電極1の一端に取り付けた給電端子11を介して位相が1/12周期ずつずれていて振幅が同じ大きさの12相交流電源6を接続する。12相交流電源6は、周波数や振幅および位相(波形を含む)が制御された低周波交流電源を星形結線して構成し、電源全体は絶縁トランスなどにより浮遊電位のままにしておき、放電を分割電極1間のみに発生させる。
電源の相数は、4相以上であれば相数が増えるにつれて電位分布の一様領域、すなわち電界の一様領域は増加するが、12相以上になるとその増加傾向が飽和するため、12相が実用的な範疇である。
As shown in FIG. 2, the twelve divided electrodes 1 have 12-phase AC power supplies having the same amplitude, the phases of which are shifted by 1/12 period via a feed terminal 11 attached to one end of the divided electrode 1. 6 is connected. The 12-phase AC power supply 6 is composed of a low-frequency AC power supply whose frequency, amplitude and phase (including waveform) are controlled in a star connection, and the entire power supply is left at a floating potential by an insulating transformer or the like. Is generated only between the divided electrodes 1.
If the number of phases of the power supply is 4 or more, the uniform region of the potential distribution, that is, the uniform region of the electric field increases as the number of phases increases. Is a practical category.

本発明を実施した紫外線発生装置は以上のような構成で、平面容器3内を排気装置(不図示)によって真空排気し、放電洗浄した後、酸素を入れて酸素放電プラズマによる前処理(コンディショニング)を行う。これにより平面容器3の内壁が酸化され、微量の酸素が内壁に吸着される。次に、前処理に使用した酸素を抜いた後、常温の圧力比で、窒素100に対し酸素0〜18を含む混合ガスを入れて平面容器3内を密閉する。ここで酸素0(ゼロ)というのは、前処理後に窒素(N2)のみを封じ込めて窒素プラズマを起こすと内壁に吸着された酸素(O)が叩き出されるため、酸素(O2)を入れなくてもよい場合があることを意味している。 The ultraviolet ray generator according to the present invention has the above-described configuration, and the inside of the flat vessel 3 is evacuated by an exhaust device (not shown), discharged and cleaned, and then pre-treated with oxygen discharge plasma (conditioning). I do. Thereby, the inner wall of the flat container 3 is oxidized, and a trace amount of oxygen is adsorbed on the inner wall. Next, after removing the oxygen used for the pretreatment, a mixed gas containing oxygen 0 to 18 with respect to nitrogen 100 is introduced at a normal temperature pressure ratio to seal the inside of the flat container 3. Here, oxygen 0 (zero) means that oxygen (O2) adsorbed on the inner wall is knocked out when nitrogen plasma is generated by confining only nitrogen (N2) after pretreatment, so oxygen (O2) is not added. It also means that there are good cases.

次に、12枚の分割電極1に1kw以下の位相制御12出力交流電源を接続して放電電気エネルギーを供給する。これにより、図1に示すように、バリア層2に覆われた分割電極1の表面に沿って安定な交流グロー放電によるプラズマPが生じる。
12枚の分割電極1に12相の交流電圧を印加すると、放電は1周期の間に分割電極1間を1回りするので、1秒間に放電が印加周波数だけ回転する。このため、どの時刻においても何れかの分割電極1間で放電が起こり、低周波の交流放電にも拘わらず高周波点灯のような連続放電が発生する。放電の結果生じたプラズマPは、多極磁場によって狭くて薄い領域に閉じ込められ、電気的に中性な混合ガスのプラズマによる衝突励起が盛んになり、励起混合ガスからの発光密度と発光効率が高まる。
Next, a phase control 12 output AC power source of 1 kW or less is connected to the 12 divided electrodes 1 to supply discharge electric energy. Thereby, as shown in FIG. 1, plasma P is generated by stable alternating current glow discharge along the surface of the divided electrode 1 covered with the barrier layer 2.
When a 12-phase AC voltage is applied to the 12 divided electrodes 1, the discharge makes one turn between the divided electrodes 1 during one cycle, so that the discharge rotates by the applied frequency per second. For this reason, discharge occurs between any of the divided electrodes 1 at any time, and continuous discharge such as high-frequency lighting occurs regardless of low-frequency AC discharge. The plasma P generated as a result of the discharge is confined in a narrow and thin region by a multipolar magnetic field, and collision excitation by the plasma of an electrically neutral mixed gas becomes active, and the emission density and emission efficiency from the excited mixed gas are increased. Rise.

このときの発光スペクトルを図3に示す。N2、O2、Arの混合ガスにプラズマ放電を起こすとN2の一部からNが解離し、O2の一部からOが解離し、このNとOから励起状態のNOができ、このNOが短波長域200〜300nmに光を放出して基底状態のNOになり、さらにプラズマにより解離されNとOに戻る。NOからの短波長域の放射強度は、N2に対するO2分圧(濃度)を調整することにより、変えることができる。また、放電によって寿命の長い準安定状態のArが生成され、これがN2に作用してN2の放射スペクトルが中波長域300〜400nmの紫外線放射を抑制する。窒素に対する酸素分圧(濃度)、及びこれら混合ガスに対するAr分圧(濃度)を調整することによりNOからの短波長域の放射の相対強度比を変える。Arは放電開始電圧を下げるので放電管の寿命を延ばせる。 The emission spectrum at this time is shown in FIG. When plasma discharge occurs in a mixed gas of N2, O2, and Ar, N is dissociated from a part of N2, O is dissociated from a part of O2, and NO is excited from this N and O, and this NO is short. Light is emitted in a wavelength range of 200 to 300 nm to become ground state NO, and further dissociated by plasma to return to N and O. The short-wavelength radiation intensity from NO can be changed by adjusting the O2 partial pressure (concentration) with respect to N2. In addition, the metastable Ar having a long lifetime is generated by the discharge, and this acts on N2 to suppress ultraviolet radiation having a radiation spectrum of N2 in the middle wavelength range of 300 to 400 nm. By adjusting the oxygen partial pressure (concentration) with respect to nitrogen and the Ar partial pressure (concentration) with respect to these mixed gases, the relative intensity ratio of radiation in the short wavelength region from NO is changed. Ar lowers the discharge start voltage, so the life of the discharge tube can be extended.

実験により、一酸化窒素からの短波長域(200〜300nm)の紫外線放射強度は、前処理後に平面容器3内に封入すべき酸素量を窒素100に対し酸素0〜18まで変化させれば、中波長域との紫外線放射強度比を最小値から最大値まで変えられることが分かった。このときの最適な混合ガス圧力は0.2〜2Torrである。また、窒素ガスからの中波長域(300〜400nm)の紫外線放射強度は、加えるアルゴン(Ar)量を増やすと小さくなり、同時に放電開始電圧も小さくなることが分かった。   According to the experiment, the ultraviolet radiation intensity in the short wavelength region (200 to 300 nm) from nitric oxide can be changed by changing the amount of oxygen to be enclosed in the flat container 3 after the pretreatment from 0 to 18 with respect to nitrogen 100. It was found that the ultraviolet radiation intensity ratio with the mid-wavelength range can be changed from the minimum value to the maximum value. The optimum mixed gas pressure at this time is 0.2 to 2 Torr. Further, it was found that the ultraviolet radiation intensity in the medium wavelength region (300 to 400 nm) from nitrogen gas decreases as the amount of argon (Ar) added increases, and at the same time, the discharge start voltage decreases.

酸素(O2)ガスと窒素(N2)ガスの分圧比が1:6で全ガス圧力が0.5Torrのとき、加えるアルゴン(Ar)ガスが同量の場合、中波長域(300〜400nm)の紫外線成分はアルゴン(Ar)ガス無添加時に比べて凡そ半分程度まで減少した。このとき、放電開始電圧は700〜500V程度まで減少した。加えるアルゴン(Ar)ガスが2倍の場合、中波長域(300〜400nm)の紫外線成分はさらにその半分程度まで減少し、放電開始電圧は450V程度まで減少した。混合すべきアルゴン(Ar)ガスの分圧の最適値は、酸素(O2)窒素(N2)ガスの合計分圧の1〜3倍であることが分かった。   When the partial pressure ratio of oxygen (O 2) gas and nitrogen (N 2) gas is 1: 6 and the total gas pressure is 0.5 Torr, when the same amount of argon (Ar) gas is added, in the middle wavelength region (300 to 400 nm) The ultraviolet component was reduced to about half compared to when no argon (Ar) gas was added. At this time, the discharge start voltage decreased to about 700 to 500V. When the added argon (Ar) gas was doubled, the ultraviolet component in the medium wavelength region (300 to 400 nm) was further reduced to about half thereof, and the discharge start voltage was reduced to about 450V. It was found that the optimum value of the partial pressure of argon (Ar) gas to be mixed is 1 to 3 times the total partial pressure of oxygen (O 2) nitrogen (N 2) gas.

以上により、酸素(O2)窒素(N2)及びアルゴン(Ar)ガスの混合比を調整し、紫外線の短波長域(200〜300nm)及び中波長域(300〜400nm)の放射強度比を制御することで、空気中の酸素による光硬化阻害を抑制し、且つ塗布膜を表面から奥まで一様に効果できる省エネルギーの光硬化が実現できる。   As described above, the mixing ratio of oxygen (O 2), nitrogen (N 2), and argon (Ar) gas is adjusted, and the radiation intensity ratio in the short wavelength region (200 to 300 nm) and medium wavelength region (300 to 400 nm) of ultraviolet light is controlled. Thus, it is possible to realize energy-saving photocuring that suppresses photocuring inhibition by oxygen in the air and that can uniformly effect the coating film from the surface to the back.

一酸化窒素(NO)からの放射スペクトルは短い波長域200〜300nm(短波長域)にある。短波長域の紫外線は塗布膜表面の極く狭い領域に吸収され、エネルギー密度が高いので、空気中の酸素による光硬化阻害があってもこの領域の光硬化反応(架橋)は進み易い。
図4に示すように、塗布膜表面での光硬化反応が進むと、空気中の酸素は、この表面を通過して塗布膜の奥まで透過(拡散)し難くなる。即ち、短波長成分の紫外線の照射により、塗布膜表面域に空気中の酸素の透過(拡散)を抑制するバリア(図4の空気−塗布膜遮断層)が生成し、主成分である中波長域の紫外線による光硬化に対する酸素阻害が抑制され、短時間(30秒程度)で塗布膜が光硬化する。N2に対するO2の濃度を調整することにより、NOからの短波長域の放射強さを変えることができる。この短波長域の成分が強すぎると、塗布膜の表面域と内部での硬化した膜の性状が異なりよくない(表面域のみ固化すると表面に小さなしわができ塗布膜の透明度が落ちる)。短波長域の成分が弱いとなかなか硬化しない。
The emission spectrum from nitric oxide (NO) is in a short wavelength range of 200 to 300 nm (short wavelength range). Ultraviolet rays in the short wavelength region are absorbed in a very narrow region on the surface of the coating film, and the energy density is high. Therefore, even if there is inhibition of photocuring by oxygen in the air, the photocuring reaction (crosslinking) in this region is likely to proceed.
As shown in FIG. 4, when the photocuring reaction proceeds on the surface of the coating film, oxygen in the air hardly passes (diffuses) through the surface to the depth of the coating film. That is, a barrier (air-coating film blocking layer in FIG. 4) that suppresses the permeation (diffusion) of oxygen in the air is generated on the surface area of the coating film by irradiation with ultraviolet rays having a short wavelength component, and the medium wavelength that is the main component Oxygen inhibition with respect to photocuring by ultraviolet rays in the region is suppressed, and the coating film is photocured in a short time (about 30 seconds). By adjusting the concentration of O2 with respect to N2, the radiation intensity in the short wavelength region from NO can be changed. If the component in the short wavelength region is too strong, the properties of the surface region of the coating film and the cured film inside are not good (if only the surface region is solidified, small wrinkles are formed on the surface and the transparency of the coating film is lowered). If the short wavelength component is weak, it will not harden.

放電プラズマにおいてN2から放射される紫外線波長はNOに比べて長く、中波長域の紫外線は塗布膜の奥まで透過するので、塗布膜全体の光硬化をもたらす。短波長と中波長の強さの比率が適切であれば、塗布膜表層に空気中の酸素が侵入しないバリアを作りながら内部まで同じような性状で光硬化させることができるため、短時間且つ少ない消費電力で性状の良い光硬化が可能となる。
なお光硬化において中波長のLEDと短波長のLEDを組み合わせても同効であるが、放電管のほうがLEDより低コストで製造できる。
In the discharge plasma, the wavelength of ultraviolet rays emitted from N2 is longer than that of NO, and the ultraviolet rays in the middle wavelength range are transmitted to the depth of the coating film, so that the entire coating film is photocured. If the ratio of the intensity of the short wavelength and medium wavelength is appropriate, it can be photocured with the same properties to the inside while creating a barrier that does not allow oxygen in the air to enter the surface of the coating film, so it is short and short Photocuring with good properties can be achieved with power consumption.
It is to be noted that the combination of a medium wavelength LED and a short wavelength LED in photocuring is effective, but the discharge tube can be manufactured at a lower cost than the LED.

次に、光強度を幅方向に調整可能な紫外線発生装置について説明する。
この紫外線発生装置を概念的に説明すると、図5のaに示すように、棒状(120cm、太さ1cm)の石英管8を複数本並べ、コンベアCの上方にその進行方向とは直交する方向に設置し、被照射物Lを照射する。あるいは、図5のbに示すように、断面がアーチ状の容器D内壁の長さ方向に石英管8を複数本並べて、容器D内の被照射物Lを照射する。このように並べた各石英管8の光強度を中央より両端部を強くすると、被照射面の照度を幅方向で平均化できる。図5のaの例は被照射物が面積の広い平板状のものに適し、図5のbの例は、立体形状のものに適している。
Next, an ultraviolet generator capable of adjusting the light intensity in the width direction will be described.
When this ultraviolet ray generator is conceptually described, as shown in FIG. 5a, a plurality of rod-shaped (120 cm, thickness 1 cm) quartz tubes 8 are arranged in a direction perpendicular to the traveling direction above the conveyor C. And irradiate the irradiated object L. Alternatively, as shown in FIG. 5b, a plurality of quartz tubes 8 are arranged in the length direction of the inner wall of the container D having an arched cross section, and the irradiated object L in the container D is irradiated. If the light intensity of the quartz tubes 8 arranged in this way is made stronger at both ends from the center, the illuminance of the irradiated surface can be averaged in the width direction. The example in FIG. 5a is suitable for a flat plate having a large area to be irradiated, and the example in FIG. 5b is suitable for a solid shape.

図6、7は、光強度を幅方向に調整可能な紫外線発生装置の正面図と断面図を示す。
この紫外線発生装置は、磁気シールド板7でランプハウスLHを形成し、ランプハウスに石英管8をはめ込んで取り付け、ランプハウスの両端を固定具9に押し込んで石英管8を固定する。
6 and 7 show a front view and a cross-sectional view of an ultraviolet ray generator capable of adjusting the light intensity in the width direction.
In this ultraviolet ray generator, a lamp house LH is formed by a magnetic shield plate 7, a quartz tube 8 is fitted into the lamp house and attached, and both ends of the lamp house are pushed into a fixture 9 to fix the quartz tube 8.

石英管8の外側の半周にアルミをスパッタコーティングか蒸着して電極1を形成する。
この石英管8側の電極1面は鏡面のてめ、紫外線の反射面を兼ねている。この反射面は、放電プラズマ中心部にある一酸化窒素(NO)からの放射成分に対し有効に作用する。
理由は、放電プラズマ中で窒素(N)と酸素(O)から合成された一酸化窒素(NO)は紫外線を放射後、直ちに、放電プラズマにより窒素(N)と酸素(O)に解離し、エキシマランプと同様に自己吸収が無い(NOからの放射を吸収するNOが存在しない)と考えられる。
その結果、放電プラズマの奥深くから放射され反射面に向かう紫外線はほとんど全て光取り出し側へ反射される。実際に、鏡面状のスパッタ電極1を使用した場合とそうでない場合では、NOからの短波長域の成分は2倍以上変わった。
The electrode 1 is formed by sputtering or vapor-depositing aluminum on the outer half of the quartz tube 8.
The surface of the electrode 1 on the quartz tube 8 side serves as a mirror surface and also serves as an ultraviolet reflecting surface. This reflecting surface effectively acts on radiation components from nitric oxide (NO) in the center of the discharge plasma.
The reason is that nitric oxide (NO) synthesized from nitrogen (N) and oxygen (O) in the discharge plasma is immediately dissociated into nitrogen (N) and oxygen (O) by the discharge plasma after emitting ultraviolet rays. Like the excimer lamp, it is considered that there is no self-absorption (there is no NO that absorbs radiation from NO).
As a result, almost all ultraviolet rays radiated from deep inside the discharge plasma and directed to the reflection surface are reflected to the light extraction side. Actually, in the case where the mirror-like sputter electrode 1 is used and the case where it is not, the short wavelength region component from NO has changed more than twice.

次に軟鉄にメッキした板を樋状に折り曲げて磁気シールド板7を形成し、その内側の谷折れ線7aを位置決めに利用することにより、定位置に磁石4をセットする。図8に、磁気シールド板の斜視図を示す。図8(a)は磁気シールド板7の中央部分で、同時に磁石4の極性の並べ方も示している。図8(b)は磁気シールド板7両端部で、同時に磁石4の極性の並べ方も示している。   Next, a plate plated with soft iron is bent into a bowl shape to form the magnetic shield plate 7, and the magnet 4 is set at a fixed position by using the inner valley fold line 7a for positioning. FIG. 8 shows a perspective view of the magnetic shield plate. FIG. 8A shows the arrangement of the polarities of the magnets 4 at the center of the magnetic shield plate 7 at the same time. FIG. 8B also shows how the polarities of the magnets 4 are arranged at both ends of the magnetic shield plate 7.

このセットの内側にバリア層(絶縁体)2を配したランプハウスLHに石英管8をはめ込むようにして取り付ける。取り付けると、図7に示すように、ランプハウスの給電プローブ10に石英管8の電極1が電気的に接続状態となる。給電プローブ10はφ2で、バネの力で電極の方向に突き出るようになっている。そうすることにより電極が複数でもランプハウスLHに石英管8をはめこむだけで、すべての電極に給電プローブを一挙に接続できる。電極1の厚さは1〜10μmで、バリア層2は0.1〜0.3mm、磁気シールド板7は0.8mmである。また、磁石4は鉄・ネオジウム、ボロンでできている。   The quartz tube 8 is attached to the lamp house LH in which the barrier layer (insulator) 2 is disposed inside the set. When attached, as shown in FIG. 7, the electrode 1 of the quartz tube 8 is electrically connected to the power supply probe 10 of the lamp house. The power supply probe 10 has a diameter of 2 and protrudes toward the electrode by the force of the spring. By doing so, even if there are a plurality of electrodes, the feeding probe can be connected to all the electrodes at once by simply fitting the quartz tube 8 into the lamp house LH. The thickness of the electrode 1 is 1 to 10 μm, the barrier layer 2 is 0.1 to 0.3 mm, and the magnetic shield plate 7 is 0.8 mm. The magnet 4 is made of iron, neodymium, or boron.

ここで電極1に放電電気エネルギーを供給すると、図10に示すように、プラズマPが発生し、磁石4の磁力線によってプラズマPが閉じ込められる。
このとき、多相交流電源の位相差を、図11(a)(b)に示すように、最初の等しく60°からV1−V2=105°、V2−V3=60°、V3−V4=30°、V4−V5=60°、V5−V6=105°に変更すると、両端部の電極1間の電位差が中央部より大きくなり、両端部の光強度を中央部より簡単に強くできる。
Here, when discharge electric energy is supplied to the electrode 1, plasma P is generated as shown in FIG. 10, and the plasma P is confined by the magnetic lines of force of the magnet 4.
At this time, as shown in FIGS. 11A and 11B, the phase difference of the multiphase AC power source is changed from the initial equal 60 ° to V1-V2 = 105 °, V2-V3 = 60 °, V3-V4 = 30. When the angle is changed to V4-V5 = 60 ° and V5-V6 = 105 °, the potential difference between the electrodes 1 at both ends becomes larger than that at the center, and the light intensity at both ends can be easily increased from that at the center.

本発明を実施した光硬化用の紫外線発生装置の断面図である。It is sectional drawing of the ultraviolet-ray generator for photocuring which implemented this invention. 図1の電源接続図である。FIG. 2 is a power supply connection diagram of FIG. 1. 紫外線の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of an ultraviolet-ray. 光硬化を説明する図である。It is a figure explaining photocuring. 光強度を幅方向に調整可能な紫外線発生装置の概念的な説明図である。It is a conceptual explanatory drawing of the ultraviolet-ray generator which can adjust light intensity in the width direction. 光強度を幅方向に調整可能な紫外線発生装置の正面図である。It is a front view of the ultraviolet-ray generator which can adjust light intensity in the width direction. 図6の拡大断面図である。It is an expanded sectional view of FIG. (a)は図6の中央部分、(b)はその両端部の斜視図である。(A) is the center part of FIG. 6, (b) is the perspective view of the both ends. 図6の電源接続図である。FIG. 7 is a power supply connection diagram of FIG. 6. 図7におけるプラズマ発生の様子を示す図である。It is a figure which shows the mode of the plasma generation | occurrence | production in FIG. 図6の給電ベクトル図である。It is the electric power feeding vector diagram of FIG.

1 電極
2 バリア層
3 平面容器
31 基板
32 光取り出し窓
4 磁石
5 磁気シールド板
6 12相交流電源
7 磁気シールド板
8 石英管
9 固定具
10 給電プローブ
a 間隙
C コンベア
D 容器
L 被照射物
P プラズマ
DESCRIPTION OF SYMBOLS 1 Electrode 2 Barrier layer 3 Flat container 31 Substrate 32 Light extraction window 4 Magnet 5 Magnetic shield plate 6 12-phase AC power source 7 Magnetic shield plate 8 Quartz tube 9 Fixing tool 10 Feed probe a Gap C Conveyor D Container L Irradiated object P Plasma

Claims (3)

常温の圧力比で、窒素(N2)100に対し酸素(O2)0〜18を含む混合ガスを放電空間に密閉して成る紫外線発生装置。   An ultraviolet ray generator in which a mixed gas containing oxygen (O2) 0 to 18 with respect to nitrogen (N2) 100 is sealed in a discharge space at a normal pressure ratio. 前記混合ガス1に対し、常温の圧力比で、アルゴン(Ar)を0.5〜5加えて成る請求項1記載の紫外線発生装置。   The ultraviolet ray generator according to claim 1, wherein 0.5 to 5 of argon (Ar) is added to the mixed gas 1 at a normal pressure ratio. 放電空間を筒体に形成して窒素(N2)と酸素(O2)の混合ガスを密閉し、
この筒体の長さ方向に沿って電極を分割して配置し、
これらの電極へ電極間にかかる電圧を位相設定により調整した多相交流電源を接続して成る紫外線発生装置。
A discharge space is formed in the cylinder, and a mixed gas of nitrogen (N2) and oxygen (O2) is sealed,
Dividing and arranging the electrodes along the length direction of this cylinder,
An ultraviolet ray generator comprising a multiphase AC power source in which the voltage applied between the electrodes is adjusted by phase setting to these electrodes.
JP2013048507A 2013-03-11 2013-03-11 Ultraviolet light generator Pending JP2014175227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013048507A JP2014175227A (en) 2013-03-11 2013-03-11 Ultraviolet light generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013048507A JP2014175227A (en) 2013-03-11 2013-03-11 Ultraviolet light generator

Publications (1)

Publication Number Publication Date
JP2014175227A true JP2014175227A (en) 2014-09-22

Family

ID=51696237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048507A Pending JP2014175227A (en) 2013-03-11 2013-03-11 Ultraviolet light generator

Country Status (1)

Country Link
JP (1) JP2014175227A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020202189A (en) * 2015-11-13 2020-12-17 株式会社紫光技研 Ultraviolet irradiation device
JP2022000863A (en) * 2020-08-24 2022-01-04 株式会社紫光技研 Ultraviolet irradiation apparatus and driving method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020202189A (en) * 2015-11-13 2020-12-17 株式会社紫光技研 Ultraviolet irradiation device
JP2022000863A (en) * 2020-08-24 2022-01-04 株式会社紫光技研 Ultraviolet irradiation apparatus and driving method therefor
JP7470994B2 (en) 2020-08-24 2024-04-19 株式会社紫光技研 Ultraviolet irradiation device and driving method thereof

Similar Documents

Publication Publication Date Title
Lomaev et al. Excilamps: efficient sources of spontaneous UV and VUV radiation
KR100932377B1 (en) Method of water purification using high density underwater plasma torch
KR100924649B1 (en) Generator and method of high desity underwater plasma torch
JPH03201358A (en) High-output beam radiation device
KR102106293B1 (en) Excimer light source
WO2009123258A1 (en) Ultraviolet generation device and lighting device using same
JP2014175227A (en) Ultraviolet light generator
JP2009510698A5 (en)
Salvermoser et al. Efficient, stable, corona discharge 172 nm xenon excimer light source
JP2004047207A5 (en)
JP2005216647A (en) High radiance flash discharge lamp
US6822404B2 (en) Phase-controlled, multi-electrode type of AC discharge light source
JP2001185089A (en) Excimer irradiation device
US9718705B2 (en) UV light source having combined ionization and formation of excimers
Blajan et al. Phenomena of microdischarges in microplasma
JP6067300B2 (en) Magnetron sputtering film forming apparatus and magnetron sputtering film forming method
JP2011023112A (en) Source of ultraviolet ray and lighting system
JP5881923B1 (en) UV generator
JP5805273B1 (en) UV generator
JP2004171889A (en) Excimer light source device
Seong et al. Effects of operational parameters on plasma characteristics and liquid treatment of a DBD-based unipolar microsecond-pulsed helium atmospheric pressure plasma jet
JP5030121B2 (en) Ultraviolet generator and lighting device using the same
RU2319251C1 (en) Method for improving power and light characteristics of gas-discharge lamps
US9334177B1 (en) Coreless transformer UV light source system
JP2002319371A (en) Dielectric barrier discharge lamp, device for lighting dielectric barrier discharge lamp, and ultraviolet irradiation device