JP2014174192A - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
JP2014174192A
JP2014174192A JP2013043921A JP2013043921A JP2014174192A JP 2014174192 A JP2014174192 A JP 2014174192A JP 2013043921 A JP2013043921 A JP 2013043921A JP 2013043921 A JP2013043921 A JP 2013043921A JP 2014174192 A JP2014174192 A JP 2014174192A
Authority
JP
Japan
Prior art keywords
light
optical axis
axis direction
main body
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013043921A
Other languages
Japanese (ja)
Other versions
JP6147031B2 (en
Inventor
Satoshi Ohara
聡 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2013043921A priority Critical patent/JP6147031B2/en
Publication of JP2014174192A publication Critical patent/JP2014174192A/en
Application granted granted Critical
Publication of JP6147031B2 publication Critical patent/JP6147031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical device in which an emission end part of a light guide member and an optical conversion member are stably and highly accurately positioned with each other, deviation in quality can be reduced in mass production, and desired optical characteristics can be obtained.SOLUTION: In an optical device 10, position control means 80 includes: optical axis direction control means 81 which controls a relative position in the optical axis 11 direction; radial direction control means 83 which controls the relative position in the radial direction; and inclination direction control means 85 which controls the relative position in the inclination direction.

Description

本発明は、導光ユニットと照明ユニットとを有する光学デバイスに関する。   The present invention relates to an optical device having a light guide unit and an illumination unit.

近年、様々な光学デバイスが開示されている。光学デバイスの一例として、光学デバイスは、小型の個体光源から出射された光を導光する光ファイバ等の導光部材と、導光部材の出射端部に配設され、導光部材によって導光された光を波長変換や散乱させて、光を所望の照射パターンや色に変化させる光変換部材とを有している。   In recent years, various optical devices have been disclosed. As an example of an optical device, the optical device is disposed at a light guide member such as an optical fiber that guides light emitted from a small solid light source, and an output end of the light guide member, and is guided by the light guide member. A light conversion member that changes the wavelength of the emitted light or scatters the light to a desired irradiation pattern or color.

このような光学デバイスは、例えば、特許文献1に開示されている。特許文献1において、光変換部材として機能する波長変換部材と、光を効率よく取り出すためリフレクタと、リフレクタの形状と、波長変換部材とリフレクタとの位置関係とが記載されている。   Such an optical device is disclosed in Patent Document 1, for example. Patent Document 1 describes a wavelength conversion member that functions as a light conversion member, a reflector for efficiently extracting light, a shape of the reflector, and a positional relationship between the wavelength conversion member and the reflector.

特許文献1では、励起光が光ファイバの出射端部から出射されて波長変換部材を照射する際に、励起光が波長変換部材によって波長変換された光である照明光が全方位に発生することに着目しており、この全方位に発生する照明光を、所望する方向へ効率よく取り出す構造を提案している。
具体的には、光ファイバの出射端部が波長変換部材に対して離間するとともに、出射端部と波長変換部材とこれらの離間部分との周囲にテーパ型のリフレクタが配設されている。出射端部とリフレクタと波長変換部材とのために、出射端部を含む光ファイバを保持するフェルールと、テーパ形状の貫通口を有し、テーパ形状の内周面にリフレクタが配設されているホルダとが配設されている。また波長変換部材を内部に保持し、貫通口と略同一のテーパ形状を有し、テーパ形状の側面がホルダの内周面に当接するように貫通口に配設される光透過部材とがさら配設されている。
In Patent Document 1, when excitation light is emitted from the emission end of the optical fiber and irradiates the wavelength conversion member, illumination light that is light obtained by wavelength conversion of the excitation light by the wavelength conversion member is generated in all directions. And has proposed a structure for efficiently taking out illumination light generated in all directions in a desired direction.
Specifically, the output end of the optical fiber is separated from the wavelength conversion member, and a tapered reflector is disposed around the output end, the wavelength conversion member, and the separated portions. The output end, the reflector, and the wavelength conversion member have a ferrule that holds the optical fiber including the output end, a tapered through hole, and a reflector is disposed on the tapered inner peripheral surface. And a holder. Further, the wavelength conversion member is held inside, and has a taper shape substantially the same as that of the through hole, and the light transmitting member disposed in the through hole so that the side surface of the taper shape is in contact with the inner peripheral surface of the holder. It is arranged.

これらが組み立てられる際、波長変換部材を含む光透過部材が貫通口に配設され、光透過部材の側面がホルダの内周面に位置決め及び当接され、光透過部材は接着剤等によって固定される。その後、光ファイバを保持しているフェルールは、出射端部が光透過部材と当接して波長変換部材に対して相対的に位置決めされるように、ホルダに対して位置決めされ、固定される。   When these are assembled, the light transmitting member including the wavelength converting member is disposed in the through-hole, the side surface of the light transmitting member is positioned and abutted on the inner peripheral surface of the holder, and the light transmitting member is fixed by an adhesive or the like. The Thereafter, the ferrule holding the optical fiber is positioned and fixed with respect to the holder so that the emission end portion is in contact with the light transmitting member and is positioned relative to the wavelength conversion member.

特開2011−123368号公報JP 2011-123368 A

特許文献1において、光ファイバの出射端部と光変換部材との相対位置は、光透過部材とホルダとを介してアライメントされる。この場合、ホルダと光透過部材とが互いに接触し位置決めされる部分は、テーパ形状のホルダの内周面とテーパ形状の光透過部材の外周面とになる。このために、この部分において、例えば、ホルダと光透過部材とが互いに接触し引っかかってしまうこと等により、出射端部と光透過部材との間に間隙が生じたり、ホルダに対して光透過部材が傾いて固定される可能性がある。結果として、光変換部材が出射端部に対してずれてしまう。   In Patent Document 1, the relative positions of the emission end of the optical fiber and the light conversion member are aligned via the light transmission member and the holder. In this case, the portions where the holder and the light transmitting member are in contact with each other are positioned on the inner peripheral surface of the tapered holder and the outer peripheral surface of the tapered light transmitting member. For this reason, in this portion, for example, the holder and the light transmitting member come into contact with each other and get caught, and therefore, a gap is generated between the emission end portion and the light transmitting member, or the light transmitting member with respect to the holder. May be tilted and fixed. As a result, the light conversion member is displaced with respect to the emission end.

このように、光変換部材が光ファイバの出射端部に対して高精度に相対的に位置決めされることは、容易ではなく、さらに安定的ではない。結果として、光学デバイスが量産される際、品質にばらつきが生じてしまう。そして、出射端部と光変換部材とが互いに相対的に位置ずれした場合、光学デバイスは、本来の照明性能を得られない虞がある。   Thus, it is not easy and more stable that the light conversion member is positioned relatively accurately with respect to the emission end of the optical fiber. As a result, when optical devices are mass-produced, the quality varies. When the emission end portion and the light conversion member are displaced relative to each other, the optical device may not obtain the original illumination performance.

本発明は、これらの事情に鑑みてなされたものであり、導光部材の出射端部と光変換部材とが互いに安定的且つ高精度に位置決めされ、量産時において品質のばらつきを低減でき、所望の光学特性を得られる光学デバイスを提供することを目的とする。   The present invention has been made in view of these circumstances, and the exit end portion of the light guide member and the light conversion member are positioned stably and with high accuracy, and can reduce variation in quality during mass production. An object of the present invention is to provide an optical device capable of obtaining the optical characteristics of

本発明は目的を達成するために、1次光を出射する出射部を有しており、前記1次光を導光する導光ユニットと、前記導光ユニットによって導光されて前記出射部から出射された前記1次光が入射する入射部と、前記入射部から離間して配設され、前記入射部から入射された前記1次光を照射されることによって、前記1次光とは異なる2次光を生成する生成部材とを有しており、前記2次光を照明光として観察対象物に照明する照明ユニットと、前記出射部と前記入射部とが互いに光学的に接続するように、前記導光ユニットと前記照明ユニットとを保持する保持部と、前記出射部と前記生成部材との相対位置を制御する位置制御手段と、を具備し、前記出射部が出射する前記光の中心軸方向を光軸方向と称し、前記光軸方向に直交する方向を径方向と称し、前記光軸方向に傾斜する方向を傾斜方向と称し、前記位置制御手段は、前記光軸方向において前記相対位置を制御する光軸方向制御手段と、前記径方向において前記相対位置を制御する径方向制御手段と、前記傾斜方向において前記相対位置を制御する傾斜方向制御手段と、を有することを特徴とする光学デバイスを提供する。   In order to achieve the object, the present invention has an emission part that emits primary light, a light guide unit that guides the primary light, and a light guide unit that guides the primary light from the emission part. Different from the primary light by being irradiated with the primary light incident from the incident part where the emitted primary light is incident and spaced apart from the incident part and incident from the incident part A generating member that generates secondary light, and an illumination unit that illuminates the observation object using the secondary light as illumination light, and the emitting portion and the incident portion are optically connected to each other. A center of the light emitted by the emitting unit, the holding unit holding the light guide unit and the illumination unit, and a position control unit that controls a relative position between the emitting unit and the generating member. The axial direction is referred to as the optical axis direction and is orthogonal to the optical axis direction. Is referred to as a radial direction, a direction inclined in the optical axis direction is referred to as an inclination direction, and the position control means includes an optical axis direction control means for controlling the relative position in the optical axis direction, and the relative direction in the radial direction. There is provided an optical device comprising: a radial direction control unit that controls a position; and a tilt direction control unit that controls the relative position in the tilt direction.

本発明によれば、導光部材の出射端部と光変換部材とが互いに安定的且つ高精度に位置決めされ、量産時において品質のばらつきを低減でき、所望の光学特性を得られる光学デバイスを提供することができる。   According to the present invention, there is provided an optical device in which an emission end portion of a light guide member and a light conversion member are positioned stably and with high accuracy, can reduce variation in quality during mass production, and obtain desired optical characteristics. can do.

図1Aは、本発明の第1の実施形態に係る光学デバイスを示す図である。FIG. 1A is a diagram showing an optical device according to the first embodiment of the present invention. 図1Bは、光軸方向制御手段と径方向制御手段と傾斜方向制御手段とを含む照明ユニットの概略図である。FIG. 1B is a schematic diagram of an illumination unit including an optical axis direction control unit, a radial direction control unit, and a tilt direction control unit. 図1Cは、径方向制御手段と傾斜方向制御手段とを含む保持部の概略図である。FIG. 1C is a schematic view of a holding unit including a radial direction control unit and an inclination direction control unit. 図1Dは、挿入収容部のテーパ角度θ1と、挿入部のテーパ角度θ2との関係を示す図である。FIG. 1D is a diagram illustrating a relationship between the taper angle θ1 of the insertion housing portion and the taper angle θ2 of the insertion portion. 図2Aは、光軸方向における1次光入射部と光変換部材との相対位置が制御され、照明ユニットが収容部に収容される状態を示す図である。FIG. 2A is a diagram illustrating a state in which the relative position between the primary light incident portion and the light conversion member in the optical axis direction is controlled, and the illumination unit is accommodated in the accommodation portion. 図2Bは、光軸方向における1次光入射部と光変換部材との相対位置が制御され、本体部が本体嵌合部に嵌合する状態を示す図である。FIG. 2B is a diagram illustrating a state in which the relative position between the primary light incident portion and the light conversion member in the optical axis direction is controlled, and the main body portion is fitted to the main body fitting portion. 図2Cは、本体部が本体嵌合部に嵌合し、光軸方向と径方向と傾斜方向とにおける1次光入射部と光変換部材との相対位置が位置決めされた図である。FIG. 2C is a diagram in which the main body portion is fitted into the main body fitting portion, and the relative positions of the primary light incident portion and the light conversion member in the optical axis direction, the radial direction, and the tilt direction are positioned. 図3は、第1の実施形態に係る第1の変形例における光学デバイスを示す図である。FIG. 3 is a diagram illustrating the optical device according to the first modification example of the first embodiment.

以下、図面を参照して本発明の実施形態について詳細に説明する。
図1Aと図1Bと図1Cと図1Dと図2Aと図2Bと図2Cとを参照して第1の実施形態について説明する。なお一部の図面では、図示の明瞭化のために、部材の図示を省略している。
また以下において、1次光出射部21aが出射する1次光の中心軸を光軸11と称する。
また1次光の中心軸方向を、光軸11方向と称する。また光軸11方向において、光ファイバ21側を後方と称し、光変換部材43側を前方と称する。
また光軸11方向に直交する方向を、径方向と称する。
また光軸11方向に傾斜する方向を、傾斜方向と称する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The first embodiment will be described with reference to FIGS. 1A, 1B, 1C, 1D, 2A, 2B and 2C. In some of the drawings, illustration of members is omitted for clarity of illustration.
Hereinafter, the central axis of the primary light emitted from the primary light emitting portion 21a is referred to as an optical axis 11.
The central axis direction of the primary light is referred to as the optical axis 11 direction. Further, in the direction of the optical axis 11, the optical fiber 21 side is referred to as the rear, and the light conversion member 43 side is referred to as the front.
A direction perpendicular to the direction of the optical axis 11 is referred to as a radial direction.
A direction inclined in the direction of the optical axis 11 is referred to as an inclination direction.

[光学デバイス10]
図1Aに示すように、光学デバイス10は、1次光を導光する導光ユニット20と、導光ユニット20によって導光された1次光を基に1次光とは異なる2次光を生成し、2次光を照明光として観察対象物に照明する照明ユニット40と、導光ユニット20と照明ユニット40とを保持する保持部60とを有している。
[Optical device 10]
As shown in FIG. 1A, the optical device 10 includes a light guide unit 20 that guides primary light, and secondary light that is different from the primary light based on the primary light guided by the light guide unit 20. An illumination unit 40 that generates and illuminates the observation object with secondary light as illumination light, and a holding unit 60 that holds the light guide unit 20 and the illumination unit 40 are included.

[導光ユニット20]
導光ユニット20が導光する1次光において、1次光は、半導体レーザ等の図示しない光源部から出射される。1次光は、例えば、波長が例えば400nm付近の青紫色のレーザ光である。
[Light guide unit 20]
In the primary light guided by the light guide unit 20, the primary light is emitted from a light source unit (not shown) such as a semiconductor laser. The primary light is, for example, blue-violet laser light having a wavelength of, for example, around 400 nm.

図1Aに示すように、導光ユニット20は、導光部材である例えば光ファイバ21を有している。光ファイバ21は、図示しない光ファイバ21の一端部に配設され、光源部から出射された1次光が入射する図示しない入射部と、光ファイバ21の他端部に配設され、1次光を出射する1次光出射部21aとを有している。1次光出射部21aは、光ファイバ21の他端部が光ファイバ21の中心軸(光軸11方向)に対して直交する平面として形成されている。図示しない入射部は光源部と光学的に接続し、1次光出射部21aは照明ユニット40と光学的に接続する。光ファイバ21は、入射部から1次光出射部21aまで1次光を導光する。そして、1次光は、1次光出射部21aから所望な広がり角度で出射される。   As shown in FIG. 1A, the light guide unit 20 includes, for example, an optical fiber 21 that is a light guide member. The optical fiber 21 is disposed at one end portion of the optical fiber 21 (not shown), and is disposed at an incident portion (not shown) into which primary light emitted from the light source portion is incident, and at the other end portion of the optical fiber 21. A primary light emitting portion 21a for emitting light. The primary light emitting portion 21 a is formed as a plane in which the other end portion of the optical fiber 21 is orthogonal to the central axis (direction of the optical axis 11) of the optical fiber 21. An incident part (not shown) is optically connected to the light source part, and the primary light emitting part 21 a is optically connected to the illumination unit 40. The optical fiber 21 guides the primary light from the incident part to the primary light emitting part 21a. The primary light is emitted from the primary light emitting portion 21a at a desired spread angle.

このような光ファイバ21は、例えば、柔軟性と可撓性とを有しており、湾曲可能であり、円柱形状を有している。光ファイバ21は、1次光を効率よく導光する光学特性を有しており、例えば、ガラスやプラスチックによって形成される。光ファイバ21は、例えばマルチモードファイバの光ファイバ21である。例えば、光ファイバ21のコア径は50μm、開口数NAは0.2となっている。光ファイバ21は、1次光が大きなエネルギーロスなく1次光出射部21aから前方に向けて出射されるように、1次光を高効率に前方に導光する光学特性を有している。このとき、1次光の出射角度は、光ファイバ21の開口数や後述する光透過部材などの屈折率によって決まる。   Such an optical fiber 21 has, for example, flexibility and flexibility, can be bent, and has a cylindrical shape. The optical fiber 21 has an optical characteristic that guides primary light efficiently, and is made of, for example, glass or plastic. The optical fiber 21 is, for example, an optical fiber 21 that is a multimode fiber. For example, the core diameter of the optical fiber 21 is 50 μm, and the numerical aperture NA is 0.2. The optical fiber 21 has an optical characteristic that guides the primary light forward with high efficiency so that the primary light is emitted forward from the primary light emitting portion 21a without a large energy loss. At this time, the emission angle of the primary light is determined by the numerical aperture of the optical fiber 21 and the refractive index of a light transmitting member described later.

また図1Aに示すように、導光ユニット20は、光ファイバ21の大部分を覆う例えば樹脂製の被覆層23であるジャケットを有している。この被覆層23は、光ファイバ21の一端部から光ファイバ21の他端部側にまで配設されている。詳細には、他端部側において、被覆層23は、保持部60のガイド口部63付近にまで配設されているのみであり、保持部60の後述する導光嵌合部61には挿入されない。このため光ファイバ21の他端部は、被覆層23から露出している。   As shown in FIG. 1A, the light guide unit 20 has a jacket that is, for example, a resin coating layer 23 that covers most of the optical fiber 21. The coating layer 23 is disposed from one end of the optical fiber 21 to the other end of the optical fiber 21. Specifically, the coating layer 23 is only disposed up to the vicinity of the guide opening 63 of the holding unit 60 on the other end side, and is inserted into a light guide fitting unit 61 described later of the holding unit 60. Not. For this reason, the other end portion of the optical fiber 21 is exposed from the coating layer 23.

[照明ユニット40]
図1Aと図1Bとに示すように、照明ユニット40は、1次光出射部21aと光学的に接続し、導光ユニット20によって導光されて1次光出射部21aから出射された1次光が入射する1次光入射部41と、1次光入射部41から離間して配設され、1次光入射部41から入射された1次光を照射されることによって、1次光の光学特性を変換し、1次光とは異なる照明光としての2次光を生成する生成部材である光変換部材43と、2次光を照明ユニット40の外部に出射する2次光出射部45とを有している。
また図1Aと図1Bとに示すように、照明ユニット40は、1次光入射部41を有し、1次光と2次光とが透過するように、1次光入射部41と光変換部材43との間に配設され、さらに1次光入射部41から2次光出射部45の側方まで少なくとも一部が連続して配設されている光透過部材47をさらに有している。
照明ユニット40に含まれるこれら部材は、光軸11を中心軸として同心円状の形状を有し、光軸11を中心に回転対称に配設されている。
[Lighting unit 40]
As shown in FIGS. 1A and 1B, the illumination unit 40 is optically connected to the primary light emitting unit 21a, guided by the light guide unit 20, and emitted from the primary light emitting unit 21a. The primary light incident part 41 on which light is incident and the primary light incident part 41 are arranged apart from the primary light incident part 41 and irradiated with the primary light incident from the primary light incident part 41. A light conversion member 43 that is a generation member that converts the optical characteristics and generates secondary light as illumination light different from the primary light, and a secondary light emitting unit 45 that emits the secondary light to the outside of the illumination unit 40. And have.
As shown in FIGS. 1A and 1B, the illumination unit 40 has a primary light incident portion 41 and the primary light incident portion 41 and the light conversion so that the primary light and the secondary light are transmitted. A light transmission member 47 is further provided between the member 43 and the light transmission member 47 which is disposed at least partially continuously from the primary light incident portion 41 to the side of the secondary light emitting portion 45. .
These members included in the illumination unit 40 have a concentric shape with the optical axis 11 as a central axis, and are disposed rotationally symmetrically about the optical axis 11.

[1次光入射部41]
図1Aに示すように、1次光入射部41は、1次光出射部21aが当接する光透過部材47の後面47aの一部分に形成される。より詳細には、光透過部材47において、1次光出射部21aが光学的に接続した後面47aの一部分が1次光入射部41として形成される。この後面47aは、光軸11方向において、例えば光透過部材47の最も後方に配設されている平面を示す。1次光入射部41と後面47aとは、光軸11に対して直交して配設される。1次光入射部41の中心軸は、光軸11上に配設され、光透過部材47の中心軸上に形成される。1次光入射部41は、1次光出射部21aと略同一の形状と面積とを有している。1次光入射部41は、2次光出射部45よりも小さい。
[Primary light incident part 41]
As shown in FIG. 1A, the primary light incident portion 41 is formed on a part of the rear surface 47a of the light transmitting member 47 with which the primary light emitting portion 21a abuts. More specifically, in the light transmitting member 47, a part of the rear surface 47 a to which the primary light emitting portion 21 a is optically connected is formed as the primary light incident portion 41. The rear surface 47a is a flat surface disposed, for example, at the rearmost side of the light transmission member 47 in the direction of the optical axis 11. The primary light incident portion 41 and the rear surface 47 a are disposed orthogonal to the optical axis 11. The central axis of the primary light incident portion 41 is disposed on the optical axis 11 and is formed on the central axis of the light transmitting member 47. The primary light incident part 41 has substantially the same shape and area as the primary light emitting part 21a. The primary light incident part 41 is smaller than the secondary light emitting part 45.

[光変換部材43(生成部材)]
光変換部材43は、例えば、1次光の波長を変えずに1次光の配光特性を所望に変換して、1次光の配光特性とは異なる配光特性を有する光である2次光を生成する。このように光変換部材43は、1次光の配光特性を所望に変換する配光変換部材であり、2次光を生成する生成部材であり、1次光を照射されることで機能する光学部材である。
なお光変換部材43は、1次光の波長を所望に変換し、1次光の波長とは異なる波長を有する光である2次光を生成する波長変換部材として機能してもよい。
[Light Conversion Member 43 (Generation Member)]
The light conversion member 43 is, for example, light having a light distribution characteristic different from the light distribution characteristic of the primary light by converting the light distribution characteristic of the primary light as desired without changing the wavelength of the primary light. Generate next light. Thus, the light conversion member 43 is a light distribution conversion member that converts the light distribution characteristic of the primary light as desired, is a generation member that generates secondary light, and functions when irradiated with the primary light. It is an optical member.
The light conversion member 43 may function as a wavelength conversion member that converts the wavelength of the primary light as desired and generates secondary light that is light having a wavelength different from the wavelength of the primary light.

つまり光変換部材43は、散乱などの配光変換特性と、波長変換特性との少なくとも少なくとも一方を有している。   That is, the light conversion member 43 has at least one of light distribution conversion characteristics such as scattering and wavelength conversion characteristics.

配光変換特性を有する光変換部材43の構成において、光変換部材43は、例えばマイクロレンズアレイのような微小な凹凸が配設されている表面を有する部材によって形成されてもよいし、配光変換特性を有する粒子状の部材がガラスや透明樹脂にバインドされることで形成されてもよいし、配光特性を有する粒子状のガラスが透明樹脂に直接高圧に成形されることで形成されてもよい。   In the configuration of the light conversion member 43 having the light distribution conversion characteristics, the light conversion member 43 may be formed by a member having a surface on which minute irregularities are disposed, such as a microlens array, or a light distribution. It may be formed by binding a particulate member having conversion characteristics to glass or a transparent resin, or by forming particulate glass having light distribution characteristics directly on a transparent resin at a high pressure. Also good.

波長変換特性を有する光変換部材43の構成において、光変換部材43は、例えばセラミックのような剛体であってもよい。または、光変換部材43は、波長変換特性を有する粒子状の部材がガラスや透明樹脂にバインドされることで形成されてもよいし、波長変換特性を有する粒子状の部材が直接高圧に成形されることで形成されてもよい。   In the configuration of the light conversion member 43 having wavelength conversion characteristics, the light conversion member 43 may be a rigid body such as ceramic. Alternatively, the light conversion member 43 may be formed by binding a particulate member having wavelength conversion characteristics to glass or transparent resin, or the particulate member having wavelength conversion characteristics is directly molded at a high pressure. May be formed.

光変換部材43が配光変換特性と波長変換特性とのどちらか一方を有する場合、光変換部材43は、前記した一方の構成を有する。   When the light conversion member 43 has one of the light distribution conversion characteristic and the wavelength conversion characteristic, the light conversion member 43 has one of the configurations described above.

また光変換部材43が配光変換特性と波長変換特性との両方を有する場合、光変換部材43は、配光変換特性を有する粒子状の部材と波長変換特性を有する粒子状の部材とが混合してバインドまたは高圧に成形される混合物を有していればよい。または、光変換部材43は、前記した一方の構成が光軸11方向において他方の構成に積層することによって成形される積層物を有していればよい。さらに、配光変換特性および波長変換特性の両方を併せ持つ粒子状の部材がバインドまたは高圧に成形されていてもよい。   When the light conversion member 43 has both the light distribution conversion characteristic and the wavelength conversion characteristic, the light conversion member 43 is a mixture of a particulate member having the light distribution conversion characteristic and a particulate member having the wavelength conversion characteristic. Thus, it is only necessary to have a mixture that is formed into a bind or high pressure. Or the light conversion member 43 should just have the laminated body shape | molded by laminating | stacking one above-mentioned structure on the other structure in the optical axis 11 direction. Furthermore, a particulate member having both the light distribution conversion characteristic and the wavelength conversion characteristic may be formed into a bind or high pressure.

このように光変換部材43は、配光変換部材と、波長変換部材と、配光変換部材と波長変換部材とが互いに混合することによって成形される混合物と、配光変換部材と波長変換部材との一方が他方に積層することによって成形される積層物との少なくとも1つを有している。   Thus, the light conversion member 43 includes a light distribution conversion member, a wavelength conversion member, a mixture formed by mixing the light distribution conversion member and the wavelength conversion member, a light distribution conversion member, and a wavelength conversion member. One of the two has at least one of a laminate formed by laminating the other.

図1Aと図1Bとに示すように、光変換部材43は、略全ての1次光を照射されるように、1次光出射部21aと対向し、さらに1次光出射部21aよりも前方に配設されている。光変換部材43は、光変換部材43の中心軸が光軸11上に配設されるように、配設される。   As shown in FIGS. 1A and 1B, the light conversion member 43 is opposed to the primary light emitting portion 21a and further forward of the primary light emitting portion 21a so that substantially all of the primary light is irradiated. It is arranged. The light conversion member 43 is disposed such that the central axis of the light conversion member 43 is disposed on the optical axis 11.

図1Aと図1Bとに示すように、光変換部材43は、例えば円柱形状を有している。このため光変換部材43は、1次光出射部21a及び1次光入射部41と対向する円形の後面43aと、後面43aよりも前方に配設されている円形の前面43bと、後面43aと前面43bとの間に配設されている曲面状の周面43cとを有している。なお光変換部材43は、例えば円板形状を有していてもよい。   As shown in FIGS. 1A and 1B, the light conversion member 43 has, for example, a cylindrical shape. For this reason, the light conversion member 43 includes a circular rear surface 43a facing the primary light emitting portion 21a and the primary light incident portion 41, a circular front surface 43b disposed in front of the rear surface 43a, and a rear surface 43a. A curved peripheral surface 43c disposed between the front surface 43b and the front surface 43b. The light conversion member 43 may have a disk shape, for example.

図1Aと図1Bとに示すように、後面43aと前面43bとは、光軸11に対して直交して配設されている平面である。後面43aと前面43bとにおいて、これらの中心軸は、光軸11上に配設されている。   As shown in FIGS. 1A and 1B, the rear surface 43 a and the front surface 43 b are planes that are disposed orthogonal to the optical axis 11. These central axes are arranged on the optical axis 11 in the rear surface 43a and the front surface 43b.

図1Aに示すように、後面43aは、1次光出射部21aから離間して配設されている。詳細には、後面43aに形成される1次光のビームスポットが後面43aよりも小さく形成されるように、後面43aは1次光出射部21a及び1次光入射部41から離間して配設されている。後面43aは、1次光を照射される照射面として機能する。   As shown in FIG. 1A, the rear surface 43a is disposed away from the primary light emitting portion 21a. More specifically, the rear surface 43a is disposed away from the primary light emitting portion 21a and the primary light incident portion 41 so that the beam spot of the primary light formed on the rear surface 43a is formed smaller than the rear surface 43a. Has been. The rear surface 43a functions as an irradiation surface irradiated with the primary light.

周面43cは、後述する反射部材67から離間して配設されている。   The peripheral surface 43c is disposed to be separated from a reflection member 67 described later.

前面43bは、光透過部材47の前面47bと同一平面上に配設されている。前面43bは、2次光出射部45として機能する。   The front surface 43 b is disposed on the same plane as the front surface 47 b of the light transmitting member 47. The front surface 43 b functions as the secondary light emitting unit 45.

なお光変換部材43の厚みと、前記した濃度とは、光変換部材43が1次光をどの程度2次光に変換するかによって、所望に設定される。   The thickness of the light conversion member 43 and the above-described density are set as desired depending on how much the light conversion member 43 converts the primary light into the secondary light.

[2次光出射部45]
図1Aと図1Bとに示すように、2次光出射部45は、光変換部材43の前面43bとして機能する。2次光出射部45は、例えば、円形状を有している。2次光出射部45は、2次光を照明光として出射する。
[Secondary light emitting unit 45]
As shown in FIGS. 1A and 1B, the secondary light emitting portion 45 functions as the front surface 43 b of the light conversion member 43. The secondary light emitting unit 45 has, for example, a circular shape. The secondary light emitting unit 45 emits secondary light as illumination light.

[光透過部材47(光軸方向制御部材)]
図1Aと図1Bとに示すように、光透過部材47は、1次光出射部21aと光学的に接続し、1次光出射部21aから出射された1次光が入射する1次光入射部41を有する後面47aと、2次光を出射する2次光出射部45が配設される前面47bとを有している。1次光入射部41を含む後面47aと、2次光出射部45が配設される前面47bとは、光透過部材47の中心軸(光軸11)に対して直交して配設されている平面である。
[Light transmission member 47 (optical axis direction control member)]
As shown in FIGS. 1A and 1B, the light transmitting member 47 is optically connected to the primary light emitting portion 21a, and the primary light incident from which the primary light emitted from the primary light emitting portion 21a enters. It has a rear surface 47a having a portion 41 and a front surface 47b on which a secondary light emitting portion 45 that emits secondary light is disposed. The rear surface 47a including the primary light incident portion 41 and the front surface 47b on which the secondary light emitting portion 45 is disposed are disposed orthogonal to the central axis (optical axis 11) of the light transmitting member 47. It is a plane.

図1Aと図1Bとに示すように、前面47bは、後面47aよりも大きい。前面47bにおいて、前面43bを除く前面47bの領域は、前面43bの側方に配設されており、リング形状を有している。   As shown in FIGS. 1A and 1B, the front surface 47b is larger than the rear surface 47a. In the front surface 47b, the region of the front surface 47b excluding the front surface 43b is disposed on the side of the front surface 43b and has a ring shape.

また図1Aに示すように、後面47aは、1次光出射部21aよりも大きい。このため、後面47aが1次光出射部21aと当接した際、当接部分、詳細には1次光出射部21aと光学的に接続する部分は、1次光入射部41として形成される。つまり後面47aの一部は1次光入射部41を兼ね、光透過部材47は後面47aと1次光入射部41とを兼有する。   Moreover, as shown to FIG. 1A, the rear surface 47a is larger than the primary light emission part 21a. Therefore, when the rear surface 47a comes into contact with the primary light emitting portion 21a, the contact portion, specifically, the portion optically connected to the primary light emitting portion 21a is formed as the primary light incident portion 41. . That is, a part of the rear surface 47 a also serves as the primary light incident part 41, and the light transmission member 47 serves both as the rear surface 47 a and the primary light incident part 41.

このように光透過部材47は、1次光入射部41を有するように、光軸11方向において1次光入射部41と生成部材である光変換部材43との間に配設されている。これにより光透過部材47は、光軸11方向における1次光出射部21aと光変換部材43との相対位置を所望に制御する光軸方向制御部材として機能する。   As described above, the light transmitting member 47 is disposed between the primary light incident part 41 and the light conversion member 43 as a generation member in the direction of the optical axis 11 so as to have the primary light incident part 41. Thereby, the light transmission member 47 functions as an optical axis direction control member for controlling the relative position between the primary light emitting portion 21a and the light conversion member 43 in the direction of the optical axis 11 as desired.

そして、前記によって、光透過部材47は、光軸11方向において1次光出射部21aと光変換部材43とに光学的に接続し、光軸11方向において1次光出射部21aと光変換部材43とによって挟持されるように、光軸11方向において1次光出射部21aと光変換部材43との間に介在していることなる。   As described above, the light transmitting member 47 is optically connected to the primary light emitting portion 21a and the light converting member 43 in the optical axis 11 direction, and the primary light emitting portion 21a and the light converting member in the optical axis 11 direction. 43 is interposed between the primary light emitting portion 21 a and the light conversion member 43 in the direction of the optical axis 11.

なお一般的に、1次光が2次光に変換されず前面47bから直接出射されると、アイセーフの観点において、目に対して危険性を有する。よって、1次光出射部21aから所望な広がり角度で出射される1次光において、少なくとも1次光の高強度成分は、光変換部材43の後面43aに直接進行する必要がある。言い換えると、1次光のビームスポットが光変換部材43の後面43aよりも小さくなり、このビームスポット全体が後面43aに収まる必要がある。なお前記した高強度成分とは、例えば1次光の光学的なエネルギの99%の割合などを示す。
このため、光軸11方向において、1次光入射部41を有する後面47aから後面43aまでの距離が所望の範囲内に収まる必要がある。この距離は、例えば、光ファイバ21の開口数や、光源部の開口数や、光透過部材47の屈折率や、光ファイバ21のコアの直径や、光変換部材43の直径などによって、設定される。
このように本実施形態では、図1Bに示すように、1次光出射部21aから出射される1次光が光変換部材43を照射する際に、光軸11方向において、光透過部材47は、少なくとも1次光の高強度成分が光変換部材43に進入するような長さL1を有している。
In general, if the primary light is directly converted from the front surface 47b without being converted into the secondary light, there is a risk to the eyes from the viewpoint of eye-safety. Therefore, in the primary light emitted from the primary light emitting portion 21 a at a desired spread angle, at least the high intensity component of the primary light needs to travel directly to the rear surface 43 a of the light conversion member 43. In other words, the beam spot of the primary light becomes smaller than the rear surface 43a of the light conversion member 43, and the entire beam spot needs to be accommodated on the rear surface 43a. The high intensity component described above indicates, for example, a ratio of 99% of the optical energy of the primary light.
For this reason, in the direction of the optical axis 11, the distance from the rear surface 47a having the primary light incident portion 41 to the rear surface 43a needs to be within a desired range. This distance is set by, for example, the numerical aperture of the optical fiber 21, the numerical aperture of the light source unit, the refractive index of the light transmitting member 47, the diameter of the core of the optical fiber 21, the diameter of the light conversion member 43, and the like. The
Thus, in this embodiment, as shown in FIG. 1B, when the primary light emitted from the primary light emitting portion 21a irradiates the light converting member 43, the light transmitting member 47 is The length L1 is such that at least the high-intensity component of the primary light enters the light conversion member 43.

なお前記距離が0に近く、後面43aが後面47aに近づきすぎてもよい、というわけではない。光変換部材43が2次光を生成する際、一般的に光変換部材43は発熱する。また一般的に、1次光出射部21aから出射された直後の1次光の密度は非常に高く、1次光の密度は1次光出射部21aから離れるほど低くなる。このため、後面43aが後面47aに近づくと、光変換部材43が2次光を生成する際、光変換部材43は、密度が非常に高い1次光によって多量に発熱し、多量の発熱によって劣化してしまう。この点を踏まえると、光変換部材43における1次光の強度分布は、2次光を生成する際の光変換部材43の耐熱温度を超えないことが肝要となる。
よって本実施形態では、図1Bに示すように、1次光が所望の広がり角度で1次光出射部21aから出射されて光変換部材43を照射する際に、光軸11方向において、光変換部材43における1次光の強度分布が2次光を生成する際の光変換部材43の耐熱温度を超えないような長さL1を、光透過部材47は有している。
The distance is not close to 0, and the rear surface 43a may not be too close to the rear surface 47a. When the light conversion member 43 generates secondary light, the light conversion member 43 generally generates heat. In general, the density of the primary light immediately after being emitted from the primary light emitting part 21a is very high, and the density of the primary light decreases as the distance from the primary light emitting part 21a increases. For this reason, when the rear surface 43a approaches the rear surface 47a, when the light conversion member 43 generates secondary light, the light conversion member 43 generates a large amount of heat due to the primary light having a very high density, and deteriorates due to a large amount of heat generation. Resulting in. Considering this point, it is important that the intensity distribution of the primary light in the light conversion member 43 does not exceed the heat resistant temperature of the light conversion member 43 when generating the secondary light.
Therefore, in this embodiment, as shown in FIG. 1B, when the primary light is emitted from the primary light emitting portion 21a at a desired spread angle and irradiates the light converting member 43, light conversion is performed in the direction of the optical axis 11. The light transmitting member 47 has a length L1 such that the intensity distribution of the primary light in the member 43 does not exceed the heat resistance temperature of the light conversion member 43 when generating the secondary light.

また図1Aと図1Bとに示すように、光透過部材47は、例えば、光変換部材43の中心軸と光透過部材47の中心軸とが光軸11上に配設され、光変換部材43が1次光出射部21aから離間し、1次光のビームスポットが光変換部材43の後面43aよりも小さくなり、後面43aが後面47aに対して光軸11方向において平行に配設され、前面43bが前面47bと同一平面に配設され、光透過部材47が前面43bと周面43cとを覆うように、光変換部材43を有している。   Further, as shown in FIGS. 1A and 1B, the light transmitting member 47 has, for example, the central axis of the light converting member 43 and the central axis of the light transmitting member 47 disposed on the optical axis 11, and the light converting member 43. Is separated from the primary light emitting portion 21a, the beam spot of the primary light is smaller than the rear surface 43a of the light converting member 43, the rear surface 43a is disposed parallel to the rear surface 47a in the direction of the optical axis 11, and the front surface 43b is disposed in the same plane as the front surface 47b, and the light transmitting member 47 has the light conversion member 43 so as to cover the front surface 43b and the peripheral surface 43c.

このため図1Aと図1Bとに示すように、光透過部材47は、光変換部材43が係合する係合凹部47dを有している。係合凹部47dは、前面47bに対して後方に向かって凹設されている。係合凹部47dの中心軸は、光変換部材43の中心軸が光透過部材47の中心軸上に配設されるように、光透過部材47の中心軸上に配設されている。係合凹部47dは光変換部材43と略同一の大きさを有しており、光変換部材43は係合凹部47dに嵌め込まれる。よって、係合凹部47dの底面には後面43aが設置される。そして、光軸11方向における係合凹部47dの長さ(係合凹部47dの深さ)は、光軸11方向において、1次光出射部21aと後面43aとの間の相対距離を制御することとなる。   For this reason, as shown in FIG. 1A and FIG. 1B, the light transmission member 47 has an engagement recess 47 d with which the light conversion member 43 is engaged. The engaging recess 47d is recessed toward the rear with respect to the front surface 47b. The central axis of the engaging recess 47 d is disposed on the central axis of the light transmitting member 47 so that the central axis of the light converting member 43 is disposed on the central axis of the light transmitting member 47. The engagement recess 47d has substantially the same size as the light conversion member 43, and the light conversion member 43 is fitted into the engagement recess 47d. Therefore, the rear surface 43a is installed on the bottom surface of the engaging recess 47d. The length of the engaging recess 47d in the direction of the optical axis 11 (depth of the engaging recess 47d) controls the relative distance between the primary light emitting portion 21a and the rear surface 43a in the direction of the optical axis 11. It becomes.

なお光透過部材47は、例えば、光変換部材43の中心軸と光透過部材47の中心軸とが光軸11上に配設され、1次光のビームスポットが光変換部材43の後面43aよりも小さくなれば、光変換部材43が1次光出射部21aと後面47aと前面47bとから離間し、光変換部材43が光透過部材47に埋設されるように、光変換部材43を光透過部材47の内部にて有していてもよい。   In the light transmitting member 47, for example, the central axis of the light converting member 43 and the central axis of the light transmitting member 47 are disposed on the optical axis 11, and the beam spot of the primary light is transmitted from the rear surface 43a of the light converting member 43. The light conversion member 43 is separated from the primary light emitting portion 21a, the rear surface 47a, and the front surface 47b, and the light conversion member 43 is light-transmitted so that the light conversion member 43 is embedded in the light transmission member 47. You may have in the member 47 inside.

光透過部材47において、1次光と2次光とが透過する。このため光透過部材47は、1次光出射部21aから出射された1次光と光変換部材43から出射した2次光とが透過する部材によって、形成されている。このような部材は、例えば、1次光と2次光とに対して透過率の高い光学的に透明な部材によって形成されている。この部材は、例えば、シリコーン樹脂やガラスや石英ガラスなどを示す。   In the light transmitting member 47, the primary light and the secondary light are transmitted. For this reason, the light transmission member 47 is formed of a member through which the primary light emitted from the primary light emitting portion 21a and the secondary light emitted from the light conversion member 43 are transmitted. Such a member is formed of, for example, an optically transparent member having a high transmittance with respect to primary light and secondary light. This member indicates, for example, silicone resin, glass, quartz glass, or the like.

なお光透過部材47は、光変換部材43が2次光を生成する際に発生する熱を外部に放出する部材によって、形成されてもよい。このような部材は、例えば、ガラスや、ガラス系の樹脂などを示す。   The light transmission member 47 may be formed of a member that releases heat generated when the light conversion member 43 generates secondary light to the outside. Such a member shows glass, glass-type resin, etc., for example.

図1Aと図2Aと図2Bと図2Cとに示すように、光変換部材43を有する光透過部材47は、保持部60において接着剤48によって固定される。この接着剤48は、1次光と2次光とが透過する光学的な性質を有しており、2次光を後述する反射部材67に導光する。このような接着剤48は、例えば、シリコーン系の接着剤である。接着剤48は、例えば、後述する挿入部473の外周面と後述する挿入収容部653の内周面とに塗布される。   As shown in FIGS. 1A, 2A, 2B, and 2C, the light transmitting member 47 having the light converting member 43 is fixed by the adhesive 48 in the holding portion 60. The adhesive 48 has an optical property of transmitting the primary light and the secondary light, and guides the secondary light to the reflection member 67 described later. Such an adhesive 48 is, for example, a silicone-based adhesive. The adhesive 48 is applied to, for example, an outer peripheral surface of an insertion portion 473 described later and an inner peripheral surface of an insertion storage portion 653 described later.

[光透過部材47の形状]
図1Aと図1Bとに示すように、光透過部材47は、例えば、三角フラスコのような形状を有している。よって光透過部材47は、1次光入射部41を含む後面47aを有し、光透過部材47の一部に配設され、光透過部材47の後方に配設される本体部471と、本体部471と同軸上に配設されるように本体部471と一体化しており、生成部材である光変換部材43と光学的に接続するように光透過部材47の他部に配設され、さらに光透過部材47の前方に配設されている挿入部473とを有している。
[Shape of light transmitting member 47]
As shown in FIG. 1A and FIG. 1B, the light transmission member 47 has a shape like an Erlenmeyer flask, for example. Therefore, the light transmitting member 47 has a rear surface 47 a including the primary light incident portion 41, is disposed on a part of the light transmitting member 47, and is disposed behind the light transmitting member 47. It is integrated with the main body portion 471 so as to be coaxially arranged with the portion 471, and is disposed at the other portion of the light transmitting member 47 so as to be optically connected to the light conversion member 43 which is a generation member. And an insertion portion 473 disposed in front of the light transmission member 47.

本体部471の中心軸は、挿入部473の中心軸と同軸である。そして、本体部471の中心軸と挿入部473の中心軸とは、光透過部材47の中心軸を形成している。光軸11方向において、本体部471は、挿入部473よりも短い。   The central axis of the main body portion 471 is coaxial with the central axis of the insertion portion 473. The central axis of the main body portion 471 and the central axis of the insertion portion 473 form the central axis of the light transmission member 47. In the direction of the optical axis 11, the main body portion 471 is shorter than the insertion portion 473.

[本体部471]
図1Aと図1Bとに示すように、本体部471は、保持部60の後述する本体嵌合部651に嵌合する。本体部471は、例えば円柱形状を有している。
[Main Body 471]
As shown in FIG. 1A and FIG. 1B, the main body portion 471 is fitted into a main body fitting portion 651 described later of the holding portion 60. The main body 471 has, for example, a cylindrical shape.

図1Aと図1Bとに示すように、前記したように本体部471は1次光入射部41を含む後面47aを有するため、本体部471の直径は1次光出射部21aの直径よりも大きい。また本体部471の直径は、光変換部材43の直径よりも小さい。   As shown in FIGS. 1A and 1B, as described above, the main body 471 has the rear surface 47a including the primary light incident portion 41, so the diameter of the main body 471 is larger than the diameter of the primary light emitting portion 21a. . The diameter of the main body 471 is smaller than the diameter of the light conversion member 43.

[挿入部473]
図1Aと図1Bとに示すように、挿入部473は、保持部60の後述する挿入収容部653である挿入収容部653に挿入される。本体部471は、光軸11方向において、本体部471から光変換部材43に向かって、言い換えると後方から前方に向かって拡径する円錐台形状を有している。挿入部473には、光変換部材43が配設されている。
[Insert part 473]
As shown in FIG. 1A and FIG. 1B, the insertion portion 473 is inserted into an insertion accommodating portion 653 that is an insertion accommodating portion 653 to be described later of the holding portion 60. The main body portion 471 has a truncated cone shape whose diameter increases from the main body portion 471 toward the light conversion member 43 in the direction of the optical axis 11, in other words, from the rear to the front. The light conversion member 43 is disposed in the insertion portion 473.

図1Aと図1Bとに示すように、挿入部473は、後面47aが露出し、本体部471が挿入部473と一体となるように載置されている上面473aと、前面47bとして機能し、上面473aよりも大きい下面473bと、テーパ状の外周面473cとを有している。   As shown in FIG. 1A and FIG. 1B, the insertion portion 473 functions as a front surface 47b and an upper surface 473a on which the rear surface 47a is exposed and the main body 471 is integrated with the insertion portion 473, It has a lower surface 473b larger than the upper surface 473a and a tapered outer peripheral surface 473c.

上面473aの直径は、本体部471の直径と同一である。
下面473bは、係合凹部47dを有している。
外周面473cは、本体部471の外周面と連なっている。
The diameter of the upper surface 473a is the same as the diameter of the main body 471.
The lower surface 473b has an engaging recess 47d.
The outer peripheral surface 473c is continuous with the outer peripheral surface of the main body 471.

なお、前記したように、光変換部材43が光透過部材47に埋設される場合、光変換部材43は挿入部473に埋設されることが好適である。   As described above, when the light conversion member 43 is embedded in the light transmission member 47, the light conversion member 43 is preferably embedded in the insertion portion 473.

[保持部60]
図1Aと図1Cとに示すように、保持部60は、1次光出射部21aと1次光入射部41とが互いに光学的に接続するように、導光ユニット20と照明ユニット40とを保持する。保持部60は、例えばセラミックやステンレスや真鍮やニッケルなどによって形成されている。
[Holding unit 60]
As shown in FIGS. 1A and 1C, the holding unit 60 connects the light guide unit 20 and the illumination unit 40 so that the primary light emitting unit 21a and the primary light incident unit 41 are optically connected to each other. Hold. The holding part 60 is made of, for example, ceramic, stainless steel, brass, nickel, or the like.

図1Aと図1Cとに示すように、保持部60は、光ファイバ21の少なくとも1次光出射部21aが嵌合する導光嵌合部61と、保持部60の一端部に配設され、導光嵌合部61と連通し、光ファイバ21が導光嵌合部61に挿入されるように光ファイバ21を導光嵌合部61にガイドするガイド口部63とを有している。導光嵌合部61の中心軸とガイド口部63の中心軸とは、保持部60の中心軸上に配設されている。   As shown in FIGS. 1A and 1C, the holding part 60 is disposed at one end of the holding part 60 and a light guide fitting part 61 into which at least the primary light emitting part 21a of the optical fiber 21 is fitted. The light guide fitting portion 61 communicates with the light guide fitting portion 61 so that the optical fiber 21 is inserted into the light guide fitting portion 61. The central axis of the light guide fitting part 61 and the central axis of the guide port part 63 are arranged on the central axis of the holding part 60.

[導光嵌合部61]
図1Aと図1Cとに示すように、導光嵌合部61は、光ファイバ21が嵌め込まれる例えば円柱形状を有する孔であり、光ファイバ21が嵌め込まれる例えば円柱形状の中空部である。導光嵌合部61の直径は、光ファイバ21の直径と略同一、またはこれによりも微小に大きい。導光嵌合部61は、径方向と傾斜方向とにおいて光ファイバ21を位置決めする。このように導光嵌合部61は、保持部60が1次光出射部21aを含む光ファイバ21を位置決め及び保持するために配設されている。
[Light guiding fitting 61]
As shown in FIGS. 1A and 1C, the light guide fitting portion 61 is a hole having, for example, a cylindrical shape into which the optical fiber 21 is fitted, and is a cylindrical hollow portion into which the optical fiber 21 is fitted. The diameter of the light guide fitting portion 61 is substantially the same as or slightly larger than the diameter of the optical fiber 21. The light guide fitting portion 61 positions the optical fiber 21 in the radial direction and the tilt direction. Thus, the light guide fitting portion 61 is disposed so that the holding portion 60 positions and holds the optical fiber 21 including the primary light emitting portion 21a.

[ガイド口部63]
図1Aに示すように、ガイド口部63は、保持部60の一端部から導光嵌合部61に向かって縮径している円錐台形状を有しており、傾斜しているテーパとして形成されている。なお前述した被覆層23は、ガイド口部63付近にまで配設されているのみであり、導光嵌合部61には挿入されない。このため光ファイバ21の他端部は、被覆層23から露出している。
[Guide Port 63]
As shown in FIG. 1A, the guide port portion 63 has a truncated cone shape whose diameter is reduced from one end portion of the holding portion 60 toward the light guide fitting portion 61, and is formed as an inclined taper. Has been. Note that the above-described coating layer 23 is only disposed up to the vicinity of the guide port portion 63 and is not inserted into the light guide fitting portion 61. For this reason, the other end portion of the optical fiber 21 is exposed from the coating layer 23.

ガイド口部63には、接着部材63aが配設される。接着部材63aは、被覆層23を含む光ファイバ21の他端部側を保持部60に接着する。接着部材63aは、被覆層23にも配設される。接着部材63aは、例えば、シリコーンやエポキシ等の接着剤などである。   An adhesive member 63 a is disposed in the guide opening 63. The bonding member 63 a bonds the other end of the optical fiber 21 including the coating layer 23 to the holding unit 60. The adhesive member 63 a is also disposed on the coating layer 23. The adhesive member 63a is, for example, an adhesive such as silicone or epoxy.

[収容部65]
また図1Aと図1Cとに示すように、保持部60は、光軸方向制御部材として機能する光透過部材47を収容する収容部65をさらに有している。収容部65は、光透過部材47が挿入及び嵌め込まれる孔であり、光透過部材47が挿入及び嵌め込まれる中空部である。収容部65は、導光嵌合部61と連通しており、導光嵌合部61と同一の保持部60に配設されている。つまり保持部60は、光ファイバ21と照明ユニット40とを一体で保持している。
[Accommodating portion 65]
Further, as shown in FIGS. 1A and 1C, the holding unit 60 further includes an accommodating portion 65 that accommodates a light transmitting member 47 that functions as an optical axis direction control member. The accommodating portion 65 is a hole into which the light transmitting member 47 is inserted and fitted, and is a hollow portion into which the light transmitting member 47 is inserted and fitted. The accommodating portion 65 communicates with the light guide fitting portion 61 and is disposed in the same holding portion 60 as the light guide fitting portion 61. That is, the holding unit 60 holds the optical fiber 21 and the illumination unit 40 integrally.

詳細には、図1Aと図1Cとに示すように、収容部65は、光軸方向制御部材の一部である光透過部材47の本体部471が嵌合し、収容部65の一部に配設されている本体嵌合部651と、光軸方向制御部材の他部である光透過部材47の挿入部473が挿入され、収容部65の他部に配設されている挿入収容部653とを有している。このような収容部65の中心軸は、保持部60の中心軸上に配設されており、導光嵌合部61の中心軸と同軸上に配設されている。   Specifically, as shown in FIG. 1A and FIG. 1C, the housing portion 65 is fitted with a main body portion 471 of a light transmitting member 47 that is a part of the optical axis direction control member, and is part of the housing portion 65. The main body fitting portion 651 and the insertion portion 473 of the light transmission member 47 which is the other portion of the optical axis direction control member are inserted, and the insertion accommodating portion 653 disposed in the other portion of the accommodating portion 65. And have. The central axis of the accommodating portion 65 is disposed on the central axis of the holding portion 60, and is disposed coaxially with the central axis of the light guide fitting portion 61.

[本体嵌合部651]
図1Aと図1Cとに示すように、本体嵌合部651は、収容部65の後方に配設されており、光軸11方向において導光嵌合部61と連通しており、円柱形状を有しており、本体部471が嵌合し、挿入部473よりも小さい。このため、本体嵌合部651の直径は、本体部471の直径と略同一、またはこれによりも微小に大きい。また本体嵌合部651は、光軸11方向において、導光嵌合部61と挿入収容部653とに挟持され、導光嵌合部61と挿入収容部653とに連通している。本体嵌合部651の直径は、導光嵌合部61の直径よりも大きい。
[Body fitting portion 651]
As shown in FIGS. 1A and 1C, the main body fitting portion 651 is disposed behind the housing portion 65, communicates with the light guide fitting portion 61 in the direction of the optical axis 11, and has a cylindrical shape. The main body portion 471 is fitted and smaller than the insertion portion 473. For this reason, the diameter of the main body fitting portion 651 is substantially the same as or slightly larger than the diameter of the main body portion 471. Further, the main body fitting portion 651 is sandwiched between the light guide fitting portion 61 and the insertion housing portion 653 in the direction of the optical axis 11 and communicates with the light guide fitting portion 61 and the insertion housing portion 653. The diameter of the main body fitting portion 651 is larger than the diameter of the light guide fitting portion 61.

図1Aと図1Cとに示すように、本体嵌合部651は、1次光出射部21aが1次光入射部41と光学的に接続するように、本体部471と嵌合する。また光透過部材47が収容部65に挿入された際に、円柱形状の本体部471は、光変換部材43の中心軸が光軸11上に配設されるように、円柱形状の本体嵌合部651と嵌合する。   As shown in FIGS. 1A and 1C, the main body fitting portion 651 is fitted with the main body portion 471 so that the primary light emitting portion 21a is optically connected to the primary light incident portion 41. Further, when the light transmitting member 47 is inserted into the accommodating portion 65, the cylindrical main body 471 is fitted to the cylindrical main body so that the central axis of the light conversion member 43 is disposed on the optical axis 11. It fits with the part 651.

[収容部653]
図1Aと図1Cとに示すように、挿入収容部653は、収容部65の前方に配設されており、挿入部473よりも大きく、挿入部473が挿入される。挿入収容部653は、光軸11方向において、本体嵌合部651が配設される収容部65の先端部から前方を示す制収容部65の基端部に向かって拡径する円錐台形状を有している。
[Accommodating portion 653]
As shown in FIGS. 1A and 1C, the insertion housing portion 653 is disposed in front of the housing portion 65 and is larger than the insertion portion 473 and the insertion portion 473 is inserted therein. The insertion accommodating portion 653 has a truncated cone shape whose diameter increases in the direction of the optical axis 11 from the distal end portion of the accommodating portion 65 where the main body fitting portion 651 is disposed toward the proximal end portion of the control accommodating portion 65 indicating the front. Have.

図1Aと図1Dとに示すように、円錐台形状の挿入部473と、挿入部473よりも大きく、挿入部473が挿入される円錐台形状の挿入収容部653とにおいて、挿入部473が挿入収容部653に挿入された際に、挿入収容部653の内周面と挿入部473の外周面473cとの間に隙間部が形成されるように、挿入収容部653のテーパ角度θ1は、挿入部473のテーパ角度θ2よりも大きい。
テーパ角度θ1は、例えば光軸11と挿入収容部653の内周面との間に形成される角度を示す。
テーパ角度θ2は、例えば光軸11と挿入部473の外周面473cとの間に形成される角度を示す。
As shown in FIGS. 1A and 1D, the insertion portion 473 is inserted into the insertion portion 473 having a truncated cone shape and the insertion receiving portion 653 having a truncated cone shape larger than the insertion portion 473 and into which the insertion portion 473 is inserted. The taper angle θ1 of the insertion housing portion 653 is inserted so that a gap is formed between the inner circumferential surface of the insertion housing portion 653 and the outer circumferential surface 473c of the insertion portion 473 when inserted into the housing portion 653. The taper angle θ2 of the portion 473 is larger.
The taper angle θ <b> 1 indicates an angle formed between the optical axis 11 and the inner peripheral surface of the insertion housing portion 653, for example.
The taper angle θ2 represents an angle formed between the optical axis 11 and the outer peripheral surface 473c of the insertion portion 473, for example.

図1Cに示すように、前記したような一部である本体嵌合部651と他部である挿入収容部653とを備える収容部65は、光透過部材47の形状に倣って例えば三角フラスコのような形状を有している。   As shown in FIG. 1C, the accommodating portion 65 including the main body fitting portion 651 that is a part as described above and the insertion accommodating portion 653 that is another portion follows the shape of the light transmitting member 47, for example, an Erlenmeyer flask. It has such a shape.

図1Aに示すように、本体部471が本体嵌合部651と嵌合することによって、本体部471と本体嵌合部651とは径方向において1次光出射部21aと光変換部材43との相対位置を位置決めし、本体部471が本体嵌合部651とは傾斜方向において1次光出射部21aと光変換部材43との相対位置を位置決めする。詳細には、1次光出射部21aと1次光入射部41とが互いに光学的に接続するように、本体部471が本体嵌合部651と嵌合することによって、1次光入射部41は径方向と傾斜方向とにおいて位置決めされる。これに伴い、光透過部材47の係合凹部47dに係合されている光変換部材43も、1次光入射部41を有する光透過部材47によって、径方向と傾斜方向とにおいて位置決めされる。このように、1次光出射部21aと導光嵌合部61と本体部471と本体嵌合部651とは、径方向と傾斜方向とにおける1次光出射部21aと光変換部材43との相対位置を制御することとなる。同時に光変換部材43は、光軸方向制御部材として機能する光透過部材47によって、光軸方向において位置決めされる。   As shown in FIG. 1A, the main body portion 471 and the main body fitting portion 651 are engaged with each other between the primary light emitting portion 21a and the light conversion member 43 in the radial direction by fitting the main body portion 471 with the main body fitting portion 651. The relative position is positioned, and the main body portion 471 positions the relative position between the primary light emitting portion 21a and the light conversion member 43 in the inclination direction with respect to the main body fitting portion 651. Specifically, the primary light incident portion 41 is fitted by the main body portion 471 and the main body fitting portion 651 so that the primary light emitting portion 21a and the primary light incident portion 41 are optically connected to each other. Are positioned in the radial direction and the tilt direction. Accordingly, the light converting member 43 engaged with the engaging recess 47d of the light transmitting member 47 is also positioned in the radial direction and the inclined direction by the light transmitting member 47 having the primary light incident portion 41. Thus, the primary light emitting part 21a, the light guide fitting part 61, the main body part 471, and the main body fitting part 651 are formed by the primary light emitting part 21a and the light conversion member 43 in the radial direction and the inclination direction. The relative position will be controlled. At the same time, the light conversion member 43 is positioned in the optical axis direction by the light transmitting member 47 functioning as an optical axis direction control member.

そして、1次光出射部21aと1次光入射部41とが互いに光学的に接続するように、導光嵌合部61と収容部65と1次光出射部21aと1次光入射部41と光透過部材47とは互いに同軸上に配設されている。   And the light guide fitting part 61, the accommodating part 65, the primary light emitting part 21a, and the primary light incident part 41 so that the primary light emitting part 21a and the primary light incident part 41 are optically connected to each other. And the light transmitting member 47 are arranged coaxially with each other.

[反射部材67]
図1Aに示すように、収容部65は、挿入収容部653の内周面に配設されており、2次光を反射する反射部材67を有している。反射部材67は、光変換部材43の後面43a及び周面43cと、挿入部473の周面473cとを覆うように配設されている。このため、反射部材67は、光透過部材47によって、光変換部材43に対して離間して配設される。反射部材67は、光変換部材43の後面43aと周面43cとから反射部材67に向かって出射された2次光を前方である前面47bに向かって反射する。これにより反射部材67は、2次光の放射角を制御することとなる。
[Reflection member 67]
As illustrated in FIG. 1A, the housing portion 65 is disposed on the inner peripheral surface of the insertion housing portion 653 and includes a reflecting member 67 that reflects secondary light. The reflection member 67 is disposed so as to cover the rear surface 43 a and the peripheral surface 43 c of the light conversion member 43 and the peripheral surface 473 c of the insertion portion 473. For this reason, the reflection member 67 is disposed away from the light conversion member 43 by the light transmission member 47. The reflection member 67 reflects the secondary light emitted toward the reflection member 67 from the rear surface 43a and the peripheral surface 43c of the light conversion member 43 toward the front surface 47b that is the front. Thereby, the reflecting member 67 controls the radiation angle of the secondary light.

反射部材67は、前記したように2次光をできる限り、前面47bに向かって反射するように、2次光に対して高い反射率を有している。例えば2次光が可視光である場合、反射部材67は、例えば、金や銀やアルミといった金属等の膜が成膜することによって、形成されている。または反射部材67は、複数誘電体の膜が多層化することによって、形成されても良い。なお反射部材67は、光透過部材47の外周面全体に配設されていても良い。   As described above, the reflecting member 67 has a high reflectivity with respect to the secondary light so as to reflect the secondary light as much as possible toward the front surface 47b. For example, when the secondary light is visible light, the reflecting member 67 is formed by forming a film of a metal such as gold, silver, or aluminum. Alternatively, the reflecting member 67 may be formed by multilayering a plurality of dielectric films. The reflecting member 67 may be disposed on the entire outer peripheral surface of the light transmitting member 47.

また反射部材67の表面は、図示しない保護膜によって保護されている。反射部材67が銀やアルミといった金属によって形成される場合、これら金属が空気と接触することで酸化や硫化し、反射部材67の反射率が低下することを、保護膜は防止する。また反射部材67は非常に薄いため、反射部材67の強度は低い。よって保護膜は、反射部材67が他の部材と接触し、摩耗することを防止する。このような保護膜は、例えば、2次光の透過率が高く、機械的な強度も高い、SiO2によって形成される。   The surface of the reflecting member 67 is protected by a protective film (not shown). When the reflecting member 67 is formed of a metal such as silver or aluminum, the protective film prevents the metal from being oxidized or sulfided by coming into contact with air and the reflectance of the reflecting member 67 from being lowered. Moreover, since the reflecting member 67 is very thin, the strength of the reflecting member 67 is low. Therefore, the protective film prevents the reflective member 67 from coming into contact with other members and being worn. Such a protective film is formed of, for example, SiO 2 having a high secondary light transmittance and a high mechanical strength.

[位置制御手段80]
また図1Aと図1Bと図1Cとに示すように、光学デバイス10は、1次光出射部21aと、生成部材である光変換部材43との相対位置を制御する位置制御手段80をさらに有している。位置制御手段80は、光軸11方向において相対位置を制御する光軸方向制御手段81と、径方向において相対位置を制御する径方向制御手段83と、傾斜方向において相対位置を制御する傾斜方向制御手段85とを有している。
[Position control means 80]
As shown in FIGS. 1A, 1B, and 1C, the optical device 10 further includes position control means 80 that controls the relative position between the primary light emitting portion 21a and the light conversion member 43 that is a generation member. doing. The position control means 80 includes an optical axis direction control means 81 for controlling the relative position in the optical axis 11 direction, a radial direction control means 83 for controlling the relative position in the radial direction, and an inclination direction control for controlling the relative position in the inclination direction. Means 85.

[光軸方向制御手段81]
図1Aと図1Bとに示すように、光軸方向制御手段81は、1次光入射部41を有するように光軸11方向において1次光入射部41と光変換部材43との間に配設されており、光軸11方向における相対位置を所望に制御する光軸方向制御部材として機能する光透過部材47を有している。光透過部材47は、例えば、光軸11方向における1次光入射部41と後面43aとの間の光透過部材47の長さL1を調節することによって、相対位置を所望に制御する。
[Optical axis direction control means 81]
As shown in FIGS. 1A and 1B, the optical axis direction control means 81 is arranged between the primary light incident part 41 and the light conversion member 43 in the optical axis 11 direction so as to have the primary light incident part 41. The light transmission member 47 is provided and functions as an optical axis direction control member for controlling the relative position in the optical axis 11 direction as desired. The light transmitting member 47 controls the relative position as desired by adjusting the length L1 of the light transmitting member 47 between the primary light incident portion 41 and the rear surface 43a in the direction of the optical axis 11, for example.

[径方向制御手段83・傾斜方向制御手段85]
図1Aと図1Bと図1Cとに示すように、径方向制御手段83と傾斜方向制御手段85とは、1次光出射部21aと、光軸方向制御部材として機能する光透過部材47において、1次光出射部21aと、光透過部材47の一部である本体部471と、保持部60に配設されている導光嵌合部61と本体嵌合部651とを有している。
[Radial direction control means 83 / inclination direction control means 85]
As shown in FIG. 1A, FIG. 1B, and FIG. 1C, the radial direction control means 83 and the inclination direction control means 85 are the primary light emitting part 21a and the light transmission member 47 that functions as an optical axis direction control member. It has a primary light emitting part 21 a, a main body part 471 that is a part of the light transmission member 47, a light guide fitting part 61 and a main body fitting part 651 disposed in the holding part 60.

[作用]
図2Aに示すように、1次光出射部21aが本体嵌合部651の底面部と同一平面上に配設されるように、光ファイバ21が導光嵌合部61に嵌合する。図1Aに示すように、光ファイバ21は、ガイド口部63において、接着部材63aによって保持部60に接着される。
[Action]
As shown in FIG. 2A, the optical fiber 21 is fitted into the light guide fitting portion 61 so that the primary light emitting portion 21 a is disposed on the same plane as the bottom surface portion of the main body fitting portion 651. As shown in FIG. 1A, the optical fiber 21 is bonded to the holding portion 60 by the adhesive member 63a at the guide port portion 63.

図1Bと図2Aとに示すように、光変換部材43を有する光透過部材47において、光軸11方向における光透過部材47の長さL1によって、光軸11方向における1次光入射部41と光変換部材43との相対位置は制御されている。   As shown in FIG. 1B and FIG. 2A, in the light transmissive member 47 having the light conversion member 43, the primary light incident portion 41 in the optical axis 11 direction is determined by the length L1 of the light transmissive member 47 in the optical axis 11 direction. The relative position with respect to the light conversion member 43 is controlled.

図2Aに示すように、光透過部材47が例えばガラスなどのような剛体である場合、接着剤48は予め挿入収容部653の内周面に塗布されている。接着剤48は、ごみや気泡などを含まないように、塗布される。光変換部材43を有する光透過部材47は、収容部65に収容される。このとき本体部471は、光透過部材47の先頭として、収容部65に挿入される。円錐台形状の挿入収容部653において、本体部471は、挿入収容部653のテーパ状の内周面によってガイドされ、本体嵌合部651に進行する。
このとき、本体部471と挿入部473とは、挿入収容部653よりも小さい。また、挿入収容部653のテーパ角度θ1は、挿入部473のテーパ角度θ2よりも大きい。このため、本体部471が前記したように本体嵌合部651に進行する際、挿入部473のテーパ状の外周面473cが挿入収容部653のテーパ状の内周面を摺動することが防止される。
As shown in FIG. 2A, when the light transmission member 47 is a rigid body such as glass, the adhesive 48 is applied to the inner peripheral surface of the insertion housing portion 653 in advance. The adhesive 48 is applied so as not to include dust or bubbles. The light transmitting member 47 having the light converting member 43 is accommodated in the accommodating portion 65. At this time, the main body portion 471 is inserted into the accommodating portion 65 as the head of the light transmitting member 47. In the frustoconical insertion housing portion 653, the main body portion 471 is guided by the tapered inner peripheral surface of the insertion housing portion 653 and proceeds to the main body fitting portion 651.
At this time, the main body portion 471 and the insertion portion 473 are smaller than the insertion accommodating portion 653. Further, the taper angle θ1 of the insertion housing portion 653 is larger than the taper angle θ2 of the insertion portion 473. For this reason, when the main body portion 471 proceeds to the main body fitting portion 651 as described above, the tapered outer peripheral surface 473c of the insertion portion 473 is prevented from sliding on the tapered inner peripheral surface of the insertion accommodating portion 653. Is done.

そして、図2Bと図2Cとに示すように、1次光入射部41が1次光出射部21aと光学的に接続するように、本体部471は本体嵌合部651に嵌合する。光軸11方向における光透過部材47の長さL1によって、アイセーフが確保されるように、光軸11方向における1次光出射部21aと光変換部材43との相対位置は制御される。   Then, as shown in FIGS. 2B and 2C, the main body portion 471 is fitted into the main body fitting portion 651 so that the primary light incident portion 41 is optically connected to the primary light emitting portion 21a. The relative position between the primary light emitting portion 21a and the light conversion member 43 in the direction of the optical axis 11 is controlled by the length L1 of the light transmission member 47 in the direction of the optical axis 11 so as to ensure eye-safety.

また図2Bと図2Cとに示すように、径方向と傾斜方向とにおいて、1次光出射部21aと光変換部材43とがずれると、つまり心ずれが発生すると、1次光出射部21aから出射される1次光は、径方向において、光透過部材47からずれてしまう。これにより、前記したように、1次光は、2次光に変換されず前面47bから直接出射される、アイセーフの観点において、目に対して危険性を有する。
しかしながら本実施形態では、本体部471が本体嵌合部651に嵌合することによって、アイセーフが確保されるように、径方向における1次光出射部21aと光変換部材43との相対位置は制御される。
また本体部471が本体嵌合部651に嵌合することによって、アイセーフが確保されるように、傾斜方向における1次光出射部21aと光変換部材43との相対位置は制御される。
Further, as shown in FIGS. 2B and 2C, when the primary light emitting portion 21a and the light conversion member 43 are displaced in the radial direction and the inclined direction, that is, when a misalignment occurs, the primary light emitting portion 21a The emitted primary light is displaced from the light transmitting member 47 in the radial direction. Thereby, as described above, the primary light is not converted into the secondary light and is directly emitted from the front surface 47b, and thus has a risk to the eyes from the viewpoint of eye-safety.
However, in the present embodiment, the relative position between the primary light emitting portion 21a and the light conversion member 43 in the radial direction is controlled so that the eye-safe is ensured by fitting the main body portion 471 to the main body fitting portion 651. Is done.
Further, the relative position between the primary light emitting part 21a and the light conversion member 43 in the tilt direction is controlled so that the eye safe is ensured by fitting the main body part 471 to the main body fitting part 651.

図2Cに示すように、前記した径方向と傾斜方向とにおける相対位置が制御されることによって、1次光出射部21aの中心軸と1次光入射部41の中心軸と1次光入射部41を含む後面43aの中心軸とは互いに同軸上に配設され、これら中心軸は光軸11上に配設される。そして、光透過部材47は、接着剤48によって固定される。   As shown in FIG. 2C, by controlling the relative positions in the radial direction and the inclination direction, the central axis of the primary light emitting portion 21a, the central axis of the primary light incident portion 41, and the primary light incident portion. The central axis of the rear surface 43 a including 41 is arranged coaxially with each other, and these central axes are arranged on the optical axis 11. The light transmitting member 47 is fixed by an adhesive 48.

これにより、1次光出射部21aは、安定的且つ高精度に1次光入射部41と光学的に接続することとなる。そして、所望の光学特性が常に得られ、光学特性のばらつきは抑制され、光学デバイス10が量産される際、光学デバイス10の品質のばらつきが低減される。   As a result, the primary light emitting portion 21a is optically connected to the primary light incident portion 41 stably and with high accuracy. Desired optical characteristics are always obtained, variations in optical characteristics are suppressed, and variations in quality of the optical device 10 are reduced when the optical device 10 is mass-produced.

[効果]
このように本実施形態では、光軸方向制御手段81と径方向制御手段83と傾斜方向制御手段85とを含む位置制御手段80によって、1次光出射部21aと1次光入射部41と光変換部材43とが互いに安定的且つ高精度に位置決めされ、光学デバイスが量産される際において光学デバイス10の品質のばらつきを低減でき、光学デバイス10において所望の光学特性を得ることができる。
[effect]
Thus, in the present embodiment, the primary light emitting unit 21a, the primary light incident unit 41, and the light are controlled by the position control unit 80 including the optical axis direction control unit 81, the radial direction control unit 83, and the tilt direction control unit 85. When the conversion member 43 is positioned stably and with high accuracy, the quality variation of the optical device 10 can be reduced when the optical device is mass-produced, and desired optical characteristics can be obtained in the optical device 10.

また本実施形態では、光軸方向制御手段81の光軸方向制御部材として機能する光透過部材47によって、光軸11方向における相対位置を所望に制御できる。また本実施形態では、光透過部材47が光軸11方向において1次光出射部21aと光変換部材43との間に介在していることで、確実に光軸11方向における相対位置を制御できる。   In the present embodiment, the relative position in the direction of the optical axis 11 can be controlled as desired by the light transmitting member 47 that functions as the optical axis direction control member of the optical axis direction control means 81. In the present embodiment, since the light transmitting member 47 is interposed between the primary light emitting portion 21a and the light conversion member 43 in the direction of the optical axis 11, the relative position in the direction of the optical axis 11 can be reliably controlled. .

また本実施形態では、光軸11方向における光透過部材47の長さL1によって、アイセーフを確保でき、光変換部材43が2次光を生成する際、光変換部材43が多量の発熱によって劣化してしまうことを防止できる。   In this embodiment, the eye-safe can be secured by the length L1 of the light transmission member 47 in the direction of the optical axis 11, and when the light conversion member 43 generates secondary light, the light conversion member 43 is deteriorated by a large amount of heat generation. Can be prevented.

また本実施形態では、径方向制御手段83と傾斜方向制御手段85として機能する1次光出射部21aと導光嵌合部61と本体部471と本体嵌合部651とによって、径方向と傾斜方向とにおける相対位置を所望に制御できる。特に本実施形態では、1次光出射部21aが導光嵌合部61と嵌合し、本体部471が本体嵌合部651と嵌合することによって、径方向と傾斜方向とにおける相対位置を位置決めできる。   In the present embodiment, the primary light emitting portion 21 a, the light guide fitting portion 61, the main body portion 471, and the main body fitting portion 651 functioning as the radial direction control means 83 and the inclination direction control means 85, and the radial direction and the inclination. The relative position in the direction can be controlled as desired. In particular, in the present embodiment, the primary light emitting portion 21a is fitted with the light guide fitting portion 61, and the main body portion 471 is fitted with the main body fitting portion 651, so that the relative positions in the radial direction and the inclined direction are changed. Can be positioned.

また本実施形態では、光透過部材47の本体部471と挿入部473と、本体嵌合部651と挿入収容部653とによって、安定的且つ高精度に、径方向と傾斜方向とにおける相対位置を位置決めできる。   Further, in the present embodiment, the relative positions in the radial direction and the inclination direction are stably and highly accurately determined by the main body portion 471 and the insertion portion 473, the main body fitting portion 651, and the insertion housing portion 653 of the light transmitting member 47. Can be positioned.

また本実施形態では、円柱形状の本体部471と、円柱形状の本体嵌合部651とによって、さらに安定的且つ高精度に、径方向と傾斜方向とにおける相対位置を位置決めできる。   In the present embodiment, the cylindrical main body 471 and the cylindrical main body fitting portion 651 can position the relative positions in the radial direction and the inclination direction more stably and with high accuracy.

また本実施形態では、本体部471と挿入部473と本体嵌合部651とは挿入部473よりも小さく、テーパ角度θ1はテーパ角度θ2よりも大きい。これにより本実施形態では、本体部471が本体嵌合部651に進行する際、挿入部473のテーパ状の外周面473cが挿入収容部653のテーパ状の内周面を摺動することを防止でき、外周面473cと内周面とが互いを摩耗することを防止できる。   In the present embodiment, the main body portion 471, the insertion portion 473, and the main body fitting portion 651 are smaller than the insertion portion 473, and the taper angle θ1 is larger than the taper angle θ2. Thereby, in this embodiment, when the main body portion 471 advances to the main body fitting portion 651, the tapered outer peripheral surface 473c of the insertion portion 473 is prevented from sliding on the tapered inner peripheral surface of the insertion accommodating portion 653. It is possible to prevent the outer peripheral surface 473c and the inner peripheral surface from wearing each other.

また本実施形態では、反射部材67によって、2次光を2次光出射部45に向けて反射でき、光の利用効率を向上できる。   In the present embodiment, the secondary light can be reflected toward the secondary light emitting portion 45 by the reflecting member 67, and the light utilization efficiency can be improved.

また本実施形態では、係合凹部47dによって、光変換部材43の中心軸を光透過部材47の中心軸上に容易に配設できる。   In the present embodiment, the central axis of the light conversion member 43 can be easily disposed on the central axis of the light transmitting member 47 by the engaging recess 47 d.

なお接着剤48は、光透過部材47が収容部65に収容された後に、塗布されてもよい。   The adhesive 48 may be applied after the light transmitting member 47 is accommodated in the accommodating portion 65.

[変形例]
図3に示すように、本変形例において、保持部60は、複数に分かれており、光ファイバ21が固定されるアダプタ部601と、導光嵌合部61を有する導光保持部603と、収容部65を有する収容保持部605と、1次光出射部21aと1次光入射部41とが互いに光学的に接続するように、導光保持部603と収容保持部605とを位置決め及び固定するかしめ部607とを有している。
[Modification]
As shown in FIG. 3, in the present modification, the holding unit 60 is divided into a plurality, an adapter unit 601 to which the optical fiber 21 is fixed, a light guide holding unit 603 having a light guide fitting unit 61, Positioning and fixing the light guide holding portion 603 and the housing holding portion 605 so that the housing holding portion 605 having the housing portion 65, the primary light emitting portion 21a and the primary light incident portion 41 are optically connected to each other. And a caulking portion 607.

[アダプタ部601]
アダプタ部601は、導光保持部603の端部が圧入されている圧入孔部601aと、被覆層23を含む光ファイバ21が挿通する挿通孔601bと、ガイド口部63と同様のガイド口部601cとを有する。ガイド口部601cを含む挿通孔601bには、被覆層23を含む光ファイバ21をアダプタ部601に固定する接着部材63aが配設される。
[Adapter unit 601]
The adapter unit 601 includes a press-fitting hole 601 a into which the end of the light guide holding unit 603 is press-fitted, an insertion hole 601 b through which the optical fiber 21 including the coating layer 23 is inserted, and a guide port similar to the guide port 63. 601c. An adhesive member 63a that fixes the optical fiber 21 including the coating layer 23 to the adapter unit 601 is disposed in the insertion hole 601b including the guide port 601c.

[導光保持部603]
導光保持部603は、かしめ部607に圧入される。
[Light guide holding portion 603]
The light guide holding part 603 is press-fitted into the caulking part 607.

導光保持部603において、光ファイバ21が導光嵌合部61に嵌合することによって、導光保持部603は光ファイバ21を保持している。この時、導光保持部603の端面が1次光出射部21aと同一平面上に配設され、端面と1次光出射部21aとが光軸11に対して直交する平面として形成され、端面と1次光出射部21aとが共に平滑となるように、導光保持部603の端面は1次光出射部21aと共に研磨される。   In the light guide holding part 603, the optical fiber 21 is fitted into the light guide fitting part 61, whereby the light guide holding part 603 holds the optical fiber 21. At this time, the end face of the light guide holding part 603 is disposed on the same plane as the primary light emitting part 21a, the end face and the primary light emitting part 21a are formed as a plane orthogonal to the optical axis 11, and the end face The end surface of the light guide holding part 603 is polished together with the primary light emitting part 21a so that both the primary light emitting part 21a and the primary light emitting part 21a are smooth.

[収容保持部605]
収容保持部605は、段付き形状に形成されており、このため例えば凸形状の外形を有している。このような収容保持部605は、一端部605aと、一端部605aと一体であり、一端部605aよりも大きい(太い)他端部605bとから構成されている。一端部605aと他端部605bとは、例えば円柱形状を有している。この場合、一端部605aは細径部として形成され、他端部605bは太径部として形成されている。
[Accommodating and holding unit 605]
The accommodation holding portion 605 is formed in a stepped shape, and thus has, for example, a convex outer shape. Such an accommodation holding | maintenance part 605 is comprised from the one end part 605a and the one end part 605a, and the other end part 605b larger (thick) than the one end part 605a. The one end 605a and the other end 605b have, for example, a cylindrical shape. In this case, the one end portion 605a is formed as a small diameter portion, and the other end portion 605b is formed as a large diameter portion.

本体嵌合部651は一端部605aに配設されており、挿入収容部653は一端部605aと他端部605bとに配設されている。   The main body fitting portion 651 is disposed at one end 605a, and the insertion housing portion 653 is disposed at one end 605a and the other end 605b.

一端部605aはかしめ部607に圧入され、他端部605bはかしめ部607の外部に配設される。一端部605aの直径は、導光保持部603の直径と略同一である。   One end 605 a is press-fitted into the caulking portion 607, and the other end 605 b is disposed outside the caulking portion 607. The diameter of the one end portion 605a is substantially the same as the diameter of the light guide holding portion 603.

また収容保持部605において、本体部471が本体嵌合部651に嵌合することによって、収容保持部605は光透過部材47を保持している。この時、収容保持部605の一端部605aにおける端面が1次光入射部41を含む後面47aと同一平面上に配設され、端面と1次光入射部41を含む後面47aとが光軸11に対して直交する平面として形成され、端面と1次光入射部41を含む後面47aとが共に平滑となるように、収容保持部605の一端部605aの端面は1次光入射部41を含む後面47aと共に研磨される。   Further, in the housing and holding part 605, the housing and holding part 605 holds the light transmitting member 47 by fitting the main body part 471 with the main body fitting part 651. At this time, the end surface of the one end portion 605a of the housing holding portion 605 is disposed on the same plane as the rear surface 47a including the primary light incident portion 41, and the end surface and the rear surface 47a including the primary light incident portion 41 are the optical axis 11. The end surface of the one end portion 605a of the housing holding portion 605 includes the primary light incident portion 41 so that the end surface and the rear surface 47a including the primary light incident portion 41 are both smooth. Polished together with the rear surface 47a.

[かしめ部607]
かしめ部607は、例えば、ジルコニアやニッケルやリン青銅などのバネ材によって形成されており、弾性変形するための弾性力を有している。
[Caulking part 607]
The caulking portion 607 is formed of, for example, a spring material such as zirconia, nickel, or phosphor bronze, and has an elastic force for elastic deformation.

導光保持部603の端部と収容保持部605の一端部605aとは、1次光出射部21aを含む導光保持部603の端面が後面47aを含む収容保持部605の一端部605aの端面と当接し、1次光出射部21aが1次光入射部41と光学的に当接するように、かしめ部607に圧入され、かしめ部607に嵌合する。   The end portion of the light guide holding portion 603 and the one end portion 605a of the housing holding portion 605 are the end surface of the one end portion 605a of the housing holding portion 605 where the end surface of the light guide holding portion 603 including the primary light emitting portion 21a includes the rear surface 47a. The primary light emitting portion 21a is press-fitted into the caulking portion 607 and fitted into the caulking portion 607 so that the primary light emitting portion 21a is in optical contact with the primary light incident portion 41.

このようにかしめ部607は、位置決め部材でもあり、連結部材でもある。かしめ部607は、かしめ部607の断面の一部分が切り欠かかるように、形成されている。またかしめ部607は、圧入時において、かしめ部607が導光保持部603の端部と収容保持部605の一端部605aとを径方向に締め付ける力を弱めるために、かしめ部607の断面の一部分が切り欠かかるように、形成されている。このため例えばかしめ部607は、一部分が切り欠かれた断面を、軸方向に連続して有する略円筒部材として、形成されている。この断面は、かしめ部607の軸方向に対して直交する平面方向に形成されている。またこの断面は、例えばC字形状に形成されている。このためかしめ部607は、例えばC字形状の断面を、軸方向に連続して有する略円筒形状として、形成されている。このようなかしめ部607は、円の一部が切り欠けられた割りスリーブとなっている。よってかしめ部607は、かしめ部607の軸方向に沿って配設され、軸方向においてかしめ部607を貫通している図示しないスリット部を有している。スリット部は、かしめ部607の厚み方向において、かしめ部607を貫通している。   Thus, the caulking portion 607 is both a positioning member and a connecting member. The caulking portion 607 is formed so that a part of the cross section of the caulking portion 607 is cut out. Further, the caulking portion 607 is a part of a cross section of the caulking portion 607 in order to weaken the force that the caulking portion 607 clamps the end portion of the light guide holding portion 603 and the one end portion 605a of the housing holding portion 605 in the radial direction during press-fitting. Is formed so as to be cut out. For this reason, for example, the caulking portion 607 is formed as a substantially cylindrical member having a cross-section partially cut away in the axial direction. This cross section is formed in a plane direction orthogonal to the axial direction of the caulking portion 607. Moreover, this cross section is formed in C shape, for example. For this reason, the caulking portion 607 is formed, for example, as a substantially cylindrical shape having a C-shaped cross section continuously in the axial direction. Such a caulking portion 607 is a split sleeve in which a part of a circle is notched. Therefore, the caulking portion 607 has a slit portion (not shown) that is disposed along the axial direction of the caulking portion 607 and penetrates the caulking portion 607 in the axial direction. The slit portion penetrates the caulking portion 607 in the thickness direction of the caulking portion 607.

なお、光軸11方向において、1次光出射部21aが1次光入射部41との間には、図示しない屈折率整合部材が配設される。屈折率整合部材は、光軸11方向において1次光出射部21aと1次光入射部41との間、且つ光路上において空気が入ることで光結合効率が低下することを防止するために配設されている。屈折率整合部材の屈折率は、光ファイバ21の屈折率と光透過部材47の屈折率とに近似している。屈折率整合部材は、例えばマッチングオイルなどの液体やシリコーン樹脂等の固体である。   A refractive index matching member (not shown) is disposed between the primary light emitting portion 21a and the primary light incident portion 41 in the direction of the optical axis 11. The refractive index matching member is arranged to prevent the optical coupling efficiency from being lowered due to air entering between the primary light emitting part 21a and the primary light incident part 41 in the direction of the optical axis 11 and on the optical path. It is installed. The refractive index of the refractive index matching member approximates the refractive index of the optical fiber 21 and the refractive index of the light transmitting member 47. The refractive index matching member is a liquid such as matching oil or a solid such as silicone resin.

[効果]
このように本変形例では、部品点数が増えるが、導光保持部603と収容保持部605とかしめ部607とが高い寸法精度を有することによって、より安定的且つより高精度に、径方向と傾斜方向とにおける相対位置を位置決めできる。
[effect]
As described above, in this modified example, the number of parts is increased, but the light guide holding unit 603, the housing holding unit 605, and the caulking unit 607 have high dimensional accuracy, so that the radial direction is more stable and more accurate. The relative position in the tilt direction can be determined.

また本変形例では、部品点数が増えるが、それぞれを容易且つ高精度に加工でき、部品の1つあたりのコストを低減でき、容易に組み立てることができる。   In this modification, the number of parts increases, but each can be processed easily and with high accuracy, the cost per part can be reduced, and the parts can be easily assembled.

本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。   The present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment.

10…光学デバイス、11…光軸、20…導光ユニット、21…光ファイバ、21a…1次光出射部、40…照明ユニット、41…1次光入射部、43…光変換部材、45…1次光出射部、47…光透過部材、60…保持部、61…導光嵌合部、65…制御嵌合部、80…位置制御手段、81…光軸方向制御手段、83…径方向制御手段、85…傾斜方向制御手段、85…傾斜方向置制御手段、471…本体部、473…挿入部、651…本体嵌合部、653…挿入収容部。   DESCRIPTION OF SYMBOLS 10 ... Optical device, 11 ... Optical axis, 20 ... Light guide unit, 21 ... Optical fiber, 21a ... Primary light emission part, 40 ... Illumination unit, 41 ... Primary light incident part, 43 ... Light conversion member, 45 ... Primary light emitting part, 47 ... light transmission member, 60 ... holding part, 61 ... light guide fitting part, 65 ... control fitting part, 80 ... position control means, 81 ... optical axis direction control means, 83 ... radial direction Control means, 85: Inclination direction control means, 85: Inclination direction position control means, 471 ... Main body part, 473 ... Insertion part, 651 ... Main body fitting part, 653 ... Insertion housing part

Claims (18)

1次光を出射する出射部を有しており、前記1次光を導光する導光ユニットと、
前記導光ユニットによって導光されて前記出射部から出射された前記1次光が入射する入射部と、前記入射部から離間して配設され、前記入射部から入射された前記1次光を照射されることによって、前記1次光とは異なる2次光を生成する生成部材とを有しており、前記2次光を照明光として観察対象物に照明する照明ユニットと、
前記出射部と前記入射部とが互いに光学的に接続するように、前記導光ユニットと前記照明ユニットとを保持する保持部と、
前記出射部と前記生成部材との相対位置を制御する位置制御手段と、
を具備し、
前記出射部が出射する前記光の中心軸方向を光軸方向と称し、
前記光軸方向に直交する方向を径方向と称し、
前記光軸方向に傾斜する方向を傾斜方向と称し、
前記位置制御手段は、
前記光軸方向において前記相対位置を制御する光軸方向制御手段と、
前記径方向において前記相対位置を制御する径方向制御手段と、
前記傾斜方向において前記相対位置を制御する傾斜方向制御手段と、
を有することを特徴とする光学デバイス。
A light guide unit that has an emission part that emits primary light and guides the primary light;
An incident portion that is guided by the light guide unit and is incident on the primary light emitted from the emission portion; and an incident portion that is disposed apart from the incident portion and that is incident on the incident portion. A generation unit that generates secondary light different from the primary light by being irradiated, and illuminates an observation object as illumination light with the secondary light; and
A holding unit that holds the light guide unit and the illumination unit so that the emitting unit and the incident unit are optically connected to each other;
Position control means for controlling the relative position between the emitting portion and the generating member;
Comprising
The central axis direction of the light emitted from the emission part is referred to as an optical axis direction,
The direction perpendicular to the optical axis direction is referred to as the radial direction,
The direction inclined in the optical axis direction is referred to as the inclination direction,
The position control means includes
Optical axis direction control means for controlling the relative position in the optical axis direction;
Radial control means for controlling the relative position in the radial direction;
A tilt direction control means for controlling the relative position in the tilt direction;
An optical device comprising:
前記光軸方向制御手段は、前記入射部を有するように前記光軸方向において前記入射部と前記生成部材との間に配設されており、前記光軸方向における前記相対位置を所望に制御する光軸方向制御部材を有することを特徴とする請求項1に記載の光学デバイス。   The optical axis direction control means is disposed between the incident portion and the generating member in the optical axis direction so as to have the incident portion, and controls the relative position in the optical axis direction as desired. The optical device according to claim 1, further comprising an optical axis direction control member. 前記光軸方向制御部材は、前記光軸方向において前記出射部と前記生成部材とに光学的に接続し前記出射部と前記生成部材とによって挟持されるように、前記光軸方向において前記出射部と前記生成部材との間に介在していることを特徴とする請求項2に記載の光学デバイス。   The optical axis direction control member is optically connected to the emitting portion and the generating member in the optical axis direction and is sandwiched between the emitting portion and the generating member in the optical axis direction. The optical device according to claim 2, wherein the optical device is interposed between the optical member and the generation member. 前記出射部から出射される前記1次光が前記生成部材を照射する際に、前記光軸方向において、前記光軸方向制御部材は、少なくとも前記1次光の高強度成分が前記生成部材に進入するような長さL1を有していることを特徴とする請求項3に記載の光学デバイス。   When the primary light emitted from the emission part irradiates the generation member, in the optical axis direction, the optical axis direction control member has at least a high intensity component of the primary light entering the generation member. 4. The optical device according to claim 3, wherein the optical device has a length L1. 前記1次光が所望の広がり角度で前記出射部から出射されて前記生成部材を照射する際に、前記光軸方向において、前記光軸方向制御部材は、前記生成部材における前記1次光の強度分布が前記2次光を生成する際の前記生成部材の耐熱温度を超えないような長さL1を有していることを特徴とする請求項3に記載の光学デバイス。   When the primary light is emitted from the emission part at a desired spread angle and irradiates the generation member, the optical axis direction control member in the optical axis direction is an intensity of the primary light in the generation member. The optical device according to claim 3, wherein the optical device has a length L1 such that the distribution does not exceed a heat resistant temperature of the generating member when generating the secondary light. 前記光軸方向制御部材は、ガラスを有することを特徴とする請求項4または請求項5に記載の光学デバイス。   The optical device according to claim 4, wherein the optical axis direction control member includes glass. 前記径方向制御手段と前記傾斜方向制御手段とは、
前記導光ユニットの前記出射部と、
前記保持部に配設され、少なくとも前記導光ユニットの前記出射部が嵌合する導光嵌合部と、
前記光軸方向制御部材の一部と、
前記保持部に配設され、前記光軸方向制御部材の前記一部が嵌合する本体嵌合部を有する収容部と、
を有し、
前記出射部と前記入射部とが互いに光学的に接続するように、前記導光嵌合部と前記収容部と前記出射部と前記入射部と前記光軸方向制御部材とは互いに同軸上に配設されていることを特徴とする請求項2に記載の光学デバイス。
The radial direction control means and the tilt direction control means are:
The emitting portion of the light guide unit;
A light guide fitting portion disposed in the holding portion, at least to which the emission portion of the light guide unit is fitted;
A part of the optical axis direction control member;
An accommodating portion having a main body fitting portion disposed in the holding portion and into which the part of the optical axis direction control member is fitted;
Have
The light guide fitting portion, the accommodating portion, the emitting portion, the incident portion, and the optical axis direction control member are coaxially arranged so that the emitting portion and the incident portion are optically connected to each other. The optical device according to claim 2, wherein the optical device is provided.
前記光軸方向制御部材の前記一部が前記本体嵌合部と嵌合することによって、前記径方向制御手段は前記径方向において前記相対位置を位置決めし、前記傾斜方向制御手段は前記傾斜方向において前記相対位置を位置決めすることを特徴とする請求項7に記載の光学デバイス。   When the part of the optical axis direction control member is fitted to the body fitting portion, the radial direction control means positions the relative position in the radial direction, and the tilt direction control means is in the tilt direction. The optical device according to claim 7, wherein the relative position is positioned. 前記本体嵌合部は、前記収容部の一部に配設されており、
前記収容部は、前記収容部の他部に配設されており、前記光軸方向において、前記本体嵌合部と連通している挿入収容部をさらに有し、
前記光軸方向制御部材は、
前記入射部を有し、前記光軸方向制御部材の前記一部に配設され、前記本体嵌合部に嵌合する本体部と、
前記本体部と同軸上に配設されるように前記本体部と一体化しており、前記生成部材と光学的に接続するように前記光軸方向制御部材の他部に配設されており、前記挿入収容部に挿入される挿入部と、
を有することを特徴とする請求項8に記載の光学デバイス。
The main body fitting portion is disposed in a part of the housing portion,
The accommodating portion is disposed in the other portion of the accommodating portion, and further includes an insertion accommodating portion communicating with the main body fitting portion in the optical axis direction.
The optical axis direction control member is
A main body portion having the incident portion, disposed in the part of the optical axis direction control member, and fitted into the main body fitting portion;
It is integrated with the main body so as to be disposed coaxially with the main body, and is disposed on the other part of the optical axis direction control member so as to be optically connected to the generating member, An insertion part to be inserted into the insertion housing part;
The optical device according to claim 8, comprising:
前記本体部は、円柱形状を有し、
前記挿入部は、前記光軸方向において前記本体部から前記生成部材に向かって拡径する円錐台形状を有することを特徴とする請求項9に記載の光学デバイス。
The main body has a cylindrical shape,
The optical device according to claim 9, wherein the insertion portion has a truncated cone shape whose diameter increases from the main body portion toward the generation member in the optical axis direction.
前記本体嵌合部は、前記導光嵌合部と連通し、前記挿入部よりも小さく、
前記挿入収容部は、前記挿入部よりも大きいことを特徴とする請求項10に記載の光学デバイス。
The body fitting portion communicates with the light guide fitting portion and is smaller than the insertion portion,
The optical device according to claim 10, wherein the insertion housing portion is larger than the insertion portion.
前記本体嵌合部は、円柱形状を有し、
前記挿入収容部は、前記光軸方向において、前記本体嵌合部が配設される前記収容部の先端部から前記収容部の基端部に向かって拡径する円錐台形状を有することを特徴とする請求項11に記載の光学デバイス。
The body fitting portion has a cylindrical shape,
The insertion housing portion has a truncated cone shape whose diameter increases from a distal end portion of the housing portion where the main body fitting portion is disposed to a proximal end portion of the housing portion in the optical axis direction. The optical device according to claim 11.
前記収容部は、前記挿入収容部の内周面に配設されており、前記2次光を反射する反射部材を有することを特徴とする請求項12に記載の光学デバイス。   The optical device according to claim 12, wherein the housing portion is provided on an inner peripheral surface of the insertion housing portion and includes a reflecting member that reflects the secondary light. 前記光軸方向制御部材は、前記挿入部に配設されており、前記生成部材が係合する係合凹部を有し、
前記係合凹部の中心軸は、前記生成部材の中心軸が前記光軸方向制御部材の中心軸上に配設されるように、前記光軸方向制御部材の中心軸上に配設されていることを特徴とする請求項13に記載の光学デバイス。
The optical axis direction control member is disposed in the insertion portion, and has an engagement recess with which the generation member is engaged.
The central axis of the engaging recess is disposed on the central axis of the optical axis direction control member such that the central axis of the generating member is disposed on the central axis of the optical axis direction control member. The optical device according to claim 13.
前記光軸方向制御部材が前記収容部に挿入された際に、円柱形状の前記本体部は、前記生成部材の中心軸が前記光軸上に配設されるように、前記収容部の円柱形状の前記本体嵌合と嵌合することを特徴とする請求項14に記載の光学デバイス。   When the optical axis direction control member is inserted into the housing portion, the cylindrical main body portion has a cylindrical shape of the housing portion so that the central axis of the generating member is disposed on the optical axis. The optical device according to claim 14, wherein the optical device is fitted with the main body fitting. 前記本体部の直径は、前記出射部の直径よりも大きく、前記生成部材の直径よりも小さいことを特徴とする請求項15に記載の光学デバイス。   The optical device according to claim 15, wherein a diameter of the main body is larger than a diameter of the emitting portion and smaller than a diameter of the generating member. 円錐台形状の前記挿入部と、前記挿入部よりも大きく、前記挿入部が挿入される円錐台形状の前記挿入収容部とにおいて、
前記挿入収容部の内周面と前記挿入部の外周面との間に隙間部が形成されるように、前記挿入収容部のテーパ角度θ1は前記挿入部のテーパ角度θ2よりも大きいことを特徴とする請求項15に記載の光学デバイス。
In the frustoconical insertion portion, and the frustoconical insertion receiving portion that is larger than the insertion portion and into which the insertion portion is inserted,
The taper angle θ1 of the insertion housing portion is larger than the taper angle θ2 of the insertion portion so that a gap is formed between the inner circumferential surface of the insertion housing portion and the outer circumferential surface of the insertion portion. The optical device according to claim 15.
前記生成部材は、1次光の配光を変換する配光変換部材と、1次光の波長を変換する波長変換部材と、前記配光変換部材と前記波長変換部材とが互いに混合することによって成形される混合物と、前記配光変換部材と前記波長変換部材との一方が他方に積層することによって成形される積層物との少なくとも1つを有することを特徴とする請求項7に記載の光学デバイス。   The generation member is obtained by mixing a light distribution conversion member that converts light distribution of primary light, a wavelength conversion member that converts the wavelength of primary light, and the light distribution conversion member and the wavelength conversion member. The optical system according to claim 7, comprising at least one of a mixture to be molded, and a laminate formed by laminating one of the light distribution conversion member and the wavelength conversion member on the other. device.
JP2013043921A 2013-03-06 2013-03-06 Optical device Active JP6147031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013043921A JP6147031B2 (en) 2013-03-06 2013-03-06 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013043921A JP6147031B2 (en) 2013-03-06 2013-03-06 Optical device

Publications (2)

Publication Number Publication Date
JP2014174192A true JP2014174192A (en) 2014-09-22
JP6147031B2 JP6147031B2 (en) 2017-06-14

Family

ID=51695490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013043921A Active JP6147031B2 (en) 2013-03-06 2013-03-06 Optical device

Country Status (1)

Country Link
JP (1) JP6147031B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060992A1 (en) * 2015-10-07 2017-04-13 オリンパス株式会社 Endoscope-use illumination device
WO2017104048A1 (en) * 2015-12-17 2017-06-22 オリンパス株式会社 Endoscope illumination device and endoscope system
WO2018216119A1 (en) * 2017-05-23 2018-11-29 オリンパス株式会社 Illuminating unit, illuminating device, and endoscope system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036075A1 (en) * 1998-05-22 2001-11-01 Belfer Bruce D. Fiber optic replicant lamp
JP2011123368A (en) * 2009-12-11 2011-06-23 Olympus Corp Lighting apparatus
JP2012185318A (en) * 2011-03-04 2012-09-27 Olympus Corp Light source device
JP2013004208A (en) * 2011-06-13 2013-01-07 Olympus Corp Lighting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036075A1 (en) * 1998-05-22 2001-11-01 Belfer Bruce D. Fiber optic replicant lamp
JP2011123368A (en) * 2009-12-11 2011-06-23 Olympus Corp Lighting apparatus
JP2012185318A (en) * 2011-03-04 2012-09-27 Olympus Corp Light source device
JP2013004208A (en) * 2011-06-13 2013-01-07 Olympus Corp Lighting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060992A1 (en) * 2015-10-07 2017-04-13 オリンパス株式会社 Endoscope-use illumination device
JPWO2017060992A1 (en) * 2015-10-07 2018-07-26 オリンパス株式会社 Endoscope lighting system
US10478053B2 (en) 2015-10-07 2019-11-19 Olympus Corporation Endoscope illumination device
WO2017104048A1 (en) * 2015-12-17 2017-06-22 オリンパス株式会社 Endoscope illumination device and endoscope system
US10835103B2 (en) 2015-12-17 2020-11-17 Olympus Corporation Endoscope illumination apparatus and endoscope system
WO2018216119A1 (en) * 2017-05-23 2018-11-29 オリンパス株式会社 Illuminating unit, illuminating device, and endoscope system
US10849487B2 (en) 2017-05-23 2020-12-01 Olympus Corporation Illumination unit and endoscope system

Also Published As

Publication number Publication date
JP6147031B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP5478232B2 (en) Lighting device
US8186864B2 (en) Light source device
US20150369991A1 (en) Light diffusing fiber lighting device having a single lens
KR20120085794A (en) Channeled substrates for integrated optical devices employing optical fibers
KR101190334B1 (en) Light projecting device and sensor
TWI609205B (en) Optical socket and light module with it
US9971106B2 (en) Optical receptacle and optical module
US20190094475A1 (en) Optical receptacle, optical module, and method for manufacturing optical module
JP6012936B2 (en) Lighting device
JP6147031B2 (en) Optical device
US20220197000A1 (en) Luminous flux collector for directing light into a light-diffusing fiber
US20120314996A1 (en) Optical fiber communication apparatus
WO2004079422A1 (en) Optical module and optical transceiver
KR20000067535A (en) Optical module
CN108700720B (en) Optical receptacle and optical module
JP6681751B2 (en) Optical receptacle and optical module
JP2009109715A (en) Fiber stub, optical connector component using the same and optical module
TW201341878A (en) Optical receptacle and optical module provided with same
JP6494711B2 (en) Optical module
WO2013065607A1 (en) Optical device
JPWO2017060992A1 (en) Endoscope lighting system
JP2015018154A (en) Optical connector
JP2009098338A (en) Optical fiber and single-core bidirectional optical transmitting/receiving module
JPH10221573A (en) Coupling structure between optical fiber and light receiver element
JP2005338297A (en) Optical coupling lens and optical communication device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170516

R151 Written notification of patent or utility model registration

Ref document number: 6147031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250