JP2014173012A - Polypropylene-based resin foam particle and compact thereof - Google Patents

Polypropylene-based resin foam particle and compact thereof Download PDF

Info

Publication number
JP2014173012A
JP2014173012A JP2013047126A JP2013047126A JP2014173012A JP 2014173012 A JP2014173012 A JP 2014173012A JP 2013047126 A JP2013047126 A JP 2013047126A JP 2013047126 A JP2013047126 A JP 2013047126A JP 2014173012 A JP2014173012 A JP 2014173012A
Authority
JP
Japan
Prior art keywords
ethylene
temperature
propylene
peak
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013047126A
Other languages
Japanese (ja)
Other versions
JP6093604B2 (en
Inventor
Nobumasa Koshita
展允 越田
Mitsuru Shinohara
篠原  充
Masaharu Oikawa
政春 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Japan Polypropylene Corp
Original Assignee
JSP Corp
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp, Japan Polypropylene Corp filed Critical JSP Corp
Priority to JP2013047126A priority Critical patent/JP6093604B2/en
Publication of JP2014173012A publication Critical patent/JP2014173012A/en
Application granted granted Critical
Publication of JP6093604B2 publication Critical patent/JP6093604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a polypropylene-based resin foam particle which is suppressed in embrittlement of foam at low temperatures and has good low-temperature impact resistance, and a compact thereof.SOLUTION: A polypropylene-based resin foam particle is produced from a polypropylene-based resin composition which has a melting point of 125-150°C, shows a single peak in the range of -20 to 20°C in a temperature-loss tangent(tanδ) curve obtained by solid dynamic viscoelasticity measurement, a temperature of the peak of 8°C or lower and a maximum value of tanδ of 0.12 or greater. A polypropylene-based resin foam particle has such a crystalline structure that there appear an endothermic peak (intrinsic peak) intrinsic to the polypropylene-based resin composition and another endothermic peak (high-temperature peak) on the high-temperature side relative to the intrinsic peak in the DSC curve (DSC curve for first heating) obtained when heating 1-3 mg of the foam particles from 25°C to 200°C at a programming rate of 10°C/min by the heat flux differential scanning calorimetry.

Description

本発明は、ポリプロピレン系樹脂発泡粒子およびその成形体に関し、さらに詳しくは、発泡体の低温での脆化を抑え、耐低温衝撃性を向上することのできるポリプロピレン系樹脂発泡粒子及びその発泡成形体に関するものである。   TECHNICAL FIELD The present invention relates to a polypropylene resin expanded particle and a molded product thereof. More specifically, the present invention relates to a polypropylene resin expanded particle capable of suppressing the embrittlement of a foam at a low temperature and improving low temperature impact resistance, and the expanded molded product thereof. It is about.

ポリプロピレン系樹脂発泡粒子の型内発泡から得られるポリプロピレン系樹脂発泡粒子成形体は、ポリスチレン系樹脂発泡粒子成形体に比して耐薬品性、耐衝撃性、圧縮歪回復性等に優れることから、電気・電子分野、自動車、建材分野、雑貨など幅広い分野に使用されている。一般に、ポリプロピレン系樹脂発泡粒子の基材樹脂として、成形時の融着性と得られる成形体の機械的強度のバランスに優れることから、プロピレン−エチレンランダム共重合体が用いられている。   Polypropylene resin foam particles molded body obtained from in-mold foaming of polypropylene resin foam particles is superior in chemical resistance, impact resistance, compression strain recovery, etc., compared to polystyrene resin foam particles molded body, It is used in a wide range of fields such as electrical / electronics, automobiles, building materials, and miscellaneous goods. In general, a propylene-ethylene random copolymer is used as the base resin of the polypropylene resin expanded particles because of excellent balance between the fusion property at the time of molding and the mechanical strength of the obtained molded body.

ポリプロピレン系樹脂発泡粒子成形体は、常温では大きいエネルギー吸収特性を示すものの、低温雰囲気下では脆化し、その特性は低下することがこれまで報告されている。このポリプロピレン系樹脂発泡体の低温雰囲気下での割れや欠けは新たな用途への進出の障害になっている。   It has been reported so far that polypropylene resin expanded resin molded articles exhibit large energy absorption characteristics at room temperature, but become brittle and deteriorate in low temperature atmosphere. Cracking or chipping of this polypropylene resin foam in a low temperature atmosphere is an obstacle to advance into new applications.

チーグラー−ナッタ系触媒を用いて重合されたプロピレン−エチレンランダム共重合体を樹脂基材とするポリプロピレン系樹脂発泡粒子から得られた発泡粒子成形体は、エチレン成分を含むため、ホモポリプロピレンによるものより耐衝撃性が強いが、極低温での耐衝撃性は、その用途によっては不十分であった。
また、メタロセン系触媒を用いて重合されたプロピレン−エチレンランダム共重合体を樹脂基材とするポリプロピレン系樹脂発泡粒子から得られた発泡粒子成形体においては、一般的に上記チーグラー系によるものより耐衝撃性が強いが、やはり極低温での耐衝撃性は不十分であった。
さらに、プロピレン−エチレンブロック共重合体は、エチレン成分が多いため耐衝撃性に優れるが、融点が160℃以上と高く、プロピレン−エチレンブロック共重合体を基材樹脂とするポリプロピレン系樹脂発泡粒子から得られた発泡粒子成形体においては、ホモポリプロピレンと成形圧が同程度、すなわち成形圧が0.50MPa(ゲージ圧)以上となって、従来の成形装置では実質的に発泡成形が不可能であった。また、成形体が得られたとしても、発泡粒子間の融着が不十分となりやすく、所望の耐低温衝撃性を得ることはできなかった。
さらにまた、プロピレン−エチレンブロックランダム共重合体を基材樹脂とするポリプロピレン系樹脂発泡粒子から得られた発泡粒子成形体においても、やはり低温での耐衝撃性は不十分であった。
Foamed particle moldings obtained from polypropylene resin foamed particles based on a propylene-ethylene random copolymer polymerized using a Ziegler-Natta catalyst as a resin base contain an ethylene component. Although the impact resistance is strong, the impact resistance at cryogenic temperatures was insufficient depending on the application.
Further, in the foamed particle molded body obtained from the polypropylene resin foamed particle using a propylene-ethylene random copolymer polymerized using a metallocene catalyst as a resin base material, it is generally more resistant than the above Ziegler type. The impact resistance was strong, but the impact resistance at extremely low temperatures was still insufficient.
Furthermore, the propylene-ethylene block copolymer is excellent in impact resistance due to the large amount of ethylene component, but the melting point is as high as 160 ° C. or higher, and the polypropylene resin foamed particles have a propylene-ethylene block copolymer as a base resin. In the obtained foamed particle molded body, the molding pressure is about the same as that of homopolypropylene, that is, the molding pressure is 0.50 MPa (gauge pressure) or more, and foam molding is substantially impossible with the conventional molding apparatus. It was. Moreover, even if a molded body was obtained, the fusion between the expanded particles was likely to be insufficient, and the desired low temperature impact resistance could not be obtained.
Furthermore, even in the foamed particle molded body obtained from the polypropylene resin foamed particles using the propylene-ethylene block random copolymer as a base resin, the impact resistance at low temperature was still insufficient.

この解決方法として、エチレン−プロピレンブロック共重合体のゴム相と、プロピレン−エチレンランダム共重合体の熱可塑性樹脂相を複合させた樹脂から得られるポリプロピレン系樹脂発泡粒子成形体が低温での耐衝撃性が高い発泡体として提案されている(例えば、特許文献1)。
しかしながら、この発泡体では、ゴム成分によって耐低温衝撃性は改善されるものの耐低温衝撃性はまだ不十分であり、さらに、ゴムを含有した場合、発泡粒子の発泡時や型内成形時に破泡してしまうことが多いことや、リサイクル性に劣るという問題がある。
As a solution to this problem, a polypropylene resin foamed particle molded body obtained from a resin in which a rubber phase of an ethylene-propylene block copolymer and a thermoplastic resin phase of a propylene-ethylene random copolymer are combined is used for impact resistance at low temperatures. It has been proposed as a foam having high properties (for example, Patent Document 1).
However, in this foam, the low-temperature impact resistance is improved by the rubber component, but the low-temperature impact resistance is still inadequate. Further, when rubber is contained, foam breakage occurs when foamed particles are foamed or molded in-mold. There is a problem that it is often done, and recyclability is inferior.

特開平5−202221号公報JP-A-5-202221

このように、従来、十分に耐低温衝撃性を改善できるポリプロピレン系樹脂発泡粒子は得られていない。
本発明は、このような状況下になされたもので、十分な耐低温衝撃性を改善できるポリプロピレン系樹脂発泡粒子及びその成形体を提供することを目的とする。
Thus, conventionally, polypropylene-based resin expanded particles that can sufficiently improve low-temperature impact resistance have not been obtained.
The present invention has been made under such circumstances, and an object of the present invention is to provide a polypropylene resin expanded particle and a molded product thereof that can improve sufficient low temperature impact resistance.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、下記の知見を得た。
すなわち、プロピレン−エチレンブロック共重合体を含むポリプロピレン系樹脂発泡粒子において、該発泡粒子の基材樹脂の固体動的粘弾性測定から得られる温度−損失正接(tanδ)曲線が−20〜20℃の範囲において特徴を有し、かつ、該発泡粒子1〜3mgを熱流束示差走査熱量測定法によるDSC曲線(第1回加熱のDSC曲線)において、ポリプロピレン系樹脂組成物に固有の吸熱ピーク(固有ピーク)と、該固有ピークよりも高温側の吸熱ピーク(高温ピーク)との2つの吸熱ピークを有するポリプロピレン系樹脂発泡粒子が、ポリプロピレン系樹脂が本来有する優れた機械的強度を損なうことなく、低温衝撃性に優れる発泡粒子成形体を与えることを見出した。
本発明は、かかる知見に基づいて完成したものである。
As a result of intensive studies to achieve the above object, the present inventors have obtained the following knowledge.
That is, in a polypropylene resin expanded particle containing a propylene-ethylene block copolymer, a temperature-loss tangent (tan δ) curve obtained from a solid dynamic viscoelasticity measurement of a base resin of the expanded particle is -20 to 20 ° C. In the DSC curve (DSC curve of the first heating) having 1 to 3 mg of the foamed particles having a characteristic in the range and a heat flux differential scanning calorimetry method, an endothermic peak (inherent peak) inherent to the polypropylene resin composition ) And an endothermic peak (high temperature peak) on the higher temperature side than the intrinsic peak, the polypropylene resin foamed particles have low temperature impact without impairing the excellent mechanical strength inherent to the polypropylene resin. It has been found that a foamed particle molded body having excellent properties can be obtained.
The present invention has been completed based on such findings.

すなわち、本発明は、
(1)融点が125〜140℃、かつエチレン成分含有量が3〜8重量%のプロピレン−エチレンブロック共重合体(a)〔以下、「共重合体(a)」ということがある。〕を含むポリプロピレン系樹脂組成物を基材樹脂とする発泡粒子であって、該ポリプロピレン系樹脂組成物の融点が125〜150℃で、かつ該ポリプロピレン系樹脂組成物の固体動的粘弾性測定から得られる温度−損失正接(tanδ)曲線が−20〜20℃の範囲において単一のピークを有し、該ピークを示す温度が8℃以下で、かつtanδの最大値が0.12以上であり、該発泡粒子1〜3mgを熱流束示差走査熱量測定法により10℃/分の昇温速度で25℃から200℃まで加熱したときに得られるDSC曲線(第1回加熱のDSC曲線)において、ポリプロピレン系樹脂組成物に固有の吸熱ピーク(固有ピーク)と、該固有ピークよりも高温側の吸熱ピーク(高温ピーク)とが現れる結晶構造を有することを特徴とするポリプロピレン系樹脂発泡粒子、
(2)前記ポリプロピレン系樹脂組成物が、融点が130〜155℃で、かつエチレン成分含有量5重量%未満(0は含まない)のプロピレン−エチレンランダム共重合体(b)〔以下、「共重合体(b)」ということがある。〕を含み、共重合体(a)と共重合体(b)との重量比が40:60〜90:10である(1)記載のポリプロピレン系樹脂発泡粒子、
(3)前記ポリプロピレン系樹脂組成物が、エチレン系重合体(c)〔以下、「重合体(c)」ということがある。〕を含み、ポリプロピレン系樹脂組成物中の重合体(c)の含有量が1〜30重量%である(1)又は(2)に記載のポリプロピレン系樹脂発泡粒子、
(4)前記共重合体(a)が、メタロセン系触媒を用いて、第1工程でプロピレン単独またはエチレン含量7重量%以下のプロピレン−エチレンランダム共重合体成分(a−1)〔以下、成分(a−1)という場合がある。〕を30〜95重量%、第2工程で成分(a−1)よりも3〜20重量%多くのエチレンを含有するプロピレン−エチレンランダム共重合体成分(a−2)〔以下、成分(a−2)という場合がある。〕を70〜5重量%逐次重合することで得られたプロピレン−エチレンブロック共重合体である(1)〜(3)のいずれかに記載のポリプロピレン系樹脂発泡粒子、
(5)前記発泡粒子の見掛け密度が20〜300g/Lである(1)〜(4)のいずれかに記載のポリプロピレン系樹脂発泡粒子、及び
(6)(1)〜(5)のいずれかに記載のポリプロピレン系樹脂発泡粒子を型内成形してなることを特徴とするポリプロピレン系樹脂発泡粒子成形体、
を提供するものである。
That is, the present invention
(1) Propylene-ethylene block copolymer (a) having a melting point of 125 to 140 ° C. and an ethylene component content of 3 to 8% by weight (hereinafter sometimes referred to as “copolymer (a)”). ] From the solid dynamic viscoelasticity measurement of the polypropylene resin composition, the melting point of the polypropylene resin composition is 125 to 150 ° C. The obtained temperature-loss tangent (tan δ) curve has a single peak in the range of −20 to 20 ° C., the temperature showing the peak is 8 ° C. or lower, and the maximum value of tan δ is 0.12 or higher. In a DSC curve (DSC curve of the first heating) obtained when 1 to 3 mg of the expanded particles are heated from 25 ° C. to 200 ° C. at a temperature rising rate of 10 ° C./min by a heat flux differential scanning calorimetry method, Polypropylene having a crystal structure in which an endothermic peak (inherent peak) unique to a polypropylene resin composition and an endothermic peak (high temperature peak) on a higher temperature side than the intrinsic peak appear. Pyrene-based resin expanded particles,
(2) The propylene-ethylene random copolymer (b) having a melting point of 130 to 155 ° C. and an ethylene component content of less than 5% by weight (excluding 0) (hereinafter referred to as “copolymer”). It may be referred to as “polymer (b)”. And the weight ratio of the copolymer (a) to the copolymer (b) is 40:60 to 90:10, and the expanded polypropylene resin particles according to (1),
(3) The polypropylene resin composition may be referred to as an ethylene polymer (c) [hereinafter referred to as “polymer (c)”. The polypropylene resin expanded particles according to (1) or (2), wherein the content of the polymer (c) in the polypropylene resin composition is 1 to 30% by weight,
(4) The copolymer (a) is a propylene homopolymer or a propylene-ethylene random copolymer component (a-1) having an ethylene content of 7% by weight or less in the first step using a metallocene catalyst. It may be referred to as (a-1). 30 to 95% by weight of propylene-ethylene random copolymer component (a-2) containing 3 to 20% more ethylene than component (a-1) in the second step [hereinafter referred to as component (a) -2). ] The polypropylene resin expanded particles according to any one of (1) to (3), which are propylene-ethylene block copolymers obtained by sequential polymerization of 70 to 5% by weight,
(5) The polypropylene-based resin expanded particles according to any one of (1) to (4), wherein the apparent density of the expanded particles is 20 to 300 g / L, and (6) any one of (1) to (5) A polypropylene resin foamed particle molded article, which is formed by molding the polypropylene resin foamed particle according to the above in-mold,
Is to provide.

本発明のポリプロピレン系樹脂発泡粒子によれば、低温での脆化を抑え、低温衝撃性の良いポリプロピレン系樹脂発泡粒子成形体を得ることができる。
本発明のポリプロピレン系樹脂発泡粒子成形体は、ポリプロピレン系樹脂発泡粒子が本来有する優れた機械的強度を損なうことなく、これまで難しかった−30℃という極低温雰囲気下での耐衝撃性が改善された発泡成形体であり、低温下での割れや欠けといった問題が発生し難く、包装資材、自動車用衝撃緩衝材/スペーサー部品、建築用断熱材、吸音材などに好適に使用することができ、特に自動車用途に好適に使用できる。
According to the expanded polypropylene resin particles of the present invention, it is possible to suppress the embrittlement at a low temperature and obtain a molded polypropylene resin expanded particle having good low temperature impact properties.
The molded article of the expanded polypropylene resin particles of the present invention has improved impact resistance in an extremely low temperature atmosphere of −30 ° C. which has been difficult until now without impairing the excellent mechanical strength inherent to the expanded polypropylene resin particles. The foamed molded body is less likely to cause problems such as cracking and chipping at low temperatures, and can be suitably used for packaging materials, automotive shock absorbers / spacer parts, heat insulating materials for buildings, sound absorbing materials, etc. In particular, it can be suitably used for automobile applications.

本発明に係るポリプロピレン系樹脂組成物の固体動的粘弾性測定から得られた温度−損失正接(tanδ)曲線である。3 is a temperature-loss tangent (tan δ) curve obtained from solid dynamic viscoelasticity measurement of a polypropylene resin composition according to the present invention. 本発明に係るポリプロピレン系樹脂発泡粒子の第1回目のDSC曲線を示す図である。It is a figure which shows the 1st DSC curve of the polypropylene resin expanded particle which concerns on this invention.

まず、本発明のポリプロピレン系樹脂発泡粒子について説明する。
本発明のポリプロピレン系樹脂発泡粒子は、型内に充填して加熱成形する発泡粒子型内成形法に用いられる発泡粒子であり、融点が125〜140℃、かつエチレン成分含有量が3〜8重量%のプロピレン−エチレンブロック共重合体(a)を含むポリプロピレン系樹脂組成物を基材樹脂とする発泡粒子である。
さらに、ポリプロピレン系樹脂組成物の融点が125〜150℃で、かつ固体動的粘弾性測定から得られる温度−損失正接(tanδ)曲線が、図1に示すように、−20〜20℃の範囲において単一のピークを有し、該ピークを示す温度が8℃以下で、かつtanδの最大値が0.12以上である。
また、発泡粒子1〜3mgを熱流束示差走査熱量測定法により10℃/分の昇温速度で25℃から200℃まで加熱したときに得られるDSC曲線(第1回加熱のDSC曲線)において、図2に示すように、ポリプロピレン系樹脂組成物に固有の吸熱ピーク(固有ピーク)PTmaと、該固有ピークよりも高温側の吸熱ピーク(高温ピーク)PTmbとの2つの吸熱ピークが現れる結晶構造を有している。
以下、本発明のポリプロピレン系樹脂発泡粒子の構成について説明する。
First, the polypropylene resin expanded particles of the present invention will be described.
The expanded polypropylene resin particles of the present invention are expanded particles used in an in-mold molding method in which a mold is filled and heat-molded. The melting point is 125 to 140 ° C. and the ethylene component content is 3 to 8 weights. % Foamed particles having a polypropylene resin composition containing a% propylene-ethylene block copolymer (a) as a base resin.
Further, the melting point of the polypropylene resin composition is 125 to 150 ° C., and the temperature-loss tangent (tan δ) curve obtained from the solid dynamic viscoelasticity measurement is in the range of −20 to 20 ° C. as shown in FIG. In which the temperature showing the peak is 8 ° C. or less and the maximum value of tan δ is 0.12 or more.
In addition, in a DSC curve (DSC curve of the first heating) obtained when 1 to 3 mg of expanded particles are heated from 25 ° C. to 200 ° C. at a temperature rising rate of 10 ° C./min by a heat flux differential scanning calorimetry method, As shown in FIG. 2, a crystal structure in which two endothermic peaks, an endothermic peak (inherent peak) PTma inherent in the polypropylene resin composition, and an endothermic peak (high temperature peak) PTmb on the higher temperature side than the intrinsic peak appear. Have.
Hereinafter, the configuration of the expanded polypropylene resin particles of the present invention will be described.

本発明のポリプロピレン系樹脂発泡粒子は、発泡粒子を構成するポリプロピレン系樹脂組成物の固体動的粘弾性測定(DMA)から得られる温度−損失正接(tanδ)曲線が−20〜20℃の範囲において単一のピークを有し、該ピークを示す温度が8℃以下で、かつtanδの最大値が0.12以上である。
tanδ曲線のピークを示す温度は、8℃以下、好ましくは0℃以下、さらに好ましくは−5℃以下であり、かつ8℃以下におけるtanδの最大値が0.12以上、好ましくは、0.16以上である。
単一のピークを示さない場合や、ピークが単一であっても単一のピーク(トップ)を示す温度が、8℃を超える場合には低温衝撃性を満足するポリプロピレン系樹脂発泡粒子成形体を得ることができない。
The expanded polypropylene resin particles of the present invention have a temperature-loss tangent (tan δ) curve obtained from solid dynamic viscoelasticity measurement (DMA) of the polypropylene resin composition constituting the expanded particles in the range of -20 to 20 ° C. It has a single peak, the temperature showing the peak is 8 ° C. or less, and the maximum value of tan δ is 0.12 or more.
The temperature showing the peak of the tan δ curve is 8 ° C. or less, preferably 0 ° C. or less, more preferably −5 ° C. or less, and the maximum value of tan δ at 8 ° C. or less is 0.12 or more, preferably 0.16 That's it.
When a single peak is not shown, or when the temperature showing a single peak (top) exceeds 8 ° C. even if the peak is single, the polypropylene resin foamed particle molded body satisfies low temperature impact properties. Can't get.

ポリプロピレン系樹脂組成物の融点は、125〜150℃で、好ましくは125〜145℃、さらに好ましくは、130〜145℃、特に好ましくは130〜140℃であることが、発泡粒子を型内成形する際に、加熱温度を過度に高くすることなく良好な発泡粒子成形体が得られる点で好ましく、得られる発泡粒子成形体の剛性、耐熱性等が確保される。   The melting point of the polypropylene-based resin composition is 125 to 150 ° C., preferably 125 to 145 ° C., more preferably 130 to 145 ° C., and particularly preferably 130 to 140 ° C. At this time, it is preferable in that a good foamed particle molded body can be obtained without excessively increasing the heating temperature, and the rigidity, heat resistance and the like of the obtained foamed particle molded body are ensured.

〔プロピレン−エチレンブロック共重合体(a)〕
本発明のポリプロピレン系樹脂発泡粒子を構成する上記ポリプロピレン系樹脂組成物には、融点が125〜140℃で、かつエチレン成分含有量が3〜8重量%のプロピレン−エチレンブロック共重合体(a)が含まれる。
プロピレン−エチレンブロック共重合体(a)の融点が125〜140℃、好ましくは125〜135℃、さらに好ましくは、130〜135℃であることにより、プロピレン−エチレンブロック共重合体(a)を含有するポリプロピレン系樹脂組成物を基材樹脂とする発泡粒子を型内成形する際に、加熱温度を過度に高くすることなく良好な発泡粒子成形体が得られる点で好ましく、得られる発泡粒子成形体の剛性、耐熱性、耐低温衝撃性等が確保される。
[Propylene-ethylene block copolymer (a)]
The polypropylene resin composition constituting the polypropylene resin expanded particles of the present invention includes a propylene-ethylene block copolymer (a) having a melting point of 125 to 140 ° C. and an ethylene component content of 3 to 8% by weight. Is included.
The propylene-ethylene block copolymer (a) has a melting point of 125 to 140 ° C, preferably 125 to 135 ° C, more preferably 130 to 135 ° C, thereby containing the propylene-ethylene block copolymer (a). When the foamed particles having the polypropylene resin composition as the base resin are molded in the mold, the foamed particle molded body is preferable in that a good foamed particle molded body can be obtained without excessively increasing the heating temperature. The rigidity, heat resistance, low-temperature impact resistance, etc. are ensured.

プロピレン−エチレンブロック共重合体(a)におけるエチレン成分含有量は、3〜8重量%、好ましくは3〜7重量%、さらに好ましくは、3〜6重量%、特に好ましくは4〜6重量%とすることにより、上記の融点の範囲が実現され、さらに、当該プロピレン−エチレンブロック共重合体(a)を含有するポリプロピレン系樹脂組成物を基材樹脂とする発泡粒子から得られる発泡粒子成形体は、剛性、耐熱性、耐低温衝撃性等が確保される。   The ethylene component content in the propylene-ethylene block copolymer (a) is 3 to 8% by weight, preferably 3 to 7% by weight, more preferably 3 to 6% by weight, particularly preferably 4 to 6% by weight. Thus, the above-mentioned range of the melting point is realized, and further, a foamed particle molded body obtained from foamed particles using a polypropylene resin composition containing the propylene-ethylene block copolymer (a) as a base resin is , Rigidity, heat resistance, low temperature impact resistance, etc. are ensured.

また、本発明に用いられるプロピレン−エチレンブロック共重合体(a)は、メタロセン系触媒を用いて、第1工程でプロピレン単独またはエチレン含量7重量%以下のプロピレン−エチレンランダム共重合体成分(a−1)を30〜95重量%、第2工程で成分(a−1)よりも3〜20重量%多くのエチレンを含有するプロピレン−エチレンランダム共重合体成分(a−2)を70〜5重量%逐次重合することで得られたプロピレン−エチレンブロック共重合体とすることができる。
第1工程で得られたプロピレン−エチレンランダム共重合体成分(a−1)と第2工程で得られたプロピレン−エチレンランダム共重合体成分(a−2)〔以下、成分(a−2)という場合がある。〕とが相分離構造を取る場合には、成分(a−1)に含まれる非晶部のガラス転移温度と成分(a−2)に含まれる非晶部のガラス転移温度が各々異なるため、この場合には、各成分が相溶していないため、耐低温衝撃性が得られない等の問題が生じる。相分離構造を取っていることは、固体粘弾性測定におけるtanδ曲線において複数のピークを示すことにより判別可能であり、耐低温衝撃性を左右する相分離構造の回避は、tanδが8℃以下に単一のピークを有することによりもたらされる。
なお、逐次重合法については後述し、固体粘弾性測定は、後述する実施例に記載の方法により行うものとする。
The propylene-ethylene block copolymer (a) used in the present invention is a propylene-only copolymer or a propylene-ethylene random copolymer component (a) having an ethylene content of 7% by weight or less in the first step using a metallocene catalyst. -1) 30 to 95% by weight, and in the second step, propylene-ethylene random copolymer component (a-2) containing 3 to 20% more ethylene than component (a-1) is 70 to 5%. A propylene-ethylene block copolymer obtained by sequential polymerization by weight% can be obtained.
Propylene-ethylene random copolymer component (a-1) obtained in the first step and propylene-ethylene random copolymer component (a-2) obtained in the second step [hereinafter referred to as component (a-2) There is a case. And the phase transition structure, the glass transition temperature of the amorphous part contained in the component (a-1) and the glass transition temperature of the amorphous part contained in the component (a-2) are different from each other. In this case, since the respective components are not compatible with each other, there arises a problem that low temperature impact resistance cannot be obtained. The fact that the phase separation structure is taken can be distinguished by showing a plurality of peaks in the tan δ curve in the measurement of solid viscoelasticity. This is caused by having a single peak.
The sequential polymerization method will be described later, and the solid viscoelasticity measurement will be performed by the method described in Examples described later.

本発明のプロピレン−エチレンブロック共重合体(a)を含む発泡粒子は、1〜3mgを熱流束示差走査熱量測定法により10℃/分の昇温速度で25℃から200℃まで加熱したときに得られるDSC曲線(第1回加熱のDSC曲線)において、ポリプロピレン系樹脂組成物に固有の吸熱ピーク(固有ピーク)と、該固有ピークよりも高温側の吸熱ピーク(高温ピーク)とが現れる結晶構造を有する。
かかる結晶構造を有する発泡粒子では、高温ピークとして表れる二次結晶の存在により、剛性などの機械的強度に優れると共に、型内成形性の良好な発泡粒子となる。一方、二次結晶が存在しないと、機械的強度に劣るものとなり、また、発泡粒子が収縮しやすく型内成形性の良好な発泡粒子とはならない。
When the expanded particles containing the propylene-ethylene block copolymer (a) of the present invention are heated from 25 ° C. to 200 ° C. at a heating rate of 10 ° C./min by 1 to 3 mg by a heat flux differential scanning calorimetry method. In the obtained DSC curve (DSC curve of the first heating), a crystal structure in which an endothermic peak (inherent peak) unique to the polypropylene resin composition and an endothermic peak (high temperature peak) on the higher temperature side than the intrinsic peak appear Have
In the expanded particles having such a crystal structure, the presence of secondary crystals that appear as high temperature peaks makes the expanded particles excellent in mechanical strength such as rigidity and excellent in-mold moldability. On the other hand, if there is no secondary crystal, the mechanical strength is inferior, and the expanded particles tend to shrink and do not become expanded particles with good in-mold moldability.

この場合のDSC曲線とは、ポリプロピレン系樹脂発泡粒子1〜3mgを熱流束示差走査熱量測定法により10℃/分の昇温速度で25℃から200℃まで加熱したときに得られる図2に示すような第1回目の加熱のDSC曲線であり、固有の吸熱ピーク(固有ピーク)PTmaとは、発泡粒子を構成するポリプロピレン系樹脂固有の吸熱ピークであり、ポリプロピレン系樹脂が本来有する結晶の融解時の吸熱によるものであると考えられる。
一方、固有ピークよりも高温側の吸熱ピーク(高温ピーク)PTmbとは、第1回目のDSC曲線で上記固有ピークよりも高温側に現れる吸熱ピークである。樹脂中における二次結晶の存在は、DSC曲線にこの高温ピークが現れるか否かで判定され、実質的な高温ピークが現れない場合には、樹脂中には二次結晶が存在しないものと判定される。
The DSC curve in this case is shown in FIG. 2 obtained when 1 to 3 mg of expanded polypropylene resin particles are heated from 25 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min by the heat flux differential scanning calorimetry. The DSC curve of the first heating as described above, and the inherent endothermic peak (intrinsic peak) PTma is an endothermic peak inherent to the polypropylene resin constituting the foamed particles, and when the crystal inherent in the polypropylene resin is melted It is thought that this is due to the endothermic heat.
On the other hand, the endothermic peak (high temperature peak) PTmb on the higher temperature side than the intrinsic peak is an endothermic peak that appears on the higher temperature side than the intrinsic peak in the first DSC curve. The presence of secondary crystals in the resin is determined by whether or not this high temperature peak appears in the DSC curve. If no substantial high temperature peak appears, it is determined that there are no secondary crystals in the resin. Is done.

本発明の前記ポリプロピレン系樹脂組成物は、融点が130〜155℃で、かつエチレン成分含有量5重量%未満(0は含まない)のプロピレン−エチレンランダム共重合体(b)を含み、共重合体(a)と共重合体(b)との重量比を40:60〜90:10とすることができる。重量比を前記範囲内とすることにより、耐低温衝撃性と機械的強度とのバランスに特に優れた発泡粒子成形体を得ることができる。
一般的なプロピレン−エチレンランダム共重合体(b)のエチレン成分含有量は5重量%以下(0は含まない。)であり、発泡粒子成形体の機械的強度を高めるためには、エチレン成分含有量が4重量%以下であることが好ましく、より好ましくは3重量%以下である。
なお、該共重合体(b)のエチレン成分含有量が低すぎると、前記共重合体(a)との相溶性が悪くなる虞があり、かかる観点から、プロピレン−エチレンランダム共重合体(b)のエチレン成分含有量の下限は1重量%であることが好ましく、より好ましくは1.5重量%である。
The polypropylene resin composition of the present invention comprises a propylene-ethylene random copolymer (b) having a melting point of 130 to 155 ° C. and an ethylene component content of less than 5% by weight (excluding 0). The weight ratio of the union (a) and the copolymer (b) can be 40:60 to 90:10. By setting the weight ratio within the above range, it is possible to obtain a foamed particle molded body particularly excellent in the balance between low-temperature impact resistance and mechanical strength.
The ethylene component content of a general propylene-ethylene random copolymer (b) is 5% by weight or less (excluding 0). In order to increase the mechanical strength of the foamed particle molded body, an ethylene component content is included. The amount is preferably 4% by weight or less, more preferably 3% by weight or less.
In addition, when the ethylene component content of the copolymer (b) is too low, the compatibility with the copolymer (a) may be deteriorated. From this viewpoint, the propylene-ethylene random copolymer (b ) Is preferably 1% by weight, and more preferably 1.5% by weight.

さらに、本発明では、ポリプロピレン系樹脂組成物が、エチレン系重合体(c)を含み、ポリプロピレン系樹脂組成物中のエチレン系重合体(c)の含有量が1〜30重量%であるポリプロピレン系樹脂発泡粒子とすることができる。
エチレン系重合体(c)としては、エチレンと炭素数3以上のα−オレフィンとの共重合エラストマーが例示できる。
Furthermore, in the present invention, the polypropylene resin composition contains an ethylene polymer (c), and the content of the ethylene polymer (c) in the polypropylene resin composition is 1 to 30% by weight. It can be set as resin foam particles.
Examples of the ethylene polymer (c) include a copolymer elastomer of ethylene and an α-olefin having 3 or more carbon atoms.

本発明のポリプロピレン系樹脂発泡粒子の基材樹脂であるポリプロピレン系樹脂組成物が、共重合体(a)と共重合体(b)との混合物である場合にも、該ポリプロピレン系樹脂組成物の固体動的粘弾性測定(DMA)から得られる温度−損失正接(tanδ)曲線は−20〜20℃の範囲において単一のピークを有する。ここで、一般的なプロピレン−エチレンブロック共重合体と、プロピレン−エチレンランダム共重合体とは、完全には相溶せず、相分離構造をとる。しかし、本発明で使用される共重合体(a)は、下記の特定の製造方法により得られることにより、プロピレン鎖中にエチレン成分が比較的均一に導入されているものと考えられる。その結果、プロピレン−エチレンランダム共重合体との相溶性に優れるため、両者の混合物は相分離構造をとらず、上記単一ピークを示すものと考えられる。   Even when the polypropylene resin composition that is the base resin of the expanded polypropylene resin particles of the present invention is a mixture of the copolymer (a) and the copolymer (b), the polypropylene resin composition The temperature-loss tangent (tan δ) curve obtained from solid dynamic viscoelasticity measurement (DMA) has a single peak in the range of −20 to 20 ° C. Here, a general propylene-ethylene block copolymer and a propylene-ethylene random copolymer are not completely compatible with each other and have a phase separation structure. However, it is considered that the copolymer (a) used in the present invention is obtained by the following specific production method, so that the ethylene component is relatively uniformly introduced into the propylene chain. As a result, since the compatibility with the propylene-ethylene random copolymer is excellent, it is considered that the mixture of the two does not have a phase separation structure and exhibits the single peak.

〔プロピレン−エチレンブロック共重合体(a)について〕
本発明に用いられるプロピレン−エチレンブロック共重合体(a)は、前述のようにメタロセン系触媒を用いて、第1工程でプロピレン単独またはエチレン含量7重量%以下のプロピレン−エチレンランダム共重合体成分(a−1)を30〜95重量%、第2工程で成分(a−1)よりも3〜20重量%多くのエチレンを含有するプロピレン−エチレンランダム共重合体成分(a−2)を70〜5重量%逐次重合することで得ることができる。
[Propylene-ethylene block copolymer (a)]
The propylene-ethylene block copolymer (a) used in the present invention is a propylene-ethylene random copolymer component having propylene alone or an ethylene content of 7% by weight or less in the first step using a metallocene catalyst as described above. 70 to 95% by weight of (a-1) and 70 to 30% of propylene-ethylene random copolymer component (a-2) containing 3 to 20% more ethylene than component (a-1) in the second step. It can be obtained by sequential polymerization of ˜5% by weight.

(1)逐次重合法によるプロピレン−エチレンブロック共重合体(a)の基本規定
本願発明における発泡粒子を構成する基材樹脂の主成分のプロピレン−エチレンブロック共重合体(a)は、メタロセン系触媒を用いて逐次重合することでも得ることができる、プロピレンとエチレンとのブロック共重合体であり、組成物全体の物性を大きく支配する成分であって、第1工程でエチレン含量7重量%以下の結晶性プロピレン−エチレンランダム共重合体成分(a−1)を30〜95重量%、第2工程で第1工程よりも3〜20重量%多くのエチレンを含む低結晶性あるいは非晶性プロピレン−エチレンランダム共重合体成分(a−2)を70〜5重量%逐次重合することで得られたプロピレン−エチレンブロック共重合体である。
成分(a−1)の結晶性とは、共重合体において立体規則性が高く比較的エチレンが少ないプロピレン−エチレンランダム共重合体であり、成分(a−2)の低結晶性あるいは非晶性とは、成分(a−1)に比べ結晶性が低いか、結晶性が観測できないポリマーを意味する。
また、各重合段階で製造されるプロピレン−エチレンランダム共重合体は各々エチレン含量が異なる、プロピレンとエチレンがランダムに共重合されたポリマーになっている。
(1) Basic rules of propylene-ethylene block copolymer (a) by sequential polymerization method The propylene-ethylene block copolymer (a) as the main component of the base resin constituting the expanded particles in the present invention is a metallocene catalyst. A block copolymer of propylene and ethylene, which can also be obtained by sequential polymerization using the above, is a component that largely controls the physical properties of the entire composition, and has an ethylene content of 7% by weight or less in the first step. Low crystalline or amorphous propylene- containing 30 to 95% by weight of crystalline propylene-ethylene random copolymer component (a-1) and 3 to 20% by weight of ethylene in the second step as compared with the first step It is a propylene-ethylene block copolymer obtained by sequentially polymerizing 70 to 5% by weight of the ethylene random copolymer component (a-2).
The crystallinity of the component (a-1) is a propylene-ethylene random copolymer having a high stereoregularity and a relatively small amount of ethylene in the copolymer, and the low crystallinity or amorphousness of the component (a-2). Means a polymer having lower crystallinity than the component (a-1) or crystallinity cannot be observed.
In addition, the propylene-ethylene random copolymer produced in each polymerization step is a polymer in which propylene and ethylene are randomly copolymerized, each having a different ethylene content.

このようなブロック共重合体成分(a)は、段落〔0012〕に記述の固体粘弾性挙動を有することが必要であり、そのために各成分の組成分布を狭く制御することが好ましいので、その製造に際してはメタロセン系触媒を用いて逐次多段重合することが必要となる。
プロピレン−エチレンブロック共重合体成分(a)〔以下、「共重合体成分(a)」という場合がある。〕は、結晶性の異なる成分(a−1)と成分(a−2)を逐次重合してなるいわゆるブロック共重合体であり、固体粘弾性測定(DMA)により規定される単一相を有するものである。
Such a block copolymer component (a) is required to have the solid viscoelastic behavior described in paragraph [0012], and for this purpose, it is preferable to narrowly control the composition distribution of each component. In this case, it is necessary to carry out sequential multistage polymerization using a metallocene catalyst.
Propylene-ethylene block copolymer component (a) [hereinafter sometimes referred to as “copolymer component (a)”. ] Is a so-called block copolymer obtained by sequentially polymerizing components (a-1) and (a-2) having different crystallinity, and has a single phase defined by solid viscoelasticity measurement (DMA). Is.

(2)成分(a−1)中のエチレン含量[E]a1
第1工程で製造されるプロピレン−エチレンランダム共重合体成分(a−1)は、結晶性であり主としてブロック重合体の耐熱性を担う成分であって、エチレン含量が7重量%以下であり、成分(a−1)中のエチレン含量[E]a1が1重量%を下回る場合にはランダムブロック共重合体の結晶性が高くなって、耐衝撃性が不足することとなる。エチレン含量が7重量%を超える場合には結晶性が低くなりすぎて、発泡成形体の耐熱性と、剛性などの機械的強度が悪化してしまう。
(2) Ethylene content [E] a1 in component (a-1)
The propylene-ethylene random copolymer component (a-1) produced in the first step is a component that is crystalline and mainly responsible for the heat resistance of the block polymer, and has an ethylene content of 7% by weight or less, When the ethylene content [E] a1 in the component (a-1) is less than 1% by weight, the crystallinity of the random block copolymer is increased and the impact resistance is insufficient. When the ethylene content exceeds 7% by weight, the crystallinity becomes too low, and the heat resistance of the foamed molded product and the mechanical strength such as rigidity are deteriorated.

(3)成分(a−2)中のエチレン含量[E]a2
第2工程で製造される低結晶性あるいは非晶性プロピレン−エチレンランダム共重合体成分(a−2)は、ブロック共重合体の柔軟性、耐衝撃性などを向上させるのに必要な成分である。
成分(a−2)が上記の作用効果を充分に発揮するために、以下の特定範囲のエチレン含量であることが必要である。
(3) Ethylene content [E] a2 in component (a-2)
The low crystalline or amorphous propylene-ethylene random copolymer component (a-2) produced in the second step is a component necessary for improving the flexibility and impact resistance of the block copolymer. is there.
In order for the component (a-2) to fully exhibit the above-described effects, it is necessary that the ethylene content is in the following specific range.

すなわち、本願発明におけるブロック共重合体成分において、成分(a−1)に対し成分(a−2)の結晶性は低い方が耐衝撃性改良効果が大きく、結晶性はプロピレン−エチレンランダム共重合体中のエチレン含量で制御されるため、成分(a−2)中のエチレン含量[E]a2は、成分(a−1)中のエチレン含量[E]a1よりも3重量%以上多くないとその効果は充分でなく、好ましくは7重量%以上、より好ましくは8重量%、成分(a−1)よりも多くのエチレンを含むべきである。
ここで、成分(a−1)と成分(a−2)のエチレン含量の差を[E]gap(=[E]a2−[E]a1)と定義すると、[E]gapは6重量%以上、好ましくは7重量%以上、より好ましくは8重量%以上である。
That is, in the block copolymer component in the present invention, the lower the crystallinity of the component (a-2) relative to the component (a-1), the greater the impact resistance improving effect, and the crystallinity is propylene-ethylene random copolymer. Since it is controlled by the ethylene content in the coalescence, the ethylene content [E] a2 in the component (a-2) must be 3% by weight or more than the ethylene content [E] a1 in the component (a-1). The effect is not sufficient, preferably 7% by weight or more, more preferably 8% by weight, should contain more ethylene than component (a-1).
Here, when the difference in ethylene content between the component (a-1) and the component (a-2) is defined as [E] gap (= [E] a2- [E] a1), [E] gap is 6% by weight. Above, preferably 7% by weight or more, more preferably 8% by weight or more.

一方、成分(a−2)の結晶性を下げるためにエチレン含量を増加させすぎると、成分(a−1)と成分(a−2)のエチレン含量の差[E]gapが大きくなり過ぎ、マトリクスとドメインに分かれた相分離構造を取ってしまう。
これは本来、ポリプロピレンはポリエチレンとの相溶性が低く、プロピレン−エチレンランダム共重合体においても、エチレン含量が異なる両成分双方の相溶性はエチレン含量の違いが大きくなると低下するためである。
したがって、[E]gapの上限については後述する固体粘弾性測定によりtanδのピークが単一になる範囲にあればよいが、そのためには[E]gapは15重量%以下、好ましくは、14重量%以下、より好ましくは13重量%以下の範囲であるべきである。
On the other hand, if the ethylene content is excessively increased to lower the crystallinity of the component (a-2), the difference [E] gap in the ethylene content between the component (a-1) and the component (a-2) becomes too large. It takes a phase separation structure divided into matrix and domain.
This is because polypropylene originally has low compatibility with polyethylene, and even in a propylene-ethylene random copolymer, the compatibility of both components having different ethylene contents decreases as the difference in ethylene content increases.
Therefore, the upper limit of [E] gap may be in a range where the peak of tan δ is single by solid viscoelasticity measurement described later. For that purpose, [E] gap is not more than 15% by weight, preferably 14% by weight. % Or less, more preferably 13% by weight or less.

(4)ブロック共重合体中に占める成分(a−1)と(a−2)の割合
ブロック共重合体成分中に占める成分(a−1)の割合W(a−1)が多過ぎると耐衝撃性が悪化する。
そこで、成分(a−1)の割合は95重量%以下、好ましくは80重量%以下となる。
一方、成分(a−1)の割合が少なくなり過ぎると、耐熱性が顕著に悪化するといった問題を生じるため、成分(a−1)の割合は30重量%以上、好ましくは40重量%以上である。
これに対応して、ブロック共重合体成分中に占める成分(a−2)の割合W(a−2)の下限は5重量%以上、好ましくは20重量%以上であり、上限は70重量%以下、好ましくは60重量%以下である。
(4) Ratio of components (a-1) and (a-2) in the block copolymer When the ratio W (a-1) of component (a-1) in the block copolymer component is too large Impact resistance deteriorates.
Therefore, the proportion of component (a-1) is 95% by weight or less, preferably 80% by weight or less.
On the other hand, when the proportion of the component (a-1) is too small, the heat resistance is remarkably deteriorated. Therefore, the proportion of the component (a-1) is 30% by weight or more, preferably 40% by weight or more. is there.
Correspondingly, the lower limit of the proportion W (a-2) of the component (a-2) in the block copolymer component is 5% by weight or more, preferably 20% by weight or more, and the upper limit is 70% by weight. Hereinafter, it is preferably 60% by weight or less.

なお、共重合体成分(a-1)と共重合体成分(a−2)の割合、およびそれらのエチレン含量は以下のように、TREF(温度昇温溶離分別法)を利用して測定される。まず、成分(a-1)と成分(a−2)の結晶性の違いを利用し、TREF測定により得られる溶出曲線から、成分(a−1)と(a−2)を分割する温度T(C)を決定し、T(C)までに溶出する成分の割合を成分(a−2)の比率、T(C)以上で溶出する成分の割合を成分(a−1)の比率とみなす。
なお、プロピレン−エチレンランダム共重合体の結晶性分布をTREF測定により評価する手法は、当業者によく知られるものであり、G.Glokner,J.Appl.Polym.Sci:Appl.Poly.Symp.;45,1−24(1990)、L.Wild,Adv.Polym.Sci.;98,1−47(1990)、J.B.P.Soares,A.E.Hamielec,Polyer;36,8,1639−1654(1995)等で詳細な測定法が示されている。
本発明においては具体的には以下のようにして測定する。試料を140℃でo−ジクロロベンゼン(0.5mg/mlBHT入り)に溶解し溶液とする。これを140℃のTREFカラムに導入した後8℃/分の降温速度で100℃まで冷却し、引き続き4℃/分の降温速度で−15℃まで冷却し、60分間保持する。その後、溶媒であるo−ジクロロベンゼン(0.5mg/mlBHT入り)を1ml/分の流速でカラムに流し、TREFカラム中で−15℃のo−ジクロロベンゼンに溶解している成分を10分間溶出させ、次に昇温速度100℃/時間にてカラムを140℃までリニアに昇温し、溶出曲線を得る。
The ratio of the copolymer component (a-1) to the copolymer component (a-2) and the ethylene content thereof were measured using TREF (temperature rising temperature elution fractionation method) as follows. The First, using the difference in crystallinity between the component (a-1) and the component (a-2), the temperature T at which the components (a-1) and (a-2) are divided from the elution curve obtained by TREF measurement. (C) is determined, and the proportion of components eluting by T (C) is regarded as the proportion of component (a-2), and the proportion of components eluting at T (C) or higher is regarded as the proportion of component (a-1). .
The technique for evaluating the crystallinity distribution of a propylene-ethylene random copolymer by TREF measurement is well known to those skilled in the art. Glokner, J. et al. Appl. Polym. Sci: Appl. Poly. Symp. 45, 1-24 (1990), L .; Wild, Adv. Polym. Sci. 98, 1-47 (1990), J .; B. P. Soares, A .; E. A detailed measurement method is shown in Hamielec, Polymer; 36, 8, 1639-1654 (1995) and the like.
In the present invention, the measurement is specifically performed as follows. A sample is dissolved in o-dichlorobenzene (containing 0.5 mg / ml BHT) at 140 ° C. to obtain a solution. This is introduced into a 140 ° C. TREF column, cooled to 100 ° C. at a rate of 8 ° C./min, subsequently cooled to −15 ° C. at a rate of 4 ° C./min, and held for 60 minutes. Then, o-dichlorobenzene (containing 0.5 mg / ml BHT) as a solvent is passed through the column at a flow rate of 1 ml / min, and the components dissolved in o-dichlorobenzene at −15 ° C. are eluted in the TREF column for 10 minutes. Next, the column is linearly heated to 140 ° C. at a heating rate of 100 ° C./hour to obtain an elution curve.

溶出温度が低い成分の結晶性は低く柔軟性に富み、一方、溶出温度が高い成分の結晶性は高くなることで剛性が増加し耐熱性も向上する。本発明におけるプロピレン系ブロック共重合体の、TREF測定で得られる溶出曲線(温度に対するdwt%/dT曲線)において、結晶性プロピレン−エチレンランダム共重合体成分(a−1)と、低結晶性あるいは非晶性プロピレン−エチレン共重合体成分(a−2)は、その結晶性の違いから、異なる温度で溶出する成分として観測される。すなわち、成分(a−1)は結晶性が高いため高温側に、成分(a−2)は低結晶性あるいは非晶性であるため低温側に観測され、あるいは、TREF測定温度内でピークを示さない。各ピーク温度をT(A)、T(B)(ピークを示さない場合には、測定温度下限の−15℃)としたとき、両ピークの中間の温度T(C)({T(A)+T(B)}/2)において、両成分はほぼ分離可能である。   A component having a low elution temperature has low crystallinity and is highly flexible, while a component having a high elution temperature has high crystallinity, thereby increasing rigidity and improving heat resistance. In the elution curve (dwt% / dT curve with respect to temperature) of the propylene-based block copolymer in the present invention, the crystalline propylene-ethylene random copolymer component (a-1) and low crystallinity or The amorphous propylene-ethylene copolymer component (a-2) is observed as a component eluting at different temperatures due to the difference in crystallinity. That is, component (a-1) is observed on the high temperature side because of high crystallinity, and component (a-2) is observed on the low temperature side because it is low crystalline or amorphous, or has a peak within the TREF measurement temperature. Not shown. When each peak temperature is T (A) and T (B) (if the peak is not shown, the lower limit of the measurement temperature is −15 ° C.), the temperature T (C) between the two peaks ({T (A) In + T (B)} / 2), both components are almost separable.

このとき、TREFにおいてT(C)までに溶出する成分の積算量をW(B)wt%、T(C)以上で溶出する部分の積算量をW(A)wt%と定義する。W(B)は結晶性が低いあるいは非晶性の成分(a−2)の量とほぼ対応しており、W(A)は結晶性が高い成分(a−1)の量とほぼ対応している。   At this time, the integrated amount of the component eluted up to T (C) in TREF is defined as W (B) wt%, and the integrated amount of the portion eluted at T (C) or higher is defined as W (A) wt%. W (B) substantially corresponds to the amount of the low crystalline or amorphous component (a-2), and W (A) substantially corresponds to the amount of the highly crystalline component (a-1). ing.

次に、分取型分別装置を用い昇温カラム分別法により、T(C)可溶成分=成分(a−2)と、T(C)不溶成分=成分(a−1)とに分別する。分別の具体的方法は、TREF測定により求めたT(C)を基に、分取型分別装置を用い昇温カラム分別法により、T(C)可溶成分=成分(a−2)とT(C)不溶成分=成分(a−1)とに分別し、NMRにより各成分のエチレン含量を求める。昇温カラム分別法とは、例えば、Macromolecules,21,314−319(1988)に開示されたような測定方法をいう。   Next, it fractionates into T (C) soluble component = component (a-2) and T (C) insoluble component = component (a-1) by the temperature rising column fractionation method using a preparative separation apparatus. . A specific method of fractionation is based on T (C) determined by TREF measurement, and using a preparative fractionator, a temperature rising column fractionation method is used, and T (C) soluble component = component (a-2) and T (C) The insoluble component is fractionated into the component (a-1), and the ethylene content of each component is determined by NMR. The temperature rising column fractionation method refers to a measurement method disclosed in, for example, Macromolecules, 21, 314-319 (1988).

分別条件は、直径50mm、高さ500mmの円筒状カラムにガラスビーズ担体(80〜100メッシュ)を充填し、140℃に保持する。次に、140℃で溶解したサンプルのo−ジクロロベンゼン溶液(10mg/ml)200mlを前記カラムに導入する。その後、該カラムの温度を0℃まで10℃/時間の降温速度で冷却する。0℃で1時間保持後、10℃/時間の昇温速度でカラム温度をT(C)まで加熱し、1時間保持する。なお、一連の操作を通じてのカラムの温度制御精度は±1℃とする。
次いで、カラム温度をT(C)に保持したまま、T(C)のo−ジクロロベンゼンを20ml/分の流速で800ml流すことにより、カラム内に存在するT(C)で可溶な成分を溶出させ回収する。
As the separation conditions, a glass bead carrier (80 to 100 mesh) is packed in a cylindrical column having a diameter of 50 mm and a height of 500 mm, and maintained at 140 ° C. Next, 200 ml of a sample o-dichlorobenzene solution (10 mg / ml) dissolved at 140 ° C. is introduced into the column. Thereafter, the temperature of the column is cooled to 0 ° C. at a rate of temperature decrease of 10 ° C./hour. After holding at 0 ° C. for 1 hour, the column temperature is heated to T (C) at a heating rate of 10 ° C./hour and held for 1 hour. Note that the temperature control accuracy of the column through a series of operations is ± 1 ° C.
Next, while maintaining the column temperature at T (C), 800 ml of T (C) o-dichlorobenzene is allowed to flow at a flow rate of 20 ml / min, so that T (C) -soluble components present in the column can be obtained. Elute and collect.

次に、10℃/分の昇温速度で当該カラム温度を140℃まで上げ、140℃で1時間静置後、140℃の溶媒のo−ジクロロベンゼンを20ml/分の流速で800ml流すことにより、T(C)で不溶な成分を溶出させ回収する。
分別によって得られたポリマーを含む溶液は、エバポレーターを用いて20mlまで濃縮された後、5倍量のメタノール中に析出される。析出ポリマーを濾過して回収後、真空乾燥器により一晩乾燥する。
Next, the column temperature is increased to 140 ° C. at a rate of temperature increase of 10 ° C./min, left at 140 ° C. for 1 hour, and then 800 ml of o-dichlorobenzene as a solvent at 140 ° C. is flowed at a flow rate of 20 ml / min. , And eluting and recovering insoluble components at T (C).
The polymer-containing solution obtained by fractionation is concentrated to 20 ml using an evaporator and then precipitated in 5 times the amount of methanol. The precipitated polymer is collected by filtration and dried overnight in a vacuum dryer.

分別された各成分のエチレン含量を、NMRにより求める。具体的方法を以下に示す。
NMRによるエチレン含量測定
上記分別により得られた成分(a−1)と成分(a−2)のそれぞれについてのエチレン含量は、プロトン完全デカップリング法により以下の条件に従って測定した13C−NMRスペクトルを解析することにより求める。
機種:日本電子(株)製GSX−400または、同等の装置(炭素核共鳴周波数100MHz以上)
溶媒:o−ジクロルベンゼン:重ベンゼン=4:1(体積比)濃度:100mg/ml
温度:130℃
パルス角:90°
パルス間隔:15秒
積算回数:5,000回以上
スペクトルの帰属は、例えばMacromolecules,17,1950(1984)等を参考に行えばよい。上記条件により測定されたスペクトルの帰属は下の表1の通りである。表中Sαα等の記号はCarmanら(Macromolecules,10,536(1977))の表記法に従い、Pはメチル炭素、Sはメチレン炭素、Tはメチン炭素をそれぞれ表わす。
The ethylene content of each fractionated component is determined by NMR. A specific method is shown below.
Measurement of ethylene content by NMR The ethylene content of each of component (a-1) and component (a-2) obtained by the above fractionation was determined by measuring the 13 C-NMR spectrum measured according to the following conditions by the proton complete decoupling method. Obtained by analysis.
Model: GSX-400 manufactured by JEOL Ltd. or equivalent equipment (carbon nuclear resonance frequency of 100 MHz or more)
Solvent: o-dichlorobenzene: heavy benzene = 4: 1 (volume ratio) concentration: 100 mg / ml
Temperature: 130 ° C
Pulse angle: 90 °
Pulse interval: 15 seconds Integration number: 5,000 times or more The attribution of the spectrum may be performed with reference to Macromolecules, 17, 1950 (1984), for example. The spectral assignments measured under the above conditions are as shown in Table 1 below. Symbols such as Sαα in the table follow the notation of Carman et al. (Macromolecules, 10, 536 (1977)), P represents a methyl carbon, S represents a methylene carbon, and T represents a methine carbon.

Figure 2014173012
Figure 2014173012

以下、「P」を共重合体連鎖中のプロピレン単位、「E」をエチレン単位とすると、連鎖中にはPPP、PPE、EPE、PEP、PEE、およびEEEの6種類のトリアッドが存在し得る。Macromolecules,15,1150(1982)などに記されているように、これらトリアッドの濃度と、スペクトルのピーク強度とは、以下の(1)〜(6)の関係式で結び付けられる。
[PPP]=k×I(Tββ) (1)
[PPE]=k×I(Tβδ) (2)
[EPE]=k×I(Tδδ) (3)
[PEP]=k×I(Sββ) (4)
[PEE]=k×I(Sβδ) (5)
[EEE]=k×{I(Sδδ)/2+I(Sγδ)/4} (6)
ここで[ ]はトリアッドの分率を示し、例えば[PPP]は全トリアッド中のPPPトリアッドの分率である。
したがって、
[PPP]+[PPE]+[EPE]+[PEP]+[PEE]+[EEE]=1 (7)
である。
また、kは定数であり、Iはスペクトル強度を示し、例えばI(Tββ)はTββに帰属される28.7ppmのピークの強度を意味する。
上記(1)〜(7)の関係式を用いることにより、各トリアッドの分率が求まり、さらに下式によりエチレン含量が求まる。
エチレン含量(モル%)=([PEP]+[PEE]+[EEE])×100
なお、本発明の[プロピレンランダム共重合体成分]には少量のプロピレン異種結合(2,1−結合及び/または1,3−結合)が含まれ、それにより、以下の微小なピークを生じる。
Hereinafter, when “P” is a propylene unit in a copolymer chain and “E” is an ethylene unit, six kinds of triads of PPP, PPE, EPE, PEP, PEE, and EEE may exist in the chain. As described in Macromolecules, 15, 1150 (1982), the concentration of these triads and the peak intensity of the spectrum are linked by the following relational expressions (1) to (6).
[PPP] = k × I (Tββ) (1)
[PPE] = k × I (Tβδ) (2)
[EPE] = k × I (Tδδ) (3)
[PEP] = k × I (Sββ) (4)
[PEE] = k × I (Sβδ) (5)
[EEE] = k × {I (Sδδ) / 2 + I (Sγδ) / 4} (6)
Here, [] indicates the fraction of triads, for example, [PPP] is the fraction of PPP triads in all triads.
Therefore,
[PPP] + [PPE] + [EPE] + [PEP] + [PEE] + [EEE] = 1 (7)
It is.
Further, k is a constant, I indicates the spectral intensity, and for example, I (Tββ) means the intensity of the 28.7 ppm peak attributed to Tββ.
By using the relational expressions (1) to (7) above, the fraction of each triad is obtained, and the ethylene content is obtained from the following expression.
Ethylene content (mol%) = ([PEP] + [PEE] + [EEE]) × 100
In addition, the [propylene random copolymer component] of the present invention contains a small amount of a propylene hetero bond (2,1-bond and / or 1,3-bond), thereby producing the following minute peak.

Figure 2014173012
Figure 2014173012

正確なエチレン含量を求めるにはこれら異種結合に由来するピークも考慮して計算に含める必要があるが、異種結合由来のピークの完全な分離・同定が困難であり、また異種結合量が少量であることから、本発明のエチレン含量は実質的に異種結合を含まないチーグラー・ナッタ系触媒で製造された共重合体の解析と同じく上記(1)〜(7)の関係式を用いて求めることとする。
エチレン含量のモル%から質量%への換算は以下の式を用いて行う
エチレン含量(質量%)=(28×X/100)/{28×X/100+42×(1−X/100)}×100
ここでXはモル%表示でのエチレン含量である。
本ブロック共重合体全体のエチレン含量は、上記より測定された成分(a−1)、(a−2)それぞれのエチレン含量[E]A、[E]B、及び、TREFより算出される各成分の質量比率W(A)、W(B)[wt%]から以下の式により算出される。
[E]W=[E]A×W(A)/100+[E]B×W(B)/100(wt%)
In order to obtain an accurate ethylene content, it is necessary to include the peaks derived from these heterogeneous bonds in the calculation.However, it is difficult to completely separate and identify the peaks derived from the heterogeneous bonds, and the amount of heterogeneous bonds is small. Therefore, the ethylene content of the present invention is determined using the relational expressions (1) to (7) as in the analysis of the copolymer produced with a Ziegler-Natta catalyst that does not substantially contain a heterogeneous bond. And
Conversion from mol% to mass% of ethylene content is carried out using the following formula: ethylene content (mass%) = (28 × X / 100) / {28 × X / 100 + 42 × (1−X / 100)} × 100
Here, X is the ethylene content in mol%.
The ethylene content of the entire block copolymer is calculated from the ethylene contents [E] A, [E] B, and TREF of the components (a-1) and (a-2) measured above. It is calculated by the following formula from the mass ratios W (A) and W (B) [wt%] of the components.
[E] W = [E] A × W (A) / 100 + [E] B × W (B) / 100 (wt%)

本発明のポリプロピレン系樹脂発泡粒子の見掛け密度を20〜300g/Lとすることができる。発泡粒子の見掛け密度が20g/L未満では、得られる発泡粒子成形体の収縮が大きくなり、発泡粒子成形体を製造することが困難となる。一方、発泡粒子の見掛け密度が300g/Lを超えると、50%圧縮弾性等を満足する発泡粒子成形体を得ることが困難となる。かかる観点から、発泡粒子の見掛け密度の下限は20g/Lが好ましく、発泡粒子の見掛け密度の上限は300g/Lが好ましく、80g/Lがより好ましい。   The apparent density of the expanded polypropylene resin particles of the present invention can be 20 to 300 g / L. If the apparent density of the expanded particles is less than 20 g / L, the shrinkage of the obtained expanded expanded particles becomes large, and it becomes difficult to produce the expanded expanded particles. On the other hand, when the apparent density of the expanded particles exceeds 300 g / L, it is difficult to obtain a expanded particle molded body satisfying 50% compression elasticity and the like. From this viewpoint, the lower limit of the apparent density of the expanded particles is preferably 20 g / L, and the upper limit of the apparent density of the expanded particles is preferably 300 g / L, more preferably 80 g / L.

本発明のポリプロピレン系樹脂発泡粒子の見掛け密度は、相対湿度50%、23℃、1atmの条件にて2日放置して状態調節した発泡粒子群の重量W(g)を発泡粒子群の体積V(L)で除す(W/V)ことにより求めることができる。なお、発泡粒子群の体積V(L)は、23℃のアルコール(例えばエタノール)などの液体を入れたメスシリンダーを用意し、メスシリンダー内の液体中に発泡粒子群を、金網などを使用して沈め、液体の水位の上昇分からを求めることができる。   The apparent density of the expanded polypropylene resin particles of the present invention is the weight V (g) of the expanded particle group that was left standing for 2 days under the conditions of 50% relative humidity, 23 ° C. and 1 atm, and the volume V of the expanded particle group. It can be obtained by dividing by (L) (W / V). For the volume V (L) of the expanded particles, a graduated cylinder containing a liquid such as alcohol at 23 ° C. (eg, ethanol) is prepared, and the expanded particles are placed in the liquid in the graduated cylinder using a wire mesh or the like. It can be calculated from the rise of the liquid level.

本発明のポリプロピレン系発泡粒子は、その固有ピークと高温ピークに基づく全吸熱ピークの熱量に対する前記高温ピークの熱量の比を0.1以上とすることができる。全吸熱ピークの熱量に対する前記高温ピークの熱量の比が0.1以上であれば、発泡粒子成形体の機械的物性、耐熱性、耐低温衝撃性などの物性と発泡粒子の型内成形性とのバランスの観点から好ましい。かかる観点から、全吸熱ピークの熱量に対する前記高温ピークの熱量の比は0.15以上であれば更に好ましく、その上限は0.4以下、好ましくは0.38以下、さらに好ましくは0.35以下である。   In the polypropylene-based expanded particles of the present invention, the ratio of the calorific value of the high temperature peak to the calorific value of the total endothermic peak based on the intrinsic peak and the high temperature peak can be 0.1 or more. If the ratio of the heat quantity of the high temperature peak to the heat quantity of the total endothermic peak is 0.1 or more, the physical properties such as the mechanical properties, heat resistance, and low temperature impact resistance of the foamed particle molded body and the in-mold moldability of the foamed particles From the viewpoint of balance. From this viewpoint, the ratio of the heat quantity of the high temperature peak to the heat quantity of the total endothermic peak is more preferably 0.15 or more, and the upper limit is 0.4 or less, preferably 0.38 or less, more preferably 0.35 or less. It is.

本発明は、前記の本発明のポリプロピレン系樹脂発泡粒子を型内成形してなるポリプロピレン系樹脂発泡粒子成形体をも提供する。   The present invention also provides a polypropylene resin foamed particle molded body obtained by in-mold molding of the polypropylene resin foamed particles of the present invention.

〔ポリプロピレン系樹脂発泡粒子の製造〕
本発明の発泡粒子の製造には、ポリプロピレン系樹脂組成物を基材樹脂とする粒子(以下、単に「樹脂粒子」という場合がある。)を発泡剤と共に密閉容器内で水等の分散媒に分散させ、加熱して樹脂粒子を軟化させるとともに樹脂粒子に発泡剤を含浸させた後、樹脂粒子の軟化温度以上の温度で容器内より低圧下(通常大気圧下)に樹脂粒子を放出して発泡させる方法(以下、ダイレクト発泡法ともいう。)や、発泡剤を含んだ発泡性樹脂粒子を密閉容器から取り出し、スチームなどの加熱媒体で発泡性樹脂粒子を加熱して発泡させる方法など、公知の発泡方法を適用することができる。また、発泡粒子を得るために密閉容器内の内容物を密閉容器から低圧域に放出する際には、使用した発泡剤あるいは窒素等の無機ガスで密閉容器内に背圧をかけて該容器内の圧力が急激に低下しないようにして、内容物を放出することが、得られる発泡粒子の見かけ密度の均一化の観点から好ましい。
[Production of expanded polypropylene resin particles]
In the production of the expanded particles of the present invention, particles having a polypropylene resin composition as a base resin (hereinafter sometimes simply referred to as “resin particles”) are used as a dispersion medium such as water in a sealed container together with a foaming agent. After dispersing and heating to soften the resin particles and impregnating the resin particles with a foaming agent, the resin particles are discharged at a temperature equal to or higher than the softening temperature of the resin particles under a low pressure (usually atmospheric pressure) from inside the container. Known methods such as a foaming method (hereinafter also referred to as a direct foaming method) and a method in which foamable resin particles containing a foaming agent are taken out from a hermetic container and the foamable resin particles are heated and heated with a heating medium such as steam. The foaming method can be applied. In addition, when the contents in the sealed container are released from the sealed container to a low pressure region in order to obtain expanded particles, back pressure is applied to the sealed container with the used foaming agent or an inorganic gas such as nitrogen. From the viewpoint of uniforming the apparent density of the obtained expanded particles, it is preferable to release the contents in such a manner that the pressure does not drop rapidly.

前述した発泡粒子の平均気泡径の調整方法としては、主として、タルク、水酸化アルミニウム、シリカ、ゼオライト、硼砂、無機粉体等の無機物を気泡調節剤として基材樹脂100重量部に対して0.01〜5重量部の割合で発泡粒子を得るための樹脂粒子の造粒時に基材樹脂に配合することにより行われるが、上記発泡粒子製造時の発泡温度や発泡剤の種類及び使用量等でも該平均気泡径が変化するため、目的の平均気泡径を有するものを得るには予備実験をして条件を設定する必要がある。   As the method for adjusting the average cell diameter of the above-mentioned expanded particles, an inorganic substance such as talc, aluminum hydroxide, silica, zeolite, borax, inorganic powder or the like is mainly used as a cell regulator and is adjusted to a ratio of 0.1 to 100 parts by weight of the base resin. It is carried out by blending into the base resin during granulation of the resin particles for obtaining foamed particles in a proportion of 01 to 5 parts by weight, but even with the foaming temperature and the type and amount of foaming agent used during the production of the foamed particles Since the average bubble diameter changes, it is necessary to set conditions by conducting a preliminary experiment in order to obtain a desired average bubble diameter.

また、高温ピークを有する発泡粒子は、上記公知の発泡方法において樹脂粒子を密閉容器内で分散媒に分散させて加熱する際に、樹脂粒子の融解終了温度(以下、Teともいう。)以上に昇温することなく、樹脂粒子の樹脂融点(以下、Tmともいう。)よりも15℃低い温度以上、Te未満の範囲内の任意の温度:Taで昇温を止めて、その温度:Taで十分な時間、好ましくは10〜60分程度保持することによって、二次結晶を形成させた樹脂粒子を発泡させることにより得ることができる。ダイレクト発泡法により発泡粒子を得る場合には、その後、(Tm−5℃)〜(Te+5℃)の範囲の任意の温度:Tbに調節し、その温度で樹脂粒子を容器内から低圧域に放出して発泡させることにより発泡粒子を得ることができる。なお、高温ピークを形成するための上記(Tm−15℃)以上、Te未満の範囲内での保持は、該温度範囲内にて多段階に設定することもできるし、また、該温度範囲内で十分な時間をかけてゆっくりと昇温することによっても該高温ピークを形成することも可能である。   Further, the foamed particles having a high temperature peak are equal to or higher than the melting end temperature of the resin particles (hereinafter also referred to as Te) when the resin particles are dispersed in a dispersion medium and heated in the above-described known foaming method. Without increasing the temperature, the temperature is stopped at an arbitrary temperature: Ta that is 15 ° C. lower than the resin melting point (hereinafter also referred to as Tm) of the resin particles and lower than Te, and the temperature: Ta By holding for a sufficient time, preferably about 10 to 60 minutes, the resin particles on which the secondary crystals are formed can be obtained by foaming. When obtaining expanded particles by the direct expansion method, the temperature is then adjusted to an arbitrary temperature in the range of (Tm−5 ° C.) to (Te + 5 ° C.): Tb, and the resin particles are released from the container to the low pressure region at that temperature. The foamed particles can be obtained by foaming. In addition, the retention within the range of (Tm-15 ° C.) or more and less than Te for forming a high temperature peak can be set in multiple stages within the temperature range, and within the temperature range. It is also possible to form the high temperature peak by slowly raising the temperature over a sufficient period of time.

また、発泡粒子の上記高温ピークの形成、および高温ピークの熱量の大小は、主として、発泡粒子を製造する際の樹脂粒子に対する上記温度Taと上記温度Taにおける保持時間、及び上記(Tm−5℃)〜(Te+5℃)の範囲内や(Tm−15℃)以上、Te未満の範囲内での昇温速度に依存する。発泡粒子の上記高温ピークの熱量は、温度Ta又はTbが上記各々の温度範囲内において低い程、そして(Tm−15℃)以上、Te未満の範囲内での保持時間が長い程、そして(Tm−15℃)以上、Te未満の範囲内での昇温速度が遅い程、大きくなる傾向を示す。なお、上記昇温速度は通常0.5〜5℃/分が採用される。一方、温度Ta又はTbが上記各々の温度範囲内において高い程、(Tm−15℃)以上、Te未満の範囲内での保持時間が短い程、そして(Tm−15℃)以上、Te未満の範囲内での昇温速度が速い程、小さくなる傾向を示す。これらの点を考慮して予備実験を繰り返せば、所望の高温ピーク熱量を示す発泡粒子の製造条件を知ることができる。なお、上述した高温ピークの形成に係る温度範囲は、発泡剤として無機物理発泡剤を使用した場合の適切な温度範囲である。従って、発泡剤が有機物理発泡剤に変更された場合には、その種類や使用量に応じてその適切な温度範囲は上記温度範囲よりもそれぞれ低温側に0〜30℃程度シフトすることになる。   The formation of the high temperature peak of the expanded particles and the magnitude of the heat amount of the high temperature peak are mainly due to the temperature Ta and the retention time at the temperature Ta with respect to the resin particles when the expanded particles are produced, and the (Tm-5 ° C). ) To (Te + 5 ° C.) or (Tm−15 ° C.) or more and less than Te. The amount of heat of the high temperature peak of the expanded particles is such that the temperature Ta or Tb is lower in each of the above temperature ranges and the holding time in the range of (Tm−15 ° C.) or more and less than Te is longer and (Tm −15 ° C.), the lower the rate of temperature rise within the range of Te, the larger the tendency. In addition, 0.5-5 degreeC / min is normally employ | adopted for the said temperature increase rate. On the other hand, the higher the temperature Ta or Tb is in each of the above temperature ranges, the shorter the holding time in the range of (Tm−15 ° C.) or more and less than Te, and (Tm−15 ° C.) or more and less than Te. The higher the temperature rise rate within the range, the smaller the tendency. If the preliminary experiment is repeated in consideration of these points, it is possible to know the production conditions of the expanded particles exhibiting a desired high-temperature peak heat quantity. In addition, the temperature range which concerns on formation of the high temperature peak mentioned above is a suitable temperature range at the time of using an inorganic physical foaming agent as a foaming agent. Therefore, when the foaming agent is changed to an organic physical foaming agent, the appropriate temperature range is shifted by about 0 to 30 ° C. to the lower temperature side than the above temperature range depending on the type and amount of use. .

上記方法において用いる発泡剤としては、有機物理発泡剤や無機物理発泡剤、或いはこれらの混合物等を用いることができる。有機物理発泡剤としてはプロパン、ブタン、ヘキサン、ヘプタン等の脂肪族炭化水素類、シクロブタン、シクロヘキサン等の脂環式炭化水素類、クロロフロロメタン、トリフロロメタン、1,1−ジフロロエタン、1,1,1,2−テトラフロロエタン、メチルクロライド、エチルクロライド、メチレンクロライド等のハロゲン化炭化水素、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル等のジアルキルエーテル等が挙げられ、これらは2種以上を混合して用いることができる。   As the foaming agent used in the above method, an organic physical foaming agent, an inorganic physical foaming agent, or a mixture thereof can be used. Examples of organic physical blowing agents include aliphatic hydrocarbons such as propane, butane, hexane and heptane, alicyclic hydrocarbons such as cyclobutane and cyclohexane, chlorofluoromethane, trifluoromethane, 1,1-difluoroethane, 1,1 , 1,2-tetrafluoroethane, halogenated hydrocarbons such as methyl chloride, ethyl chloride, and methylene chloride, and dialkyl ethers such as dimethyl ether, diethyl ether, and methyl ethyl ether. Can be used.

また、無機物理発泡剤としては、窒素、二酸化炭素、アルゴン、空気、水等が挙げられ、これらは2種以上を混合して用いることができる。発泡粒子を得る際に密閉容器内に樹脂粒子と共に分散媒として水を使用する場合には、該樹脂粒子に吸水性樹脂や吸水性の無機物などを混錬したものを使用することにより分散媒である水を効率的に発泡剤として使用することができる。有機物理発泡剤と無機物理発泡剤とを混合して用いる場合、上記した有機物理発泡剤と無機物理発泡剤より任意に選択した化合物を組み合わせて用いることができる。なお、無機物理発泡剤と有機物理発泡剤とを併用する場合には無機ガス系発泡剤が少なくとも30重量%以上含有することが好ましい。上記発泡剤のうち、特にオゾン層破壊の虞がなく、安価な無機物理発泡剤が好ましく、なかでも窒素、空気、二酸化炭素、水が好ましい。   Moreover, as an inorganic physical foaming agent, nitrogen, carbon dioxide, argon, air, water, etc. are mentioned, These can be used in mixture of 2 or more types. When water is used as a dispersion medium together with the resin particles in the closed container when obtaining the foamed particles, the dispersion medium can be obtained by mixing the resin particles with a water-absorbing resin or a water-absorbing inorganic substance. Certain water can be efficiently used as a blowing agent. When mixing and using an organic physical foaming agent and an inorganic physical foaming agent, the compound arbitrarily selected from the above-mentioned organic physical foaming agent and an inorganic physical foaming agent can be used in combination. In addition, when using together an inorganic physical foaming agent and an organic physical foaming agent, it is preferable that an inorganic gas type foaming agent contains at least 30 weight% or more. Among the above foaming agents, there is no risk of ozone layer destruction, and an inexpensive inorganic physical foaming agent is preferable, and nitrogen, air, carbon dioxide, and water are particularly preferable.

発泡剤の使用量は、得ようとする発泡粒子の見かけ密度、基材樹脂の種類、または発泡剤の種類等を考慮して決定するが、通常、樹脂粒子100重量部当たり、有機物理発泡剤で5〜50重量部、無機物理発泡剤で0.5〜30重量部を用いることが好ましい。   The amount of the foaming agent used is determined in consideration of the apparent density of the foamed particles to be obtained, the type of the base resin, or the type of the foaming agent, and is usually an organic physical foaming agent per 100 parts by weight of the resin particles. It is preferable to use 5 to 50 parts by weight and 0.5 to 30 parts by weight of the inorganic physical foaming agent.

発泡粒子製造に際して樹脂粒子を分散させる分散媒としては、上記した水に限らず、樹脂粒子を溶解させない分散媒であれば使用することができる。水以外の分散媒としては、例えばエチレングリコール、グリセリン、メタノール、エタノール等が挙げられるが、通常は水を用いる。また、樹脂粒子を分散媒に分散させるに際し、必要に応じて分散剤を分散媒に添加することができる。分散剤としては、微細な酸化アルミニウム、酸化チタン、塩基性炭酸マグネシウム、塩基性炭酸亜鉛、炭酸カルシウム、カオリン、マイカ、クレー等が挙げられる。これら分散剤は、通常、樹脂粒子100重量部当たりに対し、0.2〜2重量部使用される。   The dispersion medium for dispersing the resin particles in the production of the expanded particles is not limited to the above-described water, and any dispersion medium that does not dissolve the resin particles can be used. Examples of the dispersion medium other than water include ethylene glycol, glycerin, methanol, ethanol and the like, but usually water is used. Further, when dispersing the resin particles in the dispersion medium, a dispersant can be added to the dispersion medium as necessary. Examples of the dispersant include fine aluminum oxide, titanium oxide, basic magnesium carbonate, basic zinc carbonate, calcium carbonate, kaolin, mica, and clay. These dispersants are usually used in an amount of 0.2 to 2 parts by weight per 100 parts by weight of the resin particles.

樹脂粒子としては、本発明で特定するポリプロピレン系樹脂組成物よりなるものが用いられるが、本発明の所期の効果を損なわない範囲内において、他のポリプロピレン系樹脂(例えば、樹脂融点が135℃を超えるポリプロピレン系樹脂)や、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体等のエチレン系樹脂、或いはポリスチレン、スチレン−無水マレイン酸共重合体等のポリスチレン系樹脂などの樹脂を配合して用いることができる。   As the resin particles, those made of the polypropylene resin composition specified in the present invention are used, but other polypropylene resins (for example, the resin melting point is 135 ° C. within the range not impairing the intended effect of the present invention). High-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, ultra-low-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene- A resin such as an ethylene resin such as a methacrylic acid copolymer, or a polystyrene resin such as polystyrene or a styrene-maleic anhydride copolymer can be blended and used.

また、上記樹脂の他に、エチレン−プロピレンゴム、エチレン−1−ブテンゴム、プロピレン−1−ブテンゴム、スチレン−ブタジエンゴムやその水添物、イソプレンゴム、ネオプレンゴム、ニトリルゴム、或いはスチレン−ブタジエンブロック共重合体エラストマーやその水添物等のエラストマーを添加することもできる。上記ポリプロピレン系樹脂以外の樹脂やエラストマー等をポリプロピレン系樹脂に配合する場合、これらポリプロピレン系樹脂以外の樹脂やエラストマーの添加量は合計で、ポリプロピレン系樹脂100重量部に対して50重量部以下、更に30重量部以下、特に10重量部以下となるように調整することが好ましい。   In addition to the above resins, ethylene-propylene rubber, ethylene-1-butene rubber, propylene-1-butene rubber, styrene-butadiene rubber and hydrogenated products thereof, isoprene rubber, neoprene rubber, nitrile rubber, or styrene-butadiene block It is also possible to add an elastomer such as a polymer elastomer or a hydrogenated product thereof. When a resin or elastomer other than the polypropylene resin is blended with the polypropylene resin, the total amount of addition of the resin and elastomer other than the polypropylene resin is 50 parts by weight or less with respect to 100 parts by weight of the polypropylene resin. It is preferable to adjust to 30 parts by weight or less, particularly 10 parts by weight or less.

更にまた、樹脂粒子中には、各種添加剤を添加することができる。このような添加剤としては、例えば酸化防止剤、紫外線吸収剤、帯電防止剤、導電性付与剤、難燃剤、金属不活性剤、顔料、染料、結晶核剤、或いは無機充填材等が挙げられる。これらの各種添加剤は各々、樹脂粒子100重量部に対して25重量部以下、更に20重量部以下、特に5重量部以下添加することが好ましい。   Furthermore, various additives can be added to the resin particles. Examples of such additives include antioxidants, ultraviolet absorbers, antistatic agents, conductivity imparting agents, flame retardants, metal deactivators, pigments, dyes, crystal nucleating agents, and inorganic fillers. . Each of these various additives is preferably added in an amount of 25 parts by weight or less, more preferably 20 parts by weight or less, and particularly preferably 5 parts by weight or less based on 100 parts by weight of the resin particles.

また、上記した方法によって得られたポリプロピレン系樹脂発泡粒子は、発泡工程の後に通常行われる大気圧下での養生工程を経た後、加圧用の密閉容器に入れられ空気などの加圧気体により、0.01〜1.0MPa(G)に加圧処理して発泡粒子内の圧力を高める操作を行った後、該発泡粒子を該容器内から取り出して、水蒸気や熱風を用いて加熱することにより、より低い見かけ密度の発泡粒子とする(この工程を、二段発泡という。)ことが可能である。   In addition, the polypropylene-based resin expanded particles obtained by the above-described method are subjected to a curing step under atmospheric pressure that is usually performed after the foaming step, and then placed in a pressure-tight airtight container with a pressurized gas such as air, After performing an operation of increasing the pressure in the foamed particles by pressurizing to 0.01 to 1.0 MPa (G), the foamed particles are taken out from the container and heated using steam or hot air. It is possible to obtain expanded particles having a lower apparent density (this process is referred to as two-stage expansion).

本発明の発泡粒子成形体は、必要に応じて、上述した二段発泡における操作と同様の発泡粒子内の圧力を高める操作を行い発泡粒子内の圧力を0.01〜0.30MPa(G)に調整した後、加熱及び冷却が可能であって且つ開閉し密閉できる従来公知の熱可塑性樹脂発泡粒子型内成形用の金型のキャビティー内に充填し、飽和蒸気圧が0.08〜0.40MPa(G)、好ましくは0.10〜0.28MPa(G)の水蒸気を供給して金型内で発泡粒子同士を加熱して膨張、融着させ、次いで得られた発泡粒子成形体を冷却して、キャビティー内から取り出す型内成形法を採用して製造することができる。また、上記型内成形法における水蒸気加熱の方法としては、一方加熱、逆一方加熱、本加熱などの加熱方法を適宜組み合わせる従来公知の方法を採用できるが、特に、予備加熱、一方加熱、逆一方加熱、本加熱の順に発泡粒子を加熱する方法が好ましい。なお、発泡粒子型内成形時の上記飽和蒸気圧は、型内成形工程において、金型内に供給される水蒸気の飽和蒸気圧の最大値である。   The foamed particle molded body of the present invention is optionally subjected to an operation for increasing the pressure in the foamed particles similar to the operation in the above-described two-stage foaming, and the pressure in the foamed particles is set to 0.01 to 0.30 MPa (G). After being adjusted, the cavity of a conventionally known thermoplastic resin foamed particle mold that can be heated and cooled and that can be opened and closed and filled is filled with a saturated vapor pressure of 0.08 to 0. .40 MPa (G), preferably 0.10 to 0.28 MPa (G) of water vapor is supplied to expand and fuse the foam particles by heating them in a mold, and then the resulting foam particle molded body is It can be manufactured by adopting an in-mold molding method of cooling and taking out from the cavity. In addition, as a method of steam heating in the in-mold molding method, a conventionally known method in which heating methods such as one heating, reverse one heating, and main heating are appropriately combined can be adopted. A method of heating the expanded particles in the order of heating and main heating is preferable. The saturated vapor pressure at the time of molding in the expanded particle mold is the maximum value of the saturated vapor pressure of water vapor supplied into the mold in the molding process.

本発明のポリプロピレン系樹脂発泡粒子による型内成形は、前記水蒸気による加熱により発泡粒子の表面が先ず溶融し、一方で発泡粒子自体が軟化して発泡粒子の表面の溶融よりも遅れて二次発泡することにより外観と発泡粒子相互の融着性が共に優れる良好な発泡粒子成形体となると考えられる。   In the in-mold molding using the polypropylene resin foam particles of the present invention, the surface of the foam particles is first melted by the heating with the water vapor, while the foam particles themselves are softened, and the secondary foam is delayed after the melt of the surface of the foam particles. By doing so, it is considered that a good foamed particle molded body having excellent appearance and fusion property between the foamed particles can be obtained.

上のようにして製造される本発明の発泡粒子成形体は、ASTM−D2856−70の手順Cに基づく連続気泡率が40%以下であることが好ましく、30%以下であることがより好ましく、25%以下であることが最も好ましい。連続気泡率が小さい発泡粒子成形体ほど、機械的強度に優れる。   The expanded particle molded body of the present invention produced as described above preferably has an open cell ratio based on ASTM-D2856-70 of Procedure C of 40% or less, more preferably 30% or less, Most preferably, it is 25% or less. A foamed particle molded body having a smaller open cell ratio is superior in mechanical strength.

次に実施例により本発明を具体的に説明するが、本発明はその要旨を逸脱しない限りこれらの例によって何ら制約を受けるものではない。
なお、以下の触媒合成工程および重合工程は、すべて精製窒素雰囲気下で行った。
先ず、各物性値の測定方法と装置、および使用した触媒の製造例を示す。
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not restrict | limited at all by these examples, unless it deviates from the summary.
The following catalyst synthesis step and polymerization step were all performed in a purified nitrogen atmosphere.
First, a method and an apparatus for measuring each physical property value and an example of production of the catalyst used will be shown.

1.物性値の測定方法および装置
(1)MFR値
ポリプロピレン系重合体のMFR値は、JIS−K−6758により測定したメルトインデックス値を示す。
1. Physical property measurement method and apparatus (1) MFR value The MFR value of a polypropylene-based polymer indicates the melt index value measured according to JIS-K-6758.

(2)成分(a−1)と成分(a−2)の重合比率
前記した方法に従って測定した。
(2) Polymerization ratio of component (a-1) and component (a-2) Measured according to the method described above.

(3)成分(a−1)および成分(a−2)中のエチレン含量
前記した方法に従って測定した。
(3) Ethylene content in component (a-1) and component (a-2) Measured according to the method described above.

(4)成分(a−1)の融点(Tm)
パーキン・エルマー社製のDSC7型示差走査熱量分析計を用いて試料を室温から80℃/分の条件で230℃まで昇温し、同温度にて10分間保持後、−10℃/分にて50℃まで降温し、同温度にて3分間保持した後、10℃/分の昇温条件下で融解した時のピーク温度をもって融点(Tm)とした。
(4) Melting point (Tm) of component (a-1)
Using a DSC7 differential scanning calorimeter manufactured by Perkin Elmer, Inc., the sample was heated from room temperature to 230 ° C. under the condition of 80 ° C./minute, held at that temperature for 10 minutes, and then at −10 ° C./minute. The temperature was lowered to 50 ° C., held at the same temperature for 3 minutes, and then the peak temperature when melted under a temperature rising condition of 10 ° C./min was defined as the melting point (Tm).

〔触媒の製造〕
珪酸塩の化学処理:10リットルの撹拌翼の付いたガラス製セパラブルフラスコに、蒸留水3.75リットル、続いて濃硫酸(96%)2.5kgをゆっくりと添加した。50℃で、さらにモンモリロナイト(水澤化学社製、ベンクレイSL;平均粒径=50μm)を1kg分散させ、90℃に昇温し、6.5時間その温度を維持した。50℃まで冷却後、このスラリーを減圧濾過し、ケーキを回収した。このケーキに蒸留水を7リットル加え再スラリー化後、濾過した。この洗浄操作を、洗浄液(濾液)のpHが、3.5を越えるまで実施した。回収したケーキを窒素雰囲気下110℃で終夜乾燥した。乾燥後の質量は707gであった。化学処理した珪酸塩をキルン乾燥機で乾燥した。
[Production of catalyst]
Silicate chemical treatment : To a glass separable flask with a 10 liter stirring blade, 3.75 liters of distilled water was added slowly followed by 2.5 kg of concentrated sulfuric acid (96%). At 50 ° C., 1 kg of montmorillonite (Mizusawa Chemical Co., Ltd., Benclay SL; average particle size = 50 μm) was further dispersed, heated to 90 ° C., and maintained at that temperature for 6.5 hours. After cooling to 50 ° C., the slurry was filtered under reduced pressure to recover the cake. 7 liters of distilled water was added to this cake to reslurry it, and then filtered. This washing operation was performed until the pH of the washing solution (filtrate) exceeded 3.5. The collected cake was dried at 110 ° C. overnight under a nitrogen atmosphere. The mass after drying was 707 g. The chemically treated silicate was dried in a kiln dryer.

触媒の調製:内容積3リットルの撹拌翼のついたガラス製反応器に上記で得た乾燥珪酸塩200gを導入し、混合ヘプタン1160ml、さらにトリエチルアルミニウムのヘプタン溶液(0.60M)840mlを加え、室温で撹拌した。1時間後、混合ヘプタンにて洗浄し、珪酸塩スラリーを2.0リットルに調製した。次に、調製した珪酸塩スラリーにトリイソブチルアルミニウムのヘプタン溶液(0.71M/L)9.6mlを添加し、25℃で1時間反応させた。並行して、〔(r)−ジクロロ[1,1´−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4H−アズレニル}]ジルコニウム〕(合成は特開平10−226712号公報実施例に従って実施した)2180mg(3mmol)と混合ヘプタン870mlに、トリイソブチルアルミニウムのヘプタン溶液(0.71M)を33.1ml加えて、室温にて1時間反応させた混合物を、珪酸塩スラリーに加え、1時間撹拌した。 Preparation of catalyst : 200 g of the dry silicate obtained above was introduced into a glass reactor equipped with a stirring blade with an internal volume of 3 liters, 1160 ml of mixed heptane, and further 840 ml of a heptane solution of triethylaluminum (0.60 M) were added. Stir at room temperature. After 1 hour, the mixture was washed with mixed heptane to prepare a silicate slurry at 2.0 liters. Next, 9.6 ml of a heptane solution of triisobutylaluminum (0.71 M / L) was added to the prepared silicate slurry and reacted at 25 ° C. for 1 hour. In parallel, [(r) -dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4H-azurenyl}] zirconium] (synthesized in JP-A-10-226712) 33.1 ml of a triisobutylaluminum heptane solution (0.71 M) was added to 2180 mg (3 mmol) and 870 ml of mixed heptane (performed according to the example), and the mixture reacted at room temperature for 1 hour was added to the silicate slurry, Stir for 1 hour.

予備重合:続いて、窒素で十分置換を行った内容積10リットルの撹拌式オートクレーブに、n−ヘプタン2.1リットルを導入し、40℃に保持した。そこに先に調製した珪酸塩/メタロセン錯体スラリーを導入した。温度が40℃に安定したところでプロピレンを100g/時間の速度で供給し、温度を維持した。4時間後プロピレンの供給を停止し、さらに2時間維持した。予備重合終了後、残モノマーをパージし、撹拌を停止させ約10分間静置後、上澄み約3リットルをデカントした。続いてトリイソブチルアルミニウム(0.71M/L)のヘプタン溶液9.5ml、さらに混合ヘプタンを5.6リットル添加し、40℃で30分間撹拌し、10分間静置した後に、上澄みを5.6リットル除いた。さらにこの操作を3回繰り返した。最後の上澄み液の成分分析を実施したところ有機アルミニウム成分の濃度は、1.23ミリモル/L、Zr濃度は8.6×10-6g/Lであり、仕込み量に対する上澄み液中の存在量は0.016%であった。続いて、トリイソブチルアルミニウム(0.71M/L)のヘプタン溶液17.0mlを添加した後に、45℃で減圧乾燥した。この操作により触媒1g当たりポリプロピレン2.2gを含む予備重合触媒が得られた。 Preliminary polymerization : Subsequently, 2.1 liters of n-heptane was introduced into a stirring autoclave having an internal volume of 10 liters that had been sufficiently substituted with nitrogen, and maintained at 40 ° C. The previously prepared silicate / metallocene complex slurry was introduced therein. When the temperature was stabilized at 40 ° C., propylene was supplied at a rate of 100 g / hour to maintain the temperature. After 4 hours, the supply of propylene was stopped and maintained for another 2 hours. After completion of the prepolymerization, the remaining monomer was purged, stirring was stopped and the mixture was allowed to stand for about 10 minutes, and then about 3 liters of the supernatant was decanted. Subsequently, 9.5 ml of a heptane solution of triisobutylaluminum (0.71 M / L) and 5.6 liters of mixed heptane were added, and the mixture was stirred at 40 ° C. for 30 minutes and allowed to stand for 10 minutes. Removed liters. This operation was further repeated 3 times. When the component analysis of the final supernatant was performed, the concentration of the organoaluminum component was 1.23 mmol / L and the Zr concentration was 8.6 × 10 −6 g / L, and the abundance in the supernatant with respect to the amount charged. Was 0.016%. Subsequently, 17.0 ml of a heptane solution of triisobutylaluminum (0.71 M / L) was added, followed by drying at 45 ° C. under reduced pressure. By this operation, a prepolymerized catalyst containing 2.2 g of polypropylene per 1 g of catalyst was obtained.

実施例1
製造例1(PP1の製造)
(1)第1重合工程
攪拌羽根を有する横型重合器(L/D=3.7、内容積100L)に、あらかじめ35kgのシーズポリマーを導入後、窒素ガスを3時間流通させた。その後、プロピレン、エチレンおよび水素を導入しながら昇温し、重合条件が整った時点で、配管1より予備重合処理した上記触媒のヘキサンスラリーを、予備重合ポリマーを含まない触媒成分として0.8g/hr、有機アルミニウム化合物としてトリイソブチルアルミニウムを15mmol/hr一定となるように供給した。反応温度65℃、反応圧力2.0MPaG、攪拌速度35rpmの条件を維持しながら、反応器の気相中のエチレン/プロピレンの混合ガスモル比0.05、水素/プロピレンモル比0.00001に維持するようにエチレンガスおよび水素ガスを循環配管3より連続的に供給して、生成ポリマーすなわちプロピレン−エチレンランダム共重合体成分(a−1)を製造した。
Example 1
Production Example 1 (Production of PP1)
(1) First polymerization step 35 kg of seed polymer was introduced into a horizontal polymerization vessel (L / D = 3.7, internal volume 100 L) having a stirring blade, and then nitrogen gas was allowed to flow for 3 hours. Thereafter, the temperature was increased while introducing propylene, ethylene and hydrogen, and when the polymerization conditions were satisfied, the catalyst hexane slurry preliminarily polymerized from the pipe 1 was added as a catalyst component containing no prepolymerized polymer at 0.8 g / hr, triisobutylaluminum as an organoaluminum compound was supplied at a constant 15 mmol / hr. While maintaining the conditions of a reaction temperature of 65 ° C., a reaction pressure of 2.0 MPaG, and a stirring speed of 35 rpm, the ethylene / propylene mixed gas molar ratio in the reactor gas phase is maintained at 0.05 and the hydrogen / propylene molar ratio is 0.00001. Thus, ethylene gas and hydrogen gas were continuously supplied from the circulation pipe 3 to produce a produced polymer, that is, a propylene-ethylene random copolymer component (a-1).

反応熱は供給される原料プロピレンの気化熱により除去した。重合器から排出される未反応ガスは反応器系外で冷却、凝縮させて重合器に還流した。本重合で得られたプロピレン−エチレンランダム共重合体成分(a−1)は、重合体の保有レベルが反応容積の65容積%となるように重合器から間欠的に抜き出し、脱ガス槽を通して、第2重合工程の重合器に供給した。   The reaction heat was removed by the heat of vaporization of the supplied raw material propylene. The unreacted gas discharged from the polymerization reactor was cooled and condensed outside the reactor system and refluxed to the polymerization reactor. The propylene-ethylene random copolymer component (a-1) obtained by the main polymerization is intermittently withdrawn from the polymerization vessel so that the retained level of the polymer is 65% by volume of the reaction volume, and passed through a degassing tank. It was supplied to the polymerization vessel in the second polymerization step.

(2)第2重合工程
攪拌羽根を有する第2重合工程の横型重合器(L/D=3.7、内容積100L)に第1重合工程からのプロピレン−エチレンランダム共重合体成分(a−1)を間欠的に供給し、プロピレンとエチレンの共重合を行った。反応条件は攪拌速度18rpm、反応温度70℃、反応圧力1.9MPaGであり、気相中のエチレン/プロピレンモル比が0.5となるように循環配管にエチレンを連続的に供給した。第2重合工程には、水素のフィードは行わなかった。
(2) Second polymerization step The propylene-ethylene random copolymer component (a-) from the first polymerization step was added to the horizontal polymerization vessel (L / D = 3.7, internal volume 100 L) of the second polymerization step having a stirring blade. 1) was supplied intermittently to carry out copolymerization of propylene and ethylene. The reaction conditions were a stirring speed of 18 rpm, a reaction temperature of 70 ° C., a reaction pressure of 1.9 MPaG, and ethylene was continuously supplied to the circulation pipe so that the ethylene / propylene molar ratio in the gas phase was 0.5. No hydrogen feed was performed in the second polymerization step.

反応熱は供給される原料プロピレンの気化熱により除去した。重合器から排出される未反応ガスは反応器系外で冷却、凝縮させて重合器に還流した。エタノールを第1重合工程で供給されるトリイソブチルアルミニウムに対して1.1倍モルの添加量で連続的に添加した。第2重合工程で生成されたプロピレン系ブロック共重合体は、重合体の保有レベルが反応容積の50容積%となるように重合器から間欠的に抜き出した。抜き出されたプロピレン系ブロック共重合体は乾燥器で80℃、1時間乾燥を実施し、未反応モノマーやエタノールを除去し、プロピレン−エチレンブロック共重合体(PP1)を得た。
得られたプロピレン−エチレンブロック共重合体のMFRは7g/10min、融点134℃、成分(a−1)の含有量は57重量%、成分(a−2)の含有量は43重量%、成分(a−1)のエチレン含量は1.7重量%、成分(a−2)中のエチレン含有量は11.4重量%であった。
The reaction heat was removed by the heat of vaporization of the supplied raw material propylene. The unreacted gas discharged from the polymerization reactor was cooled and condensed outside the reactor system and refluxed to the polymerization reactor. Ethanol was continuously added at an addition amount of 1.1 times mol to triisobutylaluminum supplied in the first polymerization step. The propylene-based block copolymer produced in the second polymerization step was intermittently withdrawn from the polymerization vessel so that the retained level of the polymer was 50% by volume of the reaction volume. The extracted propylene block copolymer was dried at 80 ° C. for 1 hour in a drier to remove unreacted monomers and ethanol to obtain a propylene-ethylene block copolymer (PP1).
The propylene-ethylene block copolymer obtained had an MFR of 7 g / 10 min, a melting point of 134 ° C., the content of component (a-1) was 57% by weight, the content of component (a-2) was 43% by weight, and the component The ethylene content of (a-1) was 1.7% by weight, and the ethylene content in component (a-2) was 11.4% by weight.

上記の第1、第2工程を経て製造されたプロピレン−エチレンブロック共重合体パウダーに下記の酸化防止剤及び中和剤を添加し充分に攪拌混合した。
[添加剤配合]
酸化防止剤:テトラキス{メチレン−3−(3´,5´−ジ−t−ブチル−4´−ヒドロキシフェニル)プロピオネート}メタン500ppm、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト500ppm、中和剤:ステアリン酸カルシウム500ppmこの一部を下記の条件で造粒した。
The following antioxidant and neutralizing agent were added to the propylene-ethylene block copolymer powder produced through the first and second steps, and the mixture was sufficiently stirred and mixed.
[Additive formulation]
Antioxidant: Tetrakis {methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate} methane 500 ppm, Tris (2,4-di-t-butylphenyl) phosphite 500 ppm Neutralizing agent: 500 ppm of calcium stearate A part of this was granulated under the following conditions.

[ペレットの製造]
エチレン−プロピレン共重合体パウダー80重量%と、エチレン系重合体(c)としてKF360T(日本ポリエチレン製、MI=3.5g/10min、密度=0.898g/cm3)を20重量%とを含むポリプロピレン系樹脂組成物に添加剤を配合したものを下記の条件で溶融混練し、ペレットを製造した。
押出機:テクノベル社製KZW−15−45MG2軸押出機
スクリュ: 口径15mm L/D=45
押出機設定温度:(ホッパ下から)40,80,160,200,220,220(ダイ℃)
スクリュ回転数:400rpm
吐出量:スクリュフィーダーにて1.5kg/hに調整
ダイ:口径3mm ストランドダイ 穴数2個
[Manufacture of pellets]
80% by weight of ethylene-propylene copolymer powder and 20% by weight of KF360T (manufactured by Nippon Polyethylene, MI = 3.5 g / 10 min, density = 0.898 g / cm 3 ) as the ethylene polymer (c) A polypropylene resin composition blended with an additive was melt kneaded under the following conditions to produce pellets.
Extruder: KZW-15-45MG twin screw extruder screw manufactured by Technobel Co., Ltd .: Diameter 15 mm L / D = 45
Extruder set temperature: (from below the hopper) 40, 80, 160, 200, 220, 220 (die temperature)
Screw rotation speed: 400rpm
Discharge amount: Adjusted to 1.5 kg / h with a screw feeder Die: 3 mm diameter Strand die Number of holes 2

〔発泡粒子の製造〕
内径40mmの押出機を用い、上記のペレットを溶融させ、ストランド状に押出した。押出されたストランドを水冷し、ペレタイザーで重量が1.5mgとなるように切断し、乾燥して樹脂粒子を得た。
なお、前記溶融押出に際して、気泡調整剤としてホウ酸亜鉛粉末(商品名:ほう酸亜鉛2335、(株)富田製薬製)を該基材樹脂100重量部に対して0.1重量部、マスターバッチにて供給した。
次に、前記樹脂粒子を用いてポリプロピレン系樹脂発泡粒子を作製した。
まず、前記のようにして得られた樹脂粒子1kgを分散媒としての水3Lと共に撹拌機を備えた5Lの耐圧容器内に仕込み、更に分散媒中に、分散剤としてカオリン3g、界面活性剤(商品名:ネオゲンS−20F、第一工業製薬社製、アルキルベンゼンスルホン酸ナトリウム)を有効成分量として0.4gを添加した。次いで、撹拌下で表3−1〜表4−2に示す発泡温度まで昇温し、耐圧容器内に発泡剤としての二酸化炭素を表3−1〜表4−2に示す耐圧容器内圧力(発泡圧力)になるまで圧入しその温度で15分間保持した。その後、二酸化炭素にて背圧を加えて容器内の圧力が一定になるようにして内容物を大気圧下に放出して表3−1〜表4−2に示す見かけ密度のポリプロピレン系樹脂発泡粒子を得た。
得られた発泡粒子の高温ピークの吸熱量、見かけ密度などの諸物性を測定した結果をまとめて表3−1〜表4−2に示す。
(Manufacture of expanded particles)
Using an extruder with an inner diameter of 40 mm, the above pellets were melted and extruded into strands. The extruded strand was cooled with water, cut with a pelletizer to a weight of 1.5 mg, and dried to obtain resin particles.
In addition, in the melt extrusion, zinc borate powder (trade name: zinc borate 2335, manufactured by Tomita Pharmaceutical Co., Ltd.) is used as a foam regulator in 0.1 parts by weight per 100 parts by weight of the base resin in a master batch. Supplied.
Next, polypropylene resin expanded particles were prepared using the resin particles.
First, 1 kg of the resin particles obtained as described above was charged into a 5 L pressure vessel equipped with a stirrer together with 3 L of water as a dispersion medium, and further 3 g of kaolin as a dispersant and a surfactant ( 0.4 g was added as an active ingredient amount (trade name: Neogen S-20F, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., sodium alkylbenzene sulfonate). Next, the temperature is raised to the foaming temperature shown in Table 3-1 to Table 4-2 under stirring, and carbon dioxide as a foaming agent is added to the pressure vessel in the pressure vessel (Table 3-1 to Table 4-2). It was press-fitted until it reached (foaming pressure) and held at that temperature for 15 minutes. Thereafter, a back pressure is applied with carbon dioxide so that the pressure in the container becomes constant, and the contents are released under atmospheric pressure, and a polypropylene resin foam having an apparent density shown in Table 3-1 to Table 4-2. Particles were obtained.
The results of measuring various physical properties such as the endothermic amount of the high-temperature peak and the apparent density of the obtained expanded particles are collectively shown in Tables 3-1 to 4-2.

〔発泡粒子成形体の作製〕
次に、発泡粒子を用いて発泡粒子成形体を作製した。
まず、表3−1〜表4−2に示す得られた発泡粒子を縦200mm×横250mm×厚さ50mmの平板成形型に充填し、スチーム加熱による型内成形を行なって板状の発泡粒子成形体を得た。加熱方法は両面の型のドレン弁を開放した状態でスチームを5秒間供給して予備加熱(排気工程)を行ったのち、移動側型よりスチームを供給し、次いで固定側型よりスチームを供給した後、成形加熱スチーム圧力(成形圧力=成形蒸気圧)まで加熱した。
加熱終了後、放圧し、成形体の発泡力による表面圧力が0.04MPa(G)に低下するまで水冷したのち、型を開放し成形体を型から取り出した。得られた成形体は80℃のオーブンにて12時間養生し、その後、室温まで徐冷した。このようにして、発泡粒子成形体を得た。
[Production of foamed particle compact]
Next, a foamed particle molded body was produced using the foamed particles.
First, the obtained foamed particles shown in Table 3-1 to Table 4-2 are filled into a flat plate mold having a length of 200 mm × width of 250 mm × thickness of 50 mm, and subjected to in-mold molding by steam heating to form plate-shaped foam particles. A molded body was obtained. In the heating method, steam was supplied for 5 seconds with the drain valves on both sides of the mold open, and after preliminary heating (exhaust process), steam was supplied from the moving side mold, and then steam was supplied from the stationary side mold. Then, it heated to the shaping | molding heating steam pressure (molding pressure = shaping | molding vapor pressure).
After completion of the heating, the pressure was released, and after cooling with water until the surface pressure due to the foaming force of the molded body decreased to 0.04 MPa (G), the mold was opened and the molded body was taken out of the mold. The obtained molded body was cured in an oven at 80 ° C. for 12 hours, and then gradually cooled to room temperature. In this way, a foamed particle molded body was obtained.

このようにして得られた発泡粒子成形体について、外観、圧縮強度、シャルピー衝撃試験、低温脆性評価などの各種物性を以下のように評価した。
(1)外観
発泡粒子成形体の表面を肉眼で観察し以下の基準にて評価した。
○:発泡粒子成形体の表面に粒子間隙が殆ど認められず、良好な表面状態を示す。
△:発泡粒子成形体の表面に粒子間隙が著しくはないが認められる。
×:発泡粒子成形体の表面に粒子間隙が著しい。
(2)融着率
融着率の測定は、発泡粒子成形体を破断した際の破断面に露出した発泡粒子のうち、材料破壊した発泡粒子の数の割合(融着率)に基づいて行った。具体的には、発泡粒子成形体から試験片を切り出し、カッターナイフで各試験片に約5mmの切り込みを入れた後、切り込み部から発泡粒子成形体を破断させた。次に、発泡粒子成形体の破断面に存在する発泡粒子の個数(n)と、材料破壊した発泡粒子の個数(b)を測定し、(b)と(n)の比(b/n)を百分率で表して融着率(%)とした。
Various properties such as appearance, compressive strength, Charpy impact test, and low temperature brittleness evaluation of the foamed particle molded body thus obtained were evaluated as follows.
(1) Appearance The surface of the foamed particle molded body was observed with the naked eye and evaluated according to the following criteria.
○: Almost no particle gap is observed on the surface of the foamed particle molded body, and a good surface state is shown.
(Triangle | delta): Although the particle | grain space | interval is not remarkably recognized on the surface of a foaming particle molded object, it is recognized.
X: The particle | grain space | interval is remarkable on the surface of a foaming particle molding.
(2) Fusion rate The measurement of the fusion rate is performed based on the ratio (the fusion rate) of the number of foam particles whose material is destroyed among the foam particles exposed on the fracture surface when the foamed particle molded body is broken. It was. Specifically, a test piece was cut out from the foamed particle molded body, and after cutting about 5 mm into each test piece with a cutter knife, the foamed particle molded body was broken from the cut portion. Next, the number of foam particles (n) present on the fracture surface of the foam particle molded body and the number of foam particles (b) with material destruction were measured, and the ratio (b / n) of (b) and (n). Was expressed as a percentage and used as the fusion rate (%).

(3)動的粘弾性(固体)
未発泡の基材樹脂の動的粘弾性を評価した。
基材樹脂からなる直径5mm、厚み1mmのサンプルを用い、レオメトリックサイエンティフィックII(レオメトリックサイエンティフィック株式会社製)を用いて測定した。昇温速度は3℃/分にて、サンプルを−40℃から50℃まで1.0Hzで圧縮にて変形を行い、貯蔵弾性率、損失弾性率、損失正接(tanδ)を求めた。
(4)50%圧縮応力
発泡粒子成形体の50%圧縮応力を測定することにより、成形体の機械的強度を評価した。成形体の中央部より、縦50mm×横50mm×厚み25mmに、成形時のスキン層を除いて直方体状となるように試験片を切り出し、この試験片に対し、AUTOGRAPH AGS−X(株式会社島津製作所製)を用いて、圧縮速度を10mm/分とし、JIS K 6767(1999年)に準拠して50%ひずみ時の荷重を求め、これを試験片の受圧面積で除して算出することにより50%圧縮応力[kPa]を求めた。
(3) Dynamic viscoelasticity (solid)
The dynamic viscoelasticity of the unfoamed base resin was evaluated.
Measurement was performed using Rheometric Scientific II (manufactured by Rheometric Scientific Co., Ltd.) using a sample made of a base resin having a diameter of 5 mm and a thickness of 1 mm. The sample was deformed by compression at 1.0 Hz from −40 ° C. to 50 ° C. at a rate of temperature increase of 3 ° C./min, and storage elastic modulus, loss elastic modulus, and loss tangent (tan δ) were determined.
(4) 50% compressive stress The mechanical strength of the molded body was evaluated by measuring the 50% compressive stress of the foamed particle molded body. From the center of the molded body, a test piece was cut out in a length of 50 mm × width 50 mm × thickness 25 mm so as to be a rectangular parallelepiped shape excluding the skin layer during molding, and AUTOGRAPH AGS-X (Shimadzu Corporation) The compression rate is set to 10 mm / min, and the load at 50% strain is obtained according to JIS K 6767 (1999), and this is divided by the pressure-receiving area of the test piece. 50% compressive stress [kPa] was determined.

(5)低温雰囲気下でのシャルピー衝撃試験
発泡粒子成形体の−30℃の低温雰囲気下でのシャルピー衝撃試験を、シャルピー衝撃試験機〔CHARPY(東洋精機株式会社製)〕を用いて行った。成形体の中央部より、縦100mm×幅10mm×厚み20mmに、成形時のスキン層を除いて試験片を切りだし、この試験片に対し、長さ250mmの先端に付いた重さ195gのコの字型の重りを、持ち上げ角度150°の位置(持ち上げ位置)より重りを振り下ろし、厚み方向からサンプルに接触させた。測定は振り上げた方とは逆方向に振りあがった角度(振り上がり角度)を計測し下記の式より、シャルピー衝撃強さを算出した。サンプルサイズ以外の試験方法はJIS K 7111に準じ、試験片はノッチなしで行った。
シャルピー衝撃強さ(acu, kJ/m2)=W×103/hb
W:試験片に吸収された補正後の衝撃エネルギー(J)
h:試験片の厚み(mm)
b:試験片の幅(mm)
(5) Charpy impact test in a low temperature atmosphere A Charpy impact test of a foamed particle molded body in a low temperature atmosphere at -30 ° C was conducted using a Charpy impact tester [CHARPY (manufactured by Toyo Seiki Co., Ltd.)]. From the center of the molded body, a test piece was cut out to a length of 100 mm, a width of 10 mm, and a thickness of 20 mm, excluding the skin layer during molding, and a weight of 195 g attached to the tip of a length of 250 mm was attached to this test piece. The U-shaped weight was swung down from a position at a lifting angle of 150 ° (lifting position) and brought into contact with the sample from the thickness direction. In the measurement, the angle swung in the direction opposite to the one swung up (the swing angle) was measured, and the Charpy impact strength was calculated from the following formula. Test methods other than the sample size were in accordance with JIS K 7111, and the test piece was carried out without a notch.
Charpy impact strength (a cu , kJ / m 2 ) = W × 10 3 / hb
W: Impact energy after correction absorbed by the specimen (J)
h: Test piece thickness (mm)
b: Width of test piece (mm)

(6)低温雰囲気での落球評価(低温落球評価)
発泡粒子成形体の低温脆性を落球試験にて評価した。成形体の中央部から、サイズ(縦60mm×横60mm×厚み20mm)に、成形時のスキン層を除いてサンプルを切り出した。条件(i):サンプルを−30℃の冷凍庫に24時間以上静置した後、サンプルを二点支持(支持間距離:44mm)し、500gの鉄球を600mmの高さから落下させ、評価を行った。条件(ii):サンプルを−30℃の冷凍庫に24時間以上静置した後、サンプルを二点支持(支持間距離:44mm)し、500gの鉄球を500mmの高さから落下させ、評価を行った。
◎:条件(i)において、発泡粒子成形体に変化は殆ど認められない。
○:条件(i)においては、発泡粒子成形体が破断するが、条件(ii)において、発泡粒子成形体に変化は殆ど認められない。
×:発泡粒子成形体が破断する。
(6) Falling ball evaluation in a low temperature atmosphere (low temperature falling ball evaluation)
The low temperature brittleness of the foamed particle molded body was evaluated by a falling ball test. A sample was cut out from the center of the molded body to a size (length 60 mm × width 60 mm × thickness 20 mm), excluding the skin layer during molding. Condition (i): After allowing the sample to stand in a freezer at −30 ° C. for 24 hours or longer, the sample is supported at two points (distance between supports: 44 mm), and a 500 g iron ball is dropped from a height of 600 mm. went. Condition (ii): After allowing the sample to stand in a freezer at −30 ° C. for 24 hours or more, the sample is supported at two points (distance between supports: 44 mm), and a 500 g iron ball is dropped from a height of 500 mm. went.
A: Almost no change is observed in the foamed particle molded body under the condition (i).
○: In the condition (i), the foamed particle molded body is broken, but in the condition (ii), almost no change is observed in the foamed particle molded body.
X: The foamed particle molded body is broken.

実施例2、3
実施例1と同じポリプロピレン系樹脂組成物を用い、発泡条件を変更して発泡粒子の見掛け密度を44g/L(実施例2)、29g/L(実施例3)とし、成形体の見掛け密度を変更した他は、実施例1と同様にして評価した。結果を表3−1に示す。
Examples 2 and 3
Using the same polypropylene resin composition as in Example 1, the foaming conditions were changed to make the apparent density of the expanded particles 44 g / L (Example 2) and 29 g / L (Example 3), and the apparent density of the molded product was The evaluation was performed in the same manner as in Example 1 except that the change was made. The results are shown in Table 3-1.

実施例4〜7
実施例1と同じプロピレン−エチレンブロック共重合体(a)とエチレン系重合体(c)からなる樹脂50重量%と、プロピレンエチレンランダム共重合体(エチレンコンテント2.8重量%、融点143℃)50重量%とを混合して基材樹脂とし、表3−1に示す発泡圧力、発泡温度で発泡粒子を製造し、成形圧力を調整して見掛け密度の異なる発泡成形体を得た他は、実施例1と同様にして評価した。結果をまとめて表3−1に示す。
Examples 4-7
50% by weight of a resin comprising the same propylene-ethylene block copolymer (a) and ethylene polymer (c) as in Example 1, and a propylene ethylene random copolymer (ethylene content 2.8% by weight, melting point 143 ° C.) 50% by weight was mixed as a base resin, foamed particles were produced at the foaming pressure and foaming temperature shown in Table 3-1, and the molded pressure was adjusted to obtain foamed molded products having different apparent densities. Evaluation was performed in the same manner as in Example 1. The results are summarized in Table 3-1.

実施例8、9
製造例2(PP2の製造)
製造例1において、第1重合工程における反応器の気相中のエチレン/プロピレンの混合ガスモル比0.06、水素/プロピレンモル比0.0005、第2重合工程における気相中のエチレン/プロピレンモル比を0.4、水素/(プロピレン+エチレン)モル比を0.0003とした以外は、製造例1と同様にしてプロピレン−エチレンブロック共重合体(PP2)を得た。
上記で得られたプロピレン−エチレンブロック共重合体のMFRは20g/10分、融点は133℃、成分(a−1)の含有量は56重量%、成分(a−2)の含有量は44重量%、成分(a−1)のエチレン含量は1.8重量%、成分(a−2)中のエチレン含有量は10重量%であった。
このプロピレン−エチレンブロック共重合体パウダーに、エチレン系重合体(c)を配合しないこと以外は、実施例1と同様にしてペレットを製造した。
得られたペレットを基材樹脂とし、表3−2に示す発泡圧力、発泡温度で発泡粒子を製造し、成形圧力を調整して見掛け密度の異なる発泡成形体を得た他は、実施例1と同様にして評価した。結果をまとめて表3−2に示す。
Examples 8 and 9
Production Example 2 (Production of PP2)
In Production Example 1, ethylene / propylene mixed gas molar ratio in the gas phase of the reactor in the first polymerization step was 0.06, hydrogen / propylene molar ratio was 0.0005, ethylene / propylene mole in the gas phase in the second polymerization step A propylene-ethylene block copolymer (PP2) was obtained in the same manner as in Production Example 1, except that the ratio was 0.4 and the hydrogen / (propylene + ethylene) molar ratio was 0.0003.
The propylene-ethylene block copolymer obtained above has an MFR of 20 g / 10 min, a melting point of 133 ° C., a content of component (a-1) of 56% by weight, and a content of component (a-2) of 44. The ethylene content of the component (a-1) was 1.8% by weight, and the ethylene content in the component (a-2) was 10% by weight.
Pellets were produced in the same manner as in Example 1 except that the propylene-ethylene block copolymer powder was not blended with the ethylene polymer (c).
Example 1 except that the obtained pellet was used as a base resin, foamed particles were produced at the foaming pressure and foaming temperature shown in Table 3-2, and the molding pressure was adjusted to obtain foamed molded products having different apparent densities. And evaluated in the same manner. The results are summarized in Table 3-2.

実施例10、13、14
実施例8及び9と同じプロピレン−エチレンブロック共重合体(a)、すなわちPP2と、プロピレン−エチレンランダム共重合体(b)(エチレンコンテント2.8重量%、融点143℃)とを基材樹脂とし、これらの混合比率50/50とした実施例10、80/20とした実施例13及び14において表3−2に示す発泡圧力、発泡温度で発泡粒子を製造し、成形圧力を調整して見掛け密度の異なる発泡成形体を得た他は、実施例1と同様にして評価した。結果をまとめて表3−2に示す。
Examples 10, 13, 14
The same propylene-ethylene block copolymer (a) as in Examples 8 and 9, ie PP2, and propylene-ethylene random copolymer (b) (ethylene content 2.8% by weight, melting point 143 ° C.) as a base resin In Example 10 and Example 13 and 14 in which these mixing ratios were 50/50, in Example 13 and 14, the foaming particles were produced at the foaming pressure and foaming temperature shown in Table 3-2, and the molding pressure was adjusted. Evaluation was performed in the same manner as in Example 1 except that foamed molded products having different apparent densities were obtained. The results are summarized in Table 3-2.

実施例11,12
実施例1と同じプロピレン−エチレンブロック共重合体(a)64重量%とエチレン系重合体(c)16重量%とからなる樹脂80重量%と、プロピレン−エチレンランダム共重合体(b)(エチレンコンテント2.8重量%、融点143℃)20重量%とを混合して基材樹脂とし、表3−2に示す発泡圧力、発泡温度で発泡粒子を製造し、成形圧力を調整して見掛け密度の異なる発泡成形体を得た他は、実施例1と同様にして評価した。結果をまとめて表3−2に示す。
Examples 11 and 12
The same propylene-ethylene block copolymer (a) 64% by weight as in Example 1 and 80% by weight of the ethylene polymer (c) 16% by weight, and the propylene-ethylene random copolymer (b) (ethylene Content 2.8 wt%, melting point 143 ° C) 20 wt% is mixed to make a base resin, foamed particles are produced at the foaming pressure and foaming temperature shown in Table 3-2, and the molding pressure is adjusted to give an apparent density Evaluations were made in the same manner as in Example 1 except that foamed molded products having different sizes were obtained. The results are summarized in Table 3-2.

Figure 2014173012
Figure 2014173012

Figure 2014173012
Figure 2014173012

比較例1〜3
基材樹脂として、プロピレン−エチレンランダム共重合体(b)(エチレンコンテント2.8重量%、融点141℃)を用い、表4−1に示す発泡圧力、発泡温度で発泡粒子を製造し、成形圧力を調整して成形体の見掛け密度の異なる発泡成形体を得た他は、実施例1と同様にして評価した。結果をまとめて表4−1に示す。
Comparative Examples 1-3
Propylene-ethylene random copolymer (b) (ethylene content 2.8% by weight, melting point 141 ° C.) is used as the base resin, and foamed particles are produced at the foaming pressure and foaming temperature shown in Table 4-1, and molded. Evaluation was performed in the same manner as in Example 1 except that foamed molded products having different apparent densities of the molded products were obtained by adjusting the pressure. The results are summarized in Table 4-1.

比較例4、5
基材樹脂として、プロピレン−エチレンランダム共重合体(b)(エチレンコンテント3.6重量%、融点137℃)を用い、表4−1に示す発泡圧力、発泡温度で発泡粒子を製造し、成形圧力を調整して成形体の見掛け密度の異なる発泡成形体を得た他は、実施例1と同様にして評価した。結果をまとめて表4−1に示す。
Comparative Examples 4 and 5
Propylene-ethylene random copolymer (b) (ethylene content 3.6 wt%, melting point 137 ° C.) is used as a base resin, and foamed particles are produced at the foaming pressure and foaming temperature shown in Table 4-1, and molded. Evaluation was performed in the same manner as in Example 1 except that foamed molded products having different apparent densities of the molded products were obtained by adjusting the pressure. The results are summarized in Table 4-1.

比較例6
基材樹脂として、プロピレン−エチレンブロック共重合体(エチレンコンテント11.7重量%、融点155℃)を用い(表中に「bPP」と表記)、表4−1に示す発泡圧力、発泡温度で発泡粒子を製造し、成形圧力を調整して成形体の見掛け密度の異なる発泡成形体を得た他は、実施例1と同様にして評価した。結果をまとめて表4−1に示す。
Comparative Example 6
As a base resin, a propylene-ethylene block copolymer (ethylene content 11.7% by weight, melting point 155 ° C.) was used (indicated as “bPP” in the table), and at the foaming pressure and foaming temperature shown in Table 4-1. Evaluation was performed in the same manner as in Example 1 except that foamed particles were produced and the molding pressure was adjusted to obtain foamed molded products having different apparent densities. The results are summarized in Table 4-1.

比較例7
基材樹脂として、メタロセン系触媒を用いて重合されたプロピレン−エチレンランダム共重合体(b)(エチレンコンテント2.8重量%、融点135℃)を用い、表4−1に示す発泡圧力、発泡温度で発泡粒子を製造し、成形圧力を調整して、見掛け密度の異なる発泡成形体を得た他は、実施例1と同様にして評価した。結果をまとめて表4−1に示す。
Comparative Example 7
As a base resin, a propylene-ethylene random copolymer (b) (ethylene content 2.8% by weight, melting point 135 ° C.) polymerized using a metallocene catalyst was used. Evaluation was conducted in the same manner as in Example 1 except that foamed particles were produced at a temperature and the molding pressure was adjusted to obtain foamed molded products having different apparent densities. The results are summarized in Table 4-1.

比較例8
実施例4における発泡粒子を得るための発泡温度143℃を153℃として発泡粒子を得たところ、139℃の融点をはるかに超えるため、発泡粒子の高温ピーク熱量が0(J/g)で、いわゆる二次結晶が少ない構造の発泡粒子となって、これを成形して得られた発泡成形体は、表面外観が著しく劣るものであった。結果をまとめて表4−1に示す。
Comparative Example 8
When the foaming temperature of 143 ° C. for obtaining the foamed particles in Example 4 was set to 153 ° C. to obtain the foamed particles, the melting point of 139 ° C. was far exceeded, so the high-temperature peak heat quantity of the foamed particles was 0 (J / g), The foamed molded product obtained by forming foamed particles having a structure with a small amount of so-called secondary crystals, and the molded product thereof, was extremely inferior in surface appearance. The results are summarized in Table 4-1.

比較例9
プロピレン−エチレンランダム共重合体(b)(エチレンコンテント2.8重量%、融点143℃)80重量%と、エチレン−プロピレンゴム(EPR)であるJSR EP11(JSR社製、エチレンコンテント52重量%)20重量%とを混合して基材樹脂とし、表4−2に示す発泡圧力、発泡温度で発泡粒子を製造し、成形圧力を調整して見掛け密度の異なる発泡成形体を得た他は、実施例1と同様にして評価した。結果をまとめて表4−2に示す。
Comparative Example 9
Propylene-ethylene random copolymer (b) (ethylene content 2.8% by weight, melting point 143 ° C.) 80% by weight and JSR EP11 (produced by JSR, ethylene content 52% by weight) which is ethylene-propylene rubber (EPR) 20 wt% was mixed to make a base resin, foamed particles were produced at the foaming pressure and foaming temperature shown in Table 4-2, and the molded pressure was adjusted to obtain foamed molded products having different apparent densities. Evaluation was performed in the same manner as in Example 1. The results are summarized in Table 4-2.

比較例10
プロピレン−エチレンランダム共重合体(b)(エチレンコンテント2.8重量%、融点143℃)50重量%と、前記と同じエチレン−プロピレンゴム(EPR)であるJSR EP11 50重量%とを混合して基材樹脂とし、表4−2に示す発泡圧力、発泡温度で発泡粒子を製造し、成形圧力を調整して見掛け密度の異なる発泡成形体を得た他は、実施例1と同様にして評価した。結果をまとめて表4−2に示す。
Comparative Example 10
50% by weight of propylene-ethylene random copolymer (b) (2.8% by weight of ethylene content, melting point 143 ° C.) and 50% by weight of JSR EP11 which is the same ethylene-propylene rubber (EPR) as described above were mixed. Evaluation was made in the same manner as in Example 1 except that foamed particles were produced at the foaming pressure and foaming temperature shown in Table 4-2 and obtained by adjusting the molding pressure to obtain foamed molded products having different apparent densities. did. The results are summarized in Table 4-2.

Figure 2014173012
Figure 2014173012

Figure 2014173012
Figure 2014173012

本発明のポリプロピレン系樹脂発泡粒子は、低温での脆化を抑え、低温衝撃性の良いポリプロピレン系樹脂発泡粒子成形体を得ることができる発泡粒子として利用できる。
本発明のポリプロピレン系樹脂発泡粒子成形体は、これまで難しかった−30℃程度での低温雰囲気下での衝撃性が改善された発泡成形体であり、低温下での割れや欠けといった問題が発生し難く、包装資材、自動車用衝撃緩衝材/スペーサー部品、建築用断熱材、吸音材などに使用することができ、主に自動車用途に好適に利用できる。
The expanded polypropylene resin particles of the present invention can be used as expanded particles capable of suppressing the embrittlement at low temperatures and obtaining a molded polypropylene resin expanded particles having good low temperature impact properties.
The polypropylene resin foamed molded article of the present invention is a foamed molded article with improved impact properties in a low temperature atmosphere at about −30 ° C., which has been difficult until now, and has problems such as cracking and chipping at low temperatures. It is difficult to use, and can be used for packaging materials, automobile shock-absorbing materials / spacer parts, heat insulating materials for buildings, sound-absorbing materials, and the like, and can be suitably used mainly for automobile applications.

Claims (6)

融点が125〜140℃、かつエチレン成分含有量が3〜8重量%のプロピレン−エチレンブロック共重合体(a)を含むポリプロピレン系樹脂組成物を基材樹脂とする発泡粒子であって、
該ポリプロピレン系樹脂組成物の融点が125〜150℃で、かつ該ポリプロピレン系樹脂組成物の固体動的粘弾性測定から得られる温度−損失正接(tanδ)曲線が−20〜20℃の範囲において単一のピークを有し、該ピークを示す温度が8℃以下で、かつtanδの最大値が0.12以上であり、
該発泡粒子1〜3mgを熱流束示差走査熱量測定法により10℃/分の昇温速度で25℃から200℃まで加熱したときに得られるDSC曲線(第1回加熱のDSC曲線)において、ポリプロピレン系樹脂組成物に固有の吸熱ピーク(固有ピーク)と、該固有ピークよりも高温側の吸熱ピーク(高温ピーク)との2つの吸熱ピークが現れる結晶構造を有することを特徴とするポリプロピレン系樹脂発泡粒子。
A foamed particle having a base resin of a polypropylene resin composition containing a propylene-ethylene block copolymer (a) having a melting point of 125 to 140 ° C. and an ethylene component content of 3 to 8% by weight,
The melting point of the polypropylene resin composition is 125 to 150 ° C., and the temperature-loss tangent (tan δ) curve obtained from the solid dynamic viscoelasticity measurement of the polypropylene resin composition is -20 to 20 ° C. One peak, the temperature showing the peak is 8 ° C. or less, and the maximum value of tan δ is 0.12 or more,
In the DSC curve (the DSC curve of the first heating) obtained when 1 to 3 mg of the expanded particles are heated from 25 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min by a heat flux differential scanning calorimetry method, Polypropylene resin foam characterized by having a crystal structure in which two endothermic peaks, an endothermic peak (inherent peak) unique to the resin-based resin composition and an endothermic peak (high temperature peak) on the higher temperature side than the intrinsic peak appear particle.
前記ポリプロピレン系樹脂組成物が、融点が130〜155℃で、かつエチレン成分含有量5重量%未満(0は含まない)のプロピレン−エチレンランダム共重合体(b)を含み、共重合体(a)と共重合体(b)との重量比が40:60〜90:10である請求項1に記載のポリプロピレン系樹脂発泡粒子。   The polypropylene-based resin composition includes a propylene-ethylene random copolymer (b) having a melting point of 130 to 155 ° C. and an ethylene component content of less than 5% by weight (excluding 0). 2) and the copolymer (b) in a weight ratio of 40:60 to 90:10. 前記ポリプロピレン系樹脂組成物が、エチレン系重合体(c)を含み、ポリプロピレン系樹脂組成物中の重合体(c)の含有量が1〜30重量%である請求項1又は2に記載のポリプロピレン系樹脂発泡粒子。   The polypropylene according to claim 1 or 2, wherein the polypropylene resin composition contains an ethylene polymer (c), and the content of the polymer (c) in the polypropylene resin composition is 1 to 30% by weight. Resin foam particles. 前記共重合体(a)が、メタロセン系触媒を用いて、第1工程でプロピレン単独またはエチレン含量7重量%以下のプロピレン−エチレンランダム共重合体成分(a−1)を30〜95重量%、第2工程で成分(a−1)よりも3〜20重量%多くのエチレンを含有するプロピレン−エチレンランダム共重合体成分(a−2)を70〜5重量%逐次重合することで得られたプロピレン−エチレンブロック共重合体である請求項1〜3のいずれかに記載のポリプロピレン系樹脂発泡粒子。   The copolymer (a) is 30 to 95% by weight of propylene alone or a propylene-ethylene random copolymer component (a-1) having an ethylene content of 7% by weight or less in the first step using a metallocene catalyst. It was obtained by sequentially polymerizing 70 to 5% by weight of a propylene-ethylene random copolymer component (a-2) containing 3 to 20% more ethylene than component (a-1) in the second step. The expanded polypropylene resin particle according to any one of claims 1 to 3, which is a propylene-ethylene block copolymer. 前記発泡粒子の見掛け密度が20〜300g/Lである請求項1〜4のいずれかに記載のポリプロピレン系樹脂発泡粒子。   The polypropylene resin expanded particles according to any one of claims 1 to 4, wherein the expanded density of the expanded particles is 20 to 300 g / L. 請求項1〜5のいずれかに記載のポリプロピレン系樹脂発泡粒子を型内成形してなることを特徴とするポリプロピレン系樹脂発泡粒子成形体。   A polypropylene resin foamed particle molded body obtained by molding the polypropylene resin foamed particle according to any one of claims 1 to 5 in a mold.
JP2013047126A 2013-03-08 2013-03-08 Polypropylene resin expanded particles and molded articles thereof Active JP6093604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013047126A JP6093604B2 (en) 2013-03-08 2013-03-08 Polypropylene resin expanded particles and molded articles thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013047126A JP6093604B2 (en) 2013-03-08 2013-03-08 Polypropylene resin expanded particles and molded articles thereof

Publications (2)

Publication Number Publication Date
JP2014173012A true JP2014173012A (en) 2014-09-22
JP6093604B2 JP6093604B2 (en) 2017-03-08

Family

ID=51694594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013047126A Active JP6093604B2 (en) 2013-03-08 2013-03-08 Polypropylene resin expanded particles and molded articles thereof

Country Status (1)

Country Link
JP (1) JP6093604B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098698A1 (en) * 2014-12-17 2016-06-23 株式会社カネカ Polypropylene resin foamed particles
JPWO2016052112A1 (en) * 2014-09-30 2017-07-06 積水化成品工業株式会社 Foamed molded body and foamed particles used in the production thereof
WO2018066505A1 (en) * 2016-10-03 2018-04-12 株式会社ジェイエスピー Expanded particle molded article
US11225562B2 (en) 2016-09-16 2022-01-18 Jsp Corporation Expanded beads and molded object thereof
US11466137B2 (en) 2016-11-11 2022-10-11 Jsp Corporation Foam particles, and moulded article thereof
WO2023190441A1 (en) * 2022-03-29 2023-10-05 株式会社カネカ Polypropylene resin foam particles, polypropylene resin foam molded body, and method for manufacturing polypropylene resin foam particles

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202221A (en) * 1991-08-09 1993-08-10 Basf Ag Foam based on high-impact copolymer
JPH05202152A (en) * 1989-12-21 1993-08-10 Hoechst Ag Production of polypropylene molding material
JPH07102126A (en) * 1993-08-12 1995-04-18 Tosoh Corp Polypropylene resin composition
JP2000154270A (en) * 1998-11-19 2000-06-06 Chisso Corp Expanded polypropylene composition and expanded molding
JP2000198872A (en) * 1998-10-29 2000-07-18 Jsp Corp Expanded polypropylene-based resin particle, and formed product thereof
JP2005132979A (en) * 2003-10-31 2005-05-26 Japan Polypropylene Corp Propylene-ethylene random block copolymer
JP2008280359A (en) * 2007-05-08 2008-11-20 Japan Polypropylene Corp Polypropylene-based foamed stretched film
JP2013010890A (en) * 2011-06-30 2013-01-17 Japan Polypropylene Corp Polypropylene resin composition and foamed sheet
JP2013209552A (en) * 2012-03-30 2013-10-10 Japan Polypropylene Corp Polypropylene resin composition and foam/blow molded article thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202152A (en) * 1989-12-21 1993-08-10 Hoechst Ag Production of polypropylene molding material
JPH05202221A (en) * 1991-08-09 1993-08-10 Basf Ag Foam based on high-impact copolymer
JPH07102126A (en) * 1993-08-12 1995-04-18 Tosoh Corp Polypropylene resin composition
JP2000198872A (en) * 1998-10-29 2000-07-18 Jsp Corp Expanded polypropylene-based resin particle, and formed product thereof
JP2000154270A (en) * 1998-11-19 2000-06-06 Chisso Corp Expanded polypropylene composition and expanded molding
JP2005132979A (en) * 2003-10-31 2005-05-26 Japan Polypropylene Corp Propylene-ethylene random block copolymer
JP2008280359A (en) * 2007-05-08 2008-11-20 Japan Polypropylene Corp Polypropylene-based foamed stretched film
JP2013010890A (en) * 2011-06-30 2013-01-17 Japan Polypropylene Corp Polypropylene resin composition and foamed sheet
JP2013209552A (en) * 2012-03-30 2013-10-10 Japan Polypropylene Corp Polypropylene resin composition and foam/blow molded article thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016052112A1 (en) * 2014-09-30 2017-07-06 積水化成品工業株式会社 Foamed molded body and foamed particles used in the production thereof
WO2016098698A1 (en) * 2014-12-17 2016-06-23 株式会社カネカ Polypropylene resin foamed particles
CN107108941A (en) * 2014-12-17 2017-08-29 株式会社钟化 Polypropylene resin foam particle
EP3235860A4 (en) * 2014-12-17 2018-07-18 Kaneka Corporation Polypropylene resin foamed particles
US11225562B2 (en) 2016-09-16 2022-01-18 Jsp Corporation Expanded beads and molded object thereof
WO2018066505A1 (en) * 2016-10-03 2018-04-12 株式会社ジェイエスピー Expanded particle molded article
JP2018058961A (en) * 2016-10-03 2018-04-12 株式会社ジェイエスピー Foam particle molded body
US10787555B2 (en) 2016-10-03 2020-09-29 Jsp Corporation Expanded particle molded article
US11466137B2 (en) 2016-11-11 2022-10-11 Jsp Corporation Foam particles, and moulded article thereof
WO2023190441A1 (en) * 2022-03-29 2023-10-05 株式会社カネカ Polypropylene resin foam particles, polypropylene resin foam molded body, and method for manufacturing polypropylene resin foam particles

Also Published As

Publication number Publication date
JP6093604B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6421165B2 (en) Polypropylene-based resin expanded particles and method for producing polypropylene-based resin expanded particles
JP6093604B2 (en) Polypropylene resin expanded particles and molded articles thereof
EP3241864B1 (en) Flame retardant, composite flame retardant, flame retardant antistatic composition and flame resistant method
CN107531932B (en) Crosslinked foamed particles and foamed particle molded body
JP2008303376A (en) Polypropylene resin foam particle and molded article therefrom
JP2012102188A (en) Polypropylene-based resin composition for molding foamed sheet, and foamed sheet
WO2021100645A1 (en) Polypropylene resin foam particles, method for producing same, and polypropylene resin foam molded article
JP5587867B2 (en) Polypropylene copolymer resin expanded particles
JP5503123B2 (en) Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles
CN114341213A (en) Polypropylene resin composition, method for producing same, method for producing pre-expanded beads, and method for producing foamed molded article
JP2005146017A (en) Polyproylene resin expanded particle and in-mold molded product using the same
JP3904551B2 (en) Polypropylene resin composition, expanded particles and in-mold molded product
JP5841076B2 (en) Polypropylene-based resin foamed particles and polypropylene-based resin in-mold foam molding
EP1031602B9 (en) Pre-expanded polypropylene resin beads and process for producing molded object therefrom by in-mold foaming
JP4282439B2 (en) Polypropylene resin expanded particles and in-mold molded body using the same
JP2004176047A (en) Polypropylene-based resin foamed particle and in-mold processed product by using the same
JP3904550B2 (en) Polypropylene resin composition, expanded particles and in-mold molded product
JP4272016B2 (en) Polypropylene resin expanded particles and in-mold molded body using the same
JP4334924B2 (en) Method for producing in-mold foam molding
JP5749039B2 (en) POLYPROPYLENE RESIN FOAM PARTICLE, POLYPROPYLENE RESIN IN-MOLD FOAM MOLDED PRODUCT, AND METHOD FOR PRODUCING POLYPROPYLENE RESIN FOAM
KR101871737B1 (en) Composite resin particles, foamable particles, pre-foamed particles, and foam molded body
JP4499394B2 (en) Polypropylene resin expanded particles and in-mold molded body using the same
CN112955499A (en) Foamed particles
JP4282438B2 (en) Method for producing in-mold foam molding
JP2003327740A (en) Polypropylene resin foaming particle and in-mold molded product using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6093604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250