JP2014172883A - Method of producing conjugated diene - Google Patents

Method of producing conjugated diene Download PDF

Info

Publication number
JP2014172883A
JP2014172883A JP2013048314A JP2013048314A JP2014172883A JP 2014172883 A JP2014172883 A JP 2014172883A JP 2013048314 A JP2013048314 A JP 2013048314A JP 2013048314 A JP2013048314 A JP 2013048314A JP 2014172883 A JP2014172883 A JP 2014172883A
Authority
JP
Japan
Prior art keywords
conjugated diene
pyrophosphate
catalyst
rare earth
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013048314A
Other languages
Japanese (ja)
Other versions
JP5931781B2 (en
Inventor
Nobuhiko Horiuchi
伸彦 堀内
Yuichi Ikenaga
裕一 池永
Takaomi Hayashi
貴臣 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2013048314A priority Critical patent/JP5931781B2/en
Publication of JP2014172883A publication Critical patent/JP2014172883A/en
Application granted granted Critical
Publication of JP5931781B2 publication Critical patent/JP5931781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of improving the results of intramolecular dehydration reactions of vicinal diol and producing conjugated diene in an industrially advantageous manner.SOLUTION: This invention provides a method of producing conjugated diene by the intramolecular dehydration of vicinal diol, in which pyrophosphate as a rare earth element is used as a catalyst.

Description

本発明は、ビシナルジオールの分子内脱水による共役ジエンの製造方法に関する。   The present invention relates to a method for producing a conjugated diene by intramolecular dehydration of vicinal diol.

合成ゴムの原料となる1,3−ブタジエンや、テルペン類又はポリイソプレンゴムの原料であるイソプレンなどの共役ジエンは、一般にナフサ分解を経て製造されている。しかし、近年は、原油に代表される化石資源の枯渇が問題視されている。このような背景下で、非ナフサ原料の代表格であるバイオマスを用いた共役ジエンの製造の試みが活発化している。そのうちの一つが、バイオマスの発酵によって得られる2,3−ブタンジオールまたは2−メチル−2,3−ブタンジオールのようなビシナルジオールを、特定の脱水触媒の存在下で分子内脱水反応を生起させてブタジエンまたはイソプレンを製造する方法である(特許文献1〜5)。しかし、これら先行技術(特許文献1〜2)に開示された脱水触媒を用いる分子内脱水反応効率は工業的生産の視点から未だ十分とは言えず改良の余地があった。   Conjugated dienes such as 1,3-butadiene, which is a raw material for synthetic rubber, and isoprene, which is a raw material for terpenes or polyisoprene rubber, are generally produced through naphtha decomposition. However, in recent years, depletion of fossil resources represented by crude oil has been regarded as a problem. Against this background, attempts to produce conjugated dienes using biomass, which is a typical non-naphtha raw material, have become active. One of these causes vicinal diols such as 2,3-butanediol or 2-methyl-2,3-butanediol obtained by fermentation of biomass to undergo an intramolecular dehydration reaction in the presence of a specific dehydration catalyst. This is a method for producing butadiene or isoprene (Patent Documents 1 to 5). However, the intramolecular dehydration reaction efficiency using the dehydration catalyst disclosed in these prior arts (Patent Documents 1 and 2) is still not sufficient from the viewpoint of industrial production, and there is room for improvement.

特公昭54−9148Japanese Patent Publication 54-9148 特開昭50−115686JP-A-50-115686 US2012/0252082AUS2012 / 0252082A CN101580462ACN10158462A KR10−2012−0096125KR10-2012-0096125

本発明が解決しようとする課題は、上記のようなビシナルジオールの分子内脱水反応の成績を向上させ、共役ジエンを工業的に有利に製造する方法を提供することにある。   The problem to be solved by the present invention is to provide a method for industrially advantageously producing a conjugated diene by improving the results of the intramolecular dehydration reaction of vicinal diol as described above.

すなわち本発明は、
ビシナルジオールを分子内脱水して共役ジエンを製造する方法において、希土類元素のピロリン酸塩を触媒に用いる共役ジエンの製造方法に係わる。
本発明の製造方法においては、希土類元素はランタノイドであることが好ましい。
That is, the present invention
The present invention relates to a method for producing a conjugated diene by intramolecular dehydration of vicinal diol and producing a conjugated diene using a rare earth element pyrophosphate as a catalyst.
In the production method of the present invention, the rare earth element is preferably a lanthanoid.

さらに本発明の製造方法においては、希土類元素がランタンおよびセリウムから選ばれることが好ましい。
本発明の製造方法は固定床流通反応器を用いて実施されることが好ましい。
Furthermore, in the production method of the present invention, the rare earth element is preferably selected from lanthanum and cerium.
The production method of the present invention is preferably carried out using a fixed bed flow reactor.

また本発明においてはビシナルジオールが、2,3−ブタンジオールまたは2−メチル−2,3−ブタンジオールであり、生成する共役ジエンが各々ブタジエンまたはイソプレンであることが好ましい態様である。   In the present invention, the vicinal diol is preferably 2,3-butanediol or 2-methyl-2,3-butanediol, and the conjugated diene to be produced is preferably butadiene or isoprene, respectively.

ビシナルジオールの分子内脱水反応によって得られる共役ジエンの得率に優れる。   Excellent yield of conjugated diene obtained by intramolecular dehydration reaction of vicinal diol.

以下本発明について詳細に説明する。
本 発明は、ビシナルジオールを分子内脱水して共役ジエンを製造する方法において、希土類元素のピロリン酸塩を脱水触媒に用いる共役ジエンの製造方法である。
The present invention will be described in detail below.
The present invention is a method for producing a conjugated diene using a rare earth element pyrophosphate as a dehydration catalyst in a method for producing a conjugated diene by intramolecular dehydration of vicinal diol.

ビシナルジオールとは、2つの隣接した炭素原子の各々に一つの水酸基が結合したジオールを意味する。ビシナルジオールの総炭素数は、通常4〜20の範囲にある脂肪族ジオールである。好ましい総炭素数は4〜10の範囲であり、特に好ましくは4または5である。本発明の製造方法において好ましいビシナルジオールは、2,3−ブタンジオールまたは2−メチル−2,3−ブタンジオールである。   A vicinal diol means a diol in which one hydroxyl group is bonded to each of two adjacent carbon atoms. The total carbon number of the vicinal diol is an aliphatic diol usually in the range of 4-20. The preferred total carbon number is in the range of 4 to 10, particularly preferably 4 or 5. The preferred vicinal diol in the production method of the present invention is 2,3-butanediol or 2-methyl-2,3-butanediol.

本発明に係わる脱水触媒は、希土類元素のピロリン酸塩である。ここで希土類元素とは、具体的には、スカンジウム、イットリウム、そしてランタノイドに属する金属すなわちランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムが挙げられる。本発明においては、希土類元素のうち、ランタノイドが好ましく、ランタン(La)またはセリウム(Ce)が反応成績の視点からより好ましい。   The dehydration catalyst according to the present invention is a pyrophosphate of a rare earth element. Here, the rare earth element specifically includes scandium, yttrium, and metals belonging to lanthanoids, that is, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Can be mentioned. In the present invention, among the rare earth elements, lanthanoids are preferable, and lanthanum (La) or cerium (Ce) is more preferable from the viewpoint of reaction results.

本発明に係わる脱水触媒は、希土類元素から選ばれる1種以上の元素のピロリン酸塩を含んでいればよく、触媒中の希土類元素とリン元素の当量比は(希土類元素)/(リン元素)として2/6〜6/6の範囲が好ましく、3/6〜5/6の範囲がより好ましい。   The dehydration catalyst according to the present invention only needs to contain a pyrophosphate salt of one or more elements selected from rare earth elements, and the equivalent ratio of rare earth elements to phosphorus elements in the catalyst is (rare earth element) / (phosphorus element) The range of 2/6 to 6/6 is preferable, and the range of 3/6 to 5/6 is more preferable.

希土類元素のピロリン酸塩の調製法としては、種々の方法により調製することができる。例えば、ランタンピロリン酸塩は、加温された三塩化ランタン水溶液中に、ピロリン酸源としてのピロリン酸ナトリウムまたはピロリン酸カリウム水溶液を添加する方法によって、ランタンピロリン酸塩の前駆体を沈殿として析出させ、次いで熟成後に、ろ過、水洗、乾燥、焼成によって調製することができる。ピロリン酸源の水溶液の濃度は1〜50wt%が好ましく、5〜40wt%がより好ましい。添加するピロリン酸源の水溶液の温度は、40〜99℃に保持することが好ましい。50〜95℃に保持することがさらに好ましい。熟成後の上澄み液のpH制御のために水酸化ナトリウム、水酸化カリウム等塩基をピロリン酸源の水溶液にあらかじめ添加することができる。本発明者らは、前記の熟成工程後における上澄み液のpHを4〜9、好ましくは5〜8の範囲に制御することが反応成績を向上させる上でキーとなることを見出している。熟成後のpHが低い場合、共役ジエンの選択性が悪くなり、pHが高い場合、活性が低くなる。ろ過段階の前までであればいずれの段階でもpH制御を行ってよい。   The rare earth element pyrophosphate can be prepared by various methods. For example, lanthanum pyrophosphate is precipitated as a lanthanum pyrophosphate precursor by adding sodium pyrophosphate or potassium pyrophosphate aqueous solution as a pyrophosphoric acid source to a heated lanthanum trichloride aqueous solution. Then, after aging, it can be prepared by filtration, washing with water, drying and baking. The concentration of the pyrophosphoric acid source aqueous solution is preferably 1 to 50 wt%, more preferably 5 to 40 wt%. The temperature of the aqueous solution of the pyrophosphate source to be added is preferably maintained at 40 to 99 ° C. More preferably, the temperature is maintained at 50 to 95 ° C. In order to control the pH of the supernatant after aging, a base such as sodium hydroxide or potassium hydroxide can be added in advance to the aqueous solution of the pyrophosphate source. The present inventors have found that controlling the pH of the supernatant after the aging step in the range of 4 to 9, preferably 5 to 8, is the key to improving the reaction performance. When the pH after aging is low, the selectivity of the conjugated diene is poor, and when the pH is high, the activity is low. The pH control may be performed at any stage until the filtration stage.

希土類元素源としては水溶性であればいずれの形態であっても使用できるが、希土類元素の塩化物、硝酸塩、酢酸塩の使用が好ましい。このような希土類元素塩の水溶液の濃度は1〜50wt%が好ましく、2〜40wt%がより好ましい。熟成が終了するまで水溶液の液温を40〜99℃に保持することが好ましい。60〜95℃に保持することがさらに好ましい。   The rare earth element source can be used in any form as long as it is water-soluble, but rare earth element chlorides, nitrates, and acetates are preferably used. The concentration of such an aqueous solution of rare earth element salt is preferably 1 to 50 wt%, more preferably 2 to 40 wt%. It is preferable to maintain the liquid temperature of the aqueous solution at 40 to 99 ° C. until aging is completed. More preferably, the temperature is maintained at 60 to 95 ° C.

熟成は、沈殿時と同じ温度に保持することが好ましい。熟成時間は10分〜24時間が好ましく、30分〜20時間がより好ましい。   Aging is preferably maintained at the same temperature as during precipitation. The aging time is preferably 10 minutes to 24 hours, more preferably 30 minutes to 20 hours.

触媒調製時にpH制御用として用いられる水酸化ナトリウム、水酸化カリウム等塩基およびピロリン酸源に含まれるナトリウム、カリウム等は、水洗後もある程度残留してもよいが、多く残留していると触媒性能に影響があるので、触媒中のナトリウムあるいはカリウム等のアルカリ元素の濃度は、水洗により0.001〜2wt%の範囲に制御することが好ましい。水洗は沈殿物100重量部あたり、10〜1000重量部、好ましくは30〜300重量部のイオン交換水を用いて行う。洗浄回数は1回以上であればいずれの回数でもよいが、コストの点で工程短縮が望ましく5回以内が好ましい。水洗方法は回分式であっても連続式であってもよい。   Sodium hydroxide, potassium hydroxide and other bases used for pH control during catalyst preparation and sodium, potassium, etc. contained in the pyrophosphoric acid source may remain to some extent even after washing with water, but catalyst performance will remain if much remains. Therefore, the concentration of the alkali element such as sodium or potassium in the catalyst is preferably controlled in the range of 0.001 to 2 wt% by washing with water. Washing with water is performed using 10 to 1000 parts by weight, preferably 30 to 300 parts by weight of ion-exchanged water per 100 parts by weight of the precipitate. The number of washings may be any number as long as it is one or more, but the process is preferably shortened in terms of cost, and is preferably within 5 times. The water washing method may be a batch method or a continuous method.

乾燥は、減圧、常圧いずれであってもよく、20〜200℃の範囲の温度で1〜24時間行うことが好ましい。また焼成は、300〜700℃、好ましくは400〜600℃の範囲で行われる。焼成時間は30分〜24時間の範囲が好ましく、1〜20時間がより好ましい。焼成時の雰囲気は、空気、あるいは窒素、アルゴン、二酸化炭素等の不活性ガスを用いられる。   The drying may be performed under reduced pressure or normal pressure, and is preferably performed at a temperature in the range of 20 to 200 ° C. for 1 to 24 hours. Moreover, baking is performed in 300-700 degreeC, Preferably it is 400-600 degreeC. The firing time is preferably in the range of 30 minutes to 24 hours, more preferably 1 to 20 hours. As an atmosphere during firing, air or an inert gas such as nitrogen, argon, carbon dioxide, or the like is used.

触媒の形状は、いずれの形状でも用いることができるが、例えば、粉状、粒状、ペレット状、球状等が挙げられる。サイズについても、反応器に充填可能なサイズであればいずれのものでもよい。   Any shape of the catalyst can be used, and examples thereof include powder, granules, pellets, and spheres. Any size can be used as long as the reactor can be filled.

本発明の分子内脱水反応の反応形式についても特段の制限はないが、特に気相流通式反応が好ましい。触媒の充填方式としては、固定床、流動床、懸濁床等種々の方式が採用され、いずれの方式で実施してもよいが固定床が好ましく採用される。気相で本発明の分子内脱水反応を行う場合は、原料であるビシナルジオールはそのままの形態で反応器に供給されてもよいし、不活性ガスで希釈された形態で供給されてもよい。希釈ガスとして窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガスをあげることができ、希釈ガスの濃度は、1〜99.9モル%の範囲、好ましくは10〜99.5モル%の範囲、より好ましくは20〜99%の範囲である。また、ビシナルジオールの濃度は、0.1〜99モル%の範囲、好ましくは0.5〜90モル%の範囲、より好ましくは1〜80モル%の範囲である。   The reaction mode of the intramolecular dehydration reaction of the present invention is not particularly limited, but a gas phase flow reaction is particularly preferable. As a catalyst filling method, various methods such as a fixed bed, a fluidized bed, and a suspension bed are adopted, and any method may be used, but a fixed bed is preferably adopted. When the intramolecular dehydration reaction of the present invention is performed in the gas phase, the raw material vicinal diol may be supplied to the reactor as it is or may be supplied in a form diluted with an inert gas. . An inert gas such as nitrogen, carbon dioxide, helium, and argon can be used as the diluent gas. The concentration of the diluent gas is in the range of 1 to 99.9 mol%, preferably in the range of 10 to 99.5 mol%. More preferably, it is 20 to 99% of range. The concentration of vicinal diol is in the range of 0.1 to 99 mol%, preferably in the range of 0.5 to 90 mol%, more preferably in the range of 1 to 80 mol%.

分子内脱水温度は、200〜600℃、好ましくは250〜550℃、より好ましくは300〜500℃である。反応圧力は、常圧〜2MPaの範囲で反応することができる。反応器に充填された触媒に対する原料供給量の重量比を示す重量空間速度(WHSV)は0.1〜5、好ましくは0.2〜3(hr−1)の範囲にある。 The intramolecular dehydration temperature is 200 to 600 ° C, preferably 250 to 550 ° C, more preferably 300 to 500 ° C. The reaction pressure can be reacted in the range of normal pressure to 2 MPa. The weight hourly space velocity (WHSV) indicating the weight ratio of the raw material supply amount to the catalyst charged in the reactor is in the range of 0.1 to 5, preferably 0.2 to 3 (hr −1 ).

次に、ビシナルジオールとして2,3−ブタンジオールを用い、触媒として希土類のピロリン酸塩を用いた、本発明の分子内脱水反応を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
原材料と触媒
〔2,3−ブタンジオール〕
2,3−ブタンジオールは東京化成製を用いた。
Next, the intramolecular dehydration reaction of the present invention using 2,3-butanediol as the vicinal diol and the rare earth pyrophosphate as the catalyst will be described in detail by way of examples. The present invention is not limited to the examples.
Raw materials and catalyst [2,3-butanediol]
2,3-butanediol was manufactured by Tokyo Chemical Industry.

〔ピロリン酸ランタン(La(P)〕
300mlの丸底フラスコに、イオン交換水80mlを入れ、塩化ランタン・7水和物(和光純薬製)8.9gを加え溶解させて水溶液を調製し、80〜90℃に加熱した(A液)。50mlのビーカーにイオン交換水16mlとピロリン酸ナトリウム・10水和物(和光純薬製)8.0gと水酸化ナトリウム(関東化学製、特級)1.06gを加え80〜90℃に加熱しながら溶解し水溶液を調製した(B液)。A液にB液を徐々に滴下し、ピロリン酸ランタンの前駆体を沈殿させた。攪拌しながら80〜90℃、2h保持し、その後20℃まで冷却した。この懸濁液のpHは7.7であった。ろ過後に、沈殿物は80mlのイオン交換水で洗浄し、ろ過後に110℃、18h乾燥、500℃、2h焼成を行い、錠剤成形機で成形後、破砕し粒径0.2〜0.8mmに揃えたもの。
[Lanthane pyrophosphate (La 4 (P 2 O 7 ) 3 )]
A 300 ml round bottom flask was charged with 80 ml of ion-exchanged water, and 8.9 g of lanthanum chloride heptahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and dissolved to prepare an aqueous solution, which was heated to 80 to 90 ° C. (solution A) ). To a 50 ml beaker, add 16 ml of ion-exchanged water, 8.0 g of sodium pyrophosphate decahydrate (manufactured by Wako Pure Chemical Industries) and 1.06 g of sodium hydroxide (manufactured by Kanto Chemical Co., Ltd., special grade) while heating to 80-90 ° C. An aqueous solution was prepared by dissolution (solution B). The solution B was gradually added dropwise to the solution A to precipitate a lanthanum pyrophosphate precursor. While stirring, the temperature was maintained at 80 to 90 ° C. for 2 hours, and then cooled to 20 ° C. The pH of this suspension was 7.7. After filtration, the precipitate is washed with 80 ml of ion-exchanged water, and after filtration, dried at 110 ° C. for 18 hours, baked at 500 ° C. for 2 hours, molded by a tablet molding machine, and crushed to a particle size of 0.2 to 0.8 mm. Aligned.

〔ピロリン酸セリウム(Ce(P)〕
300mlの丸底フラスコに、イオン交換水60mlを入れ、塩化セリウム・7水和物(和光純薬製)6.7gを加え、溶解させて水溶液を調製し、80〜90℃に加熱した(A液)。50mlビーカ-にイオン交換水12mlとピロリン酸ナトリウム・10水和物6.0gと水酸化ナトリウム0.8gを加え80〜90℃に加熱しながら溶解し水溶液を調製した(B液)。A液にB液を徐々に滴下し、ピロリン酸セリウムの前駆体を沈殿させた。攪拌しながら80〜90℃、2h保持し、その後20℃まで冷却した。この懸濁液のpHは7.2であった。ろ過後に、沈殿物は60mlのイオン交換水で洗浄し、ろ過後に110℃、18h乾燥、500℃、2h焼成を行い、錠剤成形機で成形後、破砕し粒径0.2〜0.8mmに揃えたもの。
[Cerium pyrophosphate (Ce 4 (P 2 O 7 ) 3 )]
In a 300 ml round bottom flask, 60 ml of ion-exchanged water was added, and 6.7 g of cerium chloride heptahydrate (manufactured by Wako Pure Chemical Industries) was added and dissolved to prepare an aqueous solution, which was heated to 80 to 90 ° C. (A liquid). An aqueous solution was prepared by adding 12 ml of ion-exchanged water, 6.0 g of sodium pyrophosphate decahydrate and 0.8 g of sodium hydroxide to a 50 ml beaker and dissolving at 80 to 90 ° C. while heating (B solution). Liquid B was gradually added dropwise to liquid A to precipitate a cerium pyrophosphate precursor. While stirring, the temperature was maintained at 80 to 90 ° C. for 2 hours, and then cooled to 20 ° C. The pH of this suspension was 7.2. After filtration, the precipitate is washed with 60 ml of ion-exchanged water, and after filtration, dried at 110 ° C. for 18 hours, baked at 500 ° C. for 2 hours, molded by a tablet molding machine, and crushed to a particle size of 0.2 to 0.8 mm. Aligned.

〔ピロリン酸ネオジム(Nd(P)〕
300mlの丸底フラスコに、イオン交換水60mlを入れ、塩化ネオジム・6水和物(Aldrich社製)6.5gを投入、溶解させて水溶液を調製し、80〜90℃に加熱した(A液)。50mlビーカーにイオン交換水12mlとピロリン酸ナトリウム・10水和物6.0gと水酸化ナトリウム0.8gを加え80〜90℃に加熱しながら溶解し水溶液を調製した(B液)。A液にB液を徐々に滴下し、ピロリン酸ネオジムの前駆体を沈殿させた。攪拌しながら80〜90℃、2h保持し、その後20℃まで冷却した。この懸濁液のpHは7.7であった。ろ過後に、沈殿物は60mlのイオン交換水で洗浄し、ろ過後に110℃、18h乾燥、500℃、2h焼成を行い、錠剤成形機で成形後、破砕し粒径0.2〜0.8mmに揃えたもの。
[Neodymium pyrophosphate (Nd 4 (P 2 O 7 ) 3 )]
A 300 ml round bottom flask was charged with 60 ml of ion exchanged water, and 6.5 g of neodymium chloride hexahydrate (Aldrich) was added and dissolved to prepare an aqueous solution, which was heated to 80 to 90 ° C. (solution A) ). In a 50 ml beaker, 12 ml of ion-exchanged water, 6.0 g of sodium pyrophosphate decahydrate and 0.8 g of sodium hydroxide were added and dissolved while heating at 80 to 90 ° C. to prepare an aqueous solution (Liquid B). The solution B was gradually added dropwise to the solution A to precipitate a precursor of neodymium pyrophosphate. While stirring, the temperature was maintained at 80 to 90 ° C. for 2 hours, and then cooled to 20 ° C. The pH of this suspension was 7.7. After filtration, the precipitate is washed with 60 ml of ion-exchanged water, and after filtration, dried at 110 ° C. for 18 hours, baked at 500 ° C. for 2 hours, molded by a tablet molding machine, and crushed to a particle size of 0.2 to 0.8 mm. Aligned.

〔ピロリン酸サマリウム(Sm(P)〕
300mlの丸底フラスコに、イオン交換水160mlを入れ、酢酸サマリウム・4水和物(三津和化学薬品製)7.2gを投入、溶解させて水溶液を調製し、80〜90℃に加熱した(A液)。50mlビーカーにイオン交換水12mlとピロリン酸ナトリウム・10水和物6.0gと水酸化ナトリウム0.4gを加え80〜90℃に加熱しながら溶解し水溶液を調製した(B液)。A液にB液を徐々に滴下し、ピロリン酸サマリウムの前駆体を沈殿させた。攪拌しながら80〜90℃、2h保持し、その後20℃まで冷却した。この懸濁液のpHは5.8であった。ろ過後に、沈殿物は60mlのイオン交換水で洗浄し、ろ過後に110℃、18h乾燥、500℃、2h焼成を行い、錠剤成形機で成形後、破砕し粒径0.2〜0.8mmに揃えたもの。
[Samarium pyrophosphate (Sm 4 (P 2 O 7 ) 3 )]
A 300 ml round bottom flask was charged with 160 ml of ion exchanged water, 7.2 g of samarium acetate tetrahydrate (manufactured by Mitsuwa Chemicals) was added and dissolved to prepare an aqueous solution and heated to 80 to 90 ° C. ( A liquid). In a 50 ml beaker, 12 ml of ion-exchanged water, 6.0 g of sodium pyrophosphate decahydrate and 0.4 g of sodium hydroxide were added and dissolved while heating at 80 to 90 ° C. to prepare an aqueous solution (Liquid B). The solution B was gradually added dropwise to the solution A to precipitate a samarium pyrophosphate precursor. While stirring, the temperature was maintained at 80 to 90 ° C. for 2 hours, and then cooled to 20 ° C. The pH of this suspension was 5.8. After filtration, the precipitate is washed with 60 ml of ion-exchanged water, and after filtration, dried at 110 ° C. for 18 hours, baked at 500 ° C. for 2 hours, molded by a tablet molding machine, and crushed to a particle size of 0.2 to 0.8 mm. Aligned.

〔ピロリン酸イットリウム(Y(P)〕
300mlの丸底フラスコに、イオン交換水60mlを入れ、塩化イットリウム・6水和物(和光純薬製)5.5gを投入、溶解させて水溶液を調製し、80〜90℃に加熱した(A液)。50mlビーカーにイオン交換水12mlとピロリン酸ナトリウム・10水和物6.0gと水酸化ナトリウム0.7gを加え80〜90℃に加熱しながら溶解し水溶液を調製した(B液)。A液にB液を徐々に滴下し、ピロリン酸サマリウムの前駆体を沈殿させた。攪拌しながら80〜90℃、2h保持し、その後20℃まで冷却した。この懸濁液のpHは7.1であった。ろ過後に、沈殿物は60mlのイオン交換水で洗浄し、ろ過後に110℃、18h乾燥、500℃、2h焼成を行い、錠剤成形機で成形後、破砕し粒径0.2〜0.8mmに揃えたもの。
[Yttrium pyrophosphate (Y 4 (P 2 O 7 ) 3 )]
A 300 ml round bottom flask was charged with 60 ml of ion exchange water, and 5.5 g of yttrium chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and dissolved to prepare an aqueous solution, which was heated to 80 to 90 ° C. (A liquid). In a 50 ml beaker, 12 ml of ion-exchanged water, 6.0 g of sodium pyrophosphate decahydrate and 0.7 g of sodium hydroxide were added and dissolved while heating at 80 to 90 ° C. to prepare an aqueous solution (Liquid B). The solution B was gradually added dropwise to the solution A to precipitate a samarium pyrophosphate precursor. While stirring, the temperature was maintained at 80 to 90 ° C. for 2 hours, and then cooled to 20 ° C. The pH of this suspension was 7.1. After filtration, the precipitate is washed with 60 ml of ion-exchanged water, and after filtration, dried at 110 ° C. for 18 hours, baked at 500 ° C. for 2 hours, molded by a tablet molding machine, and crushed to a particle size of 0.2 to 0.8 mm. Aligned.

〔ピロリン酸三リチウムナトリウム(LiNaP
特許文献1(特公昭54-9148号公報)の例1を参考にして調製した。500mlの丸底フラスコに、塩化リチウム(和光純薬製)6.36gとイオン交換水200mlにを入れ、溶解し、95℃に加熱した(A液)。200mlビーカーにイオン交換水50mlとピロリン酸ナトリウム・10水和物22.3gを加え95℃に加熱溶解した(B液)。A液にB液を滴下し、沈殿させた後、20℃まで冷却した。その後ろ過し、沈殿物をメタノール100mlで洗浄した。110℃、18h乾燥、500℃、2h焼成を行い、錠剤成形機で成形後、破砕し粒径0.2〜0.8mmに揃えたもの。
[Trilithium sodium pyrophosphate (Li 3 NaP 2 O 7 ]]
It was prepared with reference to Example 1 of Patent Document 1 (Japanese Patent Publication No. 54-9148). In a 500 ml round bottom flask, 6.36 g of lithium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) and 200 ml of ion-exchanged water were dissolved, dissolved, and heated to 95 ° C. (solution A). In a 200 ml beaker, 50 ml of ion exchange water and 22.3 g of sodium pyrophosphate decahydrate were added and dissolved by heating at 95 ° C. (solution B). Liquid B was dropped into liquid A and precipitated, and then cooled to 20 ° C. Thereafter, filtration was performed, and the precipitate was washed with 100 ml of methanol. 110 ° C., 18 h dried, 500 ° C., 2 h fired, molded with a tablet machine and then crushed to a particle size of 0.2 to 0.8 mm.

〔ピロリン酸カルシウム(Ca)〕
特許文献2(特開昭50-115686号公報)の例1を参考にして塩化カルシウムを用いて調製した。300mlの丸底フラスコに、塩化カルシウム(関東化学製、特級)4.0gとイオン交換水80mlを加え溶解し、95℃に加熱した(A液)。50mlビーカーにイオン交換水16mlとピロリン酸ナトリウム・10水和物8.0gを加え95℃に加熱溶解する(B液)。A液にB液を滴下し、沈殿させた後、20℃まで冷却した。その後ろ過し、沈殿物を水80mlで洗浄、ろ過した。110℃、18h乾燥、500℃、2h焼成を行い、錠剤成形機で成形後、破砕し粒径0.2〜0.8mmに揃えたもの。
[Calcium pyrophosphate (Ca 2 P 2 O 7 )]
It was prepared using calcium chloride with reference to Example 1 of Patent Document 2 (Japanese Patent Laid-Open No. 50-115686). In a 300 ml round bottom flask, 4.0 g of calcium chloride (manufactured by Kanto Chemical Co., Ltd., special grade) and 80 ml of ion exchange water were added and dissolved, and heated to 95 ° C. (solution A). In a 50 ml beaker, 16 ml of ion exchange water and 8.0 g of sodium pyrophosphate decahydrate are added and dissolved by heating at 95 ° C. (solution B). Liquid B was dropped into liquid A and precipitated, and then cooled to 20 ° C. Thereafter, the mixture was filtered, and the precipitate was washed with 80 ml of water and filtered. 110 ° C., 18 h dried, 500 ° C., 2 h fired, molded with a tablet machine and then crushed to a particle size of 0.2 to 0.8 mm.

〔リン酸ランタン(LaPO)〕
ピロリン酸ランタンとの比較のため、リン酸ランタンを以下の方法で調製した。300mlの丸底フラスコに、イオン交換水80mlと塩化ランタン・7水和物8.9gを加え溶解させて水溶液を調製し、80〜90℃に加熱した(A液)。50mlビーカーにイオン交換水16mlとリン酸水素二ナトリウム(関東化学、特級)3.4gと水酸化ナトリウム1.2gを加え80〜90℃に加熱しながら溶解し水溶液を調製した(B液)。A液にB液を徐々に滴下し、リン酸ランタンの前駆体を沈殿させた。攪拌しながら80〜90℃、2h保持し、その後20℃まで冷却した。この懸濁液のpHは6.9であった。ろ過後に、沈殿物は80mlのイオン交換水で洗浄し、ろ過後に110℃、18h乾燥、500℃、2h焼成を行い、錠剤成形機で成形後、破砕し粒径0.2〜0.8mmに揃えたもの。
[Lantan phosphate (LaPO 4 )]
For comparison with lanthanum pyrophosphate, lanthanum phosphate was prepared by the following method. An aqueous solution was prepared by adding 80 ml of ion-exchanged water and 8.9 g of lanthanum chloride heptahydrate to a 300 ml round bottom flask to prepare an aqueous solution and heated to 80 to 90 ° C. (solution A). In a 50 ml beaker, 16 ml of ion exchange water, 3.4 g of disodium hydrogen phosphate (Kanto Chemical, special grade) and 1.2 g of sodium hydroxide were added and dissolved while heating at 80 to 90 ° C. to prepare an aqueous solution (Liquid B). B liquid was gradually dripped at A liquid, and the precursor of lanthanum phosphate was precipitated. While stirring, the temperature was maintained at 80 to 90 ° C. for 2 hours, and then cooled to 20 ° C. The pH of this suspension was 6.9. After filtration, the precipitate is washed with 80 ml of ion-exchanged water, and after filtration, dried at 110 ° C. for 18 hours, baked at 500 ° C. for 2 hours, molded by a tablet molding machine, and crushed to a particle size of 0.2 to 0.8 mm. Aligned.

〔反応成績の評価方法〕
FIDガスクロマトグラフを用いて生成物を分析し、2,3-ブタンジオール転化率、および生成物の選択率を炭素原子基準で算出した。
[Evaluation method of reaction results]
The product was analyzed using an FID gas chromatograph, and the conversion rate of 2,3-butanediol and the selectivity of the product were calculated on a carbon atom basis.

2,3−ブタンジオール(A)の分子内脱水反応によって目的物であるブタジエン(C)に至る反応は、中間体として3−ブテン−2−オール(B)を経由する反応である。本発明においては、原料転化率Cと反応選択率Sを次の様に定義した。   The reaction that reaches the target butadiene (C) by the intramolecular dehydration reaction of 2,3-butanediol (A) is a reaction via 3-buten-2-ol (B) as an intermediate. In the present invention, the raw material conversion C and the reaction selectivity S are defined as follows.

〔反応方法〕
触媒の触媒活性評価は、特に記述がない限りは、以下の反応方法で行った。
[Reaction method]
The catalytic activity of the catalyst was evaluated by the following reaction method unless otherwise specified.

上記で得られた触媒2.0gを3/8インチの反応管に充填後、窒素気流中、反応管を管状電気炉で加熱し、触媒層が所定温度に達した後、窒素、および2,3-ブタンジオールの所定量を供給し、常圧、反応温度350℃で反応を行った。結果を表1に示した。なお、本発明におけるWHSV(触媒重量基準の空間速度)とは下式で定義される。
WHSV(hr−1)=2,3-ブタンジオール流量(g/hr)/触媒(g)
After charging 2.0 g of the catalyst obtained above into a 3/8 inch reaction tube, the reaction tube was heated in a tubular electric furnace in a nitrogen stream, and after the catalyst layer reached a predetermined temperature, nitrogen, and 2, A predetermined amount of 3-butanediol was supplied, and the reaction was performed at normal pressure and a reaction temperature of 350 ° C. The results are shown in Table 1. In the present invention, WHSV (space velocity based on catalyst weight) is defined by the following equation.
WHSV (hr −1 ) = 2,3-butanediol flow rate (g / hr) / catalyst (g)

〔実施例1〜5、比較例1〜3〕
WHSVが0.5hr−1、反応温度が350℃、2,3-ブタンジオール:N=1:39(モル比)の条件で表1に記載した触媒を用いて活性評価を行った。結果を表1に示した。
[Examples 1-5, Comparative Examples 1-3]
Activity evaluation was performed using the catalysts described in Table 1 under the conditions of WHSV of 0.5 hr −1 , reaction temperature of 350 ° C., and 2,3-butanediol: N 2 = 1: 39 (molar ratio). The results are shown in Table 1.

上表から分かるように、脱水触媒として希土類元素のピロリン酸塩を用いた実施例1〜5においては高い原料転化率と良好な反応選択性を示す一方で、アルカリ金属やアルカリ土類金属のピロリン酸塩を触媒に用いた系では転化率、選択率ともに低い。また実施例1と比較例3の選択率の対比から、触媒を構成するアニオン部はピロリン酸アニオンがリン酸アニオンに比べてはるかに優秀な反応成績を与えることが明瞭である。   As can be seen from the above table, Examples 1 to 5 using rare earth element pyrophosphates as dehydration catalysts show high raw material conversion and good reaction selectivity, while alkali metal or alkaline earth metal pyrroline. In the system using an acid salt as a catalyst, both the conversion rate and the selectivity are low. Also, from the comparison of the selectivity between Example 1 and Comparative Example 3, it is clear that the anion portion constituting the catalyst gives far superior reaction results for the pyrophosphate anion compared to the phosphate anion.

本発明のビシナルジオールの分子内脱水反応によって、共役ジエンを効率よく得ることが可能となった。   The intramolecular dehydration reaction of the vicinal diol of the present invention makes it possible to efficiently obtain a conjugated diene.

Claims (5)

ビシナルジオールを分子内脱水して共役ジエンを製造する方法において、希土類元素のピロリン酸塩を触媒に用いる共役ジエンの製造方法。   A method for producing a conjugated diene using a rare earth element pyrophosphate as a catalyst in a method for producing a conjugated diene by intramolecular dehydration of vicinal diol. 希土類元素がランタノイドであることを特徴とする請求項1記載の共役ジエンの製造方法。 2. The method for producing a conjugated diene according to claim 1, wherein the rare earth element is a lanthanoid. 希土類元素が、ランタンおよびセリウムから選ばれることを特徴とする請求項2記載の共役ジエンの製造方法。   The method for producing a conjugated diene according to claim 2, wherein the rare earth element is selected from lanthanum and cerium. 固定床流通反応器を用いることを特徴とする請求項1〜3のいずれかに記載の共役ジエンの製造方法。   A method for producing a conjugated diene according to any one of claims 1 to 3, wherein a fixed bed flow reactor is used. ビシナルジオールが、2,3−ブタンジオールまたは2−メチル−2,3−ブタンジオールであることを特徴とする請求項1〜4のいずれかに記載の共役ジエンの製造方法。   The method for producing a conjugated diene according to any one of claims 1 to 4, wherein the vicinal diol is 2,3-butanediol or 2-methyl-2,3-butanediol.
JP2013048314A 2013-03-11 2013-03-11 Method for producing conjugated diene Active JP5931781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013048314A JP5931781B2 (en) 2013-03-11 2013-03-11 Method for producing conjugated diene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013048314A JP5931781B2 (en) 2013-03-11 2013-03-11 Method for producing conjugated diene

Publications (2)

Publication Number Publication Date
JP2014172883A true JP2014172883A (en) 2014-09-22
JP5931781B2 JP5931781B2 (en) 2016-06-08

Family

ID=51694490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048314A Active JP5931781B2 (en) 2013-03-11 2013-03-11 Method for producing conjugated diene

Country Status (1)

Country Link
JP (1) JP5931781B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037556A1 (en) * 2013-09-10 2015-03-19 東レ株式会社 Method for producing 1,3-butadiene and/or 3-buten-2-ol
WO2015037580A1 (en) * 2013-09-12 2015-03-19 東レ株式会社 Method for producing butadiene
JP2016101573A (en) * 2014-11-27 2016-06-02 エスケー イノベーション カンパニー リミテッドSk Innovation Co., Ltd. Amorphous calcium phosphate catalyst for use in production of 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol, and method of producing the same
JP2017508717A (en) * 2014-02-03 2017-03-30 バテル メモリアル インスティチュート Conversion of 2,3-butanediol to butadiene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549148B1 (en) * 1970-04-16 1979-04-21
KR20120107353A (en) * 2011-03-21 2012-10-02 한국화학연구원 Fabrication method of 1,3-butadiene from 2,3-butanediol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549148B1 (en) * 1970-04-16 1979-04-21
KR20120107353A (en) * 2011-03-21 2012-10-02 한국화학연구원 Fabrication method of 1,3-butadiene from 2,3-butanediol

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9452963B2 (en) 2013-09-09 2016-09-27 Toray Industries, Inc. Method for producing 1,3-butadiene and/or 3-buten-2-ol
WO2015037556A1 (en) * 2013-09-10 2015-03-19 東レ株式会社 Method for producing 1,3-butadiene and/or 3-buten-2-ol
JP2015054818A (en) * 2013-09-10 2015-03-23 東レ株式会社 Method for producing 1,3-butadiene and/or 3-butene-2-ol
WO2015037580A1 (en) * 2013-09-12 2015-03-19 東レ株式会社 Method for producing butadiene
US9790140B2 (en) 2013-09-12 2017-10-17 Toray Industries, Inc. Method for producing butadiene
JP2017508717A (en) * 2014-02-03 2017-03-30 バテル メモリアル インスティチュート Conversion of 2,3-butanediol to butadiene
JP2016101573A (en) * 2014-11-27 2016-06-02 エスケー イノベーション カンパニー リミテッドSk Innovation Co., Ltd. Amorphous calcium phosphate catalyst for use in production of 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol, and method of producing the same

Also Published As

Publication number Publication date
JP5931781B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP6304830B2 (en) Catalyst for butadiene production by oxidative dehydrogenation of butene used in fluidized bed reactor, and production method and use thereof
JP5931781B2 (en) Method for producing conjugated diene
CN107771101B (en) Preparation method of ferrite metal oxide catalyst
CN103772134A (en) Method used for preparing phenethylene through alkylation on side chains of toluene and methanol
JP2019011212A (en) Method for producing hydrogen and hydrogen production catalyst
CN101543781B (en) Catalyst for preparing propylene by oxidizing and dehydrogenating propane and preparation method thereof
KR101774543B1 (en) Catalyst for dehydration of glycerin, preparing method thereof and production method of acrolein using the catalyst
CN101773848B (en) Catalyst used for synthesizing methyl tertiary butyl ether and preparation method thereof
CN102617311A (en) Method for synthesizing tricyclic decane unsaturated monoaldehyde
CN105195154A (en) Biomass depolymerized product reforming hydrogen production catalyst and preparation method thereof
CN114716347A (en) Method for preparing adiponitrile
US20190292049A1 (en) Method for producing chlorine by oxidation of hydrogen chloride
CN104710273A (en) Preparation method of trifluoroethylene
JP2007197422A (en) Method for producing nitrogen-containing compound
CN104815666A (en) Rare-earth metal modified NiO-MOx (M=Ce, La, Nd and Pr) catalyst and preparation method thereof
JP6652364B2 (en) Method for producing 1,3-butadiene
CN111036268B (en) Alumina composite material, preparation method and application thereof, and synthetic method of n-valeronitrile
CN106423195A (en) Catalyst as well as preparation method and application thereof
CN110857272B (en) Method for preparing carbonic ester by decarbonylation of oxalate
CN102302952B (en) Catalyst and method for preparing propylene carbonate by using catalyst
CN109651165B (en) Method for producing cyclohexylamine by aniline hydrogenation
CN107793297B (en) Method for preparing 3, 5-dimethylphenol
JP6650840B2 (en) Method for producing MgO-supported catalyst
CN111217669A (en) Method for preparing vinylidene fluoride by resource conversion of trifluoromethane
CN110483242A (en) A kind of method of 1,4- butynediols hydrogenation synthesis 1,4- butanediol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160427

R150 Certificate of patent or registration of utility model

Ref document number: 5931781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250