JP2014171381A - Heat transfer device, power feeding device, and non-contact power feeding system - Google Patents

Heat transfer device, power feeding device, and non-contact power feeding system Download PDF

Info

Publication number
JP2014171381A
JP2014171381A JP2014023669A JP2014023669A JP2014171381A JP 2014171381 A JP2014171381 A JP 2014171381A JP 2014023669 A JP2014023669 A JP 2014023669A JP 2014023669 A JP2014023669 A JP 2014023669A JP 2014171381 A JP2014171381 A JP 2014171381A
Authority
JP
Japan
Prior art keywords
heat transfer
power feeding
power
transfer member
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014023669A
Other languages
Japanese (ja)
Other versions
JP6171971B2 (en
Inventor
Sunao Niitsuma
素直 新妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2014023669A priority Critical patent/JP6171971B2/en
Publication of JP2014171381A publication Critical patent/JP2014171381A/en
Application granted granted Critical
Publication of JP6171971B2 publication Critical patent/JP6171971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat transfer device which properly radiates heat generated by non-contact power feeding without needing the time for positioning when a power reception device and a power feeding device may move relative to each other, and to provide the power feeding device and a non-contact power feeding system.SOLUTION: A non-contact power feeding system 1 performs non-contact power feeding between a vehicle 10 and a parking station 20 and includes a heat transfer device 30 for transferring heat generated by the non-contact power feeding from the vehicle 10 to the parking station 20. The heat transfer device 30 includes a flexible heat transfer member 32 which inclines in a direction that the vehicle 10 moves.

Description

本発明は、伝熱装置、給電装置及び非接触給電システムに関するものである。   The present invention relates to a heat transfer device, a power feeding device, and a non-contact power feeding system.

下記特許文献1には、道路等に設けられる1次コイルと、車両に設けられる2次コイルとの間の磁気結合または磁気共鳴を利用して、1次コイルから非接触で高周波電力を受け取る車両搭載受電装置が開示されている。このような磁気結合等を利用する非接触給電システムにおいては、高周波電力をやり取りするコイル等が発熱するため、その冷却が行われている。   In the following Patent Document 1, a vehicle that receives high-frequency power in a non-contact manner from a primary coil by using magnetic coupling or magnetic resonance between a primary coil provided on a road or the like and a secondary coil provided on a vehicle. An on-board power receiving device is disclosed. In a non-contact power feeding system using such magnetic coupling or the like, a coil or the like that exchanges high-frequency power generates heat, and thus cooling is performed.

下記特許文献1の車両搭載受電装置は、受電コイルと、受電コイルを収納するコイル室と、回転方向を正回転と逆回転との間で切り替えることができる双方向ファンとを含んで構成されている。これにより、受電コイルの冷却が必要なときは、車室側から受電コイルを経由して外気側に流す放熱流れとし、蓄電装置の暖機が必要なときは、外気側から受電コイルを経由して車室側に流す暖機流れとするようになっている。   The vehicle-mounted power receiving device disclosed in Patent Document 1 includes a power receiving coil, a coil chamber that houses the power receiving coil, and a bidirectional fan that can switch a rotation direction between forward rotation and reverse rotation. Yes. As a result, when the power receiving coil needs to be cooled, a heat dissipation flow flows from the passenger compartment side to the outside air via the power receiving coil, and when the power storage device needs to be warmed up, it passes from the outside air via the power receiving coil. The warm-up flow that flows to the passenger compartment side.

また、下記特許文献2には、受電部及び電池を有する受電装置と給電部を有する給電装置とを用いて非接触で電力の授受を行う充電ユニットが開示されている。この充電ユニットにおいては、受電装置内で発生した熱を給電装置に伝えるように、受電装置と給電装置とが接触する部分に熱伝導部が設けられていて、給電装置側に伝えた熱をヒートシンクを介して外部に放熱するようになっている。   Patent Document 2 below discloses a charging unit that transfers power in a contactless manner using a power receiving device having a power receiving unit and a battery and a power feeding device having a power feeding unit. In this charging unit, a heat conducting part is provided at a portion where the power receiving device and the power feeding device are in contact with each other so that the heat generated in the power receiving device is transmitted to the power feeding device. It is designed to dissipate heat to the outside.

特開2012−156083号公報JP 2012-156083 A 特開2012−130177号公報JP 2012-130177 A

しかしながら、上記従来技術には、次のような問題がある。
特許文献1の技術は、移動車両に搭載したファンで冷却する方式であるため、当該冷却装置により移動車両が大型化する、という問題がある。
特許文献2の技術は、冷却対象となる受電装置側にファン等を搭載せずに、熱を接触により受電装置側から給電装置側に伝達する方式であるが、受電装置と給電装置との相対位置が厳密に固定されていないと伝熱効率が極端に低下する。このため、移動車両のような移動体を冷却対象とする場合には、停車時に移動体を正確に位置決めするために時間を要してしまう、という問題がある。
However, the above prior art has the following problems.
Since the technique of Patent Document 1 is a method of cooling with a fan mounted on a moving vehicle, there is a problem that the moving vehicle is enlarged by the cooling device.
The technology of Patent Document 2 is a method of transferring heat from the power receiving device side to the power feeding device by contact without mounting a fan or the like on the power receiving device side to be cooled. If the position is not strictly fixed, the heat transfer efficiency is extremely reduced. For this reason, when a moving body such as a moving vehicle is to be cooled, there is a problem that it takes time to accurately position the moving body when the vehicle is stopped.

本発明は、上記問題点に鑑みてなされたものであり、受電装置と給電装置とが相対移動自在な関係にあるときに、位置決めに時間を要することなく、非接触給電により発生した熱を適切に放熱することのできる伝熱装置、給電装置及び非接触給電システムの提供を目的とする。   The present invention has been made in view of the above problems, and when the power receiving device and the power feeding device are in a relatively movable relationship, the heat generated by the non-contact power feeding can be appropriately detected without taking time for positioning. An object of the present invention is to provide a heat transfer device, a power feeding device, and a non-contact power feeding system that can dissipate heat.

上記の課題を解決するために、本発明は、少なくとも一方が移動自在な非接触給電用の給電装置と受電装置との間で熱を伝える伝熱装置であって、前記受電装置及び前記給電装置のうち一方から他方に前記非接触給電により発生した熱を伝熱し、前記移動自在な方向に傾倒自在な性質、又は前記方向の垂直方向に伸縮自在な性質の少なくとも一方を有する可撓性伝熱部材を有する、という構成を採用する。   In order to solve the above-described problems, the present invention provides a heat transfer device that transfers heat between a power supply device for non-contact power supply, at least one of which is movable, and the power reception device, the power reception device and the power supply device. Flexible heat transfer having at least one of the property of being able to tilt in the movable direction and the property of being able to expand and contract in the direction perpendicular to the direction. The structure of having a member is adopted.

また、本発明においては、前記受電装置及び前記給電装置は、前記非接触給電を行うコイルをそれぞれ有しており、前記受電装置及び前記給電装置のうち一方の前記コイルの周囲に設けられた伝熱部材と、前記受電装置及び前記給電装置のうち他方の前記コイルの周囲に立設し、前記伝熱部材と熱的に結合する前記可撓性伝熱部材と、を有する、という構成を採用する。   In the present invention, each of the power receiving device and the power feeding device includes a coil that performs the contactless power feeding, and a power transmission provided around one of the coils of the power receiving device and the power feeding device. Adopting a configuration comprising a heat member, and the flexible heat transfer member that stands up around the other coil of the power receiving device and the power supply device and is thermally coupled to the heat transfer member To do.

また、本発明においては、前記可撓性伝熱部材は、電気的に接地している、という構成を採用する。   Moreover, in this invention, the structure that the said flexible heat-transfer member is electrically earth | grounded is employ | adopted.

また、本発明においては、前記可撓性伝熱部材は、金属ブラシを含む、という構成を採用する。   Moreover, in this invention, the structure that the said flexible heat-transfer member contains a metal brush is employ | adopted.

また、本発明においては、前記金属ブラシは、冷媒が流通する金属パイプに植設されている、という構成を採用する。   Moreover, in this invention, the said metal brush employ | adopts the structure that it is planted by the metal pipe through which a refrigerant | coolant distribute | circulates.

また、本発明においては、前記可撓性伝熱部材は、バネ部材を含む、という構成を採用する。   Moreover, in this invention, the structure that the said flexible heat-transfer member contains a spring member is employ | adopted.

また、本発明においては、前記バネ部材は、冷媒が流通する金属パイプを前記伝熱部材に付勢する、という構成を採用する。   Moreover, in this invention, the said spring member employ | adopts the structure of urging | biasing the metal pipe through which a refrigerant | coolant distribute | circulates to the said heat-transfer member.

また、本発明においては、前記可撓性伝熱部材は、冷媒の注入により前記伝熱部材に接触する膨縮部材を含む、という構成を採用する。   Moreover, in this invention, the structure that the said flexible heat transfer member contains the expansion / contraction member which contacts the said heat transfer member by injection | pouring of a refrigerant | coolant is employ | adopted.

また、本発明においては、前記膨縮部材は、棒状のチューブ体及びアーチ状のチューブ体の少なくともいずれか一方を含む、という構成を採用する。   Moreover, in this invention, the said expansion / contraction member employ | adopts the structure that at least any one of a rod-shaped tube body and an arch-shaped tube body is included.

また、本発明においては、前記受電装置及び前記給電装置のうち一方は、車両であり、前記受電装置及び前記給電装置のうち他方は、前記車両が停車する停車ステーションである、という構成を採用する。   In the present invention, a configuration is adopted in which one of the power receiving device and the power feeding device is a vehicle, and the other of the power receiving device and the power feeding device is a stop station where the vehicle stops. .

また、本発明においては、前記伝熱部材はシールド機能を備える、という構成を採用する。   Moreover, in this invention, the structure that the said heat-transfer member is provided with a shield function is employ | adopted.

また、本発明は、受電装置と非接触給電を行う給電装置において、少なくとも一方が移動自在な前記受電装置及び前記給電装置のうち一方から他方に前記非接触給電により発生した熱を伝熱する伝熱装置を有する給電装置であって、前記伝熱装置は、前記移動自在な方向に傾倒自在な性質、又は当該方向の垂直方向に伸縮自在な性質の少なくとも一方を有する可撓性伝熱部材を有する、という構成を採用する。   Further, the present invention provides a power feeding device that performs non-contact power feeding with a power receiving device, wherein at least one of the power receiving device and the power feeding device, which are movable, transfers heat generated by the non-contact power feeding from one to the other. A power supply device having a heat device, wherein the heat transfer device includes a flexible heat transfer member having at least one of a property of being tiltable in the movable direction and a property of being stretchable in a direction perpendicular to the direction. The structure of having is adopted.

さらに、本発明は、少なくとも一方が移動自在な受電装置と給電装置との間で非接触給電を行う非接触給電システムであって、前記受電装置及び前記給電装置のうち、一方から他方に前記非接触給電により発生した熱を伝熱するための伝熱装置を有し、前記伝熱装置は、前記移動自在な方向に傾倒自在な性質、又は前記方向の垂直方向に伸縮自在な性質の少なくとも一方を有する可撓性伝熱部材を有する、という構成を採用する。   Furthermore, the present invention is a non-contact power feeding system that performs non-contact power feeding between a power receiving device and a power feeding device, at least one of which is movable, wherein the power receiving device and the power feeding device are switched from one to the other. A heat transfer device for transferring heat generated by contact power supply, wherein the heat transfer device is at least one of a property of being tiltable in the movable direction and a property of being stretchable in a direction perpendicular to the direction; The structure of having a flexible heat transfer member having the above is adopted.

本発明によれば、受電装置と給電装置との相対位置が固定されずとも、可撓性伝熱部材がそれらの移動方向に傾倒するため、受電装置と給電装置との熱的接続状態が維持される。このため、位置ずれを許容して、高い冷却能力が得られる。
したがって、受電装置と給電装置とが相対移動自在な関係にあるときに、位置決めに時間を要することなく、非接触給電により発生した熱を適切に放熱することのできる伝熱装置、給電装置及び非接触給電システムが得られる。
According to the present invention, even if the relative position between the power receiving device and the power feeding device is not fixed, the flexible heat transfer member is tilted in the moving direction thereof, so that the thermal connection state between the power receiving device and the power feeding device is maintained. Is done. For this reason, it is possible to obtain a high cooling capacity while allowing positional deviation.
Therefore, when the power receiving device and the power feeding device are in a relatively movable relationship, the heat transfer device, the power feeding device, and the non-powered device that can appropriately dissipate the heat generated by the non-contact power feeding without requiring time for positioning. A contact power supply system is obtained.

本発明の第1実施形態における伝熱装置、給電装置及び非接触給電システムの全体構成図である。1 is an overall configuration diagram of a heat transfer device, a power feeding device, and a non-contact power feeding system in a first embodiment of the present invention. 本発明の第1実施形態における可撓性伝熱部材を示す平面図である。It is a top view which shows the flexible heat transfer member in 1st Embodiment of this invention. 本発明の第2実施形態における伝熱装置、給電装置及び非接触給電システムの全体構成図である。It is a whole block diagram of the heat-transfer apparatus, electric power feeder, and non-contact electric power feeding system in 2nd Embodiment of this invention. 本発明の第3実施形態における可撓性伝熱部材を示す断面構成図である。It is a section lineblock diagram showing the flexible heat transfer member in a 3rd embodiment of the present invention. 本発明の第4実施形態における可撓性伝熱部材を示す断面構成図である。It is a section lineblock diagram showing the flexible heat transfer member in a 4th embodiment of the present invention. 本発明の一別実施形態における可撓性伝熱部材を示す平面図である。It is a top view which shows the flexible heat transfer member in another embodiment of this invention. 本発明の一別実施形態における可撓性伝熱部材を示す平面図である。It is a top view which shows the flexible heat transfer member in another embodiment of this invention. 本発明の一別実施形態における伝熱装置、給電装置及び非接触給電システムの全体構成図である。It is a whole block diagram of the heat-transfer apparatus, electric power feeder, and non-contact electric power feeding system in another embodiment of this invention.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態における伝熱装置、給電装置及び非接触給電システム1の全体構成図である。図2は、本発明の第1実施形態における可撓性伝熱部材32を示す平面図である。給電しない場合、給電システムを稼働していない場合、給電ができていない場合を含めて、全体として伝熱装置とする。
非接触給電システム1は、少なくとも一方が移動自在な受電装置と給電装置との間で非接触給電を行うものであり、本実施形態では、図1に示すように、車両10が受電装置であり、車両10が停車する停車ステーション20が給電装置である。車両10は、路面2に設けられた停車ステーション20に対して相対移動自在とされている。
(First embodiment)
FIG. 1 is an overall configuration diagram of a heat transfer device, a power feeding device, and a non-contact power feeding system 1 according to the first embodiment of the present invention. FIG. 2 is a plan view showing the flexible heat transfer member 32 in the first embodiment of the present invention. In the case where power is not supplied, the power supply system is not operating, and the case where power is not supplied is assumed to be a heat transfer device as a whole.
The non-contact power feeding system 1 performs non-contact power feeding between a power receiving device and a power feeding device, at least one of which is movable. In this embodiment, as shown in FIG. 1, the vehicle 10 is a power receiving device. The stop station 20 where the vehicle 10 stops is a power feeding device. The vehicle 10 is movable relative to a stop station 20 provided on the road surface 2.

車両10には、受電コイル11が設けられている。一方で、停車ステーション20には、給電コイル21が設けられている。受電コイル11は、給電コイル21と対向可能に車両10の底部に設けられている。この受電コイル11は、給電コイル21と略同一のコイル径を有し、給電コイル21と電磁的に結合することによって交流電力を非接触で受電する。   The vehicle 10 is provided with a power receiving coil 11. On the other hand, the stopping station 20 is provided with a feeding coil 21. The power receiving coil 11 is provided at the bottom of the vehicle 10 so as to be able to face the power feeding coil 21. The power receiving coil 11 has substantially the same coil diameter as that of the power feeding coil 21 and electromagnetically couples with the power feeding coil 21 to receive AC power in a non-contact manner.

本実施形態の非接触給電システム1における給電コイル21から受電コイル11への非接触給電は、磁界共鳴方式に基づいて行われる。すなわち、給電コイル21と受電コイル11とには各々に共振回路を構成するための共振用コンデンサ(不図示)が接続されている。また、例えば共振用コンデンサの静電容量は、給電コイル21と共振用コンデンサとからなる給電側共振回路の共振周波数と受電コイル11と共振用コンデンサとからなる受電側共振回路の共振周波数とは同一周波数となるように設定されている。   The non-contact power feeding from the power feeding coil 21 to the power receiving coil 11 in the non-contact power feeding system 1 of the present embodiment is performed based on the magnetic field resonance method. That is, a resonance capacitor (not shown) for constituting a resonance circuit is connected to each of the feeding coil 21 and the receiving coil 11. Further, for example, the capacitance of the resonance capacitor is the same as the resonance frequency of the power supply side resonance circuit composed of the power supply coil 21 and the resonance capacitor and the resonance frequency of the power reception side resonance circuit composed of the power reception coil 11 and the resonance capacitor. The frequency is set.

車両10には、受電コイル11の他に、受電回路12と、蓄電池13とが設けられている。
受電回路12は、給電コイル21から受電した受電電力を直流電力に変換して蓄電池13に供給する電力変換回路である。すなわち、この受電回路12は、蓄電池13の充電状態に応じた充電電流を蓄電池13に供給することにより蓄電池13を充電する。
蓄電池13は、車両10の駆動動力源として十分な電力を蓄えることが可能な二次電池であり、例えばリチウムイオン二次電池やニッケル水素二次電池等である。
In addition to the power receiving coil 11, the vehicle 10 is provided with a power receiving circuit 12 and a storage battery 13.
The power receiving circuit 12 is a power conversion circuit that converts the received power received from the power supply coil 21 into DC power and supplies the DC power to the storage battery 13. In other words, the power receiving circuit 12 charges the storage battery 13 by supplying a charging current corresponding to the charging state of the storage battery 13 to the storage battery 13.
The storage battery 13 is a secondary battery capable of storing sufficient power as a driving power source for the vehicle 10, and is, for example, a lithium ion secondary battery or a nickel hydride secondary battery.

一方で、給電コイル21は、受電コイル11と対向可能に路面2に埋設されている。停車ステーション20には、給電コイル21の他に、給電回路22と、外部電源23とが設けられている。
給電回路22は、外部電源23から供給される電力を磁界共鳴方式の非接触給電の共振周波数に応じた交流電力に変換して給電コイル21に供給する電力変換回路である。
外部電源23は、例えば商用電源、太陽電池、風力発電等であって、その電力を給電回路22に供給するものである。
On the other hand, the power feeding coil 21 is embedded in the road surface 2 so as to be able to face the power receiving coil 11. In addition to the power supply coil 21, the stop station 20 is provided with a power supply circuit 22 and an external power source 23.
The power supply circuit 22 is a power conversion circuit that converts the power supplied from the external power supply 23 into AC power corresponding to the resonance frequency of the magnetic resonance type non-contact power supply and supplies the AC power to the power supply coil 21.
The external power source 23 is, for example, a commercial power source, a solar battery, wind power generation, or the like, and supplies the power to the power feeding circuit 22.

非接触給電システム1は、図1に示すように、車両10と停車ステーション20との間の非接触給電により発生した熱を、熱容量の小さい車両10側から熱容量の大きい停車ステーション20側に伝熱するための伝熱装置30に熱を伝える。または、伝熱装置30は、冷却能力の低い車両10から冷却能力の高い停車ステーション20に熱を伝えることもできる。特に、停車ステーション20の方が、移動体である車両10に比べ、後述するような冷媒の確保や冷媒へのアクセスが容易であるため、停車ステーション20の冷却能力の方を高めやすくなる。なお、熱容量や冷却能力によっては、伝熱装置30は、停車ステーション20から車両10に熱を伝えることもありうる。
本実施形態の伝熱装置30は、受電コイル11の周囲に設けられた伝熱板31(伝熱部材)と、給電コイル21の周囲に立設し、伝熱板31と接触する可撓性伝熱部材32と、を有する。
As shown in FIG. 1, the non-contact power feeding system 1 transfers heat generated by non-contact power feeding between the vehicle 10 and the stop station 20 from the vehicle 10 having a small heat capacity to the stop station 20 having a large heat capacity. Heat is transmitted to the heat transfer device 30 for the purpose. Alternatively, the heat transfer device 30 can transfer heat from the vehicle 10 having a low cooling capacity to the stop station 20 having a high cooling capacity. In particular, the stopping station 20 is easier to secure and access the refrigerant as will be described later than the vehicle 10 that is a moving body, and therefore, the cooling capacity of the stopping station 20 can be easily increased. Note that the heat transfer device 30 may transfer heat from the stop station 20 to the vehicle 10 depending on the heat capacity and the cooling capacity.
The heat transfer device 30 according to the present embodiment is provided with a heat transfer plate 31 (heat transfer member) provided around the power receiving coil 11 and a flexibility that stands up around the power supply coil 21 and contacts the heat transfer plate 31. And a heat transfer member 32.

伝熱板31は、車両10に設けられている。この伝熱板31は、車両10の底部において路面2に対向する姿勢で設けられている。伝熱板31は、受電コイル11の背面側に配置され、非接触給電の際に受電コイル11と給電コイル21との間に形成される電磁界Aを遮らない。伝熱板31の中央に受電コイル11が支持されており、伝熱板31は、受電コイル11から外方に張り出すように延在している。   The heat transfer plate 31 is provided in the vehicle 10. The heat transfer plate 31 is provided in a posture facing the road surface 2 at the bottom of the vehicle 10. The heat transfer plate 31 is disposed on the back side of the power receiving coil 11 and does not block the electromagnetic field A formed between the power receiving coil 11 and the power feeding coil 21 during non-contact power feeding. The power receiving coil 11 is supported at the center of the heat transfer plate 31, and the heat transfer plate 31 extends so as to project outward from the power receiving coil 11.

伝熱板31は、受電コイル11と熱的に接続されている。また、本実施形態では、伝熱板31の上に、受電回路12及び蓄電池13が設けられており、伝熱板31は、受電回路12及び蓄電池13とも熱的に接続されている。この伝熱板31は、例えば導電性を有する金属板から形成されている。このため、伝熱板31は、熱伝導のための熱的機能だけでなく、受電回路12等の車両10側の電気的接地をとる電気的機能も有している。   The heat transfer plate 31 is thermally connected to the power receiving coil 11. In the present embodiment, the power receiving circuit 12 and the storage battery 13 are provided on the heat transfer plate 31, and the heat transfer plate 31 is also thermally connected to the power receiving circuit 12 and the storage battery 13. The heat transfer plate 31 is formed of, for example, a conductive metal plate. For this reason, the heat transfer plate 31 has not only a thermal function for heat conduction but also an electrical function for grounding the vehicle 10 side such as the power receiving circuit 12.

可撓性伝熱部材32は、停車ステーション20に設けられている。可撓性伝熱部材32は、停車ステーション20側から略鉛直上方に立設している。可撓性伝熱部材32は、基端が停車ステーション20側に固定され、先端が自由端であり、車両10の移動自在な方向(本実施形態では路面2に沿う平面方向)に傾倒自在な性質を有する。
可撓性伝熱部材32は、停車ステーション20から伝熱板31までの長さよりも長く形成されており、その先端が所定幅で伝熱板31に接触できるようになっている。なお、可撓性伝熱部材32は必ずしも伝熱板31に接触している必要はなく、少なくとも伝熱板31と熱的に結合していればよい。
The flexible heat transfer member 32 is provided at the stop station 20. The flexible heat transfer member 32 is provided substantially vertically upward from the stop station 20 side. The flexible heat transfer member 32 has a proximal end fixed to the stop station 20 side, a distal end is a free end, and can be tilted in a direction in which the vehicle 10 can move (in this embodiment, a plane direction along the road surface 2). Has properties.
The flexible heat transfer member 32 is formed longer than the length from the stop station 20 to the heat transfer plate 31, and the tip thereof can contact the heat transfer plate 31 with a predetermined width. The flexible heat transfer member 32 does not necessarily need to be in contact with the heat transfer plate 31 as long as it is at least thermally coupled to the heat transfer plate 31.

本実施形態の可撓性伝熱部材32は、熱伝導性を有すると共に導電性を有する金属ブラシからなる。このため、可撓性伝熱部材32は、熱伝導のための熱的機能だけでなく、地上で伝熱板31の電気的接地をとる電気的機能も有している。
この可撓性伝熱部材32は、冷媒として冷却水が流通する金属パイプ33に植設されている。金属パイプ33は、停車ステーション20に設けられている。この金属パイプ33は、図2に示すように、給電コイル21の周囲に渦巻き状に配管されている。
本実施形態の金属パイプ33は、同一平面上に配管され、給電コイル21に対し外側に広がるようになっている。
The flexible heat transfer member 32 of the present embodiment is made of a metal brush having heat conductivity and conductivity. For this reason, the flexible heat transfer member 32 has not only a thermal function for heat conduction but also an electric function for grounding the heat transfer plate 31 on the ground.
The flexible heat transfer member 32 is implanted in a metal pipe 33 through which cooling water flows as a refrigerant. The metal pipe 33 is provided at the stop station 20. As shown in FIG. 2, the metal pipe 33 is provided in a spiral shape around the power feeding coil 21.
The metal pipe 33 according to the present embodiment is arranged on the same plane and spreads outward with respect to the feeding coil 21.

金属パイプ33は、冷却水循環装置34と接続されている。冷却水循環装置34は、給電コイル21に対し近接する金属パイプ33の内側の端部から外側の端部に向かって渦巻き状に冷却水を流通させるようになっている。可撓性伝熱部材32は、金属パイプ33に沿って渦巻き状に植設されている。この可撓性伝熱部材32は、図1に示すように、電磁界Aの周りに多重のシールド壁を形成する。また、この可撓性伝熱部材32は、熱伝導のための熱的機能だけでなく、地上側で伝熱板31の電気的接地をとる電気的機能も有している。   The metal pipe 33 is connected to the cooling water circulation device 34. The cooling water circulation device 34 circulates the cooling water in a spiral shape from the inner end of the metal pipe 33 adjacent to the power supply coil 21 toward the outer end. The flexible heat transfer member 32 is implanted in a spiral shape along the metal pipe 33. As shown in FIG. 1, the flexible heat transfer member 32 forms multiple shield walls around the electromagnetic field A. The flexible heat transfer member 32 has not only a thermal function for heat conduction but also an electric function for grounding the heat transfer plate 31 on the ground side.

次に、このように構成された非接触給電システム1の給電動作について説明する。
非接触給電システム1は、図1に示すように、車両10と停車ステーション20との間で非接触給電を行うものである。車両10の停車位置は、ドライバーの運転操作に依存するため、ある程度のバラツキを持つ。なお、給電に関しては、受電コイル11と給電コイル21間の電力伝送に磁界共鳴方式を採用しており、車両10及び停車ステーション20の両方に設けられた共鳴コイルの位置ズレに強く、高効率且つ長距離の電力伝送を実現できる。
Next, the power feeding operation of the non-contact power feeding system 1 configured as described above will be described.
As shown in FIG. 1, the non-contact power supply system 1 performs non-contact power supply between the vehicle 10 and the stop station 20. Since the stop position of the vehicle 10 depends on the driving operation of the driver, there is some variation. As for power feeding, the magnetic field resonance method is adopted for power transmission between the power receiving coil 11 and the power feeding coil 21, which is highly resistant to displacement of the resonance coils provided in both the vehicle 10 and the stopping station 20, and highly efficient. Long-distance power transmission can be realized.

非接触給電を行うと、高周波電力をやり取りする受電コイル11と給電コイル21等が発熱する。給電コイル21が設けられている停車ステーション20は、地上側に設けられており、熱容量はほぼ無限大とみなすことができる。このため、給電コイル21の温度は、ほとんど上昇しない。一方、受電コイル11が設けられている車両10は、停車ステーション20に比べて熱容量が小さく、受電コイル11の温度は比較的容易に上昇する。   When non-contact power feeding is performed, the receiving coil 11 and the feeding coil 21 that exchange high-frequency power generate heat. The stop station 20 provided with the feeding coil 21 is provided on the ground side, and the heat capacity can be regarded as almost infinite. For this reason, the temperature of the feeding coil 21 hardly rises. On the other hand, the vehicle 10 provided with the power receiving coil 11 has a smaller heat capacity than the stop station 20, and the temperature of the power receiving coil 11 rises relatively easily.

非接触給電システム1は、熱容量が小さい車両10から熱容量の大きい停車ステーション20に非接触給電により発生した熱を伝熱するための伝熱装置30を有する。伝熱装置30は、非接触給電時に車両10側で発生した熱を、停車ステーション20側に逃がして、車両10側の冷却を行う。伝熱装置30は、車両10が移動自在な方向に傾倒自在な可撓性伝熱部材32を有する。   The non-contact power supply system 1 includes a heat transfer device 30 for transferring heat generated by non-contact power supply from a vehicle 10 having a small heat capacity to a stop station 20 having a large heat capacity. The heat transfer device 30 releases the heat generated on the vehicle 10 side during non-contact power feeding to the stop station 20 side and cools the vehicle 10 side. The heat transfer device 30 includes a flexible heat transfer member 32 that can tilt in a direction in which the vehicle 10 is movable.

可撓性伝熱部材32は、上述のように車両10の停車位置は、ある程度のバラツキを持つため、受電コイル11と給電コイル21とが厳密には正対することが期待できない。従って、可撓性伝熱部材32は、受電コイル11と給電コイル21とがおおむね正対するが位置ずれをともなうような位置にある車両10に対し、その移動方向に柔軟に傾倒することで、車両10と停車ステーション20との熱的接続状態を維持する。これにより、車両10と停車ステーション20との位置ずれを許容し、また、車両10にファン等の冷却装置を設けることなく、熱伝導により高い冷却能力を得ることができる。   As described above, the flexible heat transfer member 32 has a certain degree of variation in the stop position of the vehicle 10, and therefore it cannot be expected that the power receiving coil 11 and the power feeding coil 21 are strictly facing each other. Therefore, the flexible heat transfer member 32 is flexibly tilted in the moving direction with respect to the vehicle 10 in a position where the power receiving coil 11 and the power feeding coil 21 are generally opposed to each other but are displaced, thereby causing the vehicle to move. The thermal connection between the station 10 and the stop station 20 is maintained. Thereby, the position shift with the vehicle 10 and the stop station 20 is accept | permitted, and without providing cooling devices, such as a fan, in the vehicle 10, high cooling capability can be obtained by heat conduction.

本実施形態の伝熱装置30は、受電コイル11の周囲に設けられた伝熱板31と、給電コイル21の周囲に立設し、伝熱板31と接触する可撓性伝熱部材32と、を有する。これにより、非接触給電の際に受電コイル11と給電コイル21との間に形成される電磁界Aを遮らないようにして、車両10側の冷却を行うことができ、給電効率の低下を抑制することができる。   The heat transfer device 30 of the present embodiment includes a heat transfer plate 31 provided around the power receiving coil 11, a flexible heat transfer member 32 that stands up around the power feeding coil 21 and contacts the heat transfer plate 31. Have. As a result, the vehicle 10 side can be cooled without blocking the electromagnetic field A formed between the power receiving coil 11 and the power feeding coil 21 during non-contact power feeding, and a decrease in power feeding efficiency is suppressed. can do.

また、受電コイル11の周囲に伝熱板31を設けることで、受電コイル11の熱だけでなく、受電回路12や蓄電池13の熱も伝熱板31の金属面に伝えて冷却することができる。
さらに、可撓性伝熱部材32は、電気的に接地されており、非接触給電の際には伝熱板31を介して受電回路12等のアースもとることができる。また、可撓性伝熱部材32は、電磁的シールド壁として機能し、異物等の侵入を防ぎ、強い電磁界Aを形成することができる。
Further, by providing the heat transfer plate 31 around the power receiving coil 11, not only the heat of the power receiving coil 11 but also the heat of the power receiving circuit 12 and the storage battery 13 can be transmitted to the metal surface of the heat transfer plate 31 to be cooled. .
Further, the flexible heat transfer member 32 is electrically grounded, and can be grounded via the heat transfer plate 31 and the like of the power receiving circuit 12 when performing non-contact power feeding. Further, the flexible heat transfer member 32 functions as an electromagnetic shield wall, can prevent entry of foreign matters, etc., and can form a strong electromagnetic field A.

本実施形態の可撓性伝熱部材32は、冷却水が流通する金属パイプ33に植設されている。これにより、可撓性伝熱部材32のブラシ繊維を通して車両10側から地上側の停車ステーション20に伝わってきた熱を、冷却水で除去することができる。冷却水は、図2に示すように、給電コイル21に対し近接する金属パイプ33の内側の端部から外側の端部に向かって渦巻き状に流通する。これにより、温度の低い冷却水によって、高周波電力をやり取りする受電コイル11の近傍から優先的に熱を奪うことが可能となる。   The flexible heat transfer member 32 of this embodiment is implanted in a metal pipe 33 through which cooling water flows. Thereby, the heat transmitted from the vehicle 10 side to the stop station 20 on the ground side through the brush fibers of the flexible heat transfer member 32 can be removed by the cooling water. As shown in FIG. 2, the cooling water circulates in a spiral shape from the inner end of the metal pipe 33 adjacent to the power feeding coil 21 toward the outer end. Thereby, it becomes possible to take heat preferentially from the vicinity of the receiving coil 11 which exchanges high frequency electric power with the cooling water with low temperature.

このように、上述の本実施形態によれば、車両10と停車ステーション20との間で非接触給電を行う非接触給電システム1であって、熱容量が小さい車両10から熱容量の大きい停車ステーション20に非接触給電により発生した熱を伝熱するための伝熱装置30を有し、伝熱装置30は、車両10の移動自在な方向に傾倒自在な可撓性伝熱部材32を有する、という構成を採用することによって、位置ずれを許容して、車両10に冷却装置を設けることなく、高い冷却能力が得られる。
したがって、本実施形態では、車両10と停車ステーション20とが相対移動自在な関係にあるときに、位置決めに時間を要することなく、非接触給電により発生した熱を適切に放熱することのできる非接触給電システム1が得られる。
As described above, according to the above-described embodiment, the contactless power feeding system 1 that performs the contactless power feeding between the vehicle 10 and the stop station 20 from the vehicle 10 having a small heat capacity to the stop station 20 having a large heat capacity. A configuration in which a heat transfer device 30 for transferring heat generated by non-contact power feeding is provided, and the heat transfer device 30 includes a flexible heat transfer member 32 that is tiltable in a movable direction of the vehicle 10. By adopting, a high cooling capacity can be obtained without allowing a displacement and allowing the vehicle 10 to be provided with a cooling device.
Therefore, in the present embodiment, when the vehicle 10 and the stop station 20 are in a relatively movable relationship, the contactless power that can appropriately dissipate the heat generated by the contactless power feeding without requiring time for positioning. A power feeding system 1 is obtained.

(第2実施形態)
次に、本発明の第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
図3は、本発明の第2実施形態における非接触給電システム1の全体構成図である。
第2実施形態では、図3に示すように、可撓性伝熱部材32がバネ部材35を含む点で、上記実施形態と異なる。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In the following description, the same or equivalent components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
FIG. 3 is an overall configuration diagram of the non-contact power feeding system 1 in the second embodiment of the present invention.
As shown in FIG. 3, the second embodiment differs from the above embodiment in that the flexible heat transfer member 32 includes a spring member 35.

バネ部材35は、停車ステーション20側から略鉛直上方に立設している。このバネ部材35は、冷却水が流通する金属パイプ33を伝熱板31に付勢する構成となっている。
また、バネ部材35は、基端が停車ステーション20側に固定され、金属パイプ33を支持する先端が自由端となっており、車両10の移動自在な方向(本実施形態では路面2に沿う平面方向)に傾倒自在な構成となっている。
The spring member 35 is erected substantially vertically upward from the stop station 20 side. The spring member 35 is configured to bias the metal pipe 33 through which the cooling water flows to the heat transfer plate 31.
Further, the spring member 35 has a base end fixed to the stop station 20 side, and a distal end that supports the metal pipe 33 is a free end. The spring member 35 is a free end of the vehicle 10 (in this embodiment, a plane along the road surface 2). Direction).

上記構成の第2実施形態によれば、伝熱板31に金属パイプ33を直接押し付けて車両10側の熱を奪うことができる。また、バネ部材35の作用により、可撓性伝熱部材32は、車両10が移動自在な方向に傾倒自在となるため、車両10と停車ステーション20との位置ずれを許容し、位置決めに時間を要することなく、非接触給電により発生した熱を除去することができる。また、バネ部材35を金属材料で形成すれば、地上側で伝熱板31の電気的接地をとることができる。   According to 2nd Embodiment of the said structure, the metal pipe 33 can be pressed directly on the heat exchanger plate 31, and the heat | fever of the vehicle 10 side can be taken away. In addition, the flexible heat transfer member 32 can be tilted in the direction in which the vehicle 10 is movable by the action of the spring member 35, so that the positional deviation between the vehicle 10 and the stop station 20 is allowed, and positioning takes time. It is not necessary to remove the heat generated by the non-contact power feeding. Moreover, if the spring member 35 is formed of a metal material, the heat transfer plate 31 can be electrically grounded on the ground side.

なお、バネ部材35は、傾倒自在な性質を有するだけでなく、又は傾倒自在な性質の代わりに、車両10の移動自在な方向の垂直方向に伸縮自在な性質を有していてもよい。例えば、バネ部材35は、車両が停車するまでは、縮んだ状態で維持され、車両が停車すると伸びるように構成されていてもよい。金属パイプ33が伝熱板31に触れるまでバネ部材35が伸びることにより、金属パイプ33内の冷却水は、伝熱板31を介して車両10(受電コイル11、受電回路12又は蓄電池13)を冷却できる。   The spring member 35 may not only have a tiltable property, but may have a property that can be expanded and contracted in a direction perpendicular to the movable direction of the vehicle 10 instead of the tiltable property. For example, the spring member 35 may be configured to be maintained in a contracted state until the vehicle stops, and to extend when the vehicle stops. As the spring member 35 extends until the metal pipe 33 touches the heat transfer plate 31, the cooling water in the metal pipe 33 passes through the heat transfer plate 31 to the vehicle 10 (the power reception coil 11, the power reception circuit 12 or the storage battery 13). Can be cooled.

(第3実施形態)
次に、本発明の第3実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
図4は、本発明の第3実施形態における可撓性伝熱部材32を示す断面構成図である。
第3実施形態では、図4に示すように、可撓性伝熱部材32が冷却水の注入により伝熱板31に接触する膨縮部材36を含む点で、上記実施形態と異なる。
(Third embodiment)
Next, a third embodiment of the present invention will be described. In the following description, the same or equivalent components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
FIG. 4 is a cross-sectional configuration diagram showing the flexible heat transfer member 32 in the third embodiment of the present invention.
As shown in FIG. 4, the third embodiment differs from the above embodiment in that the flexible heat transfer member 32 includes an expansion / contraction member 36 that contacts the heat transfer plate 31 by injecting cooling water.

膨縮部材36は、停車ステーション20側に設けられたエラストマー等からなる伸縮自在な性質を有する可撓性樹脂材である。伸縮方向は、車両10の移動自在な方向の垂直方向である。膨縮部材36は、先端が閉塞された棒状のチューブ体であり、冷却水注入装置37と接続されている。冷却水注入装置(冷媒注入装置)37は、例えば上水道等と接続されており、不図示の弁を開閉することにより、所定の水圧で膨縮部材36に冷媒としての冷却水を注入可能な構成となっている。膨縮部材36は、冷却水の注入前は、図4において点線で示すように収縮状態となっているが、冷却水の注入により棒状に起立して伝熱板31と接触する構成となっている。   The expansion / contraction member 36 is a flexible resin material having a stretchable property made of an elastomer or the like provided on the stop station 20 side. The expansion / contraction direction is a direction perpendicular to the direction in which the vehicle 10 is movable. The expansion / contraction member 36 is a rod-like tube body with a closed end, and is connected to a cooling water injection device 37. The cooling water injection device (refrigerant injection device) 37 is connected to, for example, a water supply or the like, and can open and close a valve (not shown) to inject cooling water as a refrigerant into the expansion / contraction member 36 with a predetermined water pressure. It has become. The expansion / contraction member 36 is in a contracted state as indicated by a dotted line in FIG. 4 before the cooling water is injected. However, the expansion / contraction member 36 stands in a rod shape by the injection of the cooling water and comes into contact with the heat transfer plate 31. Yes.

車両10が風などの影響で横方向に揺れて伝熱板31が位置ずれした場合にも、膨縮部材36は伸縮自在な性質を有するため、膨縮部材36と伝熱板31の接触状態を保持することができ、膨縮部材36内の冷媒によって伝熱板31を冷却することができる。
さらに、膨縮部材36は伝熱板31のどの位置に接触しても伝熱板31を冷却することが可能なので、車両10が停車後に、膨縮部材36内に冷媒を注入して膨縮部材36を伝熱板31と接触させるように動作させることにより、車両10の停車位置がずれていても、膨縮部材36を伝熱板31に接触させて冷却することができる。なお、膨縮部材36は、変形可能な材質で構成されているため、伸縮自在な性質だけでなく、車両10の移動自在な方向に傾倒自在な性質を有していてもよい。
Since the expansion / contraction member 36 has the property of being expandable / contractable even when the vehicle 10 is swung laterally due to the wind or the like and the heat transfer plate 31 is displaced, the contact state between the expansion / contraction member 36 and the heat transfer plate 31. The heat transfer plate 31 can be cooled by the refrigerant in the expansion / contraction member 36.
Further, since the expansion / contraction member 36 can cool the heat transfer plate 31 regardless of the position of the heat transfer plate 31, after the vehicle 10 stops, the refrigerant is injected into the expansion / contraction member 36 to expand / contract. By operating the member 36 so as to be in contact with the heat transfer plate 31, the expansion / contraction member 36 can be brought into contact with the heat transfer plate 31 and cooled even when the stop position of the vehicle 10 is shifted. In addition, since the expansion / contraction member 36 is made of a deformable material, the expansion / contraction member 36 may have not only a stretchable property but also a property that allows the vehicle 10 to tilt in a movable direction.

また、膨縮部材36の表面をアルミコーティングしたり、膨縮部材36の表面に膨縮を妨げない細い金属線を網目状に若しくは伝熱板31に接する面から地面に向かう方向に複数貼り付けておくことにより、膨縮部材36が冷却水の注入により棒状に起立して伝熱板31と接触するとき、アルミコーティングないし金属線を通して地上側で伝熱板31の電気的接地をとることができる。
さらに、伝熱板31と接触し熱を除去するために、時間が経つにつれ膨縮部材36内に注入された冷却水が加熱されて冷却能力が低下するが、排水弁(図示せず)の操作により加熱された冷却水を膨縮部材36から排出し、改めて冷たい冷却水を膨縮部材36に注入することにより、冷却能力を保つことができる。
Also, the surface of the expansion / contraction member 36 is coated with aluminum, or a plurality of thin metal wires that do not hinder expansion / contraction are attached to the surface of the expansion / contraction member 36 in a mesh shape or in a direction from the surface in contact with the heat transfer plate 31 toward the ground. Therefore, when the expansion / contraction member 36 stands in a rod shape by the injection of cooling water and comes into contact with the heat transfer plate 31, it is possible to electrically ground the heat transfer plate 31 on the ground side through an aluminum coating or a metal wire. it can.
Furthermore, in order to contact the heat transfer plate 31 and remove the heat, the cooling water injected into the expansion / contraction member 36 is heated with time, and the cooling capacity is reduced, but the drainage valve (not shown) Cooling capacity can be maintained by discharging the cooling water heated by the operation from the expansion / contraction member 36 and injecting cold cooling water into the expansion / contraction member 36 again.

上記構成の第3実施形態によれば、伝熱板31に冷却水が注入された膨縮部材36を押し付けて車両10側の熱を奪うことができる。また、冷却水が注入された膨縮部材36の作用により、可撓性伝熱部材32は、車両10が移動自在な方向に傾倒自在となるため、車両10と停車ステーション20との位置ずれを許容し、位置決めに時間を要することなく、非接触給電により発生した熱を除去することができる。また、膨縮部材36から冷却水を抜けば、伝熱板31等と非接触になるため、車両10側が擦れてしまうことがない。   According to the third embodiment having the above-described configuration, the heat on the vehicle 10 side can be taken away by pressing the expansion / contraction member 36 into which the cooling water is injected into the heat transfer plate 31. In addition, the flexible heat transfer member 32 can be tilted in the direction in which the vehicle 10 is movable by the action of the expansion / contraction member 36 into which the cooling water is injected, so that the positional deviation between the vehicle 10 and the stop station 20 is prevented. The heat generated by the non-contact power feeding can be removed without allowing time for positioning. Further, if the cooling water is removed from the expansion / contraction member 36, the vehicle 10 side is not rubbed because it is not in contact with the heat transfer plate 31 and the like.

(第4実施形態)
次に、本発明の第4実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
図5は、本発明の第4実施形態における可撓性伝熱部材32を示す断面構成図である。
第4実施形態では、図5に示すように、膨縮部材36がアーチ状のチューブ体である点で、上記実施形態と異なる。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described. In the following description, the same or equivalent components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
FIG. 5 is a cross-sectional configuration diagram showing the flexible heat transfer member 32 in the fourth embodiment of the present invention.
As shown in FIG. 5, the fourth embodiment is different from the above-described embodiment in that the expansion / contraction member 36 is an arched tube body.

第4実施形態における膨縮部材36は、一端と他端が所定の距離をあけて路面2に配置されたチューブ体であり、循環型冷却水注入装置38と接続されている。循環型冷却水注入装置38は、例えば上水道等と接続されており、不図示の弁を開閉することにより、膨縮部材36の一端から他端に流れる冷却水の循環流れを形成する構成となっている。膨縮部材36は、冷却水の注入前は、図5において点線で示すように収縮状態となっているが、冷却水の注入によりアーチ状に起立して伝熱板31と接触する構成となっている。   The expansion / contraction member 36 in the fourth embodiment is a tube body in which one end and the other end are disposed on the road surface 2 with a predetermined distance therebetween, and is connected to a circulating cooling water injection device 38. The circulating cooling water injecting device 38 is connected to, for example, a water supply or the like, and forms a circulating flow of cooling water flowing from one end to the other end of the expansion / contraction member 36 by opening and closing a valve (not shown). ing. The expansion / contraction member 36 is in a contracted state as indicated by a dotted line in FIG. 5 before the cooling water is injected, but is configured to stand up in an arch shape and come into contact with the heat transfer plate 31 by the injection of the cooling water. ing.

なお、膨縮部材36の表面をアルミコーティングしたり、膨縮部材36の表面に膨縮を妨げない細い金属線を網目状にもしくは伝熱板31に接する面から地面に向かう方向に複数貼り付けておくことにより、膨縮部材36が冷却水の注入によりアーチ状に起立して伝熱板31と接触するとき、アルミコーティングないし金属線を通して地上側で伝熱板31の電気的接地をとることができる。   In addition, the surface of the expansion / contraction member 36 is coated with aluminum, or a plurality of thin metal wires that do not prevent expansion / contraction are attached to the surface of the expansion / contraction member 36 in a mesh shape or in a direction from the surface in contact with the heat transfer plate 31 toward the ground. Therefore, when the expansion / contraction member 36 stands in an arch shape by injecting cooling water and comes into contact with the heat transfer plate 31, the heat transfer plate 31 is electrically grounded on the ground side through an aluminum coating or a metal wire. Can do.

上記構成の第4実施形態によれば、伝熱板31に冷却水が注入された膨縮部材36を押し付けて車両10側の熱を奪うことができる。また、第4実施形態における膨縮部材36によれば、内部の冷却水が循環して入れ替わるため、長時間に亘って車両10側を冷却することができる。このため、非接触給電が長時間に亘る場合であっても、例えば、第3実施形態のように、冷却水注入装置37が間欠的に弁を開閉し、冷却水の排出と注入を切り替えて内部の冷却水を取り換える、といった操作を必要としない。   According to the fourth embodiment having the above-described configuration, the heat on the vehicle 10 side can be taken away by pressing the expansion / contraction member 36 into which the cooling water is injected into the heat transfer plate 31. Moreover, according to the expansion / contraction member 36 in 4th Embodiment, since the internal cooling water circulates and replaces, the vehicle 10 side can be cooled over a long time. For this reason, even if the non-contact power supply is performed for a long time, for example, as in the third embodiment, the cooling water injection device 37 intermittently opens and closes the valve to switch between discharge and injection of the cooling water. There is no need to change the internal cooling water.

また、冷却水が注入された膨縮部材36の作用により、可撓性伝熱部材32は、車両10が移動自在な方向に傾倒自在となるため、車両10と停車ステーション20との位置ずれを許容し、位置決めに時間を要することなく、非接触給電により発生した熱を除去することができる。また、膨縮部材36から冷却水を抜けば、伝熱板31等と非接触になるため、車両10側が擦れてしまうことがない。   In addition, the flexible heat transfer member 32 can be tilted in the direction in which the vehicle 10 is movable by the action of the expansion / contraction member 36 into which the cooling water is injected, so that the positional deviation between the vehicle 10 and the stop station 20 is prevented. The heat generated by the non-contact power feeding can be removed without allowing time for positioning. Further, if the cooling water is removed from the expansion / contraction member 36, the vehicle 10 side is not rubbed because it is not in contact with the heat transfer plate 31 and the like.

以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   As mentioned above, although preferred embodiment of this invention was described referring drawings, this invention is not limited to the said embodiment. Various shapes, combinations, and the like of the constituent members shown in the above-described embodiments are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

なお、上記実施形態では、金属パイプ33を渦巻き状に配管した構成について説明したが、この構成に限定されることなく、例えば図6に示すように、給電コイル21の周りに、矩形状に配管した金属パイプ33を多重に配置してもよい。また、例えば、図7に示すように、給電コイル21の周りにはしご状に金属パイプ33を配管してもよい。
また、例えば、上記実施形態では、金属パイプ33を流通する冷媒、また膨縮部材36に注入される冷媒として冷却水を例示したが、水以外の液体を使用してもよい。
In the above-described embodiment, the configuration in which the metal pipe 33 is spirally connected has been described. However, the configuration is not limited to this configuration. For example, as shown in FIG. Multiple metal pipes 33 may be arranged. For example, as shown in FIG. 7, a metal pipe 33 may be provided around the feeding coil 21 in a ladder shape.
For example, in the said embodiment, although cooling water was illustrated as a refrigerant | coolant which distribute | circulates the metal pipe 33 and the refrigerant | coolant injected into the expansion / contraction member 36, you may use liquids other than water.

また、例えば、第1実施形態ないし第2実施形態において、地上側の熱容量が大きければ、冷却水を使用せず、金属パイプ33に伝わった熱を直接地面に伝熱してもよい。なお、第2実施形態の場合、バネ部材35として金属など熱伝導性の高い材料のものを使用する。この場合、金属パイプ33の代わりに金属板を使用し、金属板に金属ブラシを植設してもよい。   Further, for example, in the first to second embodiments, if the heat capacity on the ground side is large, the heat transmitted to the metal pipe 33 may be directly transferred to the ground without using the cooling water. In the case of the second embodiment, the spring member 35 is made of a material having high thermal conductivity such as metal. In this case, a metal plate may be used instead of the metal pipe 33, and a metal brush may be planted on the metal plate.

また、例えば、上記実施形態では、可撓性伝熱部材32は、伝熱板31と接触すると説明したが、この構成に限定されることなく、例えば車両10のボディーが伝熱板31としても機能してもよく、伝熱板31が受電コイル11のシールド板と兼用でもよい。   Further, for example, in the above embodiment, the flexible heat transfer member 32 has been described as being in contact with the heat transfer plate 31, but the present invention is not limited to this configuration. For example, the body of the vehicle 10 may be used as the heat transfer plate 31. The heat transfer plate 31 may also function as the shield plate of the power receiving coil 11.

伝熱板31が上記シールド板としてのシールド機能を備える場合、伝熱板31を熱伝導性及び電気伝導性が高く、かつ、非磁性の材料で形成する必要がある。このような3つの条件を満足する材料は、例えば銅やアルミニウムである。また、伝熱板31の全体を上記3つの条件を満足する材料で形成する必要はなく、例えば伝熱板31において受電コイル11に面する面だけを所定厚さに亘って上記3つの条件を満足する材料で形成してもよく、あるいは上記受電コイル11に面する面において受電コイル11の近傍部位および周辺部位のうち非接触給電時に磁界が発生しシールドすることが望ましい領域のみを上記3つの条件を満足する材料で形成してもよい。   When the heat transfer plate 31 has a shielding function as the shield plate, the heat transfer plate 31 needs to be formed of a nonmagnetic material having high thermal conductivity and electrical conductivity. A material that satisfies these three conditions is, for example, copper or aluminum. Further, it is not necessary to form the entire heat transfer plate 31 with a material that satisfies the above three conditions. For example, only the surface of the heat transfer plate 31 that faces the power receiving coil 11 covers the predetermined thickness. It may be made of a material that satisfies the requirements, or, in the surface facing the power receiving coil 11, only the three regions that are desired to be shielded by generating a magnetic field at the time of non-contact power feeding out of the vicinity of the power receiving coil 11 and the peripheral portions. You may form with the material which satisfy | fills conditions.

また、例えば、車両10が移動するときに、第1実施形態においては傾倒された可撓性伝熱部材32が受電コイル11と擦れることによる受電コイル11への影響を低減し、第2実施形態においては収縮したバネ部材35により上向きに付勢される金属パイプ33が受電コイル11と擦れることによる受電コイル11への影響を低減するために、図8に示すような窪みを有する伝熱板31の形状とし、受電コイル11の下面が伝熱板31より突出しないようにしてもよい。なお、図8は、第2実施形態に適用した例を示している。受電コイル11の周辺は、シール材39を配置し、電磁界Aを遮らない素材、例えばエンジニアリングプラスチック材料や樹脂材料やFRP(Fiber Reinforced Plastics)を用いて伝熱板31の下面と同一面を形成すればよい。   Further, for example, when the vehicle 10 moves, in the first embodiment, the influence of the tilted flexible heat transfer member 32 on the power receiving coil 11 due to rubbing against the power receiving coil 11 is reduced. In order to reduce the influence on the power receiving coil 11 due to the metal pipe 33 urged upward by the contracted spring member 35 being rubbed against the power receiving coil 11, a heat transfer plate 31 having a depression as shown in FIG. The lower surface of the power receiving coil 11 may not protrude from the heat transfer plate 31. FIG. 8 shows an example applied to the second embodiment. A sealing material 39 is disposed around the power receiving coil 11 and the same surface as the lower surface of the heat transfer plate 31 is formed using a material that does not block the electromagnetic field A, such as an engineering plastic material, a resin material, or FRP (Fiber Reinforced Plastics). do it.

また、例えば、上記実施形態では、地上側の停車ステーション20から給電して車両10の底部に給電すると説明したが、給電の方向性は問わない。例えば、壁から車両10の側部あるいは前部あるいは後部に給電してもよいし、天井から車両10の屋根部に給電する構成であってもよい。   For example, in the above-described embodiment, power is supplied from the stop station 20 on the ground side and power is supplied to the bottom of the vehicle 10, but the direction of power supply is not limited. For example, power may be supplied from the wall to the side portion, front portion, or rear portion of the vehicle 10, or the roof portion of the vehicle 10 may be supplied from the ceiling.

また、例えば、上記実施形態では、受電装置が車両10で給電装置が停車ステーション20である場合を例示したが、この構成に限定されることなく、例えば受電装置が停車ステーション20で給電装置が車両10であってもよい。また、本発明は、受電装置及び給電装置の少なくともいずれか一方が、車両であっても、船舶や潜水艦、航空機等の移動体等であっても適用することができる。   Further, for example, in the above-described embodiment, the case where the power receiving device is the vehicle 10 and the power feeding device is the stop station 20 is illustrated. However, the present invention is not limited to this configuration, and for example, the power receiving device is the stop station 20 and the power feeding device is the vehicle. It may be 10. Further, the present invention can be applied even if at least one of the power receiving device and the power feeding device is a vehicle, or a moving body such as a ship, a submarine, or an aircraft.

また、例えば、本発明は大きな位置ずれを許容可能な磁界共鳴方式の非接触給電と組み合わせることにより特に効果を発揮するが、電磁誘導方式など他の方式の非接触給電と組み合わせても非接触給電により発生する熱を放熱することができる。また、受電コイル11、給電コイル21の大きさ、形式、形状は非接触給電が可能であれば任意であり、受電コイル11と給電コイル21で大きさ、形式、形状が異なっていてもよい。可撓性伝熱部材32は非接触給電を妨げないような位置、すなわち電磁界Aに影響しないような距離を置いて受電コイル11および給電コイル21を囲む位置に配置すればよい。   In addition, for example, the present invention is particularly effective when combined with a magnetic resonance type non-contact power supply that can tolerate a large misalignment. However, the non-contact power supply can be combined with other types of non-contact power supply such as an electromagnetic induction type. The heat generated by can be dissipated. The sizes, types, and shapes of the power receiving coil 11 and the power feeding coil 21 are arbitrary as long as non-contact power feeding is possible, and the power receiving coil 11 and the power feeding coil 21 may have different sizes, types, and shapes. The flexible heat transfer member 32 may be disposed at a position that does not interfere with non-contact power feeding, that is, a position that surrounds the power receiving coil 11 and the power feeding coil 21 with a distance that does not affect the electromagnetic field A.

また、上記各実施形態の伝熱板31は受電コイル11で発生する熱の伝導(熱伝導)を主機能とする平板状の伝熱部材であるが、本発明はこれに限定されない。本発明の伝熱部材は、平板状に限定されるものではなく、例えばヒートシンクのように板状部位に多数の放熱フィン(放熱リブ)が立設されたブロック状の部材あるいはアルミフォイルのように薄状の部材でもよい。例えば、本発明の伝熱部材を放熱フィンを備える形状とした場合には、受電コイル11で発生した熱の放熱効果を高めることができるので、受電コイル11の冷却効果をさらに高めることが可能となる。
また、例えば、上記各実施形態の構成の置換、組み合わせは適宜可能である。
Moreover, although the heat-transfer plate 31 of each said embodiment is a flat heat-transfer member which makes the main function the conduction (heat conduction) of the heat which generate | occur | produces in the receiving coil 11, this invention is not limited to this. The heat transfer member of the present invention is not limited to a flat plate shape. For example, a block-like member in which a large number of heat radiation fins (heat radiation ribs) are erected on a plate-like portion such as a heat sink or an aluminum foil. A thin member may be used. For example, when the heat transfer member of the present invention has a shape including heat radiation fins, the heat dissipation effect of heat generated in the power reception coil 11 can be enhanced, and therefore the cooling effect of the power reception coil 11 can be further enhanced. Become.
Further, for example, substitution and combination of the configurations of the above-described embodiments are possible as appropriate.

なお、本発明における受電コイル11、給電コイル21は、コイル形状に巻いた電線材やコア、共振用コンデンサだけでなく、電線材をコイル形状に保持するための巻枠や押さえ枠、充填材、共振用コンデンサを電気的に接続するための電線や共振用コンデンサを保持するための保持材、これらを保護のためのケースなど、受電コイル11や給電コイル21が機構的に機能を発揮するための要素も含むものである。   Note that the power receiving coil 11 and the power feeding coil 21 in the present invention include not only a wire material and a core wound in a coil shape and a resonance capacitor, but also a winding frame and a holding frame for holding the wire material in a coil shape, a filler, For the receiving coil 11 and the feeding coil 21 to exert their functions mechanically, such as an electric wire for electrically connecting the resonance capacitor, a holding material for holding the resonance capacitor, and a case for protecting them. It also includes elements.

1…非接触給電システム、10…車両(受電装置)、11…受電コイル、20…停車ステーション(給電装置)、21…給電コイル、30…伝熱装置、31…伝熱板(伝熱部材)、32…可撓性伝熱部材、33…金属パイプ、35…バネ部材、36…膨縮部材   DESCRIPTION OF SYMBOLS 1 ... Non-contact electric power feeding system, 10 ... Vehicle (power receiving device), 11 ... Power receiving coil, 20 ... Stop station (power feeding device), 21 ... Power feeding coil, 30 ... Heat transfer device, 31 ... Heat transfer plate (heat transfer member) 32 ... Flexible heat transfer member, 33 ... Metal pipe, 35 ... Spring member, 36 ... Expansion / contraction member

Claims (13)

少なくとも一方が移動自在な非接触給電用の給電装置と受電装置との間で熱を伝える伝熱装置であって、
前記受電装置及び前記給電装置のうち一方から他方に前記非接触給電により発生した熱を伝熱し、前記移動自在な方向に傾倒自在な性質、又は前記方向の垂直方向に伸縮自在な性質の少なくとも一方を有する可撓性伝熱部材を有する伝熱装置。
A heat transfer device for transferring heat between a power supply device for non-contact power supply and a power reception device, at least one of which is movable,
At least one of the property of transferring the heat generated by the non-contact power supply from one of the power receiving device and the power feeding device to the other and being tiltable in the movable direction or the property of being stretchable in the direction perpendicular to the direction. A heat transfer device having a flexible heat transfer member.
前記受電装置及び前記給電装置は、前記非接触給電を行うコイルをそれぞれ有しており、
前記受電装置及び前記給電装置のうち一方の前記コイルの周囲に設けられた伝熱部材と、
前記受電装置及び前記給電装置のうち他方の前記コイルの周囲に立設し、前記伝熱部材と熱的に結合する前記可撓性伝熱部材と、を有する、ことを特徴とする請求項1に記載の伝熱装置。
The power receiving device and the power feeding device each have a coil that performs the contactless power feeding,
A heat transfer member provided around one of the coils of the power receiving device and the power feeding device;
2. The flexible heat transfer member, which stands up around the other coil of the power receiving device and the power supply device, and is thermally coupled to the heat transfer member. The heat transfer device described in 1.
前記可撓性伝熱部材は、電気的に接地している、ことを特徴とする請求項2に記載の伝熱装置。   The heat transfer device according to claim 2, wherein the flexible heat transfer member is electrically grounded. 前記可撓性伝熱部材は、金属ブラシを含む、ことを特徴とする請求項3に記載の伝熱装置。   The heat transfer device according to claim 3, wherein the flexible heat transfer member includes a metal brush. 前記金属ブラシは、冷媒が流通する金属パイプに植設されている、ことを特徴とする請求項4に記載の伝熱装置。   The heat transfer device according to claim 4, wherein the metal brush is implanted in a metal pipe through which a refrigerant flows. 前記可撓性伝熱部材は、バネ部材を含む、ことを特徴とする請求項2または3に記載の伝熱装置。   The heat transfer device according to claim 2, wherein the flexible heat transfer member includes a spring member. 前記バネ部材は、冷媒が流通する金属パイプを前記伝熱部材に付勢する、ことを特徴とする請求項6に記載の伝熱装置。   The heat transfer device according to claim 6, wherein the spring member urges a metal pipe through which a refrigerant flows to the heat transfer member. 前記可撓性伝熱部材は、冷媒の注入により前記伝熱部材に接触する膨縮部材を含む、ことを特徴とする請求項2または3に記載の伝熱装置。   4. The heat transfer device according to claim 2, wherein the flexible heat transfer member includes an expansion / contraction member that contacts the heat transfer member by injection of a refrigerant. 5. 前記膨縮部材は、棒状のチューブ体及びアーチ状のチューブ体の少なくともいずれか一方を含む、ことを特徴とする請求項8に記載の伝熱装置。   The heat transfer device according to claim 8, wherein the expansion / contraction member includes at least one of a rod-shaped tube body and an arch-shaped tube body. 前記受電装置及び前記給電装置のうち一方は、車両であり、
前記受電装置及び前記給電装置のうち他方は、前記車両が停車する停車ステーションである、ことを特徴とする請求項1〜9のいずれか一項に記載の伝熱装置。
One of the power receiving device and the power feeding device is a vehicle,
The heat transfer device according to any one of claims 1 to 9, wherein the other of the power reception device and the power supply device is a stop station where the vehicle stops.
前記伝熱部材はシールド機能を備えることを特徴とする請求項2に記載の伝熱装置。   The heat transfer device according to claim 2, wherein the heat transfer member has a shielding function. 受電装置と非接触給電を行う給電装置において、少なくとも一方が移動自在な前記受電装置及び前記給電装置のうち一方から他方に前記非接触給電により発生した熱を伝熱する伝熱装置を有する給電装置であって、前記伝熱装置は、前記移動自在な方向に傾倒自在な性質、又は当該方向の垂直方向に伸縮自在な性質の少なくとも一方を有する可撓性伝熱部材を有する給電装置。   A power feeding device that performs non-contact power feeding with a power receiving device, wherein the power feeding device includes a heat transfer device that transfers heat generated by the non-contact power feeding from one of the power receiving device and the power feeding device at least one of which is movable. And the said heat-transfer apparatus is a electric power feeder which has a flexible heat-transfer member which has at least one of the property which can be tilted to the said movable direction, or the property which can be expanded-contracted to the orthogonal | vertical direction of the said direction. 少なくとも一方が移動自在な受電装置と給電装置との間で非接触給電を行う非接触給電システムであって、
前記受電装置及び前記給電装置のうち、一方から他方に前記非接触給電により発生した熱を伝熱するための伝熱装置を有し、
前記伝熱装置は、前記移動自在な方向に傾倒自在な性質、又は前記方向の垂直方向に伸縮自在な性質の少なくとも一方を有する可撓性伝熱部材を有する非接触給電システム。
A non-contact power feeding system that performs non-contact power feeding between a power receiving device and a power feeding device, at least one of which is movable,
A heat transfer device for transferring heat generated by the non-contact power supply from one to the other of the power receiving device and the power supply device;
The heat transfer device is a non-contact power supply system including a flexible heat transfer member having at least one of a property that can be tilted in the movable direction and a property that can be expanded and contracted in a direction perpendicular to the direction.
JP2014023669A 2013-02-08 2014-02-10 Heat transfer device, power supply device and non-contact power supply system Active JP6171971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014023669A JP6171971B2 (en) 2013-02-08 2014-02-10 Heat transfer device, power supply device and non-contact power supply system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013023761 2013-02-08
JP2013023761 2013-02-08
JP2014023669A JP6171971B2 (en) 2013-02-08 2014-02-10 Heat transfer device, power supply device and non-contact power supply system

Publications (2)

Publication Number Publication Date
JP2014171381A true JP2014171381A (en) 2014-09-18
JP6171971B2 JP6171971B2 (en) 2017-08-02

Family

ID=51693364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014023669A Active JP6171971B2 (en) 2013-02-08 2014-02-10 Heat transfer device, power supply device and non-contact power supply system

Country Status (1)

Country Link
JP (1) JP6171971B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790448A (en) * 2016-04-19 2016-07-20 上海交通大学 Electric automobile wireless charging coil apparatus capable of effectively increasing coupling coefficient
JP2016522537A (en) * 2013-04-18 2016-07-28 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for adjusting the temperature of a traction battery arranged in a vehicle during a charging process at a charging station, and a charging station for performing such a method
WO2018235898A1 (en) * 2017-06-22 2018-12-27 株式会社Ihi Coil device
JP2019001305A (en) * 2017-06-15 2019-01-10 株式会社Subaru Battery cooling control device and battery cooling control method, and electric vehicle
CN110316006A (en) * 2019-07-29 2019-10-11 重庆长安新能源汽车科技有限公司 A kind of electric car charging onboard equipment cooling control system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130177A (en) * 2010-12-16 2012-07-05 Hitachi Maxell Energy Ltd Charging system, electric apparatus provided with power reception device, and charger provided with power supply device
JP2012216569A (en) * 2011-03-31 2012-11-08 Equos Research Co Ltd Power transmission system
JP2012222956A (en) * 2011-04-08 2012-11-12 Toyota Motor Corp Vehicle-side coil unit, equipment-side coil unit, and power transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130177A (en) * 2010-12-16 2012-07-05 Hitachi Maxell Energy Ltd Charging system, electric apparatus provided with power reception device, and charger provided with power supply device
JP2012216569A (en) * 2011-03-31 2012-11-08 Equos Research Co Ltd Power transmission system
JP2012222956A (en) * 2011-04-08 2012-11-12 Toyota Motor Corp Vehicle-side coil unit, equipment-side coil unit, and power transmission system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522537A (en) * 2013-04-18 2016-07-28 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for adjusting the temperature of a traction battery arranged in a vehicle during a charging process at a charging station, and a charging station for performing such a method
US10017072B2 (en) 2013-04-18 2018-07-10 Roberts Bosch Gmbh Method for the temperature control of a traction battery arranged in a vehicle during a charging process at a charging station, and charging station for performing such a method
CN105790448A (en) * 2016-04-19 2016-07-20 上海交通大学 Electric automobile wireless charging coil apparatus capable of effectively increasing coupling coefficient
CN105790448B (en) * 2016-04-19 2018-12-18 上海交通大学 The electric car wireless charging electric wire coil apparatus of the coefficient of coup can be effectively improved
JP2019001305A (en) * 2017-06-15 2019-01-10 株式会社Subaru Battery cooling control device and battery cooling control method, and electric vehicle
WO2018235898A1 (en) * 2017-06-22 2018-12-27 株式会社Ihi Coil device
JPWO2018235898A1 (en) * 2017-06-22 2019-12-19 株式会社Ihi Coil device
US11456110B2 (en) 2017-06-22 2022-09-27 Ihi Corporation Coil device
CN110316006A (en) * 2019-07-29 2019-10-11 重庆长安新能源汽车科技有限公司 A kind of electric car charging onboard equipment cooling control system and method
CN110316006B (en) * 2019-07-29 2022-06-14 重庆长安新能源汽车科技有限公司 Cooling control system and method for charging vehicle-mounted equipment of electric vehicle

Also Published As

Publication number Publication date
JP6171971B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
US9854709B2 (en) Heat-transfer device, power-supplying device, and wireless power-supplying system
JP6171971B2 (en) Heat transfer device, power supply device and non-contact power supply system
US20190255961A1 (en) Charging system having an integrated coolant reservoir
US9550427B2 (en) Contactless power supply device
US11521789B2 (en) Actively cooled infrastructure side of an inductive charging system
US8535823B2 (en) Cooling device of battery pack
CN105810400A (en) Cooling device used for transformer
JP5725316B2 (en) Secondary battery and battery pack
JP2007273774A (en) Capacitor cooling structure and power converter
US20140284028A1 (en) Cooler
KR20170003663U (en) Electric transformer
JP7259561B2 (en) Temperature control system with wire
US10906418B2 (en) Apparatus for charging a plurality of electric vehicles
US20240157827A1 (en) Cooling device for cooling at least one electric line which is connected to a plug connector part
US20190086157A1 (en) Cooling system, cooler, and cooling method
EP3904149A1 (en) Charger plug nozzle
CN112582147B (en) Cooling device of transformer
KR20130129669A (en) Electric power supply apparatus for vehicles
KR102527454B1 (en) Apparatus for cooling converter and method for manufacturing the same
CN114746711A (en) Cooling device and power conversion device
JP6171880B2 (en) Contactless power supply system
CN217691325U (en) Battery pack
CN108775827A (en) Oscillating heat pipe and the method for realizing high charge download cable heat dissipation using oscillating heat pipe
US20230158904A1 (en) EV Charging Connector with Thermal Inertia and Method
CN220627909U (en) BDU cooling system and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R151 Written notification of patent or utility model registration

Ref document number: 6171971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250