JP2014170826A - Wiring structure, method for forming wiring, and electronic device - Google Patents
Wiring structure, method for forming wiring, and electronic device Download PDFInfo
- Publication number
- JP2014170826A JP2014170826A JP2013041653A JP2013041653A JP2014170826A JP 2014170826 A JP2014170826 A JP 2014170826A JP 2013041653 A JP2013041653 A JP 2013041653A JP 2013041653 A JP2013041653 A JP 2013041653A JP 2014170826 A JP2014170826 A JP 2014170826A
- Authority
- JP
- Japan
- Prior art keywords
- wiring
- graphene
- graphene film
- conductor
- polycrystalline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
この発明は、グラフェンを利用した配線構造、配線形成方法ならびに当該配線構造を有する電子デバイスに関するものである。 The present invention relates to a wiring structure using graphene, a wiring forming method, and an electronic device having the wiring structure.
半導体装置や液晶表示装置などの電子デバイスにおける配線として、例えばアルミニウム、アルミニウム合金、銅、銅合金などが多用されている。近年、電子デバイスの小型化や高集積化に伴って配線の微細化を図る必要があり、配線の抵抗値を低減させることが非常に重要となっている。そこで、配線本体の内部に存在する結晶粒界の密度を低減して配線の抵抗値を低下させる技術が提案されている(例えば特許文献1参照)。 As wiring in electronic devices such as semiconductor devices and liquid crystal display devices, for example, aluminum, aluminum alloys, copper, copper alloys, and the like are frequently used. In recent years, it has been necessary to miniaturize wiring along with miniaturization and high integration of electronic devices, and it has become very important to reduce the resistance value of wiring. Therefore, a technique has been proposed in which the density of crystal grain boundaries existing inside the wiring body is reduced to lower the resistance value of the wiring (for example, see Patent Document 1).
このように特許文献1では、配線が多結晶導電体で構成されており、当該配線の抵抗値が結晶粒界の密度により影響される点に着目し、配線の抵抗値を低減させる具体的な技術が提案されている。しかしながら、結晶粒界の密度低減による抵抗値の低減効果には限界があり、抵抗値をさらに低減させるための技術が要望されている。 As described above, in Patent Document 1, the wiring is made of a polycrystalline conductor, and attention is paid to the fact that the resistance value of the wiring is influenced by the density of the crystal grain boundary. Technology has been proposed. However, the effect of reducing the resistance value by reducing the density of crystal grain boundaries is limited, and a technique for further reducing the resistance value is desired.
この発明は上記課題に鑑みてなされたものであり、多結晶導電体で構成される配線の抵抗値を低減させることができる技術、および当該技術を用いた電子デバイスを提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a technique capable of reducing the resistance value of a wiring composed of a polycrystalline conductor, and an electronic device using the technique. .
この発明にかかる配線構造は、多結晶導電体上に、複数のグラフェンドメインを有するグラフェンが単層または複数層積層してなるグラフェン膜が形成されることを特徴としている。また、この発明にかかる配線形成方法は、基材上に多結晶導電体を形成する導電体形成工程と、多結晶導電体上に、複数のグラフェンドメインを有するグラフェンを単層または複数層積層してグラフェン膜を形成するグラフェン膜形成工程とを備えることを特徴としている。このように構成された発明では、後で詳述するように、多結晶導電体上にグラフェン膜を形成するという配線構造を採用することで、多結晶導電体の抵抗値が大幅に低下する。 The wiring structure according to the present invention is characterized in that a graphene film formed by stacking a single layer or a plurality of layers of graphene having a plurality of graphene domains is formed on a polycrystalline conductor. The wiring forming method according to the present invention includes a conductor forming step of forming a polycrystalline conductor on a substrate, and a single layer or a plurality of layers of graphene having a plurality of graphene domains on the polycrystalline conductor. And a graphene film forming step of forming a graphene film. In the invention configured as described above, as described in detail later, the resistance value of the polycrystalline conductor is significantly reduced by adopting a wiring structure in which a graphene film is formed on the polycrystalline conductor.
ここで、上記した電気抵抗の低減現象が発生する原理については、現在鋭意検証中であり、明確なものとなっていない。しかしながら、具体的な実験結果からグラフェンドメインが多結晶導電体の結晶粒界の上方において結晶粒界を挟んで隣接する多結晶導電体の結晶間をまたがって位置していることが電気抵抗の低減に大きく寄与していることがわかった。 Here, the principle that the above-described phenomenon of reduction in electrical resistance occurs is currently being intensively verified and is not clear. However, the specific experimental results indicate that the graphene domain is located above the crystal grain boundary of the polycrystalline conductor across the crystal grain boundary and between adjacent polycrystalline conductor crystals to reduce electrical resistance. It was found that it contributed greatly to.
また、多結晶導電体の抵抗値を低下させるために、上記したようにグラフェン膜との組み合わせ効果のみならず、多結晶導電体自体の抵抗値を低下させるのが望ましい。そのため、グラフェン膜形成工程を実行する前に、多結晶導電体をアニールするのが好適である。 In addition, in order to reduce the resistance value of the polycrystalline conductor, it is desirable to reduce not only the combined effect with the graphene film as described above but also the resistance value of the polycrystalline conductor itself. Therefore, it is preferable to anneal the polycrystalline conductor before executing the graphene film forming step.
なお、上記配線構造を有する構造体を電気配線として電子デバイスに用いると、電子デバイスの省電力化および高速化を図ることができる。 Note that when a structure having the above wiring structure is used as an electrical wiring in an electronic device, power saving and high speed of the electronic device can be achieved.
図1は、本発明にかかる配線形成方法の一実施形態を説明するための図であり、同図(a)は上記配線形成方法を実施するための配線製造システムの一例を示し、同図(b)は上記配線形成方法を説明するための模式図である。なお、同図(c)は、上記配線形成方法に直接関係するものではないが、上記配線形成方法により製造された配線の作用効果を説明するための参考図であり、同図(a)中のグラフェン成膜装置によるガラス基板へのグラフェン膜の製造を模式的に示す図である。 FIG. 1 is a view for explaining an embodiment of a wiring forming method according to the present invention. FIG. 1A shows an example of a wiring manufacturing system for carrying out the wiring forming method. FIG. 4B is a schematic diagram for explaining the wiring forming method. FIG. 4C is not directly related to the wiring formation method, but is a reference diagram for explaining the operation effect of the wiring manufactured by the wiring formation method. In FIG. It is a figure which shows typically manufacture of the graphene film to the glass substrate by the graphene film-forming apparatus of this.
配線製造システム1は、プラズマスパッタ装置2と、グラフェン成膜装置3とを有しており、ガラス基板などの基材4上に、多結晶導電体の一例として銅(Cu)を形成し、さらに銅配線上にグラフェン膜を成膜することで銅配線の抵抗値を大幅に低下させるものである。 The wiring manufacturing system 1 includes a plasma sputtering apparatus 2 and a graphene film forming apparatus 3, and forms copper (Cu) as an example of a polycrystalline conductor on a base material 4 such as a glass substrate. The resistance value of the copper wiring is greatly reduced by forming a graphene film on the copper wiring.
これらの装置のうちプラズマスパッタ装置2では、ガラス基板などの基材4が装置外部より処理チャンバの内部に搬入された(図中の矢印R1)後、処理チャンバ内が所定の真空度に達した状態で銅ターゲットがスパッタニングされ、これによって基材4の表面に薄膜状の銅配線5が被着される。本実施形態では、処理チャンバ内の温度200[゜C]に保った状態で30分スパッタリング処理を実行して基材4上に約200[nm]厚の銅配線5を形成した(b−1:導電体形成工程)。そして、処理チャンバから基材4を取り出し、当該基材4上に被着する銅配線5の抵抗値を計測したところ、25〜30[Ω]であった。 Among these apparatuses, in the plasma sputtering apparatus 2, after the base material 4 such as a glass substrate is carried into the processing chamber from the outside of the apparatus (arrow R1 in the figure), the inside of the processing chamber reaches a predetermined degree of vacuum. In this state, a copper target is sputtered, whereby a thin-film copper wiring 5 is deposited on the surface of the substrate 4. In the present embodiment, a sputtering process is performed for 30 minutes while maintaining the temperature in the processing chamber at 200 [° C.] to form a copper wiring 5 having a thickness of about 200 [nm] on the substrate 4 (b-1). : Conductor formation step). And when the base material 4 was taken out from the processing chamber and the resistance value of the copper wiring 5 deposited on the base material 4 was measured, it was 25 to 30 [Ω].
こうして銅配線5の形成が完了すると、銅配線5が形成された基材4は上記プラズマスパッタ装置2から取り出され、グラフェン成膜装置3に搬送される(同図中の矢印R2)。本実施形態で採用したグラフェン成膜装置3は、特開2012−20915号公報に記載された装置と同一構成を有している。すなわち、このグラフェン成膜装置3は、石英管から成るCVD(Chemical Vapor Deposition)反応容器を有している。この石英管の一方側からキャリアガスとしてアルゴン(Ar)または水素(H2)を導入するとともに、他方側から排気しており、石英管の内部にアルゴン流が形成される。また、この石英管の内部では、グラフェンの原材料となるショウノウ(camphor)を収容する容器が配置されるとともに、アルゴン流の方向において容器の下流側に基材4を支持するトレイが配置されている。 When the formation of the copper wiring 5 is completed in this way, the base material 4 on which the copper wiring 5 is formed is taken out from the plasma sputtering apparatus 2 and transferred to the graphene film forming apparatus 3 (arrow R2 in the figure). The graphene film forming apparatus 3 employed in the present embodiment has the same configuration as the apparatus described in Japanese Patent Application Laid-Open No. 2012-20915. That is, the graphene film forming apparatus 3 has a CVD (Chemical Vapor Deposition) reaction vessel made of a quartz tube. Argon (Ar) or hydrogen (H 2 ) is introduced as a carrier gas from one side of the quartz tube and exhausted from the other side, and an argon flow is formed inside the quartz tube. Further, inside the quartz tube, a container for storing camphor, which is a raw material for graphene, is disposed, and a tray for supporting the base material 4 is disposed on the downstream side of the container in the direction of the argon flow. .
また、石英管の外部周囲には2種類の加熱部が設けられている。より具体的には、一方の加熱部は容器の配設位置に対応して設けられて容器の周辺温度を所定の温度範囲に制御する。また、他方の加熱部はトレイの配設位置に対応して設けられ、トレイで支持する基材4の周辺温度を所定の温度範囲に制御する。このように、2つの加熱部をそれぞれ独立して制御可能となっているため、上記のように構成されたグラフェン成膜装置3は、グラフェン膜の成膜処理機能のみならず、基材4に被着した銅配線5をアニールするアニール処理機能を発揮するように動作可能となっている。すなわち、銅配線5が形成された基材4をトレイに搬送すると、この段階ではショウノウを収容した容器を石英管に投入しない状態のまま、水素を一定量流しながらトレイ側の加熱部のみを作動させて銅配線5に対してアニール処理を施す(b−2:アニール処理工程)。なお、本実施形態では、550[゜C]で3時間アニールさせることで、図2の走査電子顕微鏡写真に示すように、銅配線5は平均粒径20〜30[μm]程度に調整され、その抵抗値もアニール前の値(25〜30[Ω])から6〜8[Ω]にまで低下している。ただし、この抵抗値は市場の要求を十分に満足するものではなく、さらなる低減が求められる。 Two types of heating units are provided around the outside of the quartz tube. More specifically, one heating part is provided corresponding to the arrangement position of the container, and controls the ambient temperature of the container to a predetermined temperature range. The other heating unit is provided corresponding to the position of the tray, and controls the ambient temperature of the substrate 4 supported by the tray within a predetermined temperature range. As described above, since the two heating units can be controlled independently, the graphene film forming apparatus 3 configured as described above has not only the film forming function of the graphene film but also the base material 4. It is operable so as to exhibit an annealing process function of annealing the deposited copper wiring 5. That is, when the base material 4 on which the copper wiring 5 is formed is transported to the tray, at this stage, only the heating part on the tray side is operated while a certain amount of hydrogen is allowed to flow without putting the container containing the camphor into the quartz tube. The copper wiring 5 is annealed (b-2: annealing process). In this embodiment, by annealing at 550 [° C.] for 3 hours, as shown in the scanning electron micrograph of FIG. 2, the copper wiring 5 is adjusted to an average particle size of about 20 to 30 [μm], The resistance value also decreases from the value before annealing (25-30 [Ω]) to 6-8 [Ω]. However, this resistance value does not sufficiently satisfy the market demand, and further reduction is required.
そこで、本実施形態では、グラフェン成膜装置3によるアニール処理が完了すると、アルゴンの供給を継続するとともにトレイ側の加熱部の温度をそのまま550[゜C]に保持したままショウノウを収容した容器を石英管に投入し、容器側の加熱部により容器の周辺温度をショウノウの蒸気化に適した温度まで昇温する。これによって、蒸気化したショウノウはアルゴン流によって銅配線5の表面上に輸送され、銅配線5の表面で熱分解される。そして、炭素原子からなるグラフェン膜6が銅配線5上に形成される。このグラフェン膜6は、グラフェン(あるいは「グラフェンシート」と称することもある)61が単層または複数層積層してなるものである。本実施形態では、3層積層させて約1[nm]の厚みを有するグラフェン膜6を銅配線5上に成膜している。こうしてグラフェン膜6の成膜が完了すると、グラフェン成膜装置3から基材4が処理チャンバから搬出される(図中の矢印R3)。 Therefore, in the present embodiment, when the annealing process by the graphene film forming apparatus 3 is completed, the supply of argon is continued, and the container containing the camphor is kept while keeping the temperature of the heating unit on the tray side at 550 [° C.]. It is put into a quartz tube, and the ambient temperature of the container is raised to a temperature suitable for the vaporization of camphor by the heating part on the container side. Thereby, the vaporized camphor is transported on the surface of the copper wiring 5 by the argon flow, and is thermally decomposed on the surface of the copper wiring 5. Then, a graphene film 6 made of carbon atoms is formed on the copper wiring 5. This graphene film 6 is formed by laminating a single layer or a plurality of layers of graphene (or sometimes referred to as “graphene sheet”) 61. In this embodiment, the graphene film 6 having a thickness of about 1 [nm] is formed on the copper wiring 5 by stacking three layers. When film formation of the graphene film 6 is completed in this way, the base material 4 is unloaded from the processing chamber from the graphene film formation apparatus 3 (arrow R3 in the figure).
そして、表面にグラフェン膜6が成膜された銅配線5の抵抗値を計測したところ、1〜2[Ω]にまで低下している。ここで、抵抗値の低減理由について考察すべく、グラフェン膜6単体の抵抗値計測を行うとともに、上記配線製造システム1により製造された配線構造について詳しく調べた。まず最初に、グラフェン膜6の抵抗値が低いことによって銅配線5の抵抗値を低下させている可能性が考えられるため、図1(c)に示すように基材4上にグラフェン膜6の単体を成膜し、その抵抗値を計測した。その結果、グラフェン膜6単体の抵抗値は2〜4[kΩ]であった。これは、次に説明するようにグラフェン膜6を構成するグラフェン61が複数のグラフェンドメインを有する、いわゆる多結晶層であることに起因していると考えられる。つまり、各グラフェンドメインは炭素の六員環の網目構造を有しており、グラフェンドメイン内では電子の移動度は極めて高く、室温での抵抗値が最も小さい銀よりも低い抵抗値を有している。しかしながら、上記グラフェン61内では複数のグラフェンドメインが存在するため、抵抗値が大幅に高くなっているものと考察される。 And when the resistance value of the copper wiring 5 by which the graphene film 6 was formed on the surface was measured, it has fallen to 1-2 [ohm]. Here, in order to consider the reason for reducing the resistance value, the resistance value of the graphene film 6 alone was measured, and the wiring structure manufactured by the wiring manufacturing system 1 was examined in detail. First, since there is a possibility that the resistance value of the copper wiring 5 is lowered due to the low resistance value of the graphene film 6, the graphene film 6 is formed on the substrate 4 as shown in FIG. A simple substance was deposited and its resistance value was measured. As a result, the resistance value of the graphene film 6 alone was 2 to 4 [kΩ]. This is considered to be caused by the fact that the graphene 61 constituting the graphene film 6 is a so-called polycrystalline layer having a plurality of graphene domains as described below. In other words, each graphene domain has a carbon six-membered ring network structure, and in the graphene domain, the electron mobility is extremely high, and the resistance value at room temperature is lower than that of the smallest silver. Yes. However, since there are a plurality of graphene domains in the graphene 61, it is considered that the resistance value is significantly increased.
そこで、上記配線製造システム1により銅配線5上に成膜されたグラフェン膜6を走査電子顕微鏡により撮像した。その結果、図3の電子顕微鏡写真に示すようにグラフェン61は単結晶ではなく、平均粒径が約10〜50[μm]の複数のグラフェンドメイン62で構成されている(なお、図3中の白点線がグラフェンドメインの一部を示している)。さらに、グラフェンドメイン62と銅配線5の結晶粒界との関係を観察したところ、それらのグラフェンドメイン62の一部は銅配線5の結晶粒界をまたいだ状態で存在していることがわかった。これらのことから、銅配線5の結晶粒界にグラフェンドメイン62が存在することにより、従来解明されていない移動経路で電子移動が生じて銅配線5の抵抗値が大幅に低下したものと推測される。なお、このように銅配線5の抵抗値が下がる現象が発生するメカニズムを解明すべく、現在も種々の実験および検証を継続的に行っている。 Therefore, the graphene film 6 formed on the copper wiring 5 by the wiring manufacturing system 1 was imaged with a scanning electron microscope. As a result, as shown in the electron micrograph of FIG. 3, the graphene 61 is not a single crystal but is composed of a plurality of graphene domains 62 having an average particle size of about 10 to 50 [μm] (in FIG. 3). The white dotted line shows part of the graphene domain). Furthermore, when the relationship between the graphene domain 62 and the crystal grain boundary of the copper wiring 5 was observed, it was found that a part of the graphene domain 62 existed across the crystal grain boundary of the copper wiring 5. . From these facts, it is presumed that the existence of the graphene domain 62 at the crystal grain boundary of the copper wiring 5 causes electron movement in a movement path that has not been clarified so far and the resistance value of the copper wiring 5 is greatly reduced. The In order to elucidate the mechanism by which the phenomenon that the resistance value of the copper wiring 5 decreases as described above, various experiments and verifications are still ongoing.
以上のように、本実施形態では、多結晶銅配線5上にグラフェン膜6を形成することで、銅配線5の抵抗値を大幅に低下することが可能となっている。また、銅配線5上にグラフェン膜6を成膜することで、グラフェン膜6が銅配線5の表面の保護膜として機能し、銅配線5の表面酸化を防止する機能を発揮する。また、グラフェン膜6は優れた熱伝導性を有しているため、銅配線5からの放熱を促す機能も有している。さらに、銅はグラフェンの成長を加速させる触媒として機能するため、この点においても銅配線5とグラフェン膜6との組み合わせは好適である。 As described above, in the present embodiment, by forming the graphene film 6 on the polycrystalline copper wiring 5, the resistance value of the copper wiring 5 can be significantly reduced. Further, by forming the graphene film 6 on the copper wiring 5, the graphene film 6 functions as a protective film on the surface of the copper wiring 5, and exhibits a function of preventing the surface oxidation of the copper wiring 5. In addition, since the graphene film 6 has excellent thermal conductivity, it also has a function of promoting heat dissipation from the copper wiring 5. Furthermore, since copper functions as a catalyst for accelerating the growth of graphene, the combination of the copper wiring 5 and the graphene film 6 is preferable also in this respect.
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば上記実施形態では、銅配線5をプラズマスパッタにより形成しているが、その製造方法はこれに限定されるものではなく、任意の方法により基材4上に銅配線5を形成してもよい。 The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the above embodiment, the copper wiring 5 is formed by plasma sputtering, but the manufacturing method is not limited to this, and the copper wiring 5 may be formed on the substrate 4 by any method. .
また、上記実施形態では、配線材料として銅(面心立方構造:格子定数=0.361496[nm])を用いているが、その他の配線材料、例えばアルミニウム(面心立方構造:格子定数=0.404934[nm])、ニッケル(面心立方構造:格子定数=0.3524[nm])、金(面心立方構造:格子定数=0.407864[nm])およびそれらの合金などを使用することができる。なお、上記の格子定数は、いずれも室温付近での値である。また、透明電極として多用されているITO(Indium Tin Oxide)を配線材料とし、当該ITO上にグラフェン膜を成膜してITOの抵抗値を低減させるように構成してもよい。このように、半導体装置、液晶表示装置や太陽電池などの電子デバイスに対して本発明にかかる電極構造を採用することで電子デバイスの省電力、高速化および高効率化を図ることができ、本発明にかかる電極構造の適用対象として好適である。 In the above embodiment, copper (face-centered cubic structure: lattice constant = 0.61496 [nm]) is used as the wiring material. However, other wiring materials such as aluminum (face-centered cubic structure: lattice constant = 0.404934 [nm] are used. ], Nickel (face-centered cubic structure: lattice constant = 0.524 [nm]), gold (face-centered cubic structure: lattice constant = 0.407864 [nm]), alloys thereof, and the like can be used. The above lattice constants are values around room temperature. Further, ITO (Indium Tin Oxide), which is frequently used as a transparent electrode, may be used as a wiring material, and a graphene film may be formed on the ITO to reduce the resistance value of the ITO. Thus, by adopting the electrode structure according to the present invention for electronic devices such as semiconductor devices, liquid crystal display devices and solar cells, it is possible to achieve power saving, high speed and high efficiency of the electronic devices. It is suitable as an application object of the electrode structure according to the invention.
さらに、上記実施形態では、グラフェン61を3層積層させてグラフェン膜6を形成しているが、グラフェン膜6を構成するグラフェン61はこれに限定されるものではなく、単層、2層あるいは4層以上で構成してもよい。 Furthermore, in the above embodiment, the graphene film 6 is formed by stacking three layers of graphene 61, but the graphene 61 constituting the graphene film 6 is not limited to this, and is a single layer, two layers, or four layers. You may comprise in a layer or more.
この発明は、多結晶導電体の抵抗値を低減させる配線技術および当該配線を有する電子デバイス全般に対して好適に適用することができる。 The present invention can be suitably applied to a wiring technique for reducing the resistance value of a polycrystalline conductor and to all electronic devices having the wiring.
4…基材
5…銅配線
6…グラフェン膜
61…グラフェン
4 ... Substrate 5 ... Copper wiring 6 ... Graphene film 61 ... Graphene
Claims (6)
前記複数のグラフェンドメインの一部が前記多結晶導電体の結晶粒界の上方において前記結晶粒界を挟んで隣接する前記多結晶導電体の結晶間をまたがって位置する配線構造。 The wiring structure according to claim 1,
A wiring structure in which a part of the plurality of graphene domains is located between crystal grains adjacent to each other across the crystal grain boundary above the crystal grain boundary of the polycrystal conductor.
前記多結晶導電体上に、複数のグラフェンドメインを有するグラフェンを単層または複数層積層してグラフェン膜を形成するグラフェン膜形成工程と
を備えることを特徴とする配線形成方法。 A conductor forming step of forming a polycrystalline conductor on the substrate;
And a graphene film forming step of forming a graphene film by stacking a single layer or a plurality of layers of graphene having a plurality of graphene domains on the polycrystalline conductor.
前記グラフェン膜形成工程は、前記複数のグラフェンドメインが前記多結晶導電体の結晶粒界の上方において前記結晶粒界を挟んで隣接する前記多結晶導電体の結晶間をまたがるように前記グラフェン膜を形成する配線形成方法。 The wiring forming method according to claim 3,
In the graphene film forming step, the graphene film is formed so that the plurality of graphene domains straddle between the crystals of the polycrystalline conductor adjacent to each other across the crystal grain boundary above the crystal grain boundary of the polycrystalline conductor. A wiring forming method to be formed.
前記グラフェン膜形成工程を実行する前に、前記多結晶導電体をアニールして前記多結晶導電体の抵抗値を低下させるアニール工程を備える配線形成方法。 It is the wiring formation method of Claim 3 or 4,
A wiring forming method comprising an annealing step of annealing the polycrystalline conductor to reduce a resistance value of the polycrystalline conductor before performing the graphene film forming step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013041653A JP2014170826A (en) | 2013-03-04 | 2013-03-04 | Wiring structure, method for forming wiring, and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013041653A JP2014170826A (en) | 2013-03-04 | 2013-03-04 | Wiring structure, method for forming wiring, and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014170826A true JP2014170826A (en) | 2014-09-18 |
Family
ID=51693008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013041653A Pending JP2014170826A (en) | 2013-03-04 | 2013-03-04 | Wiring structure, method for forming wiring, and electronic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014170826A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020178974A1 (en) * | 2019-03-05 | 2020-09-10 | 株式会社 東芝 | Graphene-containing film, production method thereof, graphene-containing film laminate, and photoelectric conversion element |
US10971451B2 (en) | 2018-07-24 | 2021-04-06 | Samsung Electronics Co., Ltd. | Interconnect structure having nanocrystalline graphene cap layer and electronic device including the interconnect structure |
US11094538B2 (en) | 2018-10-01 | 2021-08-17 | Samsung Electronics Co., Ltd. | Method of forming graphene |
US11149346B2 (en) | 2018-07-25 | 2021-10-19 | Samsung Electronics Co., Ltd. | Method of directly growing carbon material on substrate |
US11180373B2 (en) | 2017-11-29 | 2021-11-23 | Samsung Electronics Co., Ltd. | Nanocrystalline graphene and method of forming nanocrystalline graphene |
US11217531B2 (en) | 2018-07-24 | 2022-01-04 | Samsung Electronics Co., Ltd. | Interconnect structure having nanocrystalline graphene cap layer and electronic device including the interconnect structure |
US11626282B2 (en) | 2019-04-30 | 2023-04-11 | Samsung Electronics Co., Ltd. | Graphene structure and method of forming graphene structure |
-
2013
- 2013-03-04 JP JP2013041653A patent/JP2014170826A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11180373B2 (en) | 2017-11-29 | 2021-11-23 | Samsung Electronics Co., Ltd. | Nanocrystalline graphene and method of forming nanocrystalline graphene |
US10971451B2 (en) | 2018-07-24 | 2021-04-06 | Samsung Electronics Co., Ltd. | Interconnect structure having nanocrystalline graphene cap layer and electronic device including the interconnect structure |
US11217531B2 (en) | 2018-07-24 | 2022-01-04 | Samsung Electronics Co., Ltd. | Interconnect structure having nanocrystalline graphene cap layer and electronic device including the interconnect structure |
US11682622B2 (en) | 2018-07-24 | 2023-06-20 | Samsung Electronics Co., Ltd. | Interconnect structure having nanocrystalline graphene cap layer and electronic device including the interconnect structure |
US11149346B2 (en) | 2018-07-25 | 2021-10-19 | Samsung Electronics Co., Ltd. | Method of directly growing carbon material on substrate |
US11094538B2 (en) | 2018-10-01 | 2021-08-17 | Samsung Electronics Co., Ltd. | Method of forming graphene |
WO2020178974A1 (en) * | 2019-03-05 | 2020-09-10 | 株式会社 東芝 | Graphene-containing film, production method thereof, graphene-containing film laminate, and photoelectric conversion element |
JPWO2020178974A1 (en) * | 2019-03-05 | 2021-03-11 | 株式会社東芝 | Graphene-containing film, its manufacturing method, graphene-containing film laminate and photoelectric conversion element |
US11387375B2 (en) | 2019-03-05 | 2022-07-12 | Kabushiki Kaisha Toshiba | Graphene-containing membrane, process for producing the same, graphene-containing membrane laminate and photoelectric conversion device |
JP7119102B2 (en) | 2019-03-05 | 2022-08-16 | 株式会社東芝 | Graphene-containing film, manufacturing method thereof, graphene-containing film laminate, and photoelectric conversion device |
US12021159B2 (en) | 2019-03-05 | 2024-06-25 | Kabushiki Kaisha Toshiba | Graphene-containing membrane, process for producing the same, graphene-containing membrane laminate and photoelectric conversion device |
US11626282B2 (en) | 2019-04-30 | 2023-04-11 | Samsung Electronics Co., Ltd. | Graphene structure and method of forming graphene structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014170826A (en) | Wiring structure, method for forming wiring, and electronic device | |
JP5705315B2 (en) | Low temperature manufacturing method of graphene and direct transfer method of graphene using the same | |
JP5247448B2 (en) | Conductive film forming method and thin film transistor manufacturing method | |
KR101067364B1 (en) | Conductive film forming method, thin film transistor, panel with thin film transistor and thin film transistor manufacturing method | |
JP6062015B2 (en) | Method for manufacturing semiconductor device | |
JP4882262B2 (en) | Method for producing transparent conductive film laminate | |
KR102100925B1 (en) | Substrate assembly, method of forming the substrate assembly, and electronic device comprising the same | |
JP5528727B2 (en) | Thin film transistor manufacturing apparatus, oxide semiconductor thin film manufacturing method, thin film transistor manufacturing method, oxide semiconductor thin film, thin film transistor, and light emitting device | |
EP2195849A1 (en) | Oxide semiconductor device including insulating layer and display apparatus using the same | |
JP2009278107A (en) | Method for making thin film transistor | |
JP2010080936A5 (en) | ||
JP2013522813A (en) | Transparent electrodes based on a combination of transparent conductive oxides, metals, and oxides | |
TW201140829A (en) | Semiconductor device and method for manufacturing the same | |
JP2015187312A (en) | sputtering target | |
JP2010251604A (en) | Method of manufacturing thin film transistor | |
JP2013021305A (en) | Method for manufacturing semiconductor device | |
TW201203364A (en) | Method for manufacturing semiconductor element and deposition apparatus | |
CN103782374B (en) | Display device distribution structure | |
JP5580972B2 (en) | Sputtering composite target | |
US20230114347A1 (en) | Method of forming transition metal dichalcogenide thin film | |
CN108376712A (en) | A kind of transparent film transistor and preparation method based on cuprous iodide | |
TWI515793B (en) | Method for depositing a thin film electrode and thin film stack | |
Panwar et al. | Few layer graphene synthesized by filtered cathodic vacuum arc technique | |
Shan et al. | Copper acetate-facilitated transfer-free growth of high-quality graphene for hydrovoltaic generators | |
JP2013222812A (en) | Semiconductor device and method for manufacturing the same |