JP2014170757A - Square-shaped secondary battery and method for manufacturing the same - Google Patents

Square-shaped secondary battery and method for manufacturing the same Download PDF

Info

Publication number
JP2014170757A
JP2014170757A JP2014103877A JP2014103877A JP2014170757A JP 2014170757 A JP2014170757 A JP 2014170757A JP 2014103877 A JP2014103877 A JP 2014103877A JP 2014103877 A JP2014103877 A JP 2014103877A JP 2014170757 A JP2014170757 A JP 2014170757A
Authority
JP
Japan
Prior art keywords
electrode
current collecting
welding
core
exposed portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014103877A
Other languages
Japanese (ja)
Other versions
JP5858091B2 (en
Inventor
Taku Kondo
近藤  卓
Hironobu Araya
広宣 荒谷
Kenji Inagaki
健次 稲垣
Yukio Asayama
幸雄 浅山
Yasuhiro Yamauchi
康弘 山内
Kenji Minamisaka
健二 南坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2014103877A priority Critical patent/JP5858091B2/en
Publication of JP2014170757A publication Critical patent/JP2014170757A/en
Application granted granted Critical
Publication of JP5858091B2 publication Critical patent/JP5858091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a square-shaped secondary battery.SOLUTION: In a square-shaped secondary battery, a flat-shaped electrode body includes a core-body exposed portion of a wound first electrode, the core-body exposed portion of the wound first electrode includes a small thickness part where core-body exposed portions are bundled, a first part located closer to a sealing plate side than the small thickness part and having a thickness larger than that of the small thickness part, and a second part located closer to a bottom side than the small thickness part and having a thickness larger than that of the small thickness part, a current-collecting member is resistance welded to the core-body exposed portion of a wound first electrode, the current-collecting member includes a plate-like first region disposed on the outer most surface side of the small thickness part and a second region extending from an end part of the sealing plate side of the first region toward the sealing plate side than an end part of the sealing plate in the flat shaped-electrode body, and an insulation film is disposed between the second region and the outer most surface of the core-body exposed portion of a wound first electrode.

Description

本発明は、角形二次電池及びその製造方法に関し、特に角形二次電池の集電部構造及びその製造方法に関する。   The present invention relates to a prismatic secondary battery and a manufacturing method thereof, and more particularly to a current collector structure of a prismatic secondary battery and a manufacturing method thereof.

近年、ハイブリット型自動車など二次電池を駆動電源とする電気自動車が普及しつつあるが、電気自動車には高出力な二次電池が必要である。また、携帯電話やノートパソコンなどのモバイル型電子機器への一層の高機能化により、これらの用途においても一層の高出力化が求められている。   In recent years, an electric vehicle using a secondary battery as a drive power source such as a hybrid vehicle is becoming widespread. However, an electric vehicle requires a high output secondary battery. In addition, with higher functionality for mobile electronic devices such as mobile phones and notebook computers, higher output is also required for these applications.

電池の高出力化には、正負電極の対向面積を大きくする必要がある。正負電極板を多数積層した積層電極体構造や、長尺の正負電極板を、セパレータを介して巻回した渦巻き電極体構造であると、正負極の対向面積を大きくできるので、電池の高出力化を図り易い。   In order to increase the output of the battery, it is necessary to increase the facing area of the positive and negative electrodes. High power output of the battery can be achieved by having a laminated electrode body structure in which a large number of positive and negative electrode plates are laminated or a spiral electrode body structure in which a long positive and negative electrode plate is wound through a separator, so that the opposing area of the positive and negative electrodes can be increased. It is easy to plan.

積層電極体や渦巻き電極体を用いた高出力電池では、電流を安定して取り出すために、正負芯体の露出部分に集電板を溶接し、この集電板を外部出力端子に接続する構造が採用されている。また、集電板と正負芯体との接続点が多いほど安定して大電流を取り出せることから、溶接箇所を2箇所以上とすることが行われている(特許文献1参照)。   In high-power batteries using laminated electrode bodies and spiral electrode bodies, a structure in which a current collector plate is welded to the exposed part of the positive and negative cores and the current collector plate is connected to an external output terminal in order to take out current stably. Is adopted. Moreover, since a large current can be taken out more stably as the number of connection points between the current collector plate and the positive and negative cores is increased, the number of welding points is set to two or more (see Patent Document 1).

しかし、抵抗溶接において溶接箇所を複数とすると、図24に示すように、電流が集電板の横方向にも広がり、先に溶接した箇所を介して電流が流れる。この電流は、溶接に役立たない無効電流となるので、所望の溶接箇所に必要な電流を流すことができ難くなる。その一方、溶接箇所に十分な電流を流すために電圧を大きくすると、スパッタが発生するなどして良質の溶接が行えないと共に、電気エネルギーの無駄使いになるという問題がある。   However, if there are a plurality of welding locations in resistance welding, as shown in FIG. 24, the current spreads in the lateral direction of the current collector plate, and the current flows through the previously welded locations. Since this current becomes an ineffective current that is not useful for welding, it becomes difficult to pass a necessary current to a desired welding location. On the other hand, if the voltage is increased in order to allow a sufficient current to flow through the welding location, there is a problem that spatter is generated and thus high-quality welding cannot be performed and electric energy is wasted.

また、下記特許文献2、3では、芯体の面方向端縁の同一面上に集電板を複数の部材に分割して配置し、それぞれの集電板に一対の溶接用電極を接触させ、溶接電流を流す技術が提案されている。しかしながら、下記特許文献2、3に記載の技術では、芯体の端縁と集電板とを溶接するため、溶接面積を大きくし難く、集電効率を十分に向上させ難い。また、芯体の端縁は強度が弱いので十分な溶接強度を得難い。さらに溶接に際して特殊な手法を用いる必要があるので、その分、電池の生産性が低下するという問題がある。   In Patent Documents 2 and 3, the current collector plate is divided into a plurality of members on the same surface of the edge of the core in the surface direction, and a pair of welding electrodes are brought into contact with each current collector plate. A technique for flowing a welding current has been proposed. However, in the techniques described in Patent Documents 2 and 3 below, since the edge of the core body and the current collector plate are welded, it is difficult to increase the welding area and it is difficult to sufficiently improve the current collection efficiency. Moreover, since the strength of the edge of the core is weak, it is difficult to obtain sufficient welding strength. Furthermore, since it is necessary to use a special technique for welding, there is a problem that the productivity of the battery is reduced accordingly.

特開2006−12830号公報JP 2006-12830 A 特開2002−164035号公報JP 2002-164035 A 特開2002−184451号公報JP 2002-184451 A

上記課題を解決するための第1の発明は、一方の端部に積層された第1電極の芯体露出部を有し、他方の端部に積層された前記第1電極とは極性の異なる第2電極の芯体露出部を有する扁平状電極体と、前記扁平状電極体を収容する角形電池ケースと、を有し、さらに少なくとも前記第1電極に通電可能に接続される外部出力端子を有する角形二次電池を製造する角形二次電池の製造方法において、
前記積層された第1電極の芯体露出部の扁平部分における前記第1電極の芯体露出部の
積層方向の最外面に設定された第1溶接予定部に、集電第1部材を配置し、前記第1電極の芯体露出部の積層方向で、前記集電第1部材と前記芯体露出部とを抵抗溶接する工程と、
前記扁平部分における前記第1電極の芯体露出部の積層方向の最外面であって前記第1溶接予定部から離間し且つ前記集電第1部材と部材同士が接触しない位置に設定された第2溶接予定部に、集電第2部材を配置し、前記第1電極の芯体露出部の積層方向で前記集電第2部材と前記芯体露出部とを抵抗溶接する工程と、
前記2つの工程が終了した後に、前記集電第1部材と前記集電第2部材とを前記第1電極の芯体露出部を介する経路とは別の経路で通電可能に接続する工程と、を備えることを特徴とする。
1st invention for solving the said subject has the core exposed part of the 1st electrode laminated | stacked on one edge part, and a polarity differs from the said 1st electrode laminated | stacked on the other edge part. An external output terminal having a flat electrode body having a core exposed portion of the second electrode and a rectangular battery case that accommodates the flat electrode body, and further connected to at least the first electrode so as to be energized. In a method for producing a rectangular secondary battery for producing a rectangular secondary battery having:
A current collecting first member is disposed on a first welding scheduled portion set on the outermost surface in the stacking direction of the core exposed portion of the first electrode in the flat portion of the core exposed portion of the stacked first electrode. A step of resistance welding the current collecting first member and the core exposed portion in the stacking direction of the core exposed portion of the first electrode;
The outermost surface in the stacking direction of the core exposed portion of the first electrode in the flat portion is set at a position that is separated from the first welding scheduled portion and is not in contact with the current collecting first member. A step of arranging a current collecting second member on the two welding scheduled portions and resistance welding the current collecting second member and the core exposed portion in the stacking direction of the core exposed portion of the first electrode;
After the two steps are completed, the step of connecting the current collecting first member and the current collecting second member so that energization is possible in a route different from the route through the core exposed portion of the first electrode; It is characterized by providing.

この構成では、集電第1部材と集電第2部材とを通電可能に接続する前に、集電第1部材と芯体露出部、集電第2部材と芯体露出部を、それぞれを別個に抵抗溶接する。よって、抵抗溶接時における横方向に流れる電流(溶接に寄与しない無効電流)を少なくでき、その結果として、より少ない電流でもって良質の電気抵抗溶接を行うことができる。   In this configuration, before connecting the current collector first member and the current collector second member so as to be energized, the current collector first member and the core body exposed portion, and the current collector second member and the core body exposed portion are respectively connected to each other. Separate resistance welding. Therefore, the current flowing in the lateral direction during resistance welding (reactive current that does not contribute to welding) can be reduced, and as a result, high-quality electric resistance welding can be performed with less current.

この構成においては、上記した何れかの工程の前、または前記集電第1部材と前記集電第2部材とを通電可能に接続する工程の後に、前記集電第1部材または前記集電第2部材と前記外部出力端子とを通電可能に接続する。これにより、第1電極の電気を外部に取り出すことができる。   In this configuration, the current collecting first member or the current collecting first is performed before any of the above steps, or after the step of connecting the current collecting first member and the current collecting second member so as to be energized. The two members and the external output terminal are connected so as to be energized. Thereby, the electricity of the first electrode can be taken out to the outside.

第2の発明は、一方の端部に積層された第1電極の芯体露出部を有し、他方の端部に積層された前記第1電極とは極性の異なる第2電極の芯体露出部を有する扁平状電極体と、
前記扁平状電極体を収容する角形電池ケースと、を有し、さらに少なくとも前記第1電極に通電可能に接続される外部出力端子を有する角形二次電池を製造する角形二次電池の製造方法において、
前記積層された第1電極の芯体露出部の扁平部分における前記第1電極の芯体露出部の積層方向の最外面に設定された第1溶接予定部に、集電第1部材を配置し、前記第1電極の芯体露出部の積層方向で、前記集電第1部材と前記芯体露出部とを抵抗溶接する1−1工程と、
前記扁平部分における前記第1電極の芯体露出部の積層方向の最外面であって前記第1溶接予定部から離間し且つ前記集電第1部材と部材同士が接触しない位置に設定された第2溶接予定部に、集電第2部材を配置し、前記第1電極の芯体露出部の積層方向で前記集電第2部材と前記芯体露出部とを抵抗溶接する1−2工程と、
前記1−1工程及び前記1−2工程が終了した後に、前記集電第1部材と前記集電第2部材に、両部材を連結する導電性連結部材を配置して溶接する1−3工程と、
前記1−1〜1−3工程のいずれかの工程の前、または前記1−3工程の後に、前記集電第1部材、前記集電第2部材、または前記導電性連結部材の何れかと前記外部出力端子とを通電可能に接続する1−4工程と、を備えることを特徴とする。
2nd invention has the core exposure part of the 1st electrode laminated | stacked on one edge part, and the core exposure of the 2nd electrode from which polarity differs from the said 1st electrode laminated | stacked on the other edge part A flat electrode body having a portion;
A prismatic battery case that houses a rectangular battery case that houses the flat electrode body, and further includes an external output terminal that is connected to at least the first electrode so as to be energized. ,
A current collecting first member is disposed on a first welding scheduled portion set on the outermost surface in the stacking direction of the core exposed portion of the first electrode in the flat portion of the core exposed portion of the stacked first electrode. The 1-1 step of resistance welding the current collecting first member and the core exposed portion in the stacking direction of the core exposed portion of the first electrode;
The outermost surface in the stacking direction of the core exposed portion of the first electrode in the flat portion is set at a position that is separated from the first welding scheduled portion and is not in contact with the current collecting first member. (2) 1-2 step of arranging a current collecting second member in a planned welding portion and resistance welding the current collecting second member and the core exposed portion in the stacking direction of the core exposed portion of the first electrode; ,
After the 1-1 step and the 1-2 step are completed, a 1-3 step of arranging and welding a conductive connecting member that connects both members to the first current collecting member and the second current collecting member. When,
Before any one of the steps 1-1 to 1-3, or after the step 1-3, the current collecting first member, the current collecting second member, or the conductive connecting member 1-4 process which connects an external output terminal so that electricity supply is possible, It is characterized by the above-mentioned.

この構成では、第1電極からの集電を行う部材を、集電第1部材、集電第2部材、導電性連結部材の3つに分け、集電第1部材と集電第2部材とを直接接触しない位置に配置し、それぞれを芯体露出部に抵抗溶接した後に、両部材に導電性連結部材を溶接して両部材間を導電性連結部材で接続する。この構成であると、集電第1部材と集電第2部材を電極芯体露出部に抵抗溶接するに際して、横方向に流れる無効電流(溶接に寄与しない電流)の発生を少なくできるので、より少ない電流でもって良質の溶接を行うことができる。   In this configuration, the member that collects current from the first electrode is divided into three parts: a current collecting first member, a current collecting second member, and a conductive connecting member, and the current collecting first member and the current collecting second member; Are placed in positions where they are not in direct contact, and each is resistance welded to the core exposed portion, and then a conductive connecting member is welded to both members, and the two members are connected by the conductive connecting member. With this configuration, when the current collecting first member and the current collecting second member are resistance-welded to the electrode core exposed portion, it is possible to reduce generation of reactive current (current that does not contribute to welding) flowing in the lateral direction. Good quality welding can be done with low current.

また、上記構成では、1-4工程において集電第1部材、集電第2部材、導電性連結部材の何れかと前記外部出力端子とを通電可能に接続する。扁平状電極体を用いた角形二次電池においては、芯体露出部と集電板との溶接接触状態により集電性の良否が左右される
が、外部出力端子への接続経路により、集電安定性や集電効率が害されることはないので、1-1工程〜1-3工程で集電系部材が適正に芯体露出部に抵抗溶接されれば、どの部材を介して外部出力端子に接続しても集電効率の低下を来さない。よって、上記1-4工程は、1-1工程〜1-3工程のいずれかの工程の前、または1-3工程の後のいずれであってもよい。
In the above configuration, any one of the current collecting first member, the current collecting second member, and the conductive connecting member is connected to the external output terminal so as to be energized in step 1-4. In a rectangular secondary battery using a flat electrode body, the quality of current collection depends on the welding contact state between the core exposed portion and the current collector plate, but the current collection depends on the connection path to the external output terminal. Since stability and current collection efficiency are not harmed, if the current collector member is properly resistance-welded to the core exposed part in steps 1-1 to 1-3, the external output terminal can be connected via any member. Even if it is connected to, the current collection efficiency does not decrease. Therefore, the above 1-4 step may be either before any of the 1-1 steps to 1-3 steps or after the 1-3 steps.

以上から、上記構成によると、集電安定性と集電効率に優れた角形二次電池を生産性よく製造することができる。   From the above, according to the above configuration, a rectangular secondary battery excellent in current collection stability and current collection efficiency can be manufactured with high productivity.

ここで、上記扁平状電極体の典型例としては、帯状の正負電極板を巻回したものを押し潰し扁平状にしたものが挙げられるが、上記「扁平状の電極体」は、平坦な正負電極板がセパレータを介して複数枚重ね合わされた積層型の電極体をも含む。また、上記「前記第1電極の芯体露出部が突出した電極体端部の扁平部分」とは、扁平状電極体の扁平部分のうち、芯体露出部が重なりあって突出した部分をいう。また、巻回型電極を押し潰し扁平状にしたものは、回転方向の両端部が半楕円状になっており、両端部の中間部分が扁平になっている。なお、この構成における集電第1部材、集電第2部材、導電性連結部材の3部材により形成される集電系が、従来の集電体に相当することになる。   Here, as a typical example of the above flat electrode body, there is a flat electrode body that is formed by crushing a belt-shaped positive and negative electrode plate wound into a flat shape. It also includes a stacked electrode body in which a plurality of electrode plates are stacked via a separator. The “flat portion of the end portion of the electrode body from which the core exposed portion of the first electrode protrudes” refers to a portion of the flat portion of the flat electrode body that protrudes with the core exposed portion overlapping. . In addition, in the case where the wound electrode is crushed into a flat shape, both end portions in the rotation direction are semi-elliptical, and an intermediate portion between both end portions is flat. In addition, the current collection system formed by the three members of the current collecting first member, the current collecting second member, and the conductive connecting member in this configuration corresponds to a conventional current collector.

第3の発明は、上記第2の発明にかかる角形二次電池の製造方法において、前記1−1工程から前記1−4工程に代えて、前記積層された第1電極の芯体露出部の扁平部分における前記第1電極の芯体露出部の積層方向の最外面に設定された第1溶接予定部に、集電第1部材を配置すると共に、当該扁平部分の対向面に第1の受け部材を配置し、両部材で前記芯体露出部を挟んだ状態で前記集電第1部材と前記芯体露出部と前記第1の受け部材とを抵抗溶接する2−1工程と、
前記扁平部分における前記第1電極の芯体露出部の積層方向の最外面であって前記第1溶接予定部から離間し且つ前記集電第1部材と部材同士が接触しない位置に設定された第2溶接予定部に、集電第2部材を配置すると共に、当該扁平部分の対向面に第2の受け部材を配置し、両部材で前記芯体露出部を挟んだ状態で前記集電第2部材と前記芯体露出部と前記第2の受け部材とを抵抗溶接する2−2工程と、
前記2−1工程及び前記2−2工程が終了した後に、前記集電第1部材と前記集電第2部材との間、または前記第1の受け部材と前記第2の受け部材との間に、導電性連結部材を載置し当該導電性連結部材とこれに対偶するそれぞれの部材とを溶接する2−3工程と、
前記2−1〜2−3工程のいずれかの工程の前、または前記2−3工程の後に、前記集電第1部材、前記集電第2部材、前記第1の受け部材、前記第2の受け部材、または前記導電性連結部材の何れかと前記外部出力端子とを通電可能に接続する2−4工程と、を備える。
According to a third aspect of the present invention, in the method for manufacturing a prismatic secondary battery according to the second aspect of the invention, the core exposed portion of the stacked first electrode is replaced with the step 1-4 from the step 1-1. The current collecting first member is disposed on the first welding scheduled portion set on the outermost surface in the stacking direction of the core exposed portion of the first electrode in the flat portion, and the first receiver is disposed on the opposing surface of the flat portion. 2-1 step of resistance welding the current collecting first member, the core body exposed portion, and the first receiving member in a state where the members are disposed and the core body exposed portion is sandwiched between both members;
The outermost surface in the stacking direction of the core exposed portion of the first electrode in the flat portion is set at a position that is separated from the first welding scheduled portion and is not in contact with the current collecting first member. (2) A second current collecting member is disposed on the planned welding portion, a second receiving member is disposed on the opposing surface of the flat portion, and the second current collecting member is sandwiched between the two exposed members and the core exposed portion. 2-2 process of resistance welding the member, the core exposed portion and the second receiving member;
After the 2-1 step and the 2-2 step are finished, between the current collecting first member and the current collecting second member, or between the first receiving member and the second receiving member. And 2-3 step of placing the conductive connecting member and welding the conductive connecting member and the respective members facing the conductive connecting member,
Before any one of the steps 2-1 to 2-3, or after the 2-3 step, the current collecting first member, the current collecting second member, the first receiving member, the second 2-4 process of connecting any one of said receiving member or said electroconductive connection member, and said external output terminal so that electricity supply is possible.

集電第1部材、集電第2部材のそれぞれの対向側に受け部材を配置し、芯体露出部の上下面を挟んだ状態で抵抗溶接する上記構成によると、溶接部の強度が高まるとともに、集電効率が向上する。また、集電第1部材、集電第2部材(以下、これらを集電系部材と略称することがある)に対する受け部品を配置しない場合には、溶接時に一方電極棒の先端が芯体露出部の溶融部にくっつき、電極棒を外す際に溶接部を損傷することがあるが、上記構成ではこのようなことが生じない。   According to the above-described configuration in which the receiving member is disposed on the opposite side of each of the current collecting first member and the current collecting second member, and resistance welding is performed with the upper and lower surfaces of the core body exposed portion sandwiched, the strength of the welded portion increases. , Current collection efficiency is improved. Further, when receiving parts for the current collecting first member and the current collecting second member (hereinafter, these may be abbreviated as current collecting members) are not arranged, the tip of one electrode rod is exposed as a core during welding. The welded part may stick to the melted part of the part and damage the welded part when the electrode rod is removed, but this does not occur in the above configuration.

なお、上記2-4工程は最後に行う工程を意味しない。よって、前記1-4工程におけると同様、上記2-4工程は、2-1工程〜2-3工程のいずれかの工程の前、または2-3工程の後のいずれであってもよい。   Note that the above 2-4 step does not mean the last step. Therefore, as in the step 1-4, the step 2-4 may be performed before any of the steps 2-1 to 2-3, or after the step 2-3.

第4の発明は、上記第2の発明にかかる角形二次電池の製造方法において、前記積層さ
れた第1電極の芯体露出部の扁平部分における前記第1電極の芯体露出部の積層方向の最外面に設定された第1溶接予定部に集電第1部材を配置すると共に、当該扁平部分の対向面に第1の受け部材を配置し、前記芯体露出部を挟んだ状態で前記集電第1部材と前記芯体露出部と前記第1の受け部材とを抵抗溶接する3−1工程と、
前記集電第2部材が延長部を有する連結型集電第2部材であり、前記扁平部分における前記第1電極の芯体露出部の積層方向の最外面であって前記第1溶接予定部から離間し且つ前記集電第1部材と部材同士が接触しない位置に設定された第2溶接予定部に、前記連結型集電第2部材の本体部を配置し、かつ前記連結型集電第2部材の延長部を前記集電第1部材に非接触配置すると共に、前記本体部が位置する扁平部分の対向面に第2の受け部材を配置し、しかる後、前記芯体露出部を挟んだ状態で前記連結型集電第2部材の本体部と前記芯体露出部と前記第2の受け部材とを抵抗溶接する3−2工程と、
前記3−1工程及び前記3−2工程が終了した後に、前記連結型集電第2部材の延長部と前記集電第1部材とを接触させ溶接する3−3工程と、
前記3−1〜3−3工程のいずれかの工程の前、または前記3−3工程の後に、前記集電第1部材、前記連結型集電第2部材、前記第1の受け部材、または前記第2の受け部材の何れかと前記外部出力端子とを通電可能に接続する3−4工程と、を備えることを特徴とする。
According to a fourth aspect of the present invention, in the method for manufacturing a prismatic secondary battery according to the second aspect of the invention, the stacking direction of the core exposed portion of the first electrode in the flat portion of the core exposed portion of the stacked first electrode. The first current collecting member is disposed on the first welding scheduled portion set on the outermost surface of the first portion, the first receiving member is disposed on the opposing surface of the flat portion, and the core exposed portion is sandwiched between the first receiving member and the first exposed member. 3-1 step of resistance welding the current collector first member, the core exposed portion and the first receiving member;
The current collecting second member is a connected current collecting second member having an extension, and is the outermost surface in the stacking direction of the core exposed portion of the first electrode in the flat portion, and from the first welding planned portion A main body portion of the connected current collecting second member is disposed in a second welding scheduled portion set at a position that is spaced apart and does not contact the current collecting first member and the members, and the connected current collecting second The extension part of the member is arranged in a non-contact manner with the first current collecting member, and the second receiving member is arranged on the opposing surface of the flat part where the main body part is located, and then the core body exposed part is sandwiched. 3-2 step of resistance welding the main body part of the connected type current collecting second member, the core exposed part and the second receiving member in a state;
After the 3-1 step and the 3-2 step are finished, a 3-3 step of contacting and welding the extension part of the connected current collecting second member and the current collecting first member;
Before any one of the steps 3-1 to 3-3, or after the 3-3 step, the current collecting first member, the connected current collecting second member, the first receiving member, or And 3-4 step of connecting any one of the second receiving members and the external output terminal so that energization is possible.

この構成における「延長部を有する連結型集電第2部材」は、集電第2部材と導電性連結部材とを一体的に構成したものであり、連結型集電第2部材の延長部が上記第1の発明における導電性連結部材に相当する部分であり、連結型集電第2部材の本体部が上記第1の発明における集電第2部材に相当する部分である。この構成では、集電第2部材と導電性連結部材とが一体化された連結型集電第2部材を用いるので、部品数の削減、溶接箇所数の低減を図ることができる。   The “connected current collecting second member having an extension” in this configuration is an integrated structure of the current collecting second member and the conductive connecting member, and the extension of the connected current collecting second member is It is a portion corresponding to the conductive connecting member in the first invention, and the main body portion of the connected current collecting second member is a portion corresponding to the current collecting second member in the first invention. In this configuration, since the connected current collecting second member in which the current collecting second member and the conductive connecting member are integrated is used, it is possible to reduce the number of parts and the number of welding locations.

また、この構成では、前記連結型集電第2部材の延長部を前記集電第1部材に非接触配置した状態で集電第1部材と第1の受け部材、および連結型集電第2部材の本体部と第2の受け部材とを抵抗溶接し(3-1工程および3-2工程)、その後、上記非接触部分を接触溶接する(3-3工程)。この製造方法であると、抵抗溶接に際して横方向に流れる無効電流(溶接に寄与しない電流)の発生を少なくできるので、良質な抵抗溶接を行うことができる。   Further, in this configuration, the first collector member and the first receiving member, and the second collector current collector 2 in a state where the extension portion of the second collector current collector member is disposed in a non-contact manner with the first collector member. The main body of the member and the second receiving member are resistance welded (step 3-1 and step 3-2), and then the non-contact portion is contact welded (step 3-3). With this manufacturing method, it is possible to reduce the generation of reactive current (current that does not contribute to welding) flowing in the lateral direction during resistance welding, so that high-quality resistance welding can be performed.

また、上記3-4工程は、前記2-4工程におけると同様、3-1工程〜3-3工程のいずれかの工程の前、または3-3工程の後のいずれであってもよい。   Further, the step 3-4 may be performed before any of the steps 3-1 to 3-3 or after the step 3-3, as in the step 2-4.

以上、上記構成によると、部品数の削減、溶接箇所数の低減を図りつつ、良質な抵抗溶接を行うことができる。この結果、生産性よく集電効率と集電安定性に優れた角形二次電池を製造することができるという効果が得られる。なお、集電安定性とは、強固な溶接によって長期にわたって良好な集電効率が保たれることを意味している。   As described above, according to the above configuration, high-quality resistance welding can be performed while reducing the number of components and the number of welding locations. As a result, it is possible to produce a prismatic secondary battery excellent in current collection efficiency and current collection stability with high productivity. The current collection stability means that good current collection efficiency is maintained over a long period of time by strong welding.

ここで、「非接触配置」とは、容易に接触させることのできる程度に接近させて配置しているが、未だ接触していない状態(導電し得ない状態)をいう。第3の発明構成においては、両部材同士が直接接触しないようにして、連結型集電第2部材の延長部を集電第1部材の端部上方に位置させることを意味する。   Here, the “non-contact arrangement” refers to a state where they are arranged close to each other so that they can be easily brought into contact with each other but are not yet in contact (a state where they cannot conduct electricity). In 3rd invention structure, it means that both members do not contact directly and the extension part of a connection type | mold current collection 2nd member is located above the edge part of a current collection 1st member.

「非接触配置」の典型例としては、連結型集電第2部材の延長部下面と前記集電第1部材上面との間に導通を防止できる程度の僅かな隙間を介在させた配置が挙げられる。また、両部材間の対向面に溶融熱で除去できる絶縁性フィルム片をスペーサとして介在させるのもよい。   A typical example of the “non-contact arrangement” is an arrangement in which a slight gap is interposed between the lower surface of the extended portion of the connected current collecting second member and the upper surface of the current collecting first member so as to prevent conduction. It is done. Moreover, it is good also to interpose the insulating film piece which can be removed with a fusion | melting heat to the opposing surface between both members as a spacer.

第5の発明は、上記第2の発明にかかる角形二次電池の製造方法において、前記積層された第1電極の芯体露出部の扁平部分における前記第1電極の芯体露出部の積層方向の最外面の一方面に設定された第1溶接予定部に、集電第1部材を配置し、当該扁平部分の対向面に第1の受け部材を配置して、両部材で前記芯体露出部を挟んだ状態で前記集電第1部材と前記芯体露出部と前記第1の受け部材とを抵抗溶接する4−1工程と、前記集電第2部材が延長部を有する連結型集電第2部材であり、前記扁平部分を前記第1電極の芯体露出部の積層方向から透過視したときに、前記集電第1部材と連結型集電第2部材の本体部とが重ならない前記対向面側の位置に、前記連結型集電第2部材の本体部を配置すると共に、前記連結型集電第2部材の延長部を前記第1の受け部材に非接触配置し、さらに前記第2の受け部材を前記一方面に配置した後、当該本体部と第2の受け部材とで前記芯体露出部を挟んだ状態で当該本体部と前記芯体露出部と前記第2の受け部材とを抵抗溶接する4−2工程と、
前記4−1工程及び前記4−2工程が終了した後に、前記連結型集電第2部材の延長部と前記1の受け部材とを接触させ溶接する4−3工程と、
前記4−1〜4−3工程のいずれかの工程の前、または前記4−3工程の後に、前記集電第1部材、前記連結型集電第2部材、前記第1の受け部材、または前記第2の受け部材の何れかと前記外部出力端子とを通電可能に接続する4−4工程と、を備える。
According to a fifth aspect of the present invention, in the method for manufacturing a prismatic secondary battery according to the second aspect of the present invention, the stacking direction of the core exposed portion of the first electrode in the flat portion of the core exposed portion of the stacked first electrode. The current collecting first member is arranged on the first welding scheduled portion set on one side of the outermost surface, and the first receiving member is arranged on the opposing surface of the flat portion, and the core body is exposed by both members. 4-1 step of resistance welding the current collecting first member, the core exposed portion, and the first receiving member in a state where the portion is sandwiched, and the current collecting second member having an extension portion. When the flat portion is seen through from the stacking direction of the core exposed portion of the first electrode, the first current collecting member and the main body of the connected current collecting second member overlap each other. A main body portion of the connected current collecting second member is arranged at a position on the facing surface side that should not be, and the connected current collecting second member After the extension portion is disposed in a non-contact manner on the first receiving member, and the second receiving member is disposed on the one surface, the core body exposed portion is sandwiched between the main body portion and the second receiving member. 4-2 step of resistance welding the main body part, the core exposed part and the second receiving member in a state;
After the 4-1 step and the 4-2 step are finished, a step 4-3 for contacting and welding the extension portion of the second connecting current collecting member and the first receiving member;
Before any one of the steps 4-1 to 4-3, or after the step 4-3, the first current collecting member, the second connected current collecting member, the first receiving member, or And 4-4 step of connecting any one of the second receiving members and the external output terminal so that energization is possible.

この構成では、芯体露出部の一方面に集電第1部材が配置され、他方面(一方面に対向する面)に、連結型集電第2部材が配置されている。この構成では、芯体露出部の一方面側に集電第1部材と第2の受け部材とが配置され、他方面側に第1の受け部材と連結型集電第2部材とが配置された構造になるので、連結型集電第2部材の延長部を第1の受け部材に連結させることになる。この構成においても上記第3の発明と同様の作用効果を得ることができる。なお、この構成においては、連結型集電第2部材の本体部と第2の受け部材との溶接予定部分が、第2溶予定部となる。   In this configuration, the current collecting first member is disposed on one surface of the core exposed portion, and the connected current collecting second member is disposed on the other surface (a surface facing the one surface). In this configuration, the current collecting first member and the second receiving member are arranged on one side of the core body exposed portion, and the first receiving member and the connected current collecting second member are arranged on the other side. Therefore, the extension portion of the connected current collecting second member is connected to the first receiving member. Also in this configuration, the same effect as that of the third invention can be obtained. In this configuration, the portion to be welded between the main body portion of the connection-type current collecting second member and the second receiving member is the second melt planned portion.

また、上記4-4工程は、前記2-4工程におけると同様、4-1工程〜4-3工程のいずれかの工程の前、または4-3工程の後のいずれであってもよい。   Further, the step 4-4 may be performed before any of the steps 4-1 to 4-3 or after the step 4-3 as in the step 2-4.

第6の発明は、上記第2の発明にかかる角形二次電池の製造方法において、前記集電第1部材が延長部を有する連結型集電第1部材であり、前記積層された第1電極の芯体露出部の扁平部分における前記第1電極の芯体露出部の積層方向の最外面に設定された第1溶接予定部に、前記連結型集電第1部材の本体部を配置すると共に、当該扁平部分の対向面に第1の受け部材を配置して、前記芯体露出部を挟んだ状態で前記連結型集電第1部材の本体部と前記芯体露出部と前記第1の受け部材とを抵抗溶接する5−1工程と、
前記集電第2部材が延長部を有する連結型集電第2部材であり、前記積層された第1電極の芯体露出部の扁平部分における前記第1電極の芯体露出部の積層方向の最外面に設定された第2溶接予定部に、前記連結型集電第2部材の本体部を配置すると共に、当該扁平部分の対向面に第2の受け部材を配置し、かつ前記連結型集電第1部材の延長部と前記連結型集電第2部材の延長部とを非接触的に重ね合わせ、しかる後に、前記連結型集電第2部材本体部と第2の受け部材とで前記芯体露出部を挟んだ状態で前記連結型集電第2部材の本体部と前記芯体露出部と前記第2の受け部材とを抵抗溶接する5−2工程と、
前記5−1工程及び前記5−2工程の後、前記連結型集電第1部材の延長部と前記連結型集電第2部材の延長部との重ね合わせ部分を接触させ溶接する5−3工程と、
前記5−1〜5−3工程のいずれかの工程の前、または前記5−3工程の後に、前記連結集電第1部材、前記連結型集電第2部材、前記第1の受け部材、または前記第2の受け部材の何れかと前記外部出力端子とを通電可能に接続する5−4工程と、を備えることを特徴とする。
According to a sixth aspect of the present invention, in the method for manufacturing a prismatic secondary battery according to the second aspect of the invention, the current collector first member is a connected current collector first member having an extension, and the stacked first electrodes A main body portion of the connected current collecting first member is disposed on the first welding scheduled portion set on the outermost surface in the stacking direction of the core exposed portion of the first electrode in the flat portion of the core exposed portion of The first receiving member is disposed on the opposite surface of the flat portion, and the main body portion of the connected current collector first member, the core body exposed portion, and the first body are sandwiched between the core body exposed portions. 5-1 step of resistance welding the receiving member;
The current collecting second member is a connected current collecting second member having an extension portion, and the stacked portion of the core exposed portion of the first electrode in the flat portion of the core exposed portion of the stacked first electrode is arranged. A main body portion of the connected current collecting second member is disposed on the second welding scheduled portion set on the outermost surface, a second receiving member is disposed on the opposing surface of the flat portion, and the connected current collecting portion is disposed. The extension part of the first current collecting member and the extension part of the second connecting current collecting member are superimposed in a non-contact manner, and then the second connecting member main body part and the second receiving member 5-2 step of resistance-welding the main body part of the connection-type current collector second member, the core body exposed part, and the second receiving member with the core body exposed part sandwiched therebetween,
After the step 5-1 and the step 5-2, the overlapping part of the extension part of the connection type current collector first member and the extension part of the connection type current collector second member are contacted and welded 5-3. Process,
Before any one of the steps 5-1 to 5-3, or after the step 5-3, the connected current collecting first member, the connected current collecting second member, the first receiving member, Or 5-4 step of connecting any one of the second receiving members and the external output terminal so as to be energized.

この構成においても、上記5-4工程は、前記2-4工程におけると同様、5-1工程〜
5-3工程のいずれかの工程の前、または5-3工程の後のいずれであってもよい。
Also in this configuration, the above step 5-4 is the same as the above step 2-4, from step 5-1 to
It may be either before any step of the 5-3 step or after the 5-3 step.

また、この構成においても、上記第3及び第4の発明と同様に、部品数の削減、溶接箇所数の低減を図りつつ、良質な抵抗溶接を行うことができるので、大出力放電に耐え得る集電効率と集電安定性に優れた角形二次電池を生産性よく製造することができる。   Also in this configuration, similar to the third and fourth inventions, high-quality resistance welding can be performed while reducing the number of parts and the number of welded portions, so that it can withstand a large output discharge. A square secondary battery excellent in current collection efficiency and current collection stability can be manufactured with high productivity.

第7の発明は、一方の端部に積層された第1電極の芯体露出部を有し、他方の端部に積層された前記第1電極とは極性の異なる第2電極の芯体露出部を有する扁平状電極体と、
前記扁平状電極体を収容する角形電池ケースと、前記角形電池ケースを封口する封口板と、
前記封口板に設けられた貫通穴に挿設され、電池内部側から電池外方に突き出た外部出力端子と、を備え、前記外部出力端子と前記第1電極とが通電可能に接続された角形二次電池の製造方法において、
前記封口板の貫通穴に前記外部出力端子を挿入し、前記外部出力端子と集電第1部材を通電可能に接続する6−1工程と、
前記積層された第1電極の芯体露出部の扁平部分における前記第1電極の芯体露出部の積層方向の最外面に設定された第1溶接予定部に、前記集電第1部材を配置し、前記第1電極の芯体露出部の積層方向で前記集電第1部材と前記芯体露出部とを抵抗溶接する6−2工程と、
前記扁平部分における前記第1電極の芯体露出部の積層方向の最外面であって前記第1溶接予定部から離間し且つ前記集電第1部材と部材同士が接触しない位置に設定された第2溶接予定部に、集電第2部材を配置し、前記第1電極の芯体露出部の積層方向で、前記集電第2部材と前記芯体露出部とを抵抗溶接する6−3工程と、
前記6−1〜6−3工程が終了した後に、前記集電第1部材と前記集電第2部材とを前記第1電極の芯体露出部を介する経路とは別の経路で通電可能に接続する6−4工程と、を備えることを特徴とする。
7th invention has the core exposure part of the 1st electrode laminated | stacked on one edge part, and the core exposure of the 2nd electrode from which polarity differs from the said 1st electrode laminated | stacked on the other edge part A flat electrode body having a portion;
A rectangular battery case that houses the flat electrode body, and a sealing plate that seals the rectangular battery case;
An external output terminal that is inserted into a through hole provided in the sealing plate and protrudes outward from the battery from the inside of the battery, and the external output terminal and the first electrode are connected to be energized. In the secondary battery manufacturing method,
6-1 step of inserting the external output terminal into the through hole of the sealing plate and connecting the external output terminal and the current collecting first member so as to allow energization;
The current collecting first member is disposed on a first welding scheduled portion set on the outermost surface in the stacking direction of the core exposed portion of the first electrode in the flat portion of the core exposed portion of the stacked first electrode. And 6-2 step of resistance welding the current collecting first member and the core exposed portion in the stacking direction of the core exposed portion of the first electrode,
The outermost surface in the stacking direction of the core exposed portion of the first electrode in the flat portion is set at a position that is separated from the first welding scheduled portion and is not in contact with the current collecting first member. 2-6-3 process which arrange | positions a current collection 2nd member in 2 welding scheduled parts, and resistance-welds the said 2nd current collection member and the said core body exposed part in the lamination direction of the core body exposed part of the said 1st electrode. When,
After the steps 6-1 to 6-3 are completed, the current collecting first member and the current collecting second member can be energized through a route different from the route through the core exposed portion of the first electrode. 6-6 processes to connect.

この構成では、先ず外部出力端子に集電第1部材を接続し、しかる後にこの集電第1部材を第1電極の芯体露出部が突出した電極体端部の扁平部分に抵抗溶接する。この手順であると、電池組み立てにおける作業性がよい。ここで外部出力端子と集電第1部材の接続は、両者を直接接続してもよいし、他の導電部材を介してしてもよい。また、外部出力端子と集電第1部材との間に電流遮断機構を介在させることもできる。   In this configuration, the current collecting first member is first connected to the external output terminal, and then the current collecting first member is resistance-welded to the flat portion of the end portion of the electrode body from which the core exposed portion of the first electrode protrudes. With this procedure, workability in battery assembly is good. Here, the connection between the external output terminal and the current collecting first member may be directly connected to each other, or may be made via another conductive member. In addition, a current interruption mechanism can be interposed between the external output terminal and the current collecting first member.

第8の発明は、上記第7の発明にかかる角形二次電池の製造方法において、前記集電第2部材として、延長部を有する連結型の集電第2部材を用い、前記6-4工程が、前記集電第2部材の延長部を前記集電第1部材の上面に抵抗溶接して前記集電第1部材と前記集電第2部材とを通電可能に接続する工程であり、前記各部材の抵抗溶接側の面のうち、少なくとも、前記集電第1部材の前記第1溶接予定部に当接する部分、および前記集電第2部材の前記第2溶接予定部に当接する部分、並びに前記集電第2部材の延長部のうち前記集電第1部材に抵抗溶接する部分、の各部分を除く各部材の抵抗溶接側の面に、抵抗溶接に先だって絶縁フィルムを設けることを特徴とする。   The eighth invention is the method of manufacturing a prismatic secondary battery according to the seventh invention, wherein the current collector second member is a connected current collector second member having an extension, and the step 6-4 Is a step of resistance-welding the extension of the current collector second member to the upper surface of the current collector first member to connect the current collector first member and the current collector second member so as to be energized, Of the surface on the resistance welding side of each member, at least a portion that contacts the first welding scheduled portion of the current collecting first member and a portion that contacts the second welding planned portion of the current collecting second member, In addition, an insulating film is provided on the surface on the resistance welding side of each member excluding each part of the extension part of the current collecting second member that is resistance welded to the current collecting first member, prior to resistance welding. And

この構成では、集電第1部材および連結型集電第2部材の溶接予定部分を除く周辺部(非溶接予定部分)に絶縁フィルムを設けた後に電気抵抗溶接を行う。この構成であると、溶接作業中に部材同士が無用に接触し無駄な電流が流れることを防止できるので、作業性良く良質の抵抗溶接を行うことができる。   In this configuration, electrical resistance welding is performed after an insulating film is provided on the peripheral portion (non-welding scheduled portion) excluding the planned welding portion of the current collecting first member and the connected current collecting second member. With this configuration, it is possible to prevent unnecessary members from coming into contact with each other during the welding operation and to prevent a wasteful current from flowing, so that high-quality resistance welding can be performed with good workability.

第9の発明は、上記第1ないし8のいずれかに記載の発明にかかる角形二次電池の製造方法において、前記第1溶接予定部と第2溶接予定部の中間に、同一極性の芯体露出部が積層された積層芯体露出部を切り欠いてなる芯体切欠き部を設けることを特徴とする。   According to a ninth aspect of the present invention, in the method for manufacturing a prismatic secondary battery according to any one of the first to eighth aspects, a core body having the same polarity is provided between the first welding planned portion and the second welding planned portion. It is characterized by providing a core notch formed by notching the laminated core exposed portion where the exposed portions are stacked.

第1溶接予定部と第2溶接予定部の間に芯体切欠き部が設定された上記構成であると、芯体切欠き部において芯体に邪魔されずに抵抗溶接用の電極棒や超音波溶接で用いるアンビル、ホーンなどの溶接用工具を構成部材の底面(芯体露出部下面)にまで挿入することができる。これにより溶接作業性が格段に向上する。よって、この構成によると、大出力に耐え得る集電効率を備えた角形二次電池の生産性を一層高めることができる。   When the core cutout portion is set between the first weld planned portion and the second weld planned portion, the electrode rod for resistance welding or the super A welding tool such as an anvil and a horn used in sonic welding can be inserted up to the bottom surface (lower surface of the core exposed portion) of the constituent member. Thereby, welding workability improves markedly. Therefore, according to this configuration, it is possible to further increase the productivity of the rectangular secondary battery having a current collection efficiency that can withstand a large output.

第10の発明は、上記第1ないし9のいずれかに記載の発明にかかる角形二次電池の製造方法において、前記集電第1部材または連結型集電第1部材、前記集電第2部材または連結型集電第2部材、前記第1の受け部材および前記第2の受け部材が、アルミニウムまたはアルミニウム合金からなるものであることを特徴とする。   According to a tenth aspect of the present invention, in the method for manufacturing a rectangular secondary battery according to any one of the first to ninth aspects, the current collecting first member, the connected current collecting first member, or the current collecting second member. Alternatively, the connected current collecting second member, the first receiving member, and the second receiving member are made of aluminum or an aluminum alloy.

アルミニウム、アルミニウム合金は、電気伝導性および熱伝導率が共に良好な材料である。それゆえに抵抗溶接時に大電流を流す必要があり、このために、無効電流(溶接に寄与しない電流)が生じ易いが、本発明製造方法によると、無効電流を大幅に抑制できるので、これらの金属材料からなる部材を用いる場合において特に顕著に本発明作用効果が発揮される。   Aluminum and aluminum alloys are materials having good electrical conductivity and thermal conductivity. Therefore, it is necessary to flow a large current at the time of resistance welding. For this reason, reactive current (current that does not contribute to welding) is likely to occur. However, according to the manufacturing method of the present invention, reactive current can be greatly suppressed. In the case of using a member made of a material, the effects of the present invention are particularly remarkably exhibited.

本発明にかかる角形二次電池の製造方法は、電極芯体露出部に集電部材を取り付ける抵抗溶接作業おいて、より少ない電流でもって良質な溶接を効率よく行うことができる。それゆえ、本発明によると、大出力放電に対応できる、集電効率および集電安定性に優れた角形二次電池を生産性よく製造することができる。   The method for manufacturing a rectangular secondary battery according to the present invention can efficiently perform high-quality welding with less current in resistance welding work in which a current collecting member is attached to an electrode core exposed portion. Therefore, according to the present invention, a prismatic secondary battery that can cope with a large output discharge and has excellent current collection efficiency and current collection stability can be manufactured with high productivity.

図1は、実施の形態1にかかる角形二次電池の外観を示す斜視図である。FIG. 1 is a perspective view showing an external appearance of the prismatic secondary battery according to the first embodiment. 図2は、実施の形態1にかかる正負電極板を示す正面模式図である。FIG. 2 is a schematic front view of the positive and negative electrode plates according to the first embodiment. 図3は、実施の形態1にかかる集電系各部材が取り付けられた扁平状電極体の正面模式図である。FIG. 3 is a schematic front view of a flat electrode body to which each member of the current collecting system according to the first embodiment is attached. 図4は、実施の形態1にかかる集電系各部材を芯体露出部に取り付ける手順を示す断面模式図である。FIG. 4 is a schematic cross-sectional view illustrating a procedure for attaching each current collecting system member according to the first embodiment to the core body exposed portion. 図5は、受け部材を使用しない実施の形態2にかかる扁平状電極体の断面模式図である。FIG. 5 is a schematic cross-sectional view of a flat electrode body according to the second embodiment that does not use a receiving member. 図6は、実施の形態3にかかる扁平状電極体の正面模式図である。FIG. 6 is a schematic front view of a flat electrode body according to the third embodiment. 図7は、実施の形態3にかかる集電系各部材を取り付ける製造手順を説明するための断面模式図であり、図7(a)は連結型集電第2部材を示す図、図7(b)は第1溶接予定部および第2溶接予定部における抵抗溶接作業を示す図、図7(c)は溶接予定部103のインダイレクト抵抗溶接作業を示す図である。FIG. 7: is a cross-sectional schematic diagram for demonstrating the manufacturing procedure which attaches each current collection system member concerning Embodiment 3, FIG. 7 (a) is a figure which shows a connection type | mold current collection 2nd member, FIG. FIG. 7B is a diagram showing resistance welding work in the first welding scheduled portion and the second welding scheduled portion, and FIG. 7C is a diagram showing indirect resistance welding work in the welding planned portion 103. 図8(a)は実施の形態4にかかる切欠きを形成した電極芯体の正面模式図であり、図8(b)は芯体切欠き部を有する扁平状電極体の側面模式図である。FIG. 8A is a schematic front view of an electrode core body having a cutout according to the fourth embodiment, and FIG. 8B is a schematic side view of a flat electrode body having a core cutout portion. . 図9は、集電系各部材が取り付けられた実施の形態4にかかる扁平状電極体の正面模式図である。FIG. 9 is a schematic front view of a flat electrode body according to the fourth embodiment to which each current collecting system member is attached. 図10は、実施の形態4にかかる集電系各部材を扁平状電極体に取り付ける製造手順を説明するための断面模式図である。FIG. 10 is a schematic cross-sectional view for explaining a manufacturing procedure for attaching each current collecting system member according to the fourth embodiment to a flat electrode body. 図11は、実施の形態5にかかる集電系各部材を扁平状電極体に取り付ける製造手順を説明する断面模式図であり、図11(a)は連結型集電第1部材を示す図、図11(b)は第1溶接予定部および第2溶接予定部における抵抗溶接作業を示す図、図11(c)は溶接予定部103の抵抗溶接作業を示す図である。FIG. 11 is a schematic cross-sectional view illustrating a manufacturing procedure for attaching each current collecting system member according to the fifth embodiment to a flat electrode body, and FIG. 11 (a) is a diagram showing a connected current collecting first member; FIG. 11B is a diagram showing resistance welding work in the first welding scheduled portion and the second welding scheduled portion, and FIG. 11C is a diagram showing resistance welding work in the scheduled welding portion 103. 図12(a)は実施の形態6にかかる扁平状電極体の正面模式図であり、図12(b)は集電系各部材を取り付けるレーザ溶接の様子を示す断面模式図である。FIG. 12A is a schematic front view of a flat electrode body according to the sixth embodiment, and FIG. 12B is a schematic cross-sectional view showing a state of laser welding for attaching each current collecting system member. 図13は、実施の形態7にかかる集電系各部材が取り付けられた扁平状電極体の断面模式図である。FIG. 13 is a schematic cross-sectional view of a flat electrode body to which members of the current collecting system according to the seventh embodiment are attached. 図14は実施の形態7の他の態様を示す断面模式図である。FIG. 14 is a schematic cross-sectional view showing another aspect of the seventh embodiment. 図15は、実施の形態8にかかる正極集電第1部材の形状を示す斜視図である。FIG. 15 is a perspective view illustrating the shape of the positive electrode current collector first member according to the eighth embodiment. 図16は、封口板に外部出力端子および集電第1部材を取り付けた封口体部分を示す断面摸式図である。FIG. 16 is a schematic cross-sectional view showing a sealing body portion in which an external output terminal and a current collecting first member are attached to a sealing plate. 図17は実施の形態8にかかる集電第1部材を積層芯体露出部に抵抗溶接する様子を示す図である。FIG. 17 is a view showing a state in which the current collecting first member according to the eighth embodiment is resistance-welded to the laminated core body exposed portion. 図18は実施の形態8にかかる連結型集電第2部材を積層芯体露出部に抵抗溶接する様子を示す図である。FIG. 18 is a diagram illustrating a state in which the connection-type current collecting second member according to the eighth embodiment is resistance-welded to the laminated core body exposed portion. 図19は実施の形態8にかかる集電第1部材と連結型集電第2部材とを抵抗溶接する様子を示す図である。FIG. 19 is a diagram illustrating a state in which resistance-welding is performed between the first current collecting member and the connected current collecting second member according to the eighth embodiment. 図20は、実施の形態8にかかる電池の断面摸式図であるFIG. 20 is a schematic cross-sectional view of the battery according to the eighth embodiment. 図21(a)は参考例1にかかる、集電体が取り付けられた扁平状電極体の正面模式図であり、図21(b)はその断面模式図である。FIG. 21A is a schematic front view of a flat electrode body to which a current collector is attached according to Reference Example 1, and FIG. 21B is a schematic cross-sectional view thereof. 図22は、スリットが形成された参考例2にかかる集電体が取り付けられた扁平状電極体の正面模式図である。FIG. 22 is a schematic front view of a flat electrode body to which a current collector according to Reference Example 2 in which slits are formed is attached. 図23は、孔空き部が形成された参考例3にかかる集電体が取り付けられた扁平状電極体の正面模式図である。FIG. 23 is a schematic front view of a flat electrode body to which a current collector according to Reference Example 3 in which a hole is formed is attached. 図24は、従来型の集電板を抵抗溶接する際に無効電流が発生する理由を説明する図である。FIG. 24 is a diagram for explaining the reason why a reactive current is generated when resistance-welding a conventional current collector plate.

(実施の形態1)
本発明製造方法を角形リチウムイオン二次電池に適用した場合について、図面を用いて説明する。図1は、本実施の形態1にかかる角形リチウムイオン二次電池の外観を示す斜視図であり、図2は、実施の形態1の角形リチウムイオン二次電池に用いた正負電極板を模式的に描いた正面模式図である。
(Embodiment 1)
The case where the manufacturing method of the present invention is applied to a prismatic lithium ion secondary battery will be described with reference to the drawings. FIG. 1 is a perspective view showing an external appearance of a prismatic lithium ion secondary battery according to the first embodiment. FIG. 2 is a schematic diagram of positive and negative electrode plates used in the prismatic lithium ion secondary battery according to the first embodiment. FIG.

図1に示すように、本実施の形態1に係る角形リチウムイオン二次電池は、角形の電池ケース1と、電池ケース1の開口を封止する封口板2を備える封口体と、封口体から外方に突出した正極外部出力端子5、負極外部出力端子6と、を有している。   As shown in FIG. 1, a rectangular lithium ion secondary battery according to Embodiment 1 includes a rectangular battery case 1, a sealing body including a sealing plate 2 that seals the opening of the battery case 1, and a sealing body. A positive external output terminal 5 and a negative external output terminal 6 projecting outward are provided.

上記正極板11と負極板12とが、ポリエチレン製などの樹脂製微多孔膜からなるセパレータを介して巻回され、押圧されて、扁平状の電極体10が作製される。電極体10の両端面のそれぞれには、正負電極芯体が突出している。   The positive electrode plate 11 and the negative electrode plate 12 are wound and pressed through a separator made of a resin-made microporous film such as polyethylene, and the flat electrode body 10 is manufactured. Positive and negative electrode cores protrude from both end faces of the electrode body 10.

正極側の端面について詳しく説明する。図3に示すように、扁平状電極体10の端面に突出した正極積層芯体露出部11cの偏平部分に設定された第1溶接予定部101に、正極集電第1部材13が溶接され、第1溶接予定部101から離れた位置に設定された第2溶接予定部102に、正極集電第2部材14が溶接されている。また、図4に示すように、正極集電第1部材13と正極集電第2部材14の向かい合う端部同士が接触し合わないように、両部材は離間配置されている。   The end face on the positive electrode side will be described in detail. As shown in FIG. 3, the positive electrode current collector first member 13 is welded to the first welding scheduled portion 101 set at the flat portion of the positive electrode laminated core exposed portion 11 c protruding from the end face of the flat electrode body 10. The positive electrode current collector second member 14 is welded to the second welding planned portion 102 set at a position away from the first welding planned portion 101. Moreover, as shown in FIG. 4, both members are spaced apart so that the opposite ends of the positive electrode current collector first member 13 and the positive electrode current collector second member 14 do not come into contact with each other.

また、正極集電第1部材13と正極集電第2部材14との両部材の離間部分には、離間部分を跨ぐように正極導電性連結部材15が配置され、この導電性連結部材15と正極集電第1部材13および正極集電第2部材14とが、溶接点103・103でそれぞれ溶接されている。これにより正極積層芯体露出部11c、正極集電第1部材13、正極集電第2部材14、および正極導電性連結部材15の各部材が通電可能に連結結合されている。
さらに正極集電第1部材13の延長部分が直接またはリード線を介して正極外部出力端子に接続されている。以下では、このような集電構造を集電系構造と称し、この構造で使用する、各部材を集電系部材と称する。
In addition, a positive electrode conductive connecting member 15 is disposed at a separation portion of both the positive electrode current collecting first member 13 and the positive electrode current collecting second member 14 so as to straddle the separating portion. The positive electrode current collector first member 13 and the positive electrode current collector second member 14 are welded at welding points 103 and 103, respectively. Thereby, each member of the positive electrode laminated core exposed part 11c, the positive electrode current collector first member 13, the positive electrode current collector second member 14, and the positive electrode conductive connecting member 15 is connected and coupled so as to be energized.
Further, the extended portion of the positive current collector first member 13 is connected to the positive external output terminal directly or via a lead wire. Hereinafter, such a current collecting structure is referred to as a current collecting system structure, and each member used in this structure is referred to as a current collecting system member.

また、上記第1溶接予定部101及び第2溶接予定部102は、溶接終了後に第1溶接部101、第2溶接部102となる。また、この実施の形態1では、負極側についても同様の集電系構造が採用されているが、負極側については、正極側と構造が同様であるのでその説明を省略する。   Moreover, the said 1st welding scheduled part 101 and the 2nd welding scheduled part 102 become the 1st welding part 101 and the 2nd welding part 102 after completion | finish of welding. In the first embodiment, the same current collecting system structure is adopted for the negative electrode side. However, since the structure of the negative electrode side is the same as that of the positive electrode side, description thereof is omitted.

この実施の形態1では、正極芯体、正極集電第1部材、正極集電第2部材、正極導電性連結部材の各部材には、アルミニウム製が使用されており、負極側各部材には銅製が使用されている。   In Embodiment 1, aluminum is used for each member of the positive electrode core body, the positive electrode current collector first member, the positive electrode current collector second member, and the positive electrode conductive connecting member. Copper is used.

集電系各部材が溶接された電極体10は、非水電解質とともに上記電池ケース1内に収容され、正極集電第1部材13及び負極集電第1部材16の先端がそれぞれ正負外部出力端子5,6に通電可能に接続されている(不図示)。なお、外部出力端子への接続は、正負集電第1部材13の延長部分にさらにリード線を介在させて接続することもできる。   The electrode body 10 to which each member of the current collecting system is welded is housed in the battery case 1 together with the non-aqueous electrolyte, and the positive electrode current collecting first member 13 and the negative electrode current collecting first member 16 have respective positive and negative external output terminals. 5 and 6 are connected to be energized (not shown). In addition, the connection to the external output terminal can be performed by further interposing a lead wire in the extended portion of the positive and negative current collecting first member 13.

図2に示すように、正負電極板はともに、箔状の芯体に正負活物質層11a,12aが形成され、長手方向に沿った一方の端部に正負芯体露出部11b,12bが形成されている。このような正負電極板を、渦巻き電極体の一方の端部から正極芯体露出部11bが突出し、他方の端部から負極芯体露出部12bが突出するようにセパレータを介して重ね合わせた後、巻回する。その後プレスして扁平状の電極体を作製する。この突出した正負電極芯体露出部11b・12bが、積層芯体露出部11c・12cとなる。なお、長手方向に沿った両方の端部に芯体露出部を形成することも可能であるが、このようにすると、重量エネルギー密度が低下する。   As shown in FIG. 2, both positive and negative electrode plates have positive and negative active material layers 11a and 12a formed on a foil-shaped core, and positive and negative core exposed portions 11b and 12b formed at one end along the longitudinal direction. Has been. After stacking such positive and negative electrode plates through a separator so that the positive electrode core exposed portion 11b protrudes from one end of the spiral electrode body and the negative electrode core exposed portion 12b protrudes from the other end. Wrap it. Thereafter, pressing is performed to produce a flat electrode body. The protruding positive and negative electrode core exposed portions 11b and 12b become the laminated core exposed portions 11c and 12c. In addition, although it is also possible to form a core body exposure part in both the edge parts along a longitudinal direction, if it does in this way, a weight energy density will fall.

上記構造の角形リチウムイオン二次電池の作製方法の詳細を説明する。   Details of a method for manufacturing the prismatic lithium ion secondary battery having the above structure will be described.

<正極板の作製>
コバルト酸リチウム(LiCoO)からなる正極活物質と、アセチレンブラックまたはグラファイト等の炭素系導電剤と、ポリビニリデンフルオライド(PVDF)からなる結着剤とを、質量比90:5:5の割合で量り採り、これらをN−メチル−2−ピロリドンからなる有機溶剤等に溶解させた後、混合し、正極活物質スラリーを調製した。
<Preparation of positive electrode plate>
A ratio of 90: 5: 5 in a mass ratio of a positive electrode active material made of lithium cobalt oxide (LiCoO 2 ), a carbon-based conductive agent such as acetylene black or graphite, and a binder made of polyvinylidene fluoride (PVDF). The sample was dissolved in an organic solvent composed of N-methyl-2-pyrrolidone and then mixed to prepare a positive electrode active material slurry.

次に、ダイコーターまたはドクターブレード等を用いて、帯状のアルミニウム箔(厚さが20μm)からなる正極芯体の両面に、この正極活物質スラリーを均一な厚みで塗布した。ただし、正極芯体の長手方向に沿う一方の端部(両面ともに同一方向の端部)にはスラリーを塗布せず、その芯体を露出させて、正極芯体露出部11bを形成した。   Next, using a die coater or a doctor blade, this positive electrode active material slurry was applied to both surfaces of a positive electrode core made of a strip-shaped aluminum foil (thickness: 20 μm) with a uniform thickness. However, the slurry was not applied to one end portion along the longitudinal direction of the positive electrode core body (end portions in the same direction on both surfaces), and the core body was exposed to form the positive electrode core exposed portion 11b.

この極板を乾燥機内に通して上記有機溶剤を除去し、乾燥極板を作製した。この乾燥極板を、ロールプレス機を用いて、その厚みが0.06mmとなるように圧延して、正極板を作製した。このようにして作製した正極板を幅が100mmとなる短冊状に切り出し、幅が10mmの帯状のアルミニウムからなる正極芯体露出部11bを設けた正極板11を得た(図2(a))。   The electrode plate was passed through a dryer to remove the organic solvent, and a dried electrode plate was produced. This dry electrode plate was rolled using a roll press so that the thickness thereof was 0.06 mm to produce a positive electrode plate. The positive electrode plate thus produced was cut into a strip shape having a width of 100 mm to obtain a positive electrode plate 11 provided with a positive electrode core exposed portion 11b made of strip-shaped aluminum having a width of 10 mm (FIG. 2 (a)). .

なお、正極活物質としては、上記コバルト酸リチウム以外にも、例えばニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、鉄酸リチウム(LiFeO)、またはこれらの酸化物に含まれる遷移金属の一部を他の元素で置換した酸化物等のリチウム含有遷移金属複合酸化物を単独で、あるいは二種以上を混合して用いること
ができる。
In addition to the lithium cobaltate, the positive electrode active material includes, for example, lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium ferrate (LiFeO 2 ), or oxides thereof. A lithium-containing transition metal composite oxide such as an oxide obtained by substituting a part of the transition metal with another element can be used alone or in admixture of two or more.

<負極板の作製>
体積平均粒径20μmの人造黒鉛からなる負極活物質と、スチレンブタジエンゴムからなる結着剤と、カルボキシメチルセルロースからなる増粘剤とを、質量比98:1:1の割合で量り採り、これらを適量の水と混合し、負極活物質スラリーを調製した。
<Preparation of negative electrode plate>
A negative electrode active material made of artificial graphite having a volume average particle diameter of 20 μm, a binder made of styrene butadiene rubber, and a thickener made of carboxymethyl cellulose were weighed in a mass ratio of 98: 1: 1, and these were measured. A negative electrode active material slurry was prepared by mixing with an appropriate amount of water.

次に、ダイコーターまたはドクターブレード等を用いて、帯状の銅箔(厚さが12μm)からなる負極芯体の両面に、この負極活物質スラリーを均一な厚さで塗布した。ただし、負極芯体の長手方向に沿う一方の端部(両面ともに同一方向の端部)にはスラリーを塗布せず、その芯体を露出させて、負極芯体露出部12bを形成した。   Next, using a die coater or a doctor blade, the negative electrode active material slurry was applied to both surfaces of a negative electrode core made of a strip-shaped copper foil (thickness: 12 μm) with a uniform thickness. However, the slurry was not applied to one end along the longitudinal direction of the negative electrode core (ends in the same direction on both surfaces), and the core was exposed to form the negative electrode core exposed portion 12b.

この極板を乾燥機内に通して水分を除去し、乾燥極板を作製した。その後、この乾燥極板を、ロールプレス機によりその厚みが0.05mmとなるように圧延して、負極板を作製した。このようにして作製した負極板を幅が110mmとなる短冊状に切り出し、幅が8mmの帯状の負極芯体露出部12bを設けた負極板12を得た(図2(b))。   The electrode plate was passed through a dryer to remove moisture, and a dried electrode plate was produced. Then, this dry electrode plate was rolled by a roll press machine so that the thickness became 0.05 mm, and the negative electrode plate was produced. The negative electrode plate thus produced was cut into a strip shape having a width of 110 mm to obtain a negative electrode plate 12 provided with a strip-shaped negative electrode core exposed portion 12b having a width of 8 mm (FIG. 2 (b)).

なお、負極活物質としては、上記人造黒鉛に代えて又はこれと共に、天然黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、あるいはこれらの焼成体等の炭素質物、または前記炭素質物と、リチウム、リチウム合金、およびリチウムを吸蔵・放出できる金属酸化物からなる群から選ばれる1種以上との混合物を用いることができる。   In addition, as the negative electrode active material, carbonaceous materials such as natural graphite, carbon black, coke, glassy carbon, carbon fiber, or a fired body thereof instead of or in addition to the above artificial graphite, or the carbonaceous material and lithium , Lithium alloys, and mixtures with one or more selected from the group consisting of metal oxides capable of occluding and releasing lithium can be used.

<電極体の作製>
上記正極板と負極板と樹脂製微多孔膜(厚さが0.022mm)からなるセパレータとを、同極の芯体露出部同士が複数枚直接重なり、異なる芯体露出部同士が巻回方向に対し互いに逆向きに突出し、かつ異なる活物質層間にはセパレータが介在するように3つの部材を位置あわせし重ね合わせ、巻き取り機により巻回した後、絶縁性の巻き止めテープを設け、しかる後にプレスして扁平状の電極体を完成させた。
<Production of electrode body>
In the positive electrode plate, the negative electrode plate, and a separator made of a resin microporous membrane (thickness: 0.022 mm), a plurality of homopolar core exposed portions directly overlap each other, and different core exposed portions are wound in the winding direction. In contrast, the three members are aligned and overlapped so that separators are interposed between different active material layers, wound with a winder, and then provided with an insulating winding tape. Later, it was pressed to complete a flat electrode body.

<集電系各部材の取り付け>
図3、図4(a)〜(b)に示すがごとく、扁平状電極体10の巻回方向に直交する方向の両端部のそれぞれに突出した正負積層芯体露出部の平坦部分(扁平部分ともいう)に集電系各部材を配置した。図3は集電系各部材が溶接配置された後の扁平状電極体を示す正面模式図である。図4は、正極芯体露出部の巻回方向に直交する断面を模式的に示した断面模式図であり、図4(a)は、集電第1部材13と第1の受け部材19、及び集電第2部材14と第2の受け部材20とで積層芯体露出部11cを挟み、それぞれを抵抗溶接する様子を示す図であり、図4(b)は、この抵抗溶接の後、集電第1部材13と集電第2部材14とが導電性連結部材15で連結された様を示す図である。
<Attachment of current collector components>
As shown in FIGS. 3 and 4 (a) to 4 (b), flat portions (flat portions) of the positive and negative laminated core exposed portions projecting from both ends in the direction orthogonal to the winding direction of the flat electrode body 10 are shown. Also, the current collecting system members are arranged. FIG. 3 is a schematic front view showing the flat electrode body after the current collecting system members are arranged by welding. FIG. 4 is a schematic cross-sectional view schematically showing a cross section perpendicular to the winding direction of the positive electrode core exposed portion. FIG. 4A shows a current collecting first member 13 and a first receiving member 19. And it is a figure which shows a mode that the laminated core body exposed part 11c is pinched | interposed by the current collection 2nd member 14 and the 2nd receiving member 20, and each is resistance-welded, FIG.4 (b) is after this resistance welding, FIG. 3 is a diagram showing a state where a current collecting first member 13 and a current collecting second member 14 are connected by a conductive connecting member 15.

なお、本明細書では、扁平状電極体の電極板面を見る方向を正面(正面視)とし、電極体の側面を見る方向を側面とし、側面視における断面を模式的に表した図を断面模式図と称している。   In this specification, the direction in which the electrode plate surface of the flat electrode body is viewed is the front surface (front view), the direction in which the side surface of the electrode body is viewed is the side surface, This is called a schematic diagram.

集電系各部材の具体的な取り付け方法を、正極側集電系構造を例にして更に説明する。先ず、積層芯体露出部11cの扁平部分の中央左側にアルミニウム製の正極集電第1部材13(以下、「正極」を省略して記載する)を配置し、その反対面にアルミニウム製の第1の受け部材19を配置する。溶接用電極棒の先端が互いに対向するように、集電第1部材13と第1の受け部材19のそれぞれに電極棒104・104の先端を当接させ、両部材間に電流を流す。これにより、集電第1部材13と積層芯体露出部11cと第1の受け部材19とが抵抗溶接される。この抵抗溶接部分が第1溶接部101であり、溶接前の当
該部分を第1溶接予定部101と称している。
A specific method for attaching each member of the current collecting system will be further described taking the positive current collecting system structure as an example. First, an aluminum positive electrode current collector first member 13 (hereinafter abbreviated as “positive electrode”) is arranged on the central left side of the flat portion of the laminated core exposed portion 11c, and an aluminum first electrode 13 is described on the opposite surface. One receiving member 19 is arranged. The front ends of the electrode rods 104 and 104 are brought into contact with the current collecting first member 13 and the first receiving member 19 so that the front ends of the welding electrode rods face each other, and a current flows between both members. As a result, the current collecting first member 13, the laminated core body exposed portion 11 c, and the first receiving member 19 are resistance welded. This resistance welded portion is the first welded portion 101, and the portion before welding is referred to as a first welded portion 101.

続いて積層芯体露出部11cの中央右側に、上記集電第1部材13の端部に接触しないように離間させて集電第2部材14を配置し、対向面側に第2の受け部材20を配置する。上記と同様にして、両部材のそれぞれに電極棒先端104’・104’を当接させ電流を流す。これにより、集電第2部材13と積層芯体露出部11cと第2の受け部材20とが抵抗溶接される(図4(a)参照)。この抵抗溶接部分が第2溶接部102であり、溶接前の当該部分を第2溶接予定部102と称している。   Subsequently, the current collecting second member 14 is arranged on the right side of the center of the laminated core exposed portion 11c so as not to contact the end of the current collecting first member 13, and the second receiving member is disposed on the opposite surface side. 20 is arranged. In the same manner as described above, the electrode rod tips 104 ′ and 104 ′ are brought into contact with each of the two members, and a current flows. Thereby, the current collection second member 13, the laminated core exposed portion 11c, and the second receiving member 20 are resistance-welded (see FIG. 4A). This resistance welded portion is the second welded portion 102, and the portion before welding is referred to as a second welded portion 102.

更に続いて、抵抗溶接法で固定された集電第1部材13および集電第2部材14の離間部分を跨ぐようにして、導電性連結部材15を配置する。そして、集電第1部材13と重なり合った部分および集電第2部材14と重なり合った部分(溶接点103・103)において、導電性連結部材15と集電第1部材13および集電第2部材14とをレーザ溶接する(図4(b)参照)。レーザ溶接に際しては、導電性連結部材の端部にレーザを照射するのがよい。なお、当該部分の溶接を超音波溶接法を用いて行ってもよい。   Subsequently, the conductive connecting member 15 is disposed so as to straddle the separated portion of the current collecting first member 13 and the current collecting second member 14 fixed by the resistance welding method. And in the part which overlaps with the current collection 1st member 13, and the part which overlaps with the current collection 2nd member 14 (welding point 103 * 103), the electroconductive connection member 15, the current collection 1st member 13, and the current collection 2nd member 14 is laser welded (see FIG. 4B). In laser welding, it is preferable to irradiate the end of the conductive connecting member with laser. In addition, you may perform the welding of the said part using an ultrasonic welding method.

負極側についても、上記と同様に溶接作業を行った。   The negative electrode side was also welded in the same manner as described above.

<電解液の作製>
エチレンカーボネート(EC)とプロピレンカーボネート(PC)とジエチルカーボネート(DEC)とを体積比1:1:8の割合(1気圧、25℃)で混合した非水溶媒に、電解質塩としてのLiPFを1.0M(モル/リットル)の割合で溶解したものを電解液とした。
<Preparation of electrolyte>
LiPF 6 as an electrolyte salt is added to a non-aqueous solvent in which ethylene carbonate (EC), propylene carbonate (PC), and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 1: 8 (1 atm, 25 ° C.). A solution dissolved at a rate of 1.0 M (mol / liter) was used as an electrolytic solution.

なお、リチウムイオン二次電池を例とするこの実施の形態の非水溶媒は、上記の組み合わせに限定されるものではない。例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等のリチウム塩の溶解度が高い高誘電率溶媒と、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、アニソール、1,4−ジオキサン、4−メチル−2−ペンタノン、シクロヘキサノン、アセトニトリル、プロピオニトリル、ジメチルホルムアミド、スルホラン、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸エチル等の低粘性溶媒とを混合させて用いることができる。さらに、前記高誘電率溶媒や低粘性溶媒をそれぞれ二種以上の混合溶媒とすることもできる。また、電解質塩としては、上記LiPF以外にも、例えばLiN(CSO、LiN(CFSO、LiClOまたはLiBF等を単独で、あるいは2種以上混合して用いることができる。 In addition, the non-aqueous solvent of this embodiment which uses a lithium ion secondary battery as an example is not limited to the above combination. For example, a high dielectric constant solvent having a high solubility of lithium salts such as ethylene carbonate, propylene carbonate, butylene carbonate, and γ-butyrolactone, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, anisole, 1, Low viscosity solvent such as 4-dioxane, 4-methyl-2-pentanone, cyclohexanone, acetonitrile, propionitrile, dimethylformamide, sulfolane, methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, ethyl propionate It can be mixed and used. Furthermore, the high dielectric constant solvent and the low viscosity solvent can be used as a mixed solvent of two or more. In addition to LiPF 6 described above, for example, LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiClO 4 or LiBF 4 may be used alone or in combination of two or more as the electrolyte salt. Can be used.

<電池の組み立て>
扁平状電極体の正極集電第1部材13の一方端部を正極外部出力端子5に接続し、負極集電第1部材16の一方端部を負極外部出力端子6に接続し、封口板2に絶縁性のガスケット(図示せず)を介してカシメ接合する。次いで封口板2と結合させた電極群10を電池ケース1内に挿入し、電池ケース1の開口部に封口板2を嵌合させ、封口板2の周囲と電池ケース1の接合部をレーザ溶接し、封口板2に設定された電解液注入孔(図示せず)から所定量の上記電解液を注入した後、この電解液注入孔を密閉する。これにより実施の形態1にかかる角形リチウムイオン二次電池を完成させた。
<Battery assembly>
One end portion of the positive electrode current collector first member 13 of the flat electrode body is connected to the positive electrode external output terminal 5, and one end portion of the negative electrode current collector first member 16 is connected to the negative electrode external output terminal 6. And caulking with an insulating gasket (not shown). Next, the electrode group 10 combined with the sealing plate 2 is inserted into the battery case 1, the sealing plate 2 is fitted into the opening of the battery case 1, and the joint between the periphery of the sealing plate 2 and the battery case 1 is laser welded. And after inject | pouring a predetermined amount of said electrolyte solution from the electrolyte solution injection hole (not shown) set to the sealing board 2, this electrolyte solution injection hole is sealed. Thus, the prismatic lithium ion secondary battery according to the first embodiment was completed.

ここで、「第1溶接予定部」(第1溶接部でもある)および「第2溶接予定部」(第2溶接部でもある)は、それぞれ少なくとも1つ存在している必要があるが、集電第1部材と積層芯体露出部との溶接、及び、集電第2部材と積層芯体露出部との溶接は、一箇所に限定されるものでなく、複数箇所でもよい。これは以下に記載する他の実施の形態におい
ても同様である。
Here, it is necessary that at least one “first welding planned portion” (also the first welding portion) and “second welding planned portion” (also the second welding portion) exist, The welding between the electric first member and the laminated core body exposed portion and the welding between the current collecting second member and the laminated core body exposed portion are not limited to one place, and may be a plurality of places. The same applies to the other embodiments described below.

〔実施の形態2〕
実施の形態2にかかる集電系構造を図5に示す。実施の形態2は、集電第1部材および集電第2部材を受ける受け部材19・20を用いないこと以外は、上記実施の形態1と同様である。実施の形態2では、集電第1部材と積層芯体露出部11cとを電極棒で挟み通電することにより集電第1部材と積層芯体露出部を抵抗溶接し、集電第2部材と積層芯体露出部11cについても同様に抵抗溶接し、この後、導電性連結部材15の所定部位をレーザ溶接する。
[Embodiment 2]
FIG. 5 shows a current collecting structure according to the second embodiment. The second embodiment is the same as the first embodiment except that the receiving members 19 and 20 that receive the current collecting first member and the current collecting second member are not used. In Embodiment 2, the current collector first member and the laminated core body exposed portion are resistance-welded by sandwiching the current collector first member and the laminated core body exposed portion 11c between the electrode rods and energizing, and the current collector second member and Similarly, the laminated core body exposed portion 11c is resistance-welded, and then a predetermined portion of the conductive connecting member 15 is laser-welded.

この実施の形態2では、受け部材19・20を用いない点において、実施の形態1に比較し部品数を低減できるメリットがある。ただし、受け部材を介さずに抵抗溶接棒を直接積層芯体露出部11cに接触させるため、薄膜からなる積層芯体露出部11cが損傷され易いというデメリットがある。   The second embodiment is advantageous in that the number of parts can be reduced compared to the first embodiment in that the receiving members 19 and 20 are not used. However, since the resistance welding rod is directly brought into contact with the laminated core exposed portion 11c without using the receiving member, there is a demerit that the laminated core exposed portion 11c made of a thin film is easily damaged.

〔実施の形態3〕
実施の形態3は、上記実施の形態1における集電第2部材14と導電性連結部材15とを一体化した連結型集電第2部材21が使用されている。図6に、実施の形態3にかかる集電系構造の正面模式図を示し、図7(a)に連結型集電第2部材21の側面形状を示す。図7(a)に示すように、連結型集電第2部材21は集電第2部材に相当する本体部21aと、集電第1部材との連結のための延長部21bとを有する形状である。
[Embodiment 3]
In the third embodiment, a connected current collecting second member 21 in which the current collecting second member 14 and the conductive connecting member 15 in the first embodiment are integrated is used. FIG. 6 shows a schematic front view of the current collecting structure according to the third embodiment, and FIG. 7A shows a side shape of the connected current collecting second member 21. As shown in FIG. 7A, the connected current collecting second member 21 has a body portion 21a corresponding to the current collecting second member and an extension portion 21b for connecting the current collecting first member. It is.

図7(a)〜(c)を参照しつつ、実施の形態3にかかる集電系構造の製造手順を説明する。先ず上記実施の形態1と同様にして、集電第1部材13とその受け部材である第1の受け部材19とで積層芯体露出部11cを挟み、三者を抵抗溶接する。この後、集電第1部材13の端部と連結型集電第2部材21の本体部21aとを離間させ、かつ連結型集電第2部材21の延長部21bの先端側が集電第1部材13の上に位置するようにして、芯体露出部上に連結型集電第2部材本体部21aを配置する。この際、連結型集電第2部材の延長部21bが集電第1部材13の上面に接触しないように両部材間に若干の隙間を空けておく(図7(b)参照)。   A manufacturing procedure of the current collecting structure according to the third embodiment will be described with reference to FIGS. First, in the same manner as in the first embodiment, the laminated core body exposed portion 11c is sandwiched between the current collecting first member 13 and the first receiving member 19 that is the receiving member, and the three members are resistance welded. Thereafter, the end of the current collecting first member 13 and the main body 21a of the connected current collecting second member 21 are separated from each other, and the distal end side of the extension 21b of the connected current collecting second member 21 is the current collecting first. The connected current collecting second member main body portion 21 a is disposed on the core exposed portion so as to be positioned on the member 13. At this time, a slight gap is left between the two members so that the extended portion 21b of the connected current collecting second member does not contact the upper surface of the current collecting first member 13 (see FIG. 7B).

両部材間も若干の隙間を空ける手段としては、例えば連結型集電第2部材21の本体部21aの底面から延長部21bの下面までの高さHを、集電第1部材13の厚みよりも僅かに高く形成する。また、連結型集電第2部材の延長部21bの下面または集電第1部材の対応部分に溶接熱で飛散し除去できる程度の薄い樹脂製絶縁性被膜を粘着しておく等するのもよい。   For example, the height H from the bottom surface of the main body portion 21a of the connection-type current collector second member 21 to the lower surface of the extension portion 21b is determined by the thickness of the current collector first member 13 as a means for providing a slight gap between the two members. Is slightly higher. Also, a thin resin insulating film that can be scattered and removed by welding heat may be adhered to the lower surface of the extension portion 21b of the connected current collecting second member or the corresponding portion of the current collecting first member. .

連結型集電第2部材21の本体部21aの対向側に第2の受け部材20を配置し、本体部21aと積層芯体露出部11cと第2の受け部材20とを電極棒104で挟んで抵抗溶接する(図7(b)参照)。この後、連結型集電第2部材21の延長部21bを積層芯体露出部11c側に押圧して、延長部21bの下面を集電第1部材13の上面に接触させ、延長部21bの上面に電極棒104’を当接する一方、集電第1部材面であって電極棒104’の近傍に電極棒104を当接する。両電極棒間に電流を流し、連結型集電第2部材21の延長部21bの下面と集電第1部材13の上面とを抵抗溶接(インダイレクト式抵抗溶接)する。   The second receiving member 20 is disposed on the opposite side of the main body 21 a of the connected current collecting second member 21, and the main body 21 a, the laminated core body exposed portion 11 c, and the second receiving member 20 are sandwiched between the electrode bars 104. Resistance welding (see FIG. 7B). Then, the extension part 21b of the connection type current collector second member 21 is pressed toward the laminated core body exposed part 11c, the lower surface of the extension part 21b is brought into contact with the upper surface of the current collector first member 13, and the extension part 21b The electrode rod 104 ′ is brought into contact with the upper surface, while the electrode rod 104 is brought into contact with the current collecting first member surface and in the vicinity of the electrode rod 104 ′. An electric current is passed between both electrode rods, and the lower surface of the extension part 21b of the connected current collecting second member 21 and the upper surface of the current collecting first member 13 are resistance-welded (indirect resistance welding).

なお、連結型集電第2部材21の延長部21bの下面と集電第1部材13の上面との溶接には、他の溶接法(例えばレーザ溶接法)を用いてもよい。これら以外の事項については上記実施の形態1と同様に行う。   In addition, another welding method (for example, laser welding method) may be used for welding the lower surface of the extension portion 21b of the connection-type current collecting second member 21 and the upper surface of the current collecting first member 13. Other matters are the same as those in the first embodiment.

実施の形態3では、別部材としての導電性連結部材を必要としないので、上記実施の形態1に比較し、部材数と溶接箇所数の低減を図ることができる。よって、上記実施の形態1に比較し生産性が向上する。   Since Embodiment 3 does not require a conductive connecting member as a separate member, the number of members and the number of welded portions can be reduced as compared with Embodiment 1 above. Therefore, productivity is improved as compared with the first embodiment.

〔実施の形態4〕
実施の形態4にかかる集電系構造を図8〜10に示す。図8(a)は、芯体露出部11bの一部が切欠かれた様子を示す正面模式図であり、図8(b)は積層芯体露出部11cの芯体切欠き部26を示す側面模式図である。図9は、集電系各部材が取り付けられた扁平状電極体の正面模式図、図10はその断面模式図であり、抵抗溶接の様子を示す。
[Embodiment 4]
The current collecting system structure according to the fourth embodiment is shown in FIGS. FIG. 8A is a schematic front view showing a state in which a part of the core body exposed portion 11b is cut out, and FIG. 8B is a side view showing the core body notched portion 26 of the laminated core body exposed portion 11c. It is a schematic diagram. FIG. 9 is a schematic front view of a flat electrode body to which each member of the current collecting system is attached, and FIG. 10 is a schematic cross-sectional view showing a state of resistance welding.

図8〜図10に示すように、実施の形態4は、積層芯体露出部11cの平坦部の1部に芯体切り欠き部26を形成した点に特徴を有し、これ以外の部材形状は上記実施の形態3と同様であり、製造方法については、集電第1部材13とこれに重なり合う連結型集電第2部材21の延長部21bとの溶接方法が異なるのみであり、これ以外については上記実施の形態3におけると同様である。   As shown in FIGS. 8 to 10, the fourth embodiment is characterized in that a core notch 26 is formed in one part of the flat portion of the laminated core exposed portion 11 c, and other member shapes are used. Is the same as that of the third embodiment, and the manufacturing method is different only in the welding method between the current collecting first member 13 and the extension portion 21b of the connecting type current collecting second member 21 overlapping therewith. This is the same as in the third embodiment.

なお、芯体切欠き部26は、活物質を有する電極芯体部分(電極本体部分)を切欠いたものではないので、発電容量の低下を生じることはない。   In addition, since the core notch part 26 is not what cut out the electrode core part (electrode main-body part) which has an active material, it does not produce the fall of power generation capacity.

図10に、実施の形態4にかかる角形二次電池の製造方法における特徴部分が示されている。この実施の形態では、第1溶接予定部101と第2溶接予定部102との間に芯体切欠き部26が設けられているので、この部分においては、積層芯体露出部11cに邪魔されることなく、溶接用電極棒104’を対向側にまで挿入することができる。芯体切欠き部26を活用した溶接作業を、次のようにして行う。   FIG. 10 shows a characteristic part in the method for manufacturing a prismatic secondary battery according to the fourth embodiment. In this embodiment, since the core cutout portion 26 is provided between the first welding planned portion 101 and the second welding planned portion 102, this portion is obstructed by the laminated core exposed portion 11c. The welding electrode rod 104 ′ can be inserted to the opposite side without any problem. A welding operation using the core notch 26 is performed as follows.

先ず、集電第1部材13の端部が芯体切欠き部26上に位置するように集電第1部材13を積層芯体露出部11c面に配置すると共に、対抗側の積層芯体露出部面の芯体切欠き部26を塞がない位置に第1の受け部材を配置する。この状態で第1溶接予定部101を抵抗溶接する。   First, the current collector first member 13 is disposed on the surface of the laminated core body exposed portion 11c so that the end of the current collector first member 13 is positioned on the core body notch 26, and the opposite side of the laminated core body is exposed. The first receiving member is disposed at a position where the core cutout portion 26 on the surface is not blocked. In this state, the first welding scheduled portion 101 is resistance welded.

次に連結型集電第2部材21の本体部21aが芯体切欠き部26を塞がず且つその延長部21bが上記集電第1部材13の端部に重なるように連結型集電第2部材21を配置する。この配置においては、連結型集電第2部材21の本体部21aは積層芯体露出部11c面に接触し、延長部21bは集電第1部材13に接触しないようにする。次いで、連結型集電第2部材21の本体部21aの対向側に第2の受け部材20を積層芯体露出部11c面に配置する。この後、連結型集電第2部材21の本体部21aと積層芯体露出部11cと第2の受け部材20とを抵抗溶接する。抵抗溶接の方法については、上記実施の形態3と同様である。   Next, the main body portion 21 a of the connected current collecting second member 21 does not block the core cutout portion 26, and the extended portion 21 b overlaps the end portion of the current collecting first member 13. Two members 21 are arranged. In this arrangement, the main body portion 21 a of the connected current collecting second member 21 is in contact with the surface of the laminated core body exposed portion 11 c, and the extension portion 21 b is not in contact with the current collecting first member 13. Next, the second receiving member 20 is disposed on the surface of the laminated core body exposed portion 11c on the side opposite to the main body portion 21a of the connected current collecting second member 21. Thereafter, the main body portion 21a, the laminated core body exposed portion 11c, and the second receiving member 20 of the connected current collecting second member 21 are resistance-welded. About the method of resistance welding, it is the same as that of the said Embodiment 3. FIG.

次いで、連結型集電第2部材21の延長部21bを上方から押圧することにより、延長部21bの下面と集電第1部材端部の上面とを接触させ、延長部21bの上面に電極棒104を当接すると共に、下方から集電第1部材端部の下面に電極棒104'を当接して両電極棒間に電流を流す。これにより、連結型集電第2部材21の延長部21bと集電第1部材端部とが抵抗溶接される。なお、電極棒104’が、芯体切欠き部26を通って集電第1部材端部の下面に当接することになる。   Next, by pressing the extension portion 21b of the connected current collecting second member 21 from above, the lower surface of the extension portion 21b and the upper surface of the current collecting first member end are brought into contact with each other, and the electrode rod is placed on the upper surface of the extension portion 21b. The electrode rod 104 ′ is brought into contact with the lower surface of the end portion of the current collecting first member from below and an electric current flows between the electrode rods. Thereby, the extension part 21b of the connection type | mold current collection 2nd member 21 and the current collection 1st member edge part are resistance-welded. In addition, the electrode rod 104 ′ comes into contact with the lower surface of the current collector first member end portion through the core cutout portion 26.

実施の形態4では、連結型集電第2部材21を用いるので、部材数および溶接箇所を低減でき、また、芯体切欠き部26を設けたことにより、集電第1部材13と連結型集電第2部材21とを上下から挟み込んで抵抗溶接することができるので、作業性がよく、良質の溶接を行える。   In the fourth embodiment, since the connected current collecting second member 21 is used, the number of members and the welding location can be reduced, and by providing the core cutout portion 26, the current collecting first member 13 and the connected type are provided. Since the current collecting second member 21 can be sandwiched from above and below and resistance welding can be performed, workability is good and high quality welding can be performed.

〔実施の形態5〕
実施の形態5にかかる集電系構造を図11に示す。実施の形態5では、図11(a)〜(c)に示すように、部材相互を連結するための延長部24bを有する連結型集電第1部材24と延長部22bを有する連結型集電第2部材22とが用いられる。
[Embodiment 5]
FIG. 11 shows a current collecting system structure according to the fifth embodiment. In the fifth embodiment, as shown in FIGS. 11A to 11C, a connected current collector 1 having an extended portion 24b for connecting members to each other and a connected current collector having an extended portion 22b. The second member 22 is used.

実施の形態5においては、連結型集電第1部材24と連結型集電第2部材22のそれぞれの延長部を芯体切欠き部26上で重ね合わせて、当該部分を抵抗溶接する点において上記実施の形態4と異なるが、その他の点は上記実施の形態4と同様である。この実施の形態においても、上記実施の形態4と同様な作用効果が得られる。   In the fifth embodiment, the extension portions of the connected current collector first member 24 and the connected current collector second member 22 are overlapped on the core cutout portion 26, and the portions are resistance welded. Although different from the fourth embodiment, the other points are the same as those of the fourth embodiment. Also in this embodiment, the same effect as that of the fourth embodiment can be obtained.

なお、実施の形態4,5では、芯体切欠き部を有する積層芯体露出部に対して、延長部を有する連結型集電第2部材、または延長部を有する連結型集電第1部材と延長部を有する連結型集電第2部材とを使用したが、芯体切欠き部を形成しない積層芯体露出部に対して、これら延長部を有する連結型部材を使用することもできる。   In the fourth and fifth embodiments, the connected current collecting second member having an extended portion or the connected current collecting first member having an extended portion with respect to the laminated core exposed portion having the core notch portion. Although the connection type current collection 2nd member which has an extension part was used, the connection type member which has these extension parts can also be used with respect to the lamination | stacking core body exposure part which does not form a core notch part.

また、実施の形態4,5においては、溶接点103の溶接を、抵抗溶接法に代えてレーザ溶接法や超音波溶接法を使用してもよい。レーザ溶接法や超音波溶接法を用いる場合においても、芯体切欠き部26を活用することにより溶接作業性を高めることができる。   In the fourth and fifth embodiments, the welding point 103 may be welded by using a laser welding method or an ultrasonic welding method instead of the resistance welding method. Even when a laser welding method or an ultrasonic welding method is used, welding workability can be improved by utilizing the core notch 26.

〔実施の形態6〕
実施の形態6にかかる集電系構造を図12に示す。図12(a)は集電系部材が配置された扁平状電極体10の正面模式図、図12(b)はその断面模式図であり、溶接状況を示している。実施の形態6では、一方端部が棚部分を有するL形状となった連結型集電第1部材25と、上記L形状の棚部分に対偶する形状の延長部を有する連結型集電第2部材23とが使用されている。
[Embodiment 6]
FIG. 12 shows a current collecting system structure according to the sixth embodiment. FIG. 12A is a schematic front view of the flat electrode body 10 on which a current collecting system member is arranged, and FIG. 12B is a schematic cross-sectional view showing a welding state. In the sixth embodiment, a connected current collector second member 25 having an L-shaped connected current collecting first member 25 having one end portion having a shelf portion, and an extended portion having a shape opposite to the L-shaped shelf portion. A member 23 is used.

この実施の形態においては、上記実施の形態3において説明したと同様、連結型集電第1部材25と連結型集電第2部材23のそれぞれの溶接予定部101・102を抵抗溶接する際には、連結型集電第1部材25の棚部分 または/および これに対偶する連結型集電第2部材23の延長部分の下面には、例えば絶縁性フィルムを配する等して両部材の対偶面同士が接触しないようにして、両部材間に無効電流が流れないようにしておく。そして、第1溶接予定部101と第2溶接予定部102における抵抗溶接作業が終了した後に、両部材の境界にレーザ光105を照射し溶接予定部103を溶接する。これ以外の事項については、上記実施の形態3と同様に行う。   In this embodiment, as described in the third embodiment, when the welding scheduled portions 101 and 102 of the connected current collecting first member 25 and the connected current collecting second member 23 are resistance-welded, respectively. For example, an insulating film is provided on the lower surface of the shelf portion of the connected current collecting first member 25 and / or the extended portion of the connected current collecting second member 23 which is opposed to the shelf portion. The surfaces are not in contact with each other so that reactive current does not flow between the two members. Then, after the resistance welding operation in the first welding scheduled portion 101 and the second welding scheduled portion 102 is completed, the laser beam 105 is irradiated to the boundary between both members to weld the welding planned portion 103. Other matters are the same as in the third embodiment.

この実施の形態では、連結型集電第1部材25と連結型集電第2部材の端部同士が、L面で面対偶しているので、接触状態が安定であり、かつ接触面積が大きいので電気抵抗を小さくできるというメリットがある。なお、溶接点103の溶接は、レーザ光に代えて、超音波を用いた超音波溶接法を用いることもできる。   In this embodiment, since the ends of the connected current collecting first member 25 and the connected current collecting second member face each other on the L surface, the contact state is stable and the contact area is large. Therefore, there is an advantage that electric resistance can be reduced. In addition, the welding of the welding point 103 can also use the ultrasonic welding method using an ultrasonic wave instead of a laser beam.

〔実施の形態7〕
実施の形態7にかかる集電系構造を図13に示す。実施の形態7は、延長部分を有しない集電第1部材13を使用し、延長部分15aを有する導電性連結部材15を使用する点において、上記実施の形態1と相違している。この実施の形態では、集電第1部材13と集電第2部材14の両部材の上面に延長部分15aを有する導電性連結部材15をレーザ溶接し、導電性連結部材15の延長部15aを介して正極外部出力端子5と通電可能に接続する。この実施の形態においても、上記実施の形態1と同様の作用効果が得られる。
[Embodiment 7]
FIG. 13 shows a current collecting system structure according to the seventh embodiment. The seventh embodiment is different from the first embodiment in that the current collecting first member 13 having no extension portion is used and the conductive connecting member 15 having the extension portion 15a is used. In this embodiment, the conductive connecting member 15 having the extended portion 15a on the upper surface of both the current collecting first member 13 and the current collecting second member 14 is laser-welded, and the extended portion 15a of the conductive connecting member 15 is provided. And is connected to the positive external output terminal 5 so as to be energized. Also in this embodiment, the same effect as that of the first embodiment can be obtained.

ここで、集電第1部材や集電第2部材などの集電部材は、電気抵抗を低減するために、
芯体露出部との接触面積が大きい方がよい。他方、受け部材は、溶接部分の強度を高めることを主目的とする部材であるので、集電部材よりも面積が小さいものでよい。ただし、図13に示すように形状に特段の違いがない場合においても、部材を特定するための都合上から、本明細書においては、一方を集電部材とし、他方を受け部材と称している。
Here, current collecting members such as the first current collecting member and the second current collecting member are used to reduce electrical resistance.
It is better that the contact area with the core exposed portion is large. On the other hand, since the receiving member is a member whose main purpose is to increase the strength of the welded portion, it may have a smaller area than the current collecting member. However, even when there is no particular difference in the shape as shown in FIG. 13, for the sake of convenience for specifying the member, in this specification, one is referred to as a current collecting member and the other is referred to as a receiving member. .

また、図13においては、集電部材側に受け部材を配置した構造を示したが、図14に示すように、受け部材側に導電性連結部材15を配置してもよく、さらに、上記実施の形態3,4,5,6において、集電第1部材以外の部材を介して外部出力端子に接続する構成を採用することもできる。   13 shows the structure in which the receiving member is arranged on the current collecting member side, but as shown in FIG. 14, the conductive connecting member 15 may be arranged on the receiving member side. In the third, third, fourth, fifth, and sixth embodiments, a configuration in which the external output terminal is connected via a member other than the current collecting first member may be employed.

〔実施の形態8〕
実施の形態8では、先ず外部出力端子、封口板、集電第1部材を組み合わせた後に、電極体にこの集電第1部材と連結型集電第2部材をそれぞれ抵抗溶接し、しかる後に集電第1部材に連結型集電第2部材を抵抗溶接する。以下では正極集電系の作製手順について図15〜20を用いて説明するが、負極集電系についても同一形状の部材を用いて正極集電系と同様に行えばよい。
[Embodiment 8]
In the eighth embodiment, after first combining the external output terminal, the sealing plate, and the first current collecting member, the current collecting first member and the connected current collecting second member are respectively resistance welded to the electrode body, and then collected. The connected current collecting second member is resistance-welded to the electric first member. Hereinafter, the manufacturing procedure of the positive electrode current collecting system will be described with reference to FIGS. 15 to 20, but the negative electrode current collecting system may be performed in the same manner as the positive electrode current collecting system using members having the same shape.

図15は集電第1部材30の形状を示す斜視図である。この集電第1部材30は、アルミニウム板を加工した正面視L字の集電部材であり、電極体の芯体露出部に溶接するための胴部30aと、外部出力端子5に接続するための頭部30bと、胴部30aと頭部30bとを繋ぐ首部30dとからなる。そして頭部30bには、外部出力端子5の下端を嵌めこむための取付け穴30cが設けられている。   FIG. 15 is a perspective view showing the shape of the current collecting first member 30. The current collecting first member 30 is an L-shaped current collecting member obtained by processing an aluminum plate, and is connected to the body 30 a for welding to the core exposed portion of the electrode body and the external output terminal 5. Head 30b and a neck 30d connecting the trunk 30a and the head 30b. The head 30b is provided with a mounting hole 30c for fitting the lower end of the external output terminal 5.

図16に、封口板2に外部出力端子5、絶縁部材33、及び集電第1部材30を取り付けて、各部材を一体化させた封口体部分の断面図を示す。図16に示すように、封口板2の下面と集電第1部材30との間、および封口板2の上面と外部出力端子5の周縁鍔部との間、並びに封口板2に設けられた貫通穴2aの周囲には、絶縁部材33が配置され、封口板2と、集電第1部材30及び外部出力端子5との間を絶縁している。   FIG. 16 shows a cross-sectional view of a sealing body portion in which the external output terminal 5, the insulating member 33, and the current collecting first member 30 are attached to the sealing plate 2, and the respective members are integrated. As shown in FIG. 16, provided between the lower surface of the sealing plate 2 and the current collecting first member 30, between the upper surface of the sealing plate 2 and the peripheral edge of the external output terminal 5, and provided on the sealing plate 2. An insulating member 33 is disposed around the through hole 2 a to insulate the sealing plate 2 from the current collecting first member 30 and the external output terminal 5.

封口体部分の組み立ては次のように行う。封口板2の所定部分に絶縁部材33を配置する。封口板2の内側に位置する絶縁部材上に、封口板2の貫通穴2aと集電第1部材30の取付け穴30cとが重なるように位置させる。しかる後に、外部出力端子5を貫通穴2aおよび集電第1部材30の取付け穴30cに挿通する。この状態で外部出力端子5の下部を拡径して集電第1部材30と共に外部出力端子5を封口板2にカシメ固定する。これにより各部材が一体化されると共に、外部出力端子5と集電第1部材30とが通電可能に接続される。   The assembly of the sealing body part is performed as follows. An insulating member 33 is disposed on a predetermined portion of the sealing plate 2. On the insulating member located inside the sealing plate 2, the through hole 2 a of the sealing plate 2 and the mounting hole 30 c of the current collecting first member 30 are positioned so as to overlap each other. Thereafter, the external output terminal 5 is inserted into the through hole 2 a and the mounting hole 30 c of the current collecting first member 30. In this state, the diameter of the lower portion of the external output terminal 5 is expanded, and the external output terminal 5 is caulked and fixed to the sealing plate 2 together with the current collecting first member 30. Thereby, each member is integrated, and the external output terminal 5 and the current collecting first member 30 are connected so as to be energized.

このようにして外部出力端子5と共に封口板2に固定された集電第1部材30を、外部出力端子接続済み集電第1部材と称することとする。   The current collecting first member 30 fixed to the sealing plate 2 together with the external output terminal 5 in this way is referred to as a current collecting first member connected to the external output terminal.

図17〜19に基づいて、電極体への集電系部材の取付け手順を説明する。図17に示すように、外部出力端子接続済み集電第1部材30の胴部30aの一方面(電極体芯体露出部に当接させる側の面)のうち、電極体芯体露出部の第1溶接予定部101に当接させ溶接する部分を除き、第1溶接予定部101の周辺を絶縁フィルム32で覆う。また、第1の受け部材19の一方面にも、第1溶接予定部101に当接させ溶接する部分を除いて絶縁フィルム32を貼着する。   Based on FIGS. 17-19, the attachment procedure of the current collection system member to an electrode body is demonstrated. As shown in FIG. 17, of one surface of the body portion 30 a of the current collector first member 30 connected to the external output terminal (the surface on the side in contact with the electrode body core exposed portion), the electrode body core exposed portion The periphery of the first welding planned portion 101 is covered with an insulating film 32 except for the portion to be welded by contacting the first welding planned portion 101. In addition, the insulating film 32 is attached to one surface of the first receiving member 19 except for a portion to be in contact with and welded to the first welding scheduled portion 101.

絶縁フィルム32が貼着された集電第1部材の胴部30aを積層芯体露出部11cの扁平部分の中央左側に配置し(図2、3参照)、その反対面に絶縁フィルム32を貼着した第1の受け部材19を対向配置する。しかる後、集電第1部材の胴部30a面と第1の受
け部材19のそれぞれに電極棒104・104の先端を当接させ、両部材間に電流を流す。これにより、集電第1部材の胴部30aと積層芯体露出部11cと第1の受け部材19とが抵抗溶接される。
The body portion 30a of the current collecting first member to which the insulating film 32 is attached is arranged on the left side of the center of the flat portion of the laminated core exposed portion 11c (see FIGS. 2 and 3), and the insulating film 32 is attached to the opposite surface. The worn first receiving member 19 is disposed opposite to the first receiving member 19. Thereafter, the tips of the electrode rods 104 and 104 are brought into contact with the surface of the body 30a of the current collecting first member and the first receiving member 19, respectively, and a current is passed between the two members. Thereby, the trunk | drum 30a of the current collection 1st member, the laminated core exposed part 11c, and the 1st receiving member 19 are resistance-welded.

次に集電第1部材と離れた積層芯体露出部11cの他の領域に連結型集電第2部材31を抵抗溶接する。実施の形態で使用する連結型集電第2部材31は、図18正面視に示すように、集電第1部材に接続する側が「く」の字状に折れ曲がり立ち上がった形状であり、図20平面視に示すように集電第1部材に接続する側がやや幅狭になった帯状の部材である。なお、図20は実施の形態8の集電系構造を示す断面模式であり、図1におけるx-x矢視方向からの切断面を示す。   Next, the connected current collecting second member 31 is resistance-welded to the other area of the laminated core exposed portion 11c apart from the current collecting first member. The connected current collecting second member 31 used in the embodiment has a shape in which the side connected to the current collecting first member is bent into a "<" shape and rises as shown in FIG. As shown in plan view, the side connected to the current collecting first member is a band-like member having a slightly narrower width. FIG. 20 is a schematic cross-sectional view showing the current collecting system structure of Embodiment 8, and shows a cut surface from the direction of arrows xx in FIG.

集電第1部材の場合と同様にして、連結型集電第2部材31についても、電極体芯体露出部の第2溶接予定部102に当接させ溶接する部分及び集電第1部材に当接させ溶接する部分を除き、積層芯体露出部11c側に向ける面には絶縁フィルム32を貼着する。また、第2の受け部材20の一方面にも、第2溶接予定部102に当接させ溶接する部分を除いて絶縁フィルム32を貼着する。   Similarly to the case of the current collector first member, the connection-type current collector second member 31 is also in contact with and welded to the second welding scheduled portion 102 of the electrode body core exposed portion and the current collector first member. An insulating film 32 is attached to the surface facing the laminated core exposed portion 11c except for the portion to be contacted and welded. Further, the insulating film 32 is adhered to one surface of the second receiving member 20 except for a portion to be brought into contact with and welded to the second welding scheduled portion 102.

次いで絶縁フィルム32を貼着した上記連結型集電第2部材31および第2の受け部材20を、集電第1部材と離れた積層芯体露出部11cの他の領域にあてがい、図18に示すようにして電気抵抗溶接する。   Next, the connection-type current collecting second member 31 and the second receiving member 20 to which the insulating film 32 is stuck are applied to other regions of the laminated core exposed portion 11c apart from the current collecting first member, and FIG. Electrical resistance welding as shown.

この後、図19(a)に示すように、連結型集電第2部材31の「く」字状に反った先端側部分を上方から押さえて、集電第一部材の胴部30aの上面に当接させ、この状態で図19(b)に示すようにして、集電第1部材30と連結型集電第2部材31に電極棒104・104’を当てがい電流を流して電気抵抗溶接する。これにより電極体(正極)と連結型集電第2部材31、集電第1部材30および外部出力端子5とが通電可能に接続される。   Thereafter, as shown in FIG. 19 (a), the upper end of the body portion 30a of the current collector first member is pressed by pressing the tip side portion of the connected current collector second member 31 that is warped in a "<" shape. In this state, as shown in FIG. 19B, the electrode rods 104 and 104 ′ are applied to the current collecting first member 30 and the connected current collecting second member 31 so that a current flows, and the electric resistance Weld. As a result, the electrode body (positive electrode), the connected current collecting second member 31, the current collecting first member 30, and the external output terminal 5 are connected so as to be energized.

なお、集電第1部材と集電第2部材とを電極体に接続する順序は問わないので、先に連結型集電第2部材を芯体露出分に抵抗溶接した後に、外部出力端子接続済み集電第1部材を芯体露出分に抵抗溶接し、しかる後に両部材を抵抗溶接してもよい。また、上記で記載した事項以外の事項、例えば集電系部材の材質、その他の電池構成部材の材質、製造方法などは、上記実施の形態1等の記載に従えばよい。   In addition, since the order which connects a current collection 1st member and a current collection 2nd member to an electrode body is not ask | required, after carrying out resistance welding of the connection type | mold current collection 2nd member to a core exposure part first, external output terminal connection The first current collecting member may be resistance welded to the exposed portion of the core, and then both members may be resistance welded. Further, matters other than the matters described above, for example, the material of the current collecting system member, the material of the other battery constituent members, the manufacturing method, and the like may be as described in the first embodiment.

他方、この実施の形態においては、絶縁フィルムが使用されるが、絶縁フィルムは主に電気抵抗溶接時に部材同士が接触して無用な電流が消費されるのを防止するものであるので、電気抵抗溶接に先だって各部材に貼着する必要がある。   On the other hand, in this embodiment, although an insulating film is used, the insulating film mainly prevents unnecessary current from being consumed due to contact between members during electric resistance welding. Prior to welding, it is necessary to stick to each member.

絶縁フィルムの材質としては、好ましくは溶解温度が200℃以上であり、溶着温度が70℃〜150℃で、かつ電解質に対する耐薬品性を有する熱可塑性絶縁フィルムを用いる。例えばこの条件を満たす、ゴム系シール材、酸変性ポリプロピレン系熱溶着性樹脂、ポリオレフィン系熱溶着性樹脂などを使用する。また、表面に糊材が添着されたポリイミドテープ、ポリプロピレンテープ、ポリフェニレンサルファイドテープなどを使用する。   As a material for the insulating film, a thermoplastic insulating film having a melting temperature of 200 ° C. or higher, a welding temperature of 70 ° C. to 150 ° C., and having chemical resistance to the electrolyte is used. For example, a rubber-based sealing material, an acid-modified polypropylene-based heat welding resin, a polyolefin-based heat welding resin, or the like that satisfies this condition is used. In addition, a polyimide tape, a polypropylene tape, a polyphenylene sulfide tape, or the like with a paste material attached to the surface is used.

実施例により、本発明角形二次電池の集電における優位性を説明する。   The superiority in current collection of the prismatic secondary battery of the present invention will be described by way of examples.

(実施例1)
上記実施の形態3と同様にして、実施例1の角形リチウムイオン二次電池を作製した。
Example 1
A prismatic lithium ion secondary battery of Example 1 was fabricated in the same manner as in Embodiment 3 above.

(実施例2)
上記実施の形態4と同様にして、実施例2の角形リチウムイオン二次電池を作製した。
(Example 2)
A prismatic lithium ion secondary battery of Example 2 was produced in the same manner as in Embodiment 4.

(参考例1)
図21(a)、(b)に示す従来例にかかる角形リチウムイオン二次電池を作製した。すなわち、従来タイプの集電板201を、積層芯体露出部11cの扁平部分に溶接部1及び溶接部2の二箇所で抵抗溶接した。これ以外は上記実施例1、すなわち実施の形態3と同様にして参考例1の角形リチウムイオン二次電池を作製した。
(Reference Example 1)
A prismatic lithium ion secondary battery according to the conventional example shown in FIGS. 21A and 21B was produced. That is, the conventional type current collector plate 201 was resistance-welded to the flat portion of the laminated core body exposed portion 11 c at two locations of the welded portion 1 and the welded portion 2. Except for this, a prismatic lithium ion secondary battery of Reference Example 1 was fabricated in the same manner as in Example 1 above, that is, Embodiment 3.

(参考例2)
図22に示すように、第1溶接予定部101と第2溶接予定部102の間に、互い違いに切り込み203を入れた(スリットを入れた)集電板202を用い、この集電板202を積層芯体露出部11cの扁平部分に第1溶接予定部101と第2溶接予定部102の二箇所で抵抗溶接した。これ以外は、上記実施例1(実施の形態3)と同様にして参考例2の角形リチウムイオン二次電池を作製した。
(Reference Example 2)
As shown in FIG. 22, a current collector plate 202 in which notches 203 are alternately inserted (slit) is provided between the first welding planned portion 101 and the second welding planned portion 102. Resistance welding was performed on the flat portion of the laminated core exposed portion 11c at two locations, the first welding planned portion 101 and the second welding planned portion 102. Except for this, a prismatic lithium ion secondary battery of Reference Example 2 was produced in the same manner as in Example 1 (Embodiment 3).

(参考例3)
図23に示すように、第1溶接予定部101と第2溶接予定部102の間に、穴空き部205を形成した集電板204を用い、この集電板205積層芯体露出部11cの扁平部分に第1溶接予定部101と第2溶接予定部102の二箇所で抵抗溶接した。これ以外は、上記実施例1(実施の形態3)と同様にして参考例3の角形リチウムイオン二次電池を作製した。
(Reference Example 3)
As shown in FIG. 23, a current collector plate 204 in which a hole portion 205 is formed between the first weld planned portion 101 and the second weld planned portion 102 is used, and the current collector plate 205 laminated core exposed portion 11 c is formed. Resistance welding was performed on the flat portion at two locations, the first welding planned portion 101 and the second welding planned portion 102. Except for this, a prismatic lithium ion secondary battery of Reference Example 3 was produced in the same manner as in Example 1 (Embodiment 3).

実施例1〜2及び参考例1〜3で使用した各部材は、材質、厚み、部材幅を同一とした。   Each member used in Examples 1 and 2 and Reference Examples 1 to 3 has the same material, thickness, and member width.

〔溶接状態の良否〕
実施例1〜2、参考例1〜3の各電池をそれぞれ複数個作成し、集電系の電気抵抗値を調べた。また、第2溶接部(集電第2部材と第2受け部材間の溶接部)における溶接強度の良否を調べた。溶接強度の良否は、9〜13例について集電第2部材と第2の受部材とを手で触れて部材が動くか否かで判定し、動くものを強度不十分とした。これらの結果を表1に示す。
[Welding quality]
A plurality of each of the batteries of Examples 1-2 and Reference Examples 1-3 were prepared, and the electrical resistance value of the current collecting system was examined. Moreover, the quality of the welding strength in the 2nd welding part (welding part between the current collection 2nd member and the 2nd receiving member) was investigated. The quality of the welding strength was determined by touching the current collecting second member and the second receiving member by hand with respect to 9 to 13 examples, and whether or not the member moved was determined. These results are shown in Table 1.

表1から、実施例1,2、参考例1,3において抵抗値が低かったが、参考例2は抵抗値が大きかった。溶接強度については、実施例1および2におい溶接強度不十分なものはなかったが、参考例1〜3において溶接強度が十分でないのもが存在した。   From Table 1, although the resistance value was low in Examples 1 and 2 and Reference Examples 1 and 3, Reference Example 2 had a large resistance value. As for the welding strength, there was no insufficient welding strength in Examples 1 and 2, but there were cases where the welding strength was not sufficient in Reference Examples 1 to 3.

すなわち、実施例1,2においては、一つの集電板を用いた参考例1と同等の良好な抵抗値(集電効率)を得られた。また、十分な溶接強度が得られた。これに対して、参考例1〜3では、溶接強度不足が生じる場合があり、実施例1,2に比較し溶接安定性が不十分であった。また、参考例2においては抵抗値が顕著に高かった。   That is, in Examples 1 and 2, a good resistance value (current collection efficiency) equivalent to that of Reference Example 1 using one current collecting plate was obtained. Moreover, sufficient welding strength was obtained. On the other hand, in Reference Examples 1 to 3, the welding strength may be insufficient, and the welding stability is insufficient compared to Examples 1 and 2. In Reference Example 2, the resistance value was remarkably high.

この結果は次のように考えられる。参考例1〜3において、溶接強度の不足が見られた理由としては、参考例1〜3では、第2溶接予定部を溶接する際、既に溶接されている第1溶接部側に無効電流が流れるため、第2溶接部における溶接が不十分になり、溶接強度不足が生じることがあるためと考えられる。参考例2、3は、第1溶接予定部と第2溶接予定部との間にスリットや穴空き部を設けることにより、横方向(第1溶接予定部と第2溶接予定部相互間方向)への電流の流れを低減しようとするものであるが、表1の結果は、スリットや穴空き部を設けても十分に無効電流を小さくすることができないことを意味すると考えられる。第1溶接予定部と第2溶接予定部との間にスリットを形成した参考例2において抵抗値が顕著に高くなったのは、スリットを設けたことにより、狭く長い導電路が形成されため、これが抵抗値を増大させたものと考えられる。   This result is considered as follows. In Reference Examples 1 to 3, the reason for the lack of welding strength was as follows. In Reference Examples 1 to 3, when welding the second welding scheduled part, there was a reactive current on the first welded part side that was already welded. This is considered to be due to the fact that welding at the second welded portion becomes insufficient and welding strength is insufficient. In Reference Examples 2 and 3, a slit or a perforated portion is provided between the first weld planned portion and the second weld planned portion, thereby causing a lateral direction (direction between the first weld planned portion and the second weld planned portion). The result of Table 1 is considered to mean that the reactive current cannot be sufficiently reduced even if a slit or a hole is provided. The reason why the resistance value was remarkably increased in Reference Example 2 in which a slit was formed between the first welding scheduled portion and the second welding scheduled portion was that a narrow and long conductive path was formed by providing the slit, This is considered to have increased the resistance value.

(その他の事項)
本発明にかかる第1電極の電極芯体、集電第1部材(または連結型集電第1部材)、集電第2部材(または連結型集電第2部材)、導電性連結部材のそれぞれが、アルミニウム、アルミニウム合金であると、本発明作用効果が一層顕著に発揮されるが、これら各部材が、異なる金属からなるものであってもよい。なお、上記実施の形態では、正極の各部材をアルミニウム製とし、負極の各部材を銅製としたが、電極芯体の材質は電極の特性に応じて決められるものであり、上記実施の形態例に限定されるものではない。
(Other matters)
Each of the electrode core body of the first electrode according to the present invention, a current collector first member (or a connected current collector first member), a current collector second member (or a connected current collector second member), and a conductive connecting member However, when it is aluminum or an aluminum alloy, the effects of the present invention are more remarkably exhibited, but these members may be made of different metals. In the above embodiment, each member of the positive electrode is made of aluminum and each member of the negative electrode is made of copper. However, the material of the electrode core is determined according to the characteristics of the electrode. It is not limited to.

また、上記実施の形態では、正負両電極に対して本発明にかかる集電系構造を採用したが、一方の電極のみに対してのみ本発明方法を適用してもよい。   Moreover, in the said embodiment, although the current collection system structure concerning this invention was employ | adopted with respect to both positive and negative electrodes, you may apply this invention method only to one electrode.

また、本発明はリチウムイオン二次電池に限らず、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池等、他の角形二次電池の製造にも適用できる。また、上記実施の形態においては、扁平状の巻回電極体を用いる例について説明したが、平板状の正・負極板を、セパレータを介して積層した電極体を用いた角形二次電池に対しても適用することができる。   Further, the present invention is not limited to the lithium ion secondary battery but can be applied to the manufacture of other prismatic secondary batteries such as a nickel-hydrogen storage battery and a nickel-cadmium storage battery. Further, in the above embodiment, an example using a flat wound electrode body has been described. However, for a rectangular secondary battery using an electrode body in which flat positive and negative electrode plates are laminated via a separator. Even can be applied.

また、本発明の要素である各部材の溶接用電極棒を当接させる部分に溶接用の凸部を設けるのもよい。凸部を設けると電流を溶接部に集中させ易い。   Moreover, it is good also as providing the convex part for welding in the part which the electrode stick for welding of each member which is an element of this invention contacts. Providing the convex portion makes it easy to concentrate the current on the weld.

本発明では、複数の部材を順次溶接することにより集電系を構成する方式を採用するが、複数の部材を順次溶接する本発明製造方法によりと、生産性よく、集電安定性や集電効率に優れた大出力対応の角形二次電池を生産性よく製造することができる。よって、本発明の産業上の利用可能性は大きい。   In the present invention, a method of forming a current collecting system by sequentially welding a plurality of members is adopted. However, according to the manufacturing method of the present invention in which a plurality of members are sequentially welded, the current collection stability and current collecting are improved. A prismatic secondary battery with high output and excellent efficiency can be manufactured with high productivity. Therefore, the industrial applicability of the present invention is great.

なお、本願発明に記載の他の発明に係る角形二次電池は以下の構成を有する。
第1電極と第2電極を含む扁平状電極体と、
開口部及び底部を有し、前記扁平状電極体を収容する角形電池ケースと、
前記開口部を封口する封口板と、を備えた角形二次電池であって、
前記扁平状電極体は、一方の端部に巻回された前記第1電極の芯体露出部を有し、他方の端部に巻回された前記第2電極の芯体露出部を有し、
前記巻回された第1電極の芯体露出部を前記巻回された第1電極の芯体露出部の巻回軸に沿って見たとき、前記巻回された第1電極の芯体露出部は、前記芯体露出部が束ねられた厚みの小さい部分と、前記厚みの小さい部分よりも前記封口板側に位置し前記厚みの小さい部分よりも厚みの大きい第1の部分と、前記厚みの小さい部分よりも前記底部側に位置し前記厚みの小さい部分よりも厚みの大きい第2の部分を有し、
前記巻回された第1電極の芯体露出部には集電部材が抵抗溶接されており、
前記集電部材は、前記厚みの小さい部分の前記第1電極の芯体露出部の積層方向における最外面側に前記最外面に沿うように配置される板状の第1領域と、前記第1領域の前記封口板側の端部から前記扁平状電極体における前記封口板の端部よりも前記封口板側まで延びる第2領域を有し、
前記第1領域の前記封口板側の端部には、前記第2領域が前記厚みの小さい部分から離れるように折れ曲がる折れ曲がり部が設けられており、
前記第2領域と前記巻回された第1電極の芯体露出部の最外面の間に絶縁フィルムが配置されている角形二次電池。
In addition, the square secondary battery which concerns on the other invention described in this invention has the following structures.
A flat electrode body including a first electrode and a second electrode;
A rectangular battery case having an opening and a bottom, and accommodating the flat electrode body;
A square rechargeable battery comprising a sealing plate for sealing the opening,
The flat electrode body has a core body exposed portion of the first electrode wound around one end portion and a core body exposed portion of the second electrode wound around the other end portion. ,
When the core exposed portion of the wound first electrode is viewed along the winding axis of the core exposed portion of the wound first electrode, the core exposed of the wound first electrode The portion is a portion having a small thickness in which the core body exposed portion is bundled, a first portion having a thickness larger than that of the portion having a smaller thickness than the portion having the smaller thickness, and located on the sealing plate side. A second portion having a thickness larger than that of the portion having a smaller thickness than the portion having a small thickness.
A current collecting member is resistance-welded to the core exposed portion of the wound first electrode,
The current collecting member has a plate-like first region arranged along the outermost surface on the outermost surface side in the stacking direction of the core exposed portion of the first electrode of the portion having the small thickness, and the first A second region extending from the end of the region on the sealing plate side to the sealing plate side than the end of the sealing plate in the flat electrode body;
At the end of the first region on the sealing plate side, a bent portion that is bent so that the second region is separated from the portion having the small thickness is provided,
A prismatic secondary battery in which an insulating film is disposed between the second region and the outermost surface of the core exposed portion of the wound first electrode.

また、本願発明に記載の他の発明に係る角形二次電池の製造方法は以下の構成を有する。
第1電極と第2電極を含む扁平状電極体と、
開口部及び底部を有し、前記扁平状電極体を収容する角形電池ケースと、
前記開口部を封口する封口板と、を備えた角形二次電池であって、
前記扁平状電極体は、一方の端部に巻回された前記第1電極の芯体露出部を有し、他方の端部に巻回された前記第2電極の芯体露出部を有し、
前記巻回された第1電極の芯体露出部を前記巻回された第1電極の芯体露出部の巻回軸に沿って見たとき、前記巻回された第1電極の芯体露出部は、前記芯体露出部が束ねられた厚みの小さい部分と、前記厚みの小さい部分よりも前記封口板側に位置し前記厚みの小さい部分よりも厚みの大きい第1の部分と、前記厚みの小さい部分よりも前記底部側に位置し前記厚みの小さい部分よりも厚みの大きい第2の部分を有し、
前記巻回された第1電極の芯体露出部には集電部材が抵抗溶接されており、
前記集電部材は、前記厚みの小さい部分の前記第1電極の芯体露出部の積層方向における最外面側に前記最外面に沿うように配置される板状の第1領域と、前記第1領域の前記封口板側の端部から前記扁平状電極体における前記封口板の端部よりも前記封口板側まで延びる第2領域を有し、
前記第1領域の前記封口板側の端部には、前記第2領域が前記厚みの小さい部分から離れるように折れ曲がる折れ曲がり部が設けられている角形二次電池の製造方法であって、
前記第2領域と前記巻回された第1電極の芯体露出部の最外面の間に絶縁フィルムを配置した状態で、前記厚みの小さい部分に前記第1領域を抵抗溶接する角形二次電池の製造方法。
Moreover, the manufacturing method of the square secondary battery which concerns on the other invention described in this invention has the following structures.
A flat electrode body including a first electrode and a second electrode;
A rectangular battery case having an opening and a bottom, and accommodating the flat electrode body;
A square rechargeable battery comprising a sealing plate for sealing the opening,
The flat electrode body has a core body exposed portion of the first electrode wound around one end portion and a core body exposed portion of the second electrode wound around the other end portion. ,
When the core exposed portion of the wound first electrode is viewed along the winding axis of the core exposed portion of the wound first electrode, the core exposed of the wound first electrode The portion is a portion having a small thickness in which the core body exposed portion is bundled, a first portion having a thickness larger than that of the portion having a smaller thickness than the portion having the smaller thickness, and located on the sealing plate side. A second portion having a thickness larger than that of the portion having a smaller thickness than the portion having a small thickness.
A current collecting member is resistance-welded to the core exposed portion of the wound first electrode,
The current collecting member has a plate-like first region arranged along the outermost surface on the outermost surface side in the stacking direction of the core exposed portion of the first electrode of the portion having the small thickness, and the first A second region extending from the end of the region on the sealing plate side to the sealing plate side than the end of the sealing plate in the flat electrode body;
In the manufacturing method of the prismatic secondary battery, a bent portion is provided at an end portion of the first region on the sealing plate side so that the second region is bent so as to be separated from the portion having the small thickness,
A prismatic secondary battery in which the first region is resistance-welded to the small thickness portion with an insulating film disposed between the second region and the outermost surface of the core exposed portion of the wound first electrode. Manufacturing method.

1 外装缶
2 封口板
2a 封口板貫通穴
5 正極外部出力端子
6 負極外部出力端子
10 電極体
11 正極板
11a 正極活物質層
11b 正極芯体露出部
11c 正極積層芯体露出部
12 負極板
12a 負極活物質層
12b 負極芯体露出部
12c 負極積層芯体露出部
13、30 正極集電第1部材
14 正極集電第2部材
15 正極導電性連結部材
16 負極集電第1部材
17 負極集電第2部材
18 負極導電性連結部材
19 第1の受け部材
20 第2の受け部材
21、22、23、31 連結型集電第2部材
24、25 連結型集電第1部材
26 芯体切欠き部

30a 集電第1部材胴部
30b 集電第1部材頭部
30c 取付け穴
30d 集電第1部材首部

32 絶縁フィルム
33 絶縁部材

101 第1溶接予定部(第1溶接部)
102 第2溶接予定部(第2溶接部)
103 溶接予定部(溶接部)
104、104’ 溶接用電極棒
105 溶接用レーザ
1 Exterior can
2 Sealing plate
2a Sealing plate through hole
5 Positive external output terminal
6 Negative external output terminal
10 Electrode body
11 Positive electrode plate
11a Positive electrode active material layer
11b Positive electrode core exposed portion
11c Positive electrode laminated core exposed part
12 Negative electrode plate
12a Negative electrode active material layer
12b Negative electrode core exposed part
12c Negative electrode laminated core exposed part
13, 30 Positive electrode current collector first member
14 Positive current collector second member
15 Positive Conductive Connecting Member
16 First member of negative electrode current collector
17 Negative electrode current collector second member
18 Negative electrode conductive connecting member
19 First receiving member
20 Second receiving member
21, 22, 23, 31 Connected current collecting second member
24, 25 Connected current collector first member
26 core notch

30a Current collector first member body
30b Current collector first member head
30c Mounting hole
30d Current collector first member neck

32 Insulation film
33 Insulating material

101 1st welding planned part (1st welding part)
102 Second weld planned part (second weld part)
103 Welding planned part (welded part)
104, 104 'Welding electrode rod
105 Laser for welding

Claims (4)

第1電極と第2電極を含む扁平状電極体と、
開口部及び底部を有し、前記扁平状電極体を収容する角形電池ケースと、
前記開口部を封口する封口板と、を備えた角形二次電池であって、
前記扁平状電極体は、一方の端部に巻回された前記第1電極の芯体露出部を有し、他方の端部に巻回された前記第2電極の芯体露出部を有し、
前記巻回された第1電極の芯体露出部を前記巻回された第1電極の芯体露出部の巻回軸に沿って見たとき、前記巻回された第1電極の芯体露出部は、前記芯体露出部が束ねられた厚みの小さい部分と、前記厚みの小さい部分よりも前記封口板側に位置し前記厚みの小さい部分よりも厚みの大きい第1の部分と、前記厚みの小さい部分よりも前記底部側に位置し前記厚みの小さい部分よりも厚みの大きい第2の部分を有し、
前記巻回された第1電極の芯体露出部には集電部材が抵抗溶接されており、
前記集電部材は、前記厚みの小さい部分の前記第1電極の芯体露出部の積層方向における最外面側に前記最外面に沿うように配置される板状の第1領域と、前記第1領域の前記封口板側の端部から前記扁平状電極体における前記封口板の端部よりも前記封口板側まで延びる第2領域を有し、
前記第1領域の前記封口板側の端部には、前記第2領域が前記厚みの小さい部分から離れるように折れ曲がる折れ曲がり部が設けられており、
前記第2領域と前記巻回された第1電極の芯体露出部の最外面の間に絶縁フィルムが配置されている角形二次電池。
A flat electrode body including a first electrode and a second electrode;
A rectangular battery case having an opening and a bottom, and accommodating the flat electrode body;
A square rechargeable battery comprising a sealing plate for sealing the opening,
The flat electrode body has a core body exposed portion of the first electrode wound around one end portion and a core body exposed portion of the second electrode wound around the other end portion. ,
When the core exposed portion of the wound first electrode is viewed along the winding axis of the core exposed portion of the wound first electrode, the core exposed of the wound first electrode The portion is a portion having a small thickness in which the core body exposed portion is bundled, a first portion having a thickness larger than that of the portion having a smaller thickness than the portion having the smaller thickness, and located on the sealing plate side. A second portion having a thickness larger than that of the portion having a smaller thickness than the portion having a small thickness.
A current collecting member is resistance-welded to the core exposed portion of the wound first electrode,
The current collecting member has a plate-like first region arranged along the outermost surface on the outermost surface side in the stacking direction of the core exposed portion of the first electrode of the portion having the small thickness, and the first A second region extending from the end of the region on the sealing plate side to the sealing plate side than the end of the sealing plate in the flat electrode body;
At the end of the first region on the sealing plate side, a bent portion that is bent so that the second region is separated from the portion having the small thickness is provided,
A prismatic secondary battery in which an insulating film is disposed between the second region and the outermost surface of the core exposed portion of the wound first electrode.
前記集電部材は、前記封口板と前記扁平状電極体の間に配置される領域を有し、
前記第2領域は、前記封口板と前記扁平状電極体の間に配置される領域と前記第1領域を繋ぐ部分である請求項1に記載の角形二次電池。
The current collecting member has a region disposed between the sealing plate and the flat electrode body,
2. The prismatic secondary battery according to claim 1, wherein the second region is a portion connecting the first region and a region disposed between the sealing plate and the flat electrode body.
第1電極と第2電極を含む扁平状電極体と、
開口部及び底部を有し、前記扁平状電極体を収容する角形電池ケースと、
前記開口部を封口する封口板と、を備えた角形二次電池であって、
前記扁平状電極体は、一方の端部に巻回された前記第1電極の芯体露出部を有し、他方の端部に巻回された前記第2電極の芯体露出部を有し、
前記巻回された第1電極の芯体露出部を前記巻回された第1電極の芯体露出部の巻回軸に沿って見たとき、前記巻回された第1電極の芯体露出部は、前記芯体露出部が束ねられた厚みの小さい部分と、前記厚みの小さい部分よりも前記封口板側に位置し前記厚みの小さい部分よりも厚みの大きい第1の部分と、前記厚みの小さい部分よりも前記底部側に位置し前記厚みの小さい部分よりも厚みの大きい第2の部分を有し、
前記巻回された第1電極の芯体露出部には集電部材が抵抗溶接されており、
前記集電部材は、前記厚みの小さい部分の前記第1電極の芯体露出部の積層方向における最外面側に前記最外面に沿うように配置される板状の第1領域と、前記第1領域の前記封口板側の端部から前記扁平状電極体における前記封口板の端部よりも前記封口板側まで延びる第2領域を有し、
前記第1領域の前記封口板側の端部には、前記第2領域が前記厚みの小さい部分から離れるように折れ曲がる折れ曲がり部が設けられている角形二次電池の製造方法であって、
前記第2領域と前記巻回された第1電極の芯体露出部の最外面の間に絶縁フィルムを配置した状態で、前記厚みの小さい部分に前記第1領域を抵抗溶接する角形二次電池の製造方法。
A flat electrode body including a first electrode and a second electrode;
A rectangular battery case having an opening and a bottom, and accommodating the flat electrode body;
A square rechargeable battery comprising a sealing plate for sealing the opening,
The flat electrode body has a core body exposed portion of the first electrode wound around one end portion and a core body exposed portion of the second electrode wound around the other end portion. ,
When the core exposed portion of the wound first electrode is viewed along the winding axis of the core exposed portion of the wound first electrode, the core exposed of the wound first electrode The portion is a portion having a small thickness in which the core body exposed portion is bundled, a first portion having a thickness larger than that of the portion having a smaller thickness than the portion having the smaller thickness, and located on the sealing plate side. A second portion having a thickness larger than that of the portion having a smaller thickness than the portion having a small thickness.
A current collecting member is resistance-welded to the core exposed portion of the wound first electrode,
The current collecting member has a plate-like first region arranged along the outermost surface on the outermost surface side in the stacking direction of the core exposed portion of the first electrode of the portion having the small thickness, and the first A second region extending from the end of the region on the sealing plate side to the sealing plate side than the end of the sealing plate in the flat electrode body;
In the manufacturing method of the prismatic secondary battery, a bent portion is provided at an end portion of the first region on the sealing plate side so that the second region is bent so as to be separated from the portion having the small thickness,
A prismatic secondary battery in which the first region is resistance-welded to the small thickness portion with an insulating film disposed between the second region and the outermost surface of the core exposed portion of the wound first electrode. Manufacturing method.
前記集電部材は、前記封口板と前記扁平状電極体の間に配置される領域を有し、
前記第2領域は、前記封口板と前記扁平状電極体の間に配置される領域と前記第1領域を繋ぐ部分である請求項3に記載の角形二次電池の製造方法。

























The current collecting member has a region disposed between the sealing plate and the flat electrode body,
4. The method for manufacturing a rectangular secondary battery according to claim 3, wherein the second region is a portion connecting the first region and a region disposed between the sealing plate and the flat electrode body. 5.

























JP2014103877A 2009-03-05 2014-05-20 Method for manufacturing prismatic secondary battery Active JP5858091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014103877A JP5858091B2 (en) 2009-03-05 2014-05-20 Method for manufacturing prismatic secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009052308 2009-03-05
JP2009052308 2009-03-05
JP2014103877A JP5858091B2 (en) 2009-03-05 2014-05-20 Method for manufacturing prismatic secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010012595A Division JP5550923B2 (en) 2009-03-05 2010-01-22 Method for manufacturing prismatic secondary battery

Publications (2)

Publication Number Publication Date
JP2014170757A true JP2014170757A (en) 2014-09-18
JP5858091B2 JP5858091B2 (en) 2016-02-10

Family

ID=51692966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014103877A Active JP5858091B2 (en) 2009-03-05 2014-05-20 Method for manufacturing prismatic secondary battery

Country Status (1)

Country Link
JP (1) JP5858091B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329259A (en) * 1991-05-02 1992-11-18 Sony Corp Lead electrode for battery
JP2007012631A (en) * 1997-04-30 2007-01-18 Ube Ind Ltd Non-aqueous electrolyte secondary battery and method of manufacturing same
JP2009026705A (en) * 2007-07-23 2009-02-05 Toyota Motor Corp Battery
JP2009032640A (en) * 2007-06-27 2009-02-12 Sanyo Electric Co Ltd Sealed battery and its manufacturing method
JP2010232164A (en) * 2009-03-05 2010-10-14 Sanyo Electric Co Ltd Method of manufacturing square-shaped secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329259A (en) * 1991-05-02 1992-11-18 Sony Corp Lead electrode for battery
JP2007012631A (en) * 1997-04-30 2007-01-18 Ube Ind Ltd Non-aqueous electrolyte secondary battery and method of manufacturing same
JP2009032640A (en) * 2007-06-27 2009-02-12 Sanyo Electric Co Ltd Sealed battery and its manufacturing method
JP2009026705A (en) * 2007-07-23 2009-02-05 Toyota Motor Corp Battery
JP2010232164A (en) * 2009-03-05 2010-10-14 Sanyo Electric Co Ltd Method of manufacturing square-shaped secondary battery

Also Published As

Publication number Publication date
JP5858091B2 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
JP5550923B2 (en) Method for manufacturing prismatic secondary battery
JP5583421B2 (en) Square sealed secondary battery and method for manufacturing square sealed secondary battery
US9034499B2 (en) Battery comprising multiple insulating covers
JP5558265B2 (en) battery
JP5355929B2 (en) Sealed battery and method for manufacturing the same
JP5917407B2 (en) Prismatic secondary battery
JP5089656B2 (en) Non-aqueous electrolyte secondary battery electrode structure, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP6043428B2 (en) Square battery and battery pack
JP2012199162A (en) Laminate covered secondary battery
JP2009032670A5 (en)
JP2010086780A (en) Square secondary battery
JP4168227B2 (en) Battery and manufacturing method thereof
JP2001283824A (en) Lithium secondary battery
JP2009110812A (en) Battery and method of manufacturing the same
JP2011086483A (en) Laminated secondary battery
JP2018147574A (en) Square Lithium Ion Secondary Battery
JP2011216205A (en) Laminated battery and its manufacturing method
JP5954339B2 (en) Rectangular secondary battery and manufacturing method thereof
JP2012043704A (en) Nonaqueous electrolyte battery
JP5858091B2 (en) Method for manufacturing prismatic secondary battery
JP2014049343A (en) Battery pack
JP2011054319A (en) Nonaqueous electrolyte secondary battery
JP7103853B2 (en) Laminated electrode plate group, secondary battery, and manufacturing method of secondary battery
JP2004253253A (en) Lithium secondary battery and its manufacturing method
WO2013080460A1 (en) Electrode plate for electrochemical element, and electrochemical element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R151 Written notification of patent or utility model registration

Ref document number: 5858091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151