JP2014169943A - Radiation measurement device and radiation measurement program - Google Patents

Radiation measurement device and radiation measurement program Download PDF

Info

Publication number
JP2014169943A
JP2014169943A JP2013042250A JP2013042250A JP2014169943A JP 2014169943 A JP2014169943 A JP 2014169943A JP 2013042250 A JP2013042250 A JP 2013042250A JP 2013042250 A JP2013042250 A JP 2013042250A JP 2014169943 A JP2014169943 A JP 2014169943A
Authority
JP
Japan
Prior art keywords
radiation
decontamination
radiation detector
measurement result
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013042250A
Other languages
Japanese (ja)
Other versions
JP5643864B2 (en
Inventor
Koji Tominaga
浩二 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2013042250A priority Critical patent/JP5643864B2/en
Publication of JP2014169943A publication Critical patent/JP2014169943A/en
Application granted granted Critical
Publication of JP5643864B2 publication Critical patent/JP5643864B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow a decontamination effect of a decontamination work to be correctly determined or a place required for the decontamination work to be correctly determined.SOLUTION: A radiation measurement device comprises: a first radiation detector 2 that has a directional characteristic indicative of peak sensitivity in a first direction; a second radiation detector 3 that has a directional characteristic indicative of peak sensitivity in a second direction; a computation section 5 that, with a first radiation dose Sof the first radiation detector 2 as a reference, computes a ratio Rof a second radiation dose Sof the second radiation detector 3 to the referenced first radiation dose S; a display control section 6 that displays the first and second radiation doses Sand Sof the two radiation detectors 2 and 3, and the ratio Robtained by the computation section 5 on a screen.

Description

本発明は、放射線測定装置に関するものである。   The present invention relates to a radiation measuring apparatus.

放射性物質の除染作業としては、放射性物質が付着した表土の削り取る作業、枝葉や落ち葉を除去する作業、又は建物表面の洗浄作業等がある。そして、従来は、除染作業による除染効果を確認するために、放射線測定装置を用いて、除染作業の作業前の放射線量と作業後の放射線量とを比較している。   The decontamination work of the radioactive material includes a work of scraping off the top soil to which the radioactive material is attached, a work of removing branches and leaves, or a cleaning work of the building surface. And conventionally, in order to confirm the decontamination effect by the decontamination work, the radiation dose before the work of the decontamination work is compared with the radiation dose after the work using the radiation measuring device.

しかしながら、放射線測定装置により測定される放射線量には、除染対象場所から放出される放射線量の他に、地上にある放射線物質から上方に放出されて大気により散乱されて地上に戻ってくる放射線量(スカイシャインによる放射線量)を含まれている(図3参照)。そうすると、除染後においても、スカイシャインによる放射線量を測定してしまい(図3の下図参照)、実際に除染対象場所から放出される放射線量のみを測定していないので、除染効果を正確に判断することが難しい。   However, in addition to the radiation dose emitted from the decontamination target location, the radiation dose measured by the radiation measurement device is the radiation released upward from the radiation material on the ground, scattered by the atmosphere, and returned to the ground. Amount (radiation dose due to skyshine) is included (see FIG. 3). Then, even after decontamination, the radiation dose due to Skyshine is measured (see the lower figure in FIG. 3), and only the radiation dose actually emitted from the decontamination target location is not measured. It is difficult to judge accurately.

また、除染作業が必要な場所を特定するにあたって、放射線測定装置で放射線量を測定する場合でも、その測定された放射線量には、除染対象場所から放出される放射線量の他に、スカイシャインによる放射線量を含むことになってしまい、除染作業が必要か否かを正確に判断することが難しい(図3の下図参照)。さらに、ある除染対象場所を除染することで、その除染対象場所に隣接する場所で測定される放射線量も減少するので(図3の下図参照)、単に放射線量を測定するだけでは、前記隣接する場所を除染する必要があるか否かを正確に判断することが難しい。   In addition, even when measuring the radiation dose with a radiation measurement device when specifying the location where decontamination work is required, the measured radiation dose includes not only the radiation dose emitted from the decontamination target location but also the sky dose. The radiation dose due to Shine is included, and it is difficult to accurately determine whether decontamination work is necessary (see the lower diagram of FIG. 3). Furthermore, by decontaminating a certain decontamination target location, the radiation dose measured at a location adjacent to the decontamination target location is also reduced (see the lower figure in FIG. 3). It is difficult to accurately determine whether or not the adjacent location needs to be decontaminated.

なお、特許文献1に示すように、方向特性が互いに異なるように周方向に複数の放射線検出器を設けて、これら複数の放射線検出器により得られた測定値の総和と所定方向を向く放射線検出器の測定値との比を算出することによって、放射線の飛来方向を特定する放射線測定装置が考えられている。   In addition, as shown in Patent Document 1, a plurality of radiation detectors are provided in the circumferential direction so that the direction characteristics are different from each other, and the total of the measurement values obtained by the plurality of radiation detectors and radiation detection directed in a predetermined direction A radiation measuring device that identifies the direction of radiation radiation by calculating the ratio of the measured value to the measured value of the instrument has been considered.

ところが、この放射線測定装置では、周方向に配置された複数の放射線検出器の測定値の総和を用いており、スカイシャインによる放射線量の影響を考慮していないため、除染作業前後の除染効果の判断を行うことが難しく、また、除染作業が必要な場所を特定することが難しいという問題がある。   However, this radiation measurement device uses the sum of the measurement values of a plurality of radiation detectors arranged in the circumferential direction, and does not consider the influence of the radiation dose due to Skyshine. There are problems that it is difficult to determine the effect and it is difficult to specify a place where decontamination work is necessary.

特開2007−155332号公報JP 2007-155332 A

そこで本発明は、上記問題点を一挙に解決すべくなされたものであり、除染作業の除染効果を正確に判断できる又は除染作業が必要な場所を正確に特定できるようにすることをその主たる課題とするものである。   Therefore, the present invention has been made to solve the above-mentioned problems all at once, so that the decontamination effect of the decontamination work can be accurately judged or the place where the decontamination work is necessary can be specified accurately. This is the main issue.

すなわち本発明に係る放射線測定装置は、第1方向である放射線量変化の小さい方向にピーク感度を示す方向特性を有する第1放射線検出器と、前記第1方向とは異なる第2方向にピーク感度を示す方向特性を有する第2放射線検出器と、前記第1放射線検出器により得られた第1測定結果を基準として、当該基準とされた第1測定結果に対する前記第2放射線検出器により得られた第2測定結果の関係を示す値である関係値を演算する演算部と、前記演算部により得られた関係値を出力する出力部とを備えることを特徴とする。   That is, the radiation measuring apparatus according to the present invention includes a first radiation detector having a directional characteristic that exhibits a peak sensitivity in a direction in which a change in radiation dose, which is the first direction, is small, and a peak sensitivity in a second direction different from the first direction. Obtained by the second radiation detector with respect to the first measurement result set as a reference, with the second radiation detector having a directional characteristic indicating the first measurement result obtained by the first radiation detector as a reference. And a calculation unit that calculates a relationship value that is a value indicating the relationship between the second measurement results, and an output unit that outputs the relationship value obtained by the calculation unit.

このようなものであれば、第1放射線検出器が除染による放射線量の変化が小さい方向にピーク感度を示す方向特性を有するものであり、第1放射線検出器により得られた第1測定結果に対する第2放射線検出器により得られた第2測定結果の関係を示す関係値を出力するので、以下の効果を奏する。
つまり、除染作業の除染効果の判断又は除染の必要な場所の特定を、放射線検出器の測定結果(例えば放射線量)で判断するのではなく、関係値により判断するので、スカイシャインによる放射線量又は周囲の放射性物質から放出される放射線量の影響を抑制して、正確に行うことができる。このように本発明は、第1放射線検出器により得られた第1測定結果に対する第2放射線検出器により得られた第2測定結果の関係値を出力することが、除染作業の除染効果の判断又は除染の必要な場所の特定を行う場合に意味があると見出されることによって初めてなされたものである。
If it is such, the 1st radiation detector has the direction characteristic which shows a peak sensitivity in the direction where the change of the radiation dose by decontamination is small, The 1st measurement result obtained by the 1st radiation detector Since the relationship value which shows the relationship of the 2nd measurement result obtained by the 2nd radiation detector with respect to is output, there exist the following effects.
In other words, the determination of the decontamination effect of the decontamination work or the identification of the location where decontamination is necessary is not determined by the measurement result of the radiation detector (for example, the radiation dose) but by the relational value. The influence of the radiation dose or the radiation dose emitted from the surrounding radioactive material can be suppressed and performed accurately. As described above, the present invention outputs the relation value of the second measurement result obtained by the second radiation detector with respect to the first measurement result obtained by the first radiation detector. It was made for the first time when it was found to be meaningful in the determination of the above or the identification of the place where decontamination is necessary.

前記第1方向が、鉛直上向き方向に設定されていることが望ましい。
これにより第1放射線検出器が上空の放射線量を測定することになる。上空の放射線量は、スカイシャインによる放射線量であり、除染作業の前後での変化量が最も小さいため、この上空の放射線量を基準にすることによって、除染作業の除染効果の判断又は除染作業が必要な場所の特定をより一層正確に行うことができる。
It is desirable that the first direction is set in a vertically upward direction.
As a result, the first radiation detector measures the radiation dose in the sky. The amount of radiation in the sky is the amount of radiation due to Skyshine, and the amount of change before and after the decontamination work is the smallest. The location where decontamination work is required can be identified more accurately.

前記関係値が、前記第1測定結果と前記第2測定結果との比であることが望ましい。
これならば、各放射線検出器により得られる測定結果(例えば放射線量)の比をとるだけで良く、演算部の演算処理を極めて簡単にすることができる。また、関係値が比であるため、ユーザによる判断を簡単にすることができる。
The relation value is preferably a ratio between the first measurement result and the second measurement result.
In this case, it is only necessary to obtain a ratio of measurement results (for example, radiation doses) obtained by the respective radiation detectors, and the arithmetic processing of the arithmetic unit can be extremely simplified. In addition, since the relation value is a ratio, it is possible to simplify the determination by the user.

前記出力部が、前記演算部により得られた関係値を画面上に表示する表示制御部であり、前記表示制御部が、放射性物質の除染前の放射線測定により得られた前記関係値と、前記放射性物質の除染後の放射線測定により得られた前記関係値とを同時又は切り替えて画面に表示することが望ましい。
これならば、除染作業の前後の関係値の比較を、同一画面上で行うことができるため、ユーザによる判断を簡単にすることができる。
The output unit is a display control unit that displays on the screen the relationship value obtained by the calculation unit, the display control unit, the relationship value obtained by radiation measurement before decontamination of radioactive material, It is desirable to display the relation value obtained by radiation measurement after decontamination of the radioactive substance on the screen simultaneously or by switching.
In this case, since the relation values before and after the decontamination work can be compared on the same screen, the judgment by the user can be simplified.

前記第1方向及び前記第2方向とは異なる第3方向にピーク感度を示す方向特性を有する第3放射線検出器をさらに備えており、前記演算部が、前記基準とされた第1測定結果に対する前記第2放射線検出器の第2測定結果及び前記第3放射線検出器の第3測定結果の関係を示す値である関係値を演算するものであり、前記第1方向が、鉛直上向き方向に設定されており、前記第2方向が、鉛直下向き方向に設定されており、前記第3方向が、水平方向に設定されていることが望ましい。
これならば、第1方向が鉛直上向きに設定され、第2方向が鉛直下向き方向に設定されているので、除染効果の判断を第1測定結果に対する第2測定結果の関係値で判断することができる。また、第3方向が水平方向に設定されているので、除染が必要な場所の特定を第1測定結果に対する第3測定結果の関係値で判断することができる。つまり、除染作業後において、当該除染場所の除染効果を判断すると同時に、当該除染場所の周囲において除染が必要な場所を特定することができる。
A third radiation detector having a directional characteristic exhibiting peak sensitivity in a third direction different from the first direction and the second direction, wherein the arithmetic unit is configured to perform the first measurement result as the reference; Calculating a relation value which is a value indicating a relation between the second measurement result of the second radiation detector and the third measurement result of the third radiation detector, and the first direction is set in a vertically upward direction. Preferably, the second direction is set in a vertically downward direction, and the third direction is set in a horizontal direction.
In this case, since the first direction is set vertically upward and the second direction is set vertically downward, the determination of the decontamination effect is determined by the relation value of the second measurement result with respect to the first measurement result. Can do. In addition, since the third direction is set to the horizontal direction, it is possible to determine the location where decontamination is necessary based on the relationship value of the third measurement result with respect to the first measurement result. That is, after the decontamination work, it is possible to determine the decontamination effect at the decontamination site, and at the same time, specify a place where decontamination is necessary around the decontamination site.

また、本発明に係る放射線測定プログラムは、第1方向である放射線量変化の小さい方向にピーク感度を示す方向特性を有する第1放射線検出器と、前記第1方向とは異なる第2方向にピーク感度を示す方向特性を有する第2放射線検出器とを備える放射線測定装置に用いられる放射線測定プログラムであって、前記第1放射線検出器により得られた第1測定結果を基準として、当該基準とした第1測定結果に対する前記第2放射線検出器により得られた第2測定結果の関係を示す値である関係値を演算する演算部と、前記演算部により得られた関係値を出力する出力部と、としての機能をコンピュータに備えさせることを特徴とする。   In addition, the radiation measurement program according to the present invention includes a first radiation detector having a directional characteristic that exhibits peak sensitivity in a direction in which a change in radiation dose, which is the first direction, is small, and a peak in a second direction different from the first direction. A radiation measurement program used in a radiation measurement apparatus including a second radiation detector having a directional characteristic indicating sensitivity, wherein the first measurement result obtained by the first radiation detector is used as a reference. A calculation unit that calculates a relationship value that is a value indicating a relationship of the second measurement result obtained by the second radiation detector with respect to the first measurement result; and an output unit that outputs the relationship value obtained by the calculation unit; The computer is provided with the functions as described above.

このように構成した本発明によれば、第1放射線検出器により得られた第1測定結果を基準として、当該第1測定結果に対する第2放射線検出器により得られた第2測定結果の関係を示す関係値を出力するので、除染作業の除染効果を正確に判断できる又は除染作業が必要な場所を正確に特定できる。   According to the present invention configured as described above, the relationship between the second measurement result obtained by the second radiation detector with respect to the first measurement result is obtained with reference to the first measurement result obtained by the first radiation detector. Since the relationship value shown is output, the decontamination effect of the decontamination work can be accurately determined, or the place where the decontamination work is necessary can be accurately identified.

本実施形態の放射線測定装置の構成を示す模式図。The schematic diagram which shows the structure of the radiation measuring device of this embodiment. 同実施形態の放射線検出器の構成を示す斜視図及び断面図。The perspective view and sectional drawing which show the structure of the radiation detector of the embodiment. 除染前後のスカイシャインによる放射線量等を示す模式図。The schematic diagram which shows the radiation dose etc. by the Skyshine before and after decontamination.

以下に本発明に係る放射線測定装置について図面を参照して説明する。   The radiation measuring apparatus according to the present invention will be described below with reference to the drawings.

本実施形態の放射線測定装置100は、3方向の放射線量を同時に測定することができるものであり、図1に示すように、第1方向にピーク感度を示す方向特性を有する第1放射線検出器2と、第1方向とは異なる第2方向にピーク感度を示す方向特性を有する第2放射線検出器3と、第1方向及び第2方向とは異なる第3方向にピーク感度を示す方向特性を有する第3放射線検出器4と備えている。   The radiation measuring apparatus 100 according to the present embodiment is capable of simultaneously measuring radiation doses in three directions, and as shown in FIG. 1, a first radiation detector having a directional characteristic indicating peak sensitivity in the first direction. 2 and a second radiation detector 3 having a direction characteristic indicating peak sensitivity in a second direction different from the first direction, and a direction characteristic indicating peak sensitivity in a third direction different from the first direction and the second direction. And a third radiation detector 4.

各放射線検出器2〜4は、図1及び図2に示すように、放射線により発光するCsI(Tl)シンチレータ等のシンチレータ10と、当該シンチレータ10の発光を検出するフォトダイオード(シリコンフォトダイオード)等の光検出器11とを有する。   As shown in FIGS. 1 and 2, each of the radiation detectors 2 to 4 includes a scintillator 10 such as a CsI (Tl) scintillator that emits light by radiation, a photodiode (silicon photodiode) that detects light emission of the scintillator 10, and the like. The photodetector 11 is provided.

シンチレータ10は、特に図2に示すように、柱状をなすものであり、一面に放射線が入射する入射面10aを有し、シンチレーション光を射出する射出面10bを有している。そして、この射出面10bに対向して光検出器11の受光面11aが設けられている。本実施形態のシンチレータ10は、四角柱状をなすものである。   As shown in FIG. 2 in particular, the scintillator 10 has a columnar shape. The scintillator 10 has an incident surface 10a on which radiation is incident on one surface, and an exit surface 10b that emits scintillation light. And the light-receiving surface 11a of the photodetector 11 is provided facing this emission surface 10b. The scintillator 10 of this embodiment has a quadrangular prism shape.

また、シンチレータ10は、前記入射面10aを除く5面は、例えば厚み8mmの鉛板等の遮蔽部材12により被覆されており、入射面10a以外の面に入射する放射線(具体的にはガンマ線)を減衰させる構成とされている。また、シンチレータ10の射出面10bに対向する光検出器11もシンチレータ10とともに前記遮蔽部材12により被覆されている。これにより、各放射線検出器2〜4は、入射面10aの向く方向にピーク感度を示す方向特性を有するものとなる。   In the scintillator 10, five surfaces except the incident surface 10a are covered with a shielding member 12 such as a lead plate having a thickness of 8 mm, for example, and radiation (specifically, gamma rays) incident on a surface other than the incident surface 10a. It is set as the structure which attenuates. Further, the photodetector 11 facing the emission surface 10 b of the scintillator 10 is also covered with the shielding member 12 together with the scintillator 10. Thereby, each radiation detector 2-4 has a directional characteristic which shows a peak sensitivity in the direction which the entrance plane 10a faces.

そして、3つの放射線検出器2〜4は、図1に示すように、第1放射線検出器2の入射面10aが鉛直上向き方向を向くように設定され、第2放射線検出器3の入射面10aが鉛直下向き方向を向くように設定され、第3放射線検出器4の入射面10aが水平方向を向くように設定されている。つまり、第1放射線検出器2の入射面10a及び第2放射線検出器3の入射面10aは、互いに正反対の向きを向くように配置され、第3放射線検出器4の入射面10aは、前記第1放射線検出器2の入射面10a及び前記第2放射線検出器3の入射面10aの対向方向に直交する方向を向くように配置されている。これにより、第1放射線検出器2が鉛直上向き方向にピーク感度を示す方向特性を有し、第2放射線検出器3が鉛直下向き方向にピーク感度を示す方向特性を有し、第3放射線検出器4が水平方向にピーク感度を示す方向特性を有することになる。   As shown in FIG. 1, the three radiation detectors 2 to 4 are set so that the incident surface 10 a of the first radiation detector 2 faces in the vertically upward direction, and the incident surface 10 a of the second radiation detector 3. Is set to face in the vertically downward direction, and the incident surface 10a of the third radiation detector 4 is set to face in the horizontal direction. That is, the incident surface 10a of the first radiation detector 2 and the incident surface 10a of the second radiation detector 3 are arranged to face in opposite directions, and the incident surface 10a of the third radiation detector 4 It arrange | positions so that the direction orthogonal to the opposing surface of the entrance plane 10a of the 1 radiation detector 2 and the entrance plane 10a of the said 2nd radiation detector 3 may face. Accordingly, the first radiation detector 2 has a directional characteristic indicating peak sensitivity in the vertically upward direction, the second radiation detector 3 has a directional characteristic indicating peak sensitivity in the vertically downward direction, and the third radiation detector 4 has a directional characteristic indicating peak sensitivity in the horizontal direction.

そして、本実施形態の放射線測定装置100は、前記3つの放射線検出器2〜4それぞれの光検出器11から光強度信号を取得して、放射線量である線量当量率(単位時間当りの線量当量)を計数する演算部5を備えている。   And the radiation measuring apparatus 100 of this embodiment acquires a light intensity signal from each photodetector 11 of the said three radiation detectors 2-4, and the dose equivalent rate (dose equivalent per unit time) which is a radiation dose. ) Is provided.

この演算部5は、第1放射線検出器2の第1測定結果である第1放射線量Sを基準として、当該基準とした第1放射線量Sに対する第2放射線検出器3の第2測定結果である第2放射線量S及び第3放射線検出器4の第3測定結果である第3放射線量Sの関係を示す値である関係値R、Rを演算する。本実施形態の演算部5は、前記関係値R、Rとして、第1放射線量Sと、第2放射線量S及び第3放射線量Sとの放射線量比(R=S/S、R=S/S)を演算する。 The calculation unit 5 uses the first radiation dose S 1 that is the first measurement result of the first radiation detector 2 as a reference, and the second measurement of the second radiation detector 3 with respect to the first radiation dose S 1 as the reference. Relation values R 1 and R 2 , which are values indicating the relationship between the second radiation dose S 2 as the result and the third radiation dose S 3 as the third measurement result of the third radiation detector 4, are calculated. The calculation unit 5 of the present embodiment uses, as the relation values R 1 and R 2 , the radiation dose ratio (R 1 = S) between the first radiation dose S 1 and the second radiation dose S 2 and the third radiation dose S 3. 2 / S 1, R 2 = S 3 / S 1) for calculating a.

さらに、本実施形態の放射線測定装置100は、前記演算部5により得られた放射線量S〜S及び放射線量比R、Rをディスプレイ7の画面上に表示する出力部たる表示制御部6を備えている。 Furthermore, the radiation measuring apparatus 100 of the present embodiment is a display control that is an output unit that displays the radiation doses S 1 to S 3 and the radiation dose ratios R 1 and R 2 obtained by the calculation unit 5 on the screen of the display 7. Part 6 is provided.

この表示制御部6は、前記演算部5から放射線量データ及び放射線量比データを取得して、前記3つの放射線検出器2〜4の放射線量S〜Sをディスプレイ7の画面上に表示するとともに、前記放射線量比R、Rを放射線量S〜Sと同時に又は切り替えて画面上に表示するものである。なお、画面上に切り替えて表示する場合には、放射線測定装置100に設けられた表示切り替えボタン(不図示)をユーザが押すことによって、切り替え表示することが考えられる。その他、自動的に切り替え表示するように構成することも考えられる。 The display control unit 6 acquires radiation dose data and radiation dose ratio data from the calculation unit 5 and displays the radiation doses S 1 to S 3 of the three radiation detectors 2 to 4 on the screen of the display 7. At the same time, the radiation dose ratios R 1 and R 2 are displayed on the screen simultaneously with or while switching the radiation doses S 1 to S 3 . When switching and displaying on the screen, it is conceivable that the display is switched by the user pressing a display switching button (not shown) provided in the radiation measuring apparatus 100. In addition, it may be configured to automatically switch and display.

また、表示制御部6は、除染作業前の放射線測定により得られた放射線量比(R1(除染前)、R2(除染前))と、除染作業後の放射線測定により得られた放射線量比(R1(除染後)、R2(除染後))とを同時又は切り替えて画面に表示するように構成されている。 Moreover, the display control part 6 is obtained by the radiation dose ratio (R1 (before decontamination) , R2 (before decontamination) ) obtained by the radiation measurement before the decontamination work, and the radiation measurement after the decontamination work. The obtained radiation dose ratios (R 1 (after decontamination) , R 2 (after decontamination) ) are displayed on the screen simultaneously or switched.

除染作業前の放射線量(S1(除染前)〜S3(除染前))及び放射線量比(R1(除染前)、R2(除染前))は放射線測定装置100のメモリに格納されており、表示制御部6は、当該メモリに格納された除染作業前の放射線量(S1(除染前)〜S3(除染前))及び放射線量比(R1(除染前)、R2(除染前))を読み出すことによって、画面上に表示する。 Radiation dose before decontamination work (S1 (before decontamination) to S3 (before decontamination) ) and radiation dose ratio (R1 (before decontamination) , R2 (before decontamination) ) are measured by the radiation measuring apparatus 100. The display control unit 6 stores the radiation dose (S1 (before decontamination) to S3 (before decontamination) ) and the radiation dose ratio (R) stored in the memory before the decontamination work. 1 (before decontamination) and R2 (before decontamination) ) are read out and displayed on the screen.

次に、このように構成した放射線測定装置100の使用方法について説明する。   Next, a method for using the radiation measuring apparatus 100 configured as described above will be described.

まず、除染作業前において、前記放射線測定装置100を用いて、除染対象場所の放射線量(S1(除染前)〜S3(除染前))及び放射線量比(R1(除染前)、R2(除染前))を測定する。このとき、放射線測定装置100を除染対象場所から所定高さ(例えば地面から1mの高さ)で測定する。なお、第3放射線検出器4を鉛直方向回りに一周回転させて、周囲の複数点(例えば東西南北の4点等)での放射線量S2(除染前)(放射線量比R2(除染前))を測定しておくことが考えられる。 First, before decontamination, using said radiation measuring device 100, dividing the radiation dose of the dye target location (S 1 (decontamination ago) to S 3 (decontamination ago)) and radiation amount ratio (R 1 (except Before dyeing) and R 2 (before decontamination) ). At this time, the radiation measuring apparatus 100 is measured at a predetermined height (for example, a height of 1 m from the ground) from the decontamination target location. The third radiation detector 4 is rotated once in the vertical direction, and the radiation dose S 2 (before decontamination) (radiation dose ratio R 2 (exclusion ) at a plurality of surrounding points (for example, four points in the east, west, south, and north )). It is conceivable to measure before dyeing)) ).

次に、前記除染対象場所を除染した後において、前記放射線測定装置100を用いて、前記除染対象場所の放射線量(S1(除染後)〜S3(除染後))及び放射線量比(R1(除染後)、R2(除染後))を測定する。このとき、除染前後において放射線測定装置100を同一位置に配置する。また、第3放射線検出器4を鉛直方向回りに一周回転させて、周囲の複数点(例えば東西南北の4点等)での放射線量S2(除染後)(放射線量比R2(除染後))を測定しておくことが考えられる。 Then, the after decontamination of the decontamination object location, by using the radiation measurement device 100, the radiation amount of the decontamination object location (S 1 (after decontamination) to S 3 (after decontamination)) and The radiation dose ratio (R 1 (after decontamination) , R 2 (after decontamination) ) is measured. At this time, the radiation measuring apparatus 100 is arranged at the same position before and after decontamination. In addition, the third radiation detector 4 is rotated around the vertical direction once, and the radiation dose S 2 (after decontamination) (radiation dose ratio R 2 (exclusion ) at a plurality of surrounding points (for example, 4 points in the east, west, south, and north )). After dyeing)) ) may be measured.

そして、第1放射線検出器2の第1放射線量S及び第2放射線検出器3の第2放射線量Sにより算出された除染作業前の放射線量比R1(除染前)及び除染作業後の放射線量比R1(除染後)を比較することによって、除染対象場所における除染効果を判断する。 Then, the radiation dose ratio R 1 before decontamination work (before decontamination) and decontamination calculated from the first radiation dose S 1 of the first radiation detector 2 and the second radiation dose S 2 of the second radiation detector 3. By comparing the radiation dose ratio R1 (after decontamination) after the dyeing work, the decontamination effect at the decontamination target location is determined.

また、除染作業前の第1放射線検出器2の第1放射線量S及び第3放射線検出器4の第3放射線量Sにより算出された除染作業前の放射線量比R2(除染前)及び除染後の放射線量比R2(除染後)を比較することによって、除染対象場所の周囲において除染が必要な場所を特定する。ここで、上記の通り、除染作業前及び除染作業後において、第3放射線検出器4を鉛直方向回りに一周回転させて、周囲の複数点での放射線量比Rを測定しておくことで、除染が必要な場所の特定が容易となる。 Further, the radiation dose ratio R 2 before decontamination work calculated by the first radiation dose S 1 of the first radiation detector 2 before the decontamination work and the third radiation dose S 3 of the third radiation detector 4 (removal) By comparing the radiation dose ratio R2 ( after decontamination ) before and after decontamination, a place where decontamination is necessary around the decontamination target place is specified. Here, as described above, after decontamination before and decontamination operations, by one rotation of the third radiation detector 4 in the vertical direction around keep measuring the radiation dose ratio R 2 at a plurality of points around This makes it easy to identify a place where decontamination is required.

次に、実際の福島県某所において、農道の表土を削り取ることで除染作業を行った場合の農道(地面から1mの高さ)における除染作業前と除染作業後の放射線量及び放射線量比を以下の表1及び表2に示す。なお、表1は、農道の除染作業前の放射線量(S1(除染前)〜S3(除染前))及び放射線量比(R1(除染前)、R2(除染前))を示し、表2は、農道の除染作業後の放射線量(S1(除染後)〜S3(除染後))及び放射線量比(R1(除染後)、R2(除染後))を示している。 Next, the radiation dose and radiation dose before and after decontamination work on the farm road (at a height of 1 m from the ground) when decontamination work is performed by scraping off the topsoil of the farm road at an actual certain place in Fukushima Prefecture The ratios are shown in Tables 1 and 2 below. Incidentally, Table 1, the radiation amount before decontamination farm roads (S 1 (decontamination ago) to S 3 (decontamination ago)) and radiation amount ratio (R 1 (decontamination before), R 2 (decontamination respectively to the front)), Table 2, the radiation dose after decontamination of farm roads (S 1 (after decontamination) to S 3 (after decontamination)) and radiation amount ratio (R 1 (after decontamination), R 2 (after decontamination) ).

農道の除染作業により、農道の放射線量を測定する第2放射線検出器3の第2放射線量Sが減少していることが分かる。また、農道を除染することよって、農地方向の放射線量も1.344(μSv/h)から0.964(μSv/h)に低下していることが分かる。つまり、農道除染後に農地方向の放射線量を測定して、当該放射線量で判断すると、除染作業が必要であると判断されない可能性がある。 The decontamination of farm roads, it can be seen that the second radiation amount S 2 of the second radiation detector 3 which measures the radiation amount of farm roads is reduced. It can also be seen that by decontaminating the farm road, the radiation dose in the farmland direction is reduced from 1.344 (μSv / h) to 0.964 (μSv / h). That is, if the radiation dose in the direction of the farmland is measured after the agricultural road decontamination and the radiation dose is determined, it may not be determined that the decontamination work is necessary.

一方で、放射線量比Rを見てみると、除染がされた農道においては、放射線量比が1.75から0.78に減少しており、除染効果があると判断することができる。また、農地においては、放射線量比が1.59から1.53に若干減少しているが殆ど変化していないことが分かる。このように、放射線量比Rを比較することによって、農地が除染の必要な場所であると正確に判断することができる。 On the other hand, looking at the dose ratio R 1, in the farm roads decontamination is, the radiation dose ratio has decreased from 1.75 to 0.78, is possible to determine that the decontamination effect it can. In farmland, the radiation dose ratio is slightly reduced from 1.59 to 1.53, but is hardly changed. Thus, by comparing the dose ratio R 2, it can be farmland to accurately determine if there where needed for decontamination.

<本実施形態の効果>
このように構成した本実施形態に係る放射線測定装置100によれば、第1放射線検出器2の第1放射線量Sに対する第2放射線検出器3の第2放射線量S及び第3放射線検出器4の第3放射線量Sの放射線量比R、Rを画面上に表示するので、除染前の放射線量と除染後の放射線量との変化を、放射線量比R、Rにより判断することができ、除染の効果を正確に把握することができる。また、除染が必要な場所を把握する上で、当該場所側から飛来する放射線の放射線量を、放射線量比R、Rで判断することができ、除染の効果を正確に把握することができる。
このように本実施形態の放射線測定装置100では、放射性物質の除染効果及び除染の必要な場所を、放射線検出器2〜4の放射線量S〜Sで判断するのではなく、上空から飛来する放射線量Sを基準とする放射線量比R、Rによって判断するので、スカイシャインによる放射線量及び周囲の放射性物質から放出される放射線量の影響を抑制して、正確に把握することができる。
<Effect of this embodiment>
According to the radiation measuring apparatus 100 according to the present embodiment configured as described above, the second radiation dose S 2 and the third radiation detection of the second radiation detector 3 with respect to the first radiation dose S 1 of the first radiation detector 2 . Since the radiation dose ratios R 1 and R 2 of the third radiation dose S 3 of the device 4 are displayed on the screen, the change between the radiation dose before decontamination and the radiation dose after decontamination is represented by the radiation dose ratio R 1 , can be judged by R 2, it is possible to accurately grasp the effect of decontamination. Moreover, when grasping the place where decontamination is necessary, the radiation dose of the radiation coming from the place side can be determined by the radiation dose ratios R 1 and R 2 , and the decontamination effect can be grasped accurately. be able to.
As described above, in the radiation measuring apparatus 100 according to the present embodiment, the decontamination effect of the radioactive substance and the place where decontamination is necessary are not determined by the radiation doses S 1 to S 2 of the radiation detectors 2 to 4 but the sky. Judgment is made based on the radiation dose ratios R 1 and R 2 based on the radiation dose S 1 coming from the sky. Therefore, the effects of the radiation dose caused by Skyshine and the radiation dose emitted from the surrounding radioactive materials are suppressed and accurately grasped. can do.

なお、本発明は前記実施形態に限られるものではない。
例えば、前記実施形態では、3つの放射線検出器2〜4を互いに異なる方向に向けて配置しているが、4つ以上の放射線検出器を互いに異なる方向にピーク感度を示す方向特性を有するように配置しても良い。このように放射線検出器の数を増やすほど、より多くの方向の放射線量を同時に測定できるようになる。
The present invention is not limited to the above embodiment.
For example, in the above-described embodiment, the three radiation detectors 2 to 4 are arranged in different directions. However, the four or more radiation detectors have direction characteristics indicating peak sensitivity in different directions. It may be arranged. Thus, as the number of radiation detectors is increased, the radiation dose in more directions can be measured simultaneously.

また、前記実施形態では、基準となる第1放射線量Sを測定する第1放射線検出器2の方向特性が鉛直上向き方向であったが、その他、除染の前後において放射線量が小さい方向であれば、鉛直上向き方向に限られない。 Further, in the above embodiment, the direction characteristic of the first radiation detector 2 for measuring a first amount of radiation S 1 serving as a reference was vertically upward direction, other, in the direction the radiation amount is small before and after the decontamination If there is, it is not limited to the vertically upward direction.

さらに、前記実施形態のシンチレータ10は、四角柱状をなすものであったが、円柱状をなすものであっても良いし、柱状をなすものの他に平板状をなすものであっても良い。   Further, the scintillator 10 of the above embodiment has a quadrangular column shape, but may have a columnar shape, or may have a flat plate shape in addition to the columnar shape.

その上、シンチレータ10としては、CsI(Tl)シンチレータの他にNaI(Tl)シンチレータであっても良い。また、放射線検出器は、シンチレーション方式以外にも、GM計数管式や半導体式など他の方式の検出器であっても良い。   In addition, the scintillator 10 may be a NaI (Tl) scintillator in addition to the CsI (Tl) scintillator. In addition to the scintillation method, the radiation detector may be a detector of another method such as a GM counter type or a semiconductor type.

加えて、放射線検出器はガンマ線を検出するものの他、ベータ線やエックス線等を検出するものであって良い。このとき、CsI(Tl)シンチレータやNaI(Tl)シンチレータの他に各種のシンチレータを用いることができる。   In addition, the radiation detector may be one that detects beta rays, X-rays, etc. in addition to those that detect gamma rays. At this time, various scintillators can be used in addition to the CsI (Tl) scintillator and the NaI (Tl) scintillator.

さらにその上、放射線測定装置がGPS受信機を備えており、各放射線測定における放射線量及び放射線量比を測定位置(緯度・経度)と関連付けてメモリに格納するように構成しても良い。これならば、除染場所及びその場所の放射線量及び放射線量比をマッピングすることにより、除染作業及びその管理を効率的に行うことができる。   Furthermore, the radiation measurement apparatus may include a GPS receiver, and the radiation dose and the radiation dose ratio in each radiation measurement may be stored in the memory in association with the measurement position (latitude / longitude). If it is this, decontamination work and its management can be efficiently performed by mapping the decontamination place and the radiation dose and the radiation dose ratio of the place.

さらに加えて、前記実施形態では、除染作業前の放射線量比及び除染作業後の放射線量比を比較して、除染作業が必要な場所を特定しているが、除染作業後の放射線量比のみを用いて除染作業が必要な場所を特定するようにしても良い。つまり、第3放射線検出器を鉛直方向回りに一周させて、そのときに得られる放射線量比において例えば所定値以上の比を示す場所を除染作業が必要な場所に特定しても良い。   In addition, in the embodiment described above, the radiation dose ratio before the decontamination work and the radiation dose ratio after the decontamination work are compared to identify the place where the decontamination work is necessary. You may make it identify the place which needs decontamination work using only a radiation dose ratio. That is, the third radiation detector may be rotated around the vertical direction, and a place showing a ratio of a predetermined value or more in the radiation dose ratio obtained at that time may be specified as a place where decontamination work is necessary.

また、前記実施形態では、関係値R、Rとして、第1放射線量Sと、第2放射線量S等との放射線量比を演算するものであったが、その他、第1放射線量Sと第2放射線量S等との差を用いても良いし、その他の第1放射線量Sと、第2放射線量S等との関係を示す値であれば良い。 In the embodiment, the radiation dose ratio between the first radiation dose S 1 and the second radiation dose S 2 is calculated as the relation values R 1 and R 2. The difference between the dose S 1 and the second radiation dose S 2 or the like may be used, or any other value that indicates the relationship between the other first radiation dose S 1 and the second radiation dose S 2 or the like.

また、前記実施形態では、出力部が、演算部により得られた関係値を画面上に表示する出力表示部により構成されているが、紙に印字して出力するものであっても良いし、その他の別の携帯端末やコンピュータに送信するものであっても良い。   Moreover, in the said embodiment, although the output part is comprised by the output display part which displays the related value obtained by the calculating part on a screen, you may print on paper and output, You may transmit to another another portable terminal and computer.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

100・・・放射線測定装置
2 ・・・第1放射線検出器
3 ・・・第2放射線検出器
4 ・・・第3放射線検出器
5 ・・・演算部
6 ・・・表示制御部(出力部)
DESCRIPTION OF SYMBOLS 100 ... Radiation measuring apparatus 2 ... 1st radiation detector 3 ... 2nd radiation detector 4 ... 3rd radiation detector 5 ... Calculation part 6 ... Display control part (output part) )

Claims (6)

第1方向である放射線量変化の小さい方向にピーク感度を示す方向特性を有する第1放射線検出器と、
前記第1方向とは異なる第2方向にピーク感度を示す方向特性を有する第2放射線検出器と、
前記第1放射線検出器により得られた第1測定結果を基準として、当該基準とした第1測定結果に対する前記第2放射線検出器により得られた第2測定結果の関係を示す値である関係値を演算する演算部と、
前記演算部により得られた関係値を出力する出力部とを備える放射線測定装置。
A first radiation detector having a directional characteristic that exhibits peak sensitivity in a direction in which a change in radiation dose, which is a first direction, is small;
A second radiation detector having a directional characteristic exhibiting peak sensitivity in a second direction different from the first direction;
A relation value which is a value indicating a relation of the second measurement result obtained by the second radiation detector with respect to the first measurement result based on the first measurement result obtained by the first radiation detector. A computing unit for computing
A radiation measurement apparatus comprising: an output unit that outputs a relational value obtained by the calculation unit.
前記第1方向が、鉛直上向き方向に設定されている請求項1記載の放射線測定装置。   The radiation measuring apparatus according to claim 1, wherein the first direction is set in a vertically upward direction. 前記関係値が、前記第1測定結果と前記第2測定結果との比である請求項1又は2記載の放射線測定装置。   The radiation measurement apparatus according to claim 1, wherein the relation value is a ratio between the first measurement result and the second measurement result. 前記出力部が、前記演算部により得られた関係値を画面上に表示する表示制御部であり、
前記表示制御部が、放射性物質の除染前の放射線測定により得られた前記関係値と、前記放射性物質の除染後の放射線測定により得られた前記関係値とを同時又は切り替えて画面に表示する請求項1乃至3の何れかに記載の放射線測定装置。
The output unit is a display control unit for displaying a relation value obtained by the calculation unit on a screen;
The display control unit displays the relation value obtained by radiation measurement before decontamination of the radioactive substance and the relation value obtained by radiation measurement after decontamination of the radioactive substance on the screen at the same time or by switching. The radiation measuring apparatus according to any one of claims 1 to 3.
前記第1方向及び前記第2方向とは異なる第3方向にピーク感度を示す方向特性を有する第3放射線検出器をさらに備えており、
前記演算部が、前記基準とした第1測定結果に対する前記第2放射線検出器の第2測定結果及び前記第3放射線検出器の第3測定結果の関係を示す値である関係値を演算するものであり、
前記第1方向が、鉛直上向き方向に設定されており、
前記第2方向が、鉛直下向き方向に設定されており、
前記第3方向が、水平方向に設定されている請求項1乃至4の何れかに記載の放射線測定装置。
A third radiation detector having a directional characteristic showing peak sensitivity in a third direction different from the first direction and the second direction;
The calculation unit calculates a relation value that is a value indicating a relation between the second measurement result of the second radiation detector and the third measurement result of the third radiation detector with respect to the first measurement result as the reference. And
The first direction is set in a vertically upward direction;
The second direction is set in a vertically downward direction;
The radiation measuring apparatus according to claim 1, wherein the third direction is set in a horizontal direction.
第1方向である放射線量変化の小さい方向にピーク感度を示す方向特性を有する第1放射線検出器と、前記第1方向とは異なる第2方向にピーク感度を示す方向特性を有する第2放射線検出器とを備える放射線測定装置に用いられる放射線測定プログラムであって、
前記第1放射線検出器により得られた第1測定結果を基準として、当該基準とした第1測定結果に対する前記第2放射線検出器により得られた第2測定結果の関係を示す値である関係値を演算する演算部と、前記演算部により得られた関係値を出力する出力部と、としての機能をコンピュータに備えさせることを特徴とする放射線測定プログラム。
A first radiation detector having a directional characteristic exhibiting peak sensitivity in a direction having a small change in radiation dose, which is the first direction, and a second radiation detecting having a directional characteristic exhibiting peak sensitivity in a second direction different from the first direction; A radiation measurement program for use in a radiation measurement apparatus comprising:
A relation value which is a value indicating a relation of the second measurement result obtained by the second radiation detector with respect to the first measurement result based on the first measurement result obtained by the first radiation detector. A radiation measurement program for causing a computer to have a function as a calculation unit that calculates the above and an output unit that outputs a relation value obtained by the calculation unit.
JP2013042250A 2013-03-04 2013-03-04 Radiation measurement apparatus and radiation measurement program Expired - Fee Related JP5643864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013042250A JP5643864B2 (en) 2013-03-04 2013-03-04 Radiation measurement apparatus and radiation measurement program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013042250A JP5643864B2 (en) 2013-03-04 2013-03-04 Radiation measurement apparatus and radiation measurement program

Publications (2)

Publication Number Publication Date
JP2014169943A true JP2014169943A (en) 2014-09-18
JP5643864B2 JP5643864B2 (en) 2014-12-17

Family

ID=51692417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013042250A Expired - Fee Related JP5643864B2 (en) 2013-03-04 2013-03-04 Radiation measurement apparatus and radiation measurement program

Country Status (1)

Country Link
JP (1) JP5643864B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184189A (en) * 2014-03-25 2015-10-22 国立大学法人京都大学 Contamination distribution measurement apparatus for measuring contamination distribution of radioactive substance
JP2016090503A (en) * 2014-11-10 2016-05-23 セイコー・イージーアンドジー株式会社 Radiation detector support mount
KR20160109696A (en) * 2015-03-12 2016-09-21 한국원자력연구원 Apparatus and method for determining source depth and radioactivity in medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184189A (en) * 2014-03-25 2015-10-22 国立大学法人京都大学 Contamination distribution measurement apparatus for measuring contamination distribution of radioactive substance
JP2016090503A (en) * 2014-11-10 2016-05-23 セイコー・イージーアンドジー株式会社 Radiation detector support mount
KR20160109696A (en) * 2015-03-12 2016-09-21 한국원자력연구원 Apparatus and method for determining source depth and radioactivity in medium
KR101707957B1 (en) 2015-03-12 2017-02-20 한국원자력연구원 Apparatus and method for determining source depth and radioactivity in medium

Also Published As

Publication number Publication date
JP5643864B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
KR101680067B1 (en) Method and apparatus for distinguishing radionuclides using plastic scintillation detector
CN107076859B (en) With the shared pet detector scintillator arrangement with depth of interaction estimation of light
JP5988890B2 (en) Radioactivity analyzer and radioactivity analysis method
US10310102B2 (en) Gamma-ray detector
KR20140075164A (en) Gamma Radiation Survey Meter With Target Isotope Detection
JP5643864B2 (en) Radiation measurement apparatus and radiation measurement program
JP2017020820A (en) Radiation detection device, radiation measurement device radiation measurement method
JP6656419B2 (en) Radioactivity distribution measuring device and method
JP6524484B2 (en) Radiation measurement method and radiation measurement apparatus
Baek et al. Optimization of large-angle pinhole collimator for environmental monitoring system
JP2008292166A (en) Radioactive surface contamination inspection device and radiation surface contamination inspection method
Goel et al. Spatial calibration via imaging techniques of a novel scanning system for the pulse shape characterisation of position sensitive HPGe detectors
JP5523407B2 (en) Radiation detection apparatus and detection method
KR101707957B1 (en) Apparatus and method for determining source depth and radioactivity in medium
Kobayashi et al. Characteristic X-ray detector: In-situ imaging of radioactive contaminant distributions
US7564041B2 (en) Method of using self-positioning radiation counters
JP6818579B2 (en) Soil radioactive contamination inspection equipment
JP6139391B2 (en) Radioactivity inspection apparatus and method
JP6512649B1 (en) Measurement method of surface dose rate
JP2014202553A (en) Spatial radiation detection device
KR101308937B1 (en) System and method for car-borne survey of radioactivity
JP2013210211A (en) Radiation measuring device
JP2023109040A (en) portable becquerel meter
Bugby et al. ◾ Characterisation and Quality Assurance Protocols for SFOV Gamma Cameras
JP2014032163A (en) Radiation detection device and radiation detection method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5643864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees