JP2014168767A - Sulfide treatment apparatus within an alkaline region - Google Patents

Sulfide treatment apparatus within an alkaline region Download PDF

Info

Publication number
JP2014168767A
JP2014168767A JP2013055636A JP2013055636A JP2014168767A JP 2014168767 A JP2014168767 A JP 2014168767A JP 2013055636 A JP2013055636 A JP 2013055636A JP 2013055636 A JP2013055636 A JP 2013055636A JP 2014168767 A JP2014168767 A JP 2014168767A
Authority
JP
Japan
Prior art keywords
sulfide
hydrogen sulfide
reaction
gas
alkaline region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013055636A
Other languages
Japanese (ja)
Inventor
Toyokazu Matsunami
豊和 松浪
Akitoshi Oonishi
彬聰 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquatech Ltd
Original Assignee
Aquatech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquatech Ltd filed Critical Aquatech Ltd
Priority to JP2013055636A priority Critical patent/JP2014168767A/en
Publication of JP2014168767A publication Critical patent/JP2014168767A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform a sulfide treatment within an alkaline region in acknowledgment of facts that, at times of sulfide treatments for executing sulfide addition controls by sensing generated hydrogen sulfide gases, sulfide reactions are induced at pH=7.0 or below for almost all metals, that, in cases of Co, Ni, and Mn, however, the metals are not completely removed even at pH=8.0, that the quantity of generated hydrogen sulfide diminishes as the reaction pH becomes higher, that, as Figure 1 demonstrates, S becomes HSat pH=9.0 or above and cannot be gasified, and that the sulfide treatment via the hydrogen sulfide gas control accordingly becomes impossible.SOLUTION: A portion of a solution within a reaction tank is proportionately fed into a hydrogen sulfide generator and then adjusted, by adding thereto an acid, at a fixed acidity in terms of the pH thereof measured via a pH meter. The concomitantly generated hydrogen sulfide gas is sensed by a hydrogen sulfide gas sensor, whereas a sulfurizing agent (NaHS, NaS, or HS gas) is added into the reaction tank so as to induce a gas-controlled sulfide reaction even within an alkaline region.

Description

本発明は、アルカリ領域で硫化水素を検知する硫化物処理装置に関する分野The present invention relates to a sulfide treatment apparatus for detecting hydrogen sulfide in an alkaline region.

廃液処理技術は石灰や水酸化ナトリウムを添加する水酸化物法が広く行われているが、発生汚泥の含水率が高く、金属含有率は低いため埋立地などに投棄される場合が多い。また、水酸化金属の溶解度積が比較的大きいため処理水中の金属濃度も十分に下がらない。とりわけ錯化剤(有機酸、アンモニア、EDTAなど)が共存する場合、高度処理は困難である。それ故、アルミウムや塩化第二鉄などの多価金属を添加し、共沈により処理水中の金属濃度を下げることが広く行われている。水酸化物法に替わる技術として硫化物法が考えられるが、この方法は硫化水素の悪臭とコロイド化の問題でごく一部でしか使われていない。最近、硫化水素ガスセンサー制御硫化物が開発され(以下NS法という)、工業規模で実施されるようになってきた。この方法は硫化金属の沈殿反応が終結するまで硫化水素は基本的には発生せず、その反応が終了後、余剰のイオウイオンと液中の水素イオンとの反応で硫化水素が発生し、それを連続的にガスセンサーで検知し、その信号をフィードバックして硫化剤ポンプを制御する方法を取っている。しかしながら、液性がアルカリの時は硫化水素ガスが発生しないため、この方法では反応制御が不可能である。アルカリ側でもNS法が行える方法の開発が望まれている。As a waste liquid treatment technique, a hydroxide method in which lime or sodium hydroxide is added is widely used. However, since the water content of the generated sludge is high and the metal content is low, it is often dumped in a landfill. Moreover, since the solubility product of metal hydroxide is relatively large, the metal concentration in the treated water does not decrease sufficiently. In particular, when a complexing agent (organic acid, ammonia, EDTA, etc.) coexists, advanced treatment is difficult. Therefore, it is widely practiced to add a polyvalent metal such as aluminum or ferric chloride to reduce the metal concentration in the treated water by coprecipitation. The sulfide method can be considered as an alternative to the hydroxide method, but this method is used only in part due to the bad smell of hydrogen sulfide and colloidalization. Recently, hydrogen sulfide gas sensor controlled sulfides have been developed (hereinafter referred to as NS method) and have been implemented on an industrial scale. In this method, hydrogen sulfide is basically not generated until the precipitation reaction of the metal sulfide is completed. After the reaction is completed, hydrogen sulfide is generated by the reaction between excess sulfur ions and hydrogen ions in the liquid. Is continuously detected by a gas sensor, and the signal is fed back to control the sulfidizing agent pump. However, when the liquid is alkaline, hydrogen sulfide gas is not generated, and thus this method cannot control the reaction. Development of a method capable of performing the NS method even on the alkali side is desired.

再表03/020647Table 03/020647

発生する硫化水素ガスを検知して硫化剤の添加制御を行うNS法において、ほとんどの金属ではpH=7.0以下で硫化物反応は行われるが、Co、Ni、MnではNS法がぎりぎり適用できるpH=8.0でも金属が完全に除去されず、反応pHを高くなると硫化水素の発生量が少なくなり図1のようにpH=9.0以上ではSの存在形態はHSとなり、ガス化せず硫化水素ガス制御による硫化物処理が不可能である。アルカリ領域でNS法を実施できる技術の開発が、当該発明が解決しようとする課題である。In the NS method, which detects the hydrogen sulfide gas generated and controls the addition of the sulfiding agent, the sulfide reaction is carried out at pH = 7.0 or less for most metals, but the NS method is almost applicable to Co, Ni and Mn. metal even pH = 8.0 which can not be completely removed, the presence form of S at pH = 9.0 or more as the reaction pH the less the amount of generated becomes higher with hydrogen sulfide to Figure 1 HS -, and the gas The sulfide treatment by hydrogen sulfide gas control is impossible. Development of a technique capable of performing the NS method in an alkaline region is a problem to be solved by the present invention.

反応槽の溶液のごく一部を定量的に硫化水素発生装置(以下気化器いう)に送り、酸を添加しpHをpH計で一定の酸性にして攪拌する。攪拌方法としてはエアレーションでも攪拌機を用いてもよい。そして発生した硫化水素ガスを、硫化水素ガスセンサーで検知して、硫化剤(NaHS、NaS、HSガス)の添加ポンプ又はアクチュレーターバルブを制御し、反応槽へ硫化剤を添加することにより、アルカリ領域でもガス制御による硫化物反応を行い、Ni等アルカリ領域で反応する金属の処理水濃度を低減させる。また、被溶液のpHを変動させることなく硫化物処理を可能とする。A small portion of the solution in the reaction vessel is quantitatively sent to a hydrogen sulfide generator (hereinafter referred to as a vaporizer), acid is added, and the pH is adjusted to a constant acidity with a pH meter and stirred. As a stirring method, aeration or a stirrer may be used. The generated hydrogen sulfide gas is detected by a hydrogen sulfide gas sensor, and the addition pump or the actuator valve of the sulfiding agent (NaHS, Na 2 S, H 2 S gas) is controlled to add the sulfiding agent to the reaction tank. Thus, sulfide reaction is performed by gas control even in the alkaline region, and the concentration of treated water of the metal that reacts in the alkaline region such as Ni is reduced. In addition, the sulfide treatment can be performed without changing the pH of the solution.

図1に示す硫化物処理フローシートより今回開発した「硫化水素発生装置を用いた硫化物処理装置」ではT−1原水タンクより金属を含んだ溶液はP1原水ポンプでT−2反応槽に送られpH計で苛性ソーダをP2苛性ソーダポンプで送り一定pHとする。  In the "sulfide treatment equipment using hydrogen sulfide generator" developed this time from the sulfide treatment flow sheet shown in Fig. 1, the solution containing metal from the T-1 raw water tank is sent to the T-2 reaction tank by the P1 raw water pump. The caustic soda is fed with a P2 caustic soda pump to a constant pH with a pH meter.

T2反応槽の反応液のごく一部を、P4試料ポンプを用いてT3気化器に定量的に送り、P3硫酸ポンプを用いて、pH計でpH一定になるように硫酸を送り一定の酸性溶液とする。  A small portion of the reaction solution in the T2 reaction tank is quantitatively sent to the T3 vaporizer using the P4 sample pump, and the sulfuric acid is sent to the pH with the pH meter using the P3 sulfuric acid pump. And

T−3気化器で酸性とした反応液を循環式のP5エアーポンプで曝気攪拌もしくは攪拌機よる攪拌を行い、余剰の硫化イオンをガス化し、配管を通して硫化水素検知・制御装置に送る。  The reaction liquid acidified by the T-3 vaporizer is aerated and stirred by a circulating P5 air pump or agitated by a stirrer, and excess sulfide ions are gasified and sent to a hydrogen sulfide detection / control device through a pipe.

硫化水素検知・制御装置で一定濃度の硫化水素となるように、P6硫化剤ポンプを用いて硫化剤を反応槽に送り、金属イオンと硫化剤の反応を起こす。金属と反応している間は、基本的には余剰のS2−は存在せず、反応終了地点から余剰のS2−が発生することからT3気化器を使うことによりアルカリ領域でも金属の回収除去にNS法を用いることが出来る。A P6 sulfiding agent pump is used to send the sulfiding agent to the reaction vessel so that the hydrogen sulfide detecting / controlling device has a constant concentration of hydrogen sulfide, thereby causing a reaction between the metal ions and the sulfiding agent. While reacting with the metal, basically no surplus S 2− is present, and surplus S 2− is generated from the end of the reaction. Therefore, by using a T3 vaporizer, the metal can be recovered even in the alkaline region. The NS method can be used for removal.

これまではNS法ではpHが9以上となると硫化水素がまったく発生せず、アルカリ領域で硫化物と反応する金属溶液のpHを変えずに処理することは不可能であった。そこで、反応槽溶液のごく一部を気化器に定量的に送り、酸を加え一定のpH(8以下)として硫化水素ガスを発生させ、硫化水素ガス検知制御装置で硫化剤の添加制御を行うことにより、アルカリ領域で主に硫化物反応を起こすNi、Mnなどの金属溶液もNS処理ができ、金属回収やNi、Mnの高度処理ができるようになった。  Until now, in the NS method, hydrogen sulfide is not generated at all when the pH is 9 or more, and it has been impossible to perform treatment without changing the pH of the metal solution that reacts with sulfide in the alkaline region. Therefore, a small part of the reaction vessel solution is quantitatively sent to the vaporizer, acid is added to generate hydrogen sulfide gas at a constant pH (8 or less), and addition control of the sulfurizing agent is performed by the hydrogen sulfide gas detection control device. As a result, a metal solution such as Ni and Mn that causes a sulfide reaction mainly in the alkaline region can be NS-treated, and metal recovery and advanced treatment of Ni and Mn can be performed.

SのpHによる形態Form of S by pH アルカリ領域での硫化物処理フローシートSulfide treatment flow sheet in alkaline region 気化液pHと気化率の関係Relationship between vaporization liquid pH and vaporization rate 硫化剤添加量と硫化水素ガス濃度の関係Relationship between the amount of sulfiding agent added and hydrogen sulfide gas concentration 反応pH、発生硫化水素ガス濃度と残留Ni濃度の関係Relationship between reaction pH, generated hydrogen sulfide gas concentration and residual Ni concentration

SのpHによる存在形態を示す図1により、Sの形態はPH5以下になると全てHSになりpH9以上ではHSという形態になる。従って硫化水素ガスの濃度で硫化物反応させるには反応pHは9以下にしなければならず、その場合アルカリ領域で反応する金属を回収・除去するためには問題があった。According to FIG. 1 showing the existence form of S due to pH, all forms of S become H 2 S when pH is 5 or less, and HS form when pH is 9 or more. Therefore, in order to cause a sulfide reaction at a concentration of hydrogen sulfide gas, the reaction pH must be 9 or less. In this case, there is a problem in recovering and removing the metal that reacts in the alkaline region.

図3は100mLの気化器に10mL/分の流速でS2−として20mg/Lの気化器液を、pHを0.85から7.53まで変化させたときの、pHと気化率の関係を示した。pHと気化率の関係は負の関係にありpHが低下すると気化率は上昇する。
従って、気化液のpHを一定することが必要で、気化率から見ると気化液pHとしては5以下であることが望ましい。
FIG. 3 shows the relationship between the pH and the evaporation rate when changing the pH from 0.85 to 7.53 with a 20 mL / L vaporizer solution as S 2− at a flow rate of 10 mL / min in a 100 mL vaporizer. Indicated. The relationship between pH and vaporization rate is negative, and the vaporization rate increases as pH decreases.
Therefore, it is necessary to keep the pH of the vaporized liquid constant. From the viewpoint of the vaporization rate, the vaporized liquid pH is preferably 5 or less.

図4は100mLの気化器に10mL/分の流速で気化液pHを2とし、S2−濃度を変えて流したときの硫化剤量と発生硫化水素ガス量の関係である。図4より硫化剤量と発生硫化水ガス量の間には明らかな正の相関があり、発生硫化水素濃度を測ることにより硫化剤添加量を制御できることが判明した。FIG. 4 shows the relationship between the amount of sulfiding agent and the amount of generated hydrogen sulfide gas when the pH of the vaporized liquid is set to 2 in a 100 mL vaporizer at a flow rate of 10 mL / min and the S2 - concentration is changed. FIG. 4 reveals that there is a clear positive correlation between the amount of sulfiding agent and the amount of generated sulfurized water gas, and it is found that the amount of sulfiding agent added can be controlled by measuring the concentration of generated hydrogen sulfide.

図5は初期Ni濃度を1000mg/Lとし、反応槽のpHを9から11に変えて硫化物反応を反応時間1時間とし、反応液の1部を硫化水素発生装置でpH=2として制御した場合の発生硫化水素ガス濃度と残留Ni濃度の関係である。図5より反応槽での反応pHが9の場合残留Ni濃度は2mg/L残るが反応pHを10以上とすると発生ガス濃度7ppmの時最低となり0.4mg/L以下となった。  In FIG. 5, the initial Ni concentration was set to 1000 mg / L, the pH of the reaction vessel was changed from 9 to 11, and the sulfide reaction was made to have a reaction time of 1 hour. This is the relationship between the generated hydrogen sulfide gas concentration and the residual Ni concentration. From FIG. 5, when the reaction pH in the reaction tank is 9, the residual Ni concentration remains 2 mg / L. However, when the reaction pH is 10 or more, the minimum is 0.4 mg / L or less when the generated gas concentration is 7 ppm.

Claims (2)

アルカリ領域で硫化物処理を行うため、気化器(硫化水素発生装置)を設けた硫化物処理  Sulfide treatment with vaporizer (hydrogen sulfide generator) for sulfide treatment in the alkaline region 請求項1において硫化水素発生反応を一定とするため硫化水素発生装置にpH計を設けた装置  The apparatus according to claim 1, wherein a pH meter is provided in the hydrogen sulfide generator in order to make the hydrogen sulfide generation reaction constant.
JP2013055636A 2013-02-28 2013-02-28 Sulfide treatment apparatus within an alkaline region Pending JP2014168767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013055636A JP2014168767A (en) 2013-02-28 2013-02-28 Sulfide treatment apparatus within an alkaline region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013055636A JP2014168767A (en) 2013-02-28 2013-02-28 Sulfide treatment apparatus within an alkaline region

Publications (1)

Publication Number Publication Date
JP2014168767A true JP2014168767A (en) 2014-09-18

Family

ID=51691605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013055636A Pending JP2014168767A (en) 2013-02-28 2013-02-28 Sulfide treatment apparatus within an alkaline region

Country Status (1)

Country Link
JP (1) JP2014168767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160496A (en) * 2016-03-10 2017-09-14 住友金属鉱山株式会社 Treatment method of waste water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160496A (en) * 2016-03-10 2017-09-14 住友金属鉱山株式会社 Treatment method of waste water

Similar Documents

Publication Publication Date Title
O'Shay et al. A modified hydrogen peroxide oxidation method for determination of potential acidity in pyritic overburden
US11377374B2 (en) System and process for treating water
CN105461110A (en) Treatment technology for high-arsenic acid industrial wastewater
JP2010088991A (en) Water treatment agent and water treatment method
MX2013010182A (en) Method for producing a poorly soluble calcium-arsenic compound.
Budaev et al. Effect of Fenton-like reactions on the degradation of thiocyanate in water treatment
Fang et al. Highly efficient removal of Cu (II), Zn (II), Ni (II) and Fe (II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent
Zhang et al. Selective separation of metals from wastewater using sulfide precipitation: A critical review in agents, operational factors and particle aggregation
JP2014168767A (en) Sulfide treatment apparatus within an alkaline region
TWI534105B (en) System and method for softening water for use in a scrubber
JP2020139731A (en) Method for treating residue and waste acid of industrial furnace
KR101254129B1 (en) Liquid type desulfurizng agent for removing sulfur compounds from anaerobic digester gas
CN104099153A (en) Coal desulfurization technology
Kim et al. Optimization of sodium hydrosulfide synthesis for metal recovery from wastewater using flue gas containing H 2 S
González-Lara et al. The oxidation of thiosulfates with copper sulfate. Application to an industrial fixing bath
JP5129872B2 (en) Mercury fixing method and gypsum production method using the same, mercury fixing device and flue gas desulfurization system using the same
CN105246840A (en) Method and device for treating water containing hardly biodegradable organic substances
JP2015047580A (en) Treatment equipment and treatment method for cyanogen-containing solution and method for producing solution having reduced cyanogen ions by the method
JP2008238033A (en) Calcium removing method and calcium removing apparatus
CN103878029B (en) A kind of supplements-iron for complex iron desulphurization solution and preparation method thereof
Mulopo Direct elemental sulphur recovery from gold acid mine drainage streams
Iliuta et al. Solubility of hydrogen sulfide in aqueous solutions of Fe (II) complexes of trans-1, 2-cyclohexanediaminetetraacetic acid
Harada et al. Effects of co-existing ions on the phosphorus potassium ratio of the precipitate formed in the potassium phosphate crystallization process
JP2013111573A (en) Method of treating various kinds of industrial waste liquid in one tank
Li et al. Influence of citrate/tartrate on chromite crystallization behavior and its potential environmental implications