JP2014168072A - Method for producing pzt ferroelectric thin film - Google Patents

Method for producing pzt ferroelectric thin film Download PDF

Info

Publication number
JP2014168072A
JP2014168072A JP2014071589A JP2014071589A JP2014168072A JP 2014168072 A JP2014168072 A JP 2014168072A JP 2014071589 A JP2014071589 A JP 2014071589A JP 2014071589 A JP2014071589 A JP 2014071589A JP 2014168072 A JP2014168072 A JP 2014168072A
Authority
JP
Japan
Prior art keywords
thin film
control layer
ferroelectric thin
layer
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014071589A
Other languages
Japanese (ja)
Other versions
JP5644975B2 (en
Inventor
Toshiaki Watanabe
敏昭 渡辺
Hideaki Sakurai
英章 桜井
Nobuyuki Soyama
信幸 曽山
Toshihiro Doi
利浩 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014071589A priority Critical patent/JP5644975B2/en
Publication of JP2014168072A publication Critical patent/JP2014168072A/en
Application granted granted Critical
Publication of JP5644975B2 publication Critical patent/JP5644975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a ferroelectric thin film with an orientation control layer that has preferred crystal orientation on a plane with a fine-grained crystal texture, by suppressing anomalous grain growth of crystals in the orientation control layer.SOLUTION: A composition for forming a ferroelectric thin film is coated on a lower electrode 11 of a substrate 10 having crystal faces oriented in the 111 axis direction, calcined, and subsequently fired to be crystallized, and thereby a ferroelectric thin film is formed. The composition is coated on the lower electrode and calcined to form a crystal grain diameter control layer having a thickness of 1 nm to 100 nm, then the composition is coated on the crystal grain diameter control layer, calcined, and subsequently fired to form an orientation control layer 13. An amount of coating of the composition is set such that a layer thickness of the orientation control layer after crystallization is in a range of 35 nm to 150 nm, and thereby the orientation control layer 13 has preferred crystal orientation on the 100 plane.

Description

本発明は、(100)面に優先的に結晶配向が制御された強誘電体薄膜を簡便に製造する方法に関する。   The present invention relates to a method for easily producing a ferroelectric thin film whose crystal orientation is preferentially controlled on a (100) plane.

近年、電子デバイスサイズの更なる縮小化の要求から、強誘電体薄膜をキャパシタや圧電素子として用いた開発が盛んである。   In recent years, development using a ferroelectric thin film as a capacitor or a piezoelectric element has been actively performed due to the demand for further reduction in the size of electronic devices.

ジルコン酸チタン酸鉛(PZT)はペロブスカイト構造を有し、優れた誘電特性を示す強誘電体である。このPZTを誘電体薄膜材料とした薄膜キャパシタを得るためには、成膜プロセスが安価であり、基板面内で均一な膜組成が得られるため、ゾルゲル液を用いたCSD(chemical solution deposition)法が注目されている。   Lead zirconate titanate (PZT) is a ferroelectric material having a perovskite structure and exhibiting excellent dielectric properties. In order to obtain a thin film capacitor using PZT as a dielectric thin film material, the film formation process is inexpensive and a uniform film composition can be obtained on the substrate surface. Therefore, a CSD (chemical solution deposition) method using a sol-gel solution Is attracting attention.

このような強誘電体薄膜をゾルゲル液を用いたCSD法により成膜するにあたって、基板上に、結晶面が(111)軸方向に配向した白金やイリジウムを下部電極として形成し、この下部電極の上に強誘電体薄膜を形成することで、下部電極の(111)軸方向に依存して、(111)面を優先的に結晶配向させた強誘電体薄膜を得ることが可能であった。このような(111)面を優先的に結晶配向させた強誘電体薄膜は、高い絶縁耐圧と高い寿命信頼性を保有するため、IPD(Integrated Passive Device)や不揮発性メモリ等の用途に適する。   In forming such a ferroelectric thin film by the CSD method using a sol-gel solution, platinum or iridium having a crystal plane oriented in the (111) axis direction is formed on the substrate as a lower electrode. By forming a ferroelectric thin film thereon, it was possible to obtain a ferroelectric thin film in which the (111) plane was preferentially crystallized depending on the (111) axis direction of the lower electrode. Such a ferroelectric thin film in which the (111) plane is preferentially crystallized has high dielectric strength and high lifetime reliability, and is therefore suitable for applications such as IPD (Integrated Passive Device) and nonvolatile memory.

また、(111)軸方向に配向した下部電極の上に、(100)面や(110)面を優先的に結晶配向させるためには、強誘電体薄膜とは異なる物質をシード層として用いたり、強誘電体薄膜とは異なる物質を下部電極の影響を受け難くするバッファ層として導入したりすることが知られている。(100)面を優先的に結晶配向させた強誘電体薄膜は、大きなe31圧電定数を保有するため、アクチュエータ等の用途に適する。更に(110)面を優先的に結晶配向させた強誘電体薄膜は、大きな誘電率を保有するため、キャパシタ等の用途に適する。 In order to preferentially orient the (100) plane or the (110) plane on the (111) axially oriented lower electrode, a material different from the ferroelectric thin film may be used as a seed layer. It is known that a material different from the ferroelectric thin film is introduced as a buffer layer that is hardly affected by the lower electrode. A ferroelectric thin film with the (100) plane preferentially crystallized has a large e 31 piezoelectric constant, and is therefore suitable for applications such as actuators. Furthermore, a ferroelectric thin film in which the (110) plane is preferentially crystallized has a large dielectric constant and is suitable for applications such as capacitors.

バッファ層を導入する技術として、強誘電体膜の製造方法が開示されている(例えば、特許文献1参照。)。この強誘電体膜の製造方法は、基板上に所定の結晶面に配向した下地膜を形成する工程と、下地膜上に炭素膜を形成する工程と、炭素膜上に強誘電体材料を含むアモルファス薄膜を形成する工程と、アモルファス薄膜を加熱して結晶化することにより、下地膜上に強誘電体膜を形成する工程と、を具備する。この方法により製造された強誘電体膜は、所定の結晶面と異なる結晶面に配向され、強誘電体材料は、ペロブスカイト及びビスマス層状構造酸化物、超伝導酸化物、タングステンブロンズ構造酸化物、CaO、BaO、PbO、ZnO、MgO、B23、Al23、Y23、La23、Cr23、Bi23、Ga23、ZrO2、TiO2、HfO2、NbO2、MoO3、WO3及びV25からなる群から選択される少なくとも1種の材料、少なくとも1種の材料にSiO2を含む材料、及び、少なくとも1種の材料にSiO2及びGeO2を含む材料の少なくとも1つからなる。上記特許文献1では、バッファ層として形成された炭素膜の膜厚を調整することで、この炭素膜の上に形成する強誘電体膜の結晶配向性を制御している。具体的には、炭素膜であるDLC(ダイヤモンドライクカーボン)膜の膜厚xが0nm<x<10nmのとき、PZTの配向性が(111)面+(001)面配向、DLC膜の膜厚xがx=10nmのとき、PZTの配向性が(001)面配向、DLC膜の膜厚xが10nm<x<100nmのとき、PZTの配向性が(001)面+(110)面配向、DLC膜の膜厚xがx=100nmのとき、PZTの配向性が(110)面配向、及びDLC膜の膜厚xが100nm<xのとき、PZTの配向性が弱い(110)面配向と、その結晶配向性を制御していることが示されている。 As a technique for introducing a buffer layer, a method for manufacturing a ferroelectric film is disclosed (for example, see Patent Document 1). The method for manufacturing a ferroelectric film includes a step of forming a base film oriented on a predetermined crystal plane on a substrate, a step of forming a carbon film on the base film, and a ferroelectric material on the carbon film. A step of forming an amorphous thin film, and a step of forming a ferroelectric film on the base film by heating and crystallizing the amorphous thin film. The ferroelectric film manufactured by this method is oriented in a crystal plane different from a predetermined crystal plane, and the ferroelectric material includes perovskite and bismuth layer structure oxide, superconducting oxide, tungsten bronze structure oxide, CaO. , BaO, PbO, ZnO, MgO , B 2 O 3, Al 2 O 3, Y 2 O 3, La 2 O 3, Cr 2 O 3, Bi 2 O 3, Ga 2 O 3, ZrO 2, TiO 2, At least one material selected from the group consisting of HfO 2 , NbO 2 , MoO 3 , WO 3 and V 2 O 5 , a material containing SiO 2 in at least one material, and SiO 2 in at least one material 2 and at least one of materials including GeO 2 . In Patent Document 1, the crystal orientation of the ferroelectric film formed on the carbon film is controlled by adjusting the film thickness of the carbon film formed as the buffer layer. Specifically, when the film thickness x of a DLC (diamond-like carbon) film, which is a carbon film, is 0 nm <x <10 nm, the orientation of PZT is (111) plane + (001) plane alignment, and the film thickness of the DLC film. When x is x = 10 nm, the orientation of PZT is (001) plane orientation, and when the film thickness x of the DLC film is 10 nm <x <100 nm, the orientation of PZT is (001) plane + (110) plane orientation, When the DLC film thickness x is x = 100 nm, the PZT orientation is (110) plane orientation, and when the DLC film thickness x is 100 nm <x, the PZT orientation is weak (110) plane orientation. It is shown that the crystal orientation is controlled.

また、上記特許文献1には、(111)配向させた下地電極の上に、(001)方向に強く自己配向するLaNiO3を積層したものをバッファ層として用いることで、その上部に(001)配向したPZT膜を得ることができると記載されている。 Further, in the above-mentioned Patent Document 1, LaNiO 3 that is strongly self-oriented in the (001) direction is laminated on the (111) -oriented base electrode as a buffer layer, so that (001) It is described that an oriented PZT film can be obtained.

しかしながら、上記特許文献1に示される方法では、シード層やバッファ層を導入するなど、複雑な工程を踏まなければならず、また、このようなシード層やバッファ層が含まれることで、強誘電体薄膜の特性を劣化させたり、汚染等を生じるおそれがあった。   However, the method disclosed in Patent Document 1 requires a complicated process such as introduction of a seed layer or a buffer layer, and includes such a seed layer or buffer layer, thereby providing a ferroelectric. There is a possibility that the characteristics of the body thin film may be deteriorated or contamination may be caused.

また、強誘電体薄膜の結晶配向性を制御する方法として、結晶面が(111)軸方向に配向した白金基板上にPZT又はPLZTの前駆体溶液を塗布し、加熱して強誘電体薄膜を形成する方法において、該前駆体溶液を基板上に塗布した後、まず所望の結晶配向をもたらす150〜550℃の温度範囲で熱処理を行い、その後550〜800℃で焼成して結晶化させることにより、薄膜の結晶面を熱処理温度に従った特定軸方向に優先的に配向させることを特徴とする強誘電体薄膜の結晶配向性制御方法が開示されている(例えば、特許文献2参照。)。この特許文献2では、仮焼成に相当する熱処理の温度範囲によって、強誘電体薄膜の結晶配向性を制御し、下部電極上に結晶配向性を制御した強誘電体薄膜をシード層やバッファ層を導入することなく、直接形成している。具体的には、150〜250℃の熱処理で(111)面が優先的に配向、250〜350℃の熱処理で(111)面と(100)面が優先的に配向、及び450〜550℃の熱処理で(100)面と(200)面が優先的に配向と、その結晶配向性を制御していることが示されている。   As a method for controlling the crystal orientation of the ferroelectric thin film, a precursor solution of PZT or PLZT is applied on a platinum substrate having a crystal plane oriented in the (111) axis direction, and heated to form the ferroelectric thin film. In the forming method, after the precursor solution is applied on the substrate, first, heat treatment is performed in a temperature range of 150 to 550 ° C. which brings about a desired crystal orientation, and then baked at 550 to 800 ° C. to be crystallized. A method of controlling the crystal orientation of a ferroelectric thin film, characterized by preferentially orienting the crystal plane of the thin film in a specific axis direction according to the heat treatment temperature (see, for example, Patent Document 2). In this Patent Document 2, the crystal orientation of the ferroelectric thin film is controlled according to the temperature range of the heat treatment corresponding to pre-firing, and the ferroelectric thin film with the crystal orientation controlled on the lower electrode is formed with a seed layer or a buffer layer. Form directly without introducing. Specifically, the (111) plane is preferentially oriented by heat treatment at 150 to 250 ° C., the (111) plane and (100) plane are preferentially oriented by heat treatment at 250 to 350 ° C., and 450 to 550 ° C. It is shown that the (100) plane and the (200) plane preferentially control the orientation and the crystal orientation of the heat treatment.

また、Pb含有ペロブスカイト型強誘電体薄膜の膜厚が薄い場合、結晶核の発生密度が少なくなって、結晶が異常粒成長する場合があり、結晶粒径を制御することは困難であった。このように異常粒成長した強誘電体薄膜は絶縁特性に劣る場合があり、その品質に問題があった。   In addition, when the Pb-containing perovskite ferroelectric thin film is thin, the generation density of crystal nuclei is reduced and the crystal may grow abnormally, and it is difficult to control the crystal grain size. In this way, the ferroelectric thin film with abnormal grain growth may have inferior insulating properties, and there is a problem in its quality.

特開2011−29399号公報(請求項7、段落[0003]、[0022]〜[0026]、[0039]、図1)JP 2011-29399 A (Claim 7, paragraphs [0003], [0022] to [0026], [0039], FIG. 1) 特開平6−116095号公報(請求項1〜4、段落[0005]、[0006]、図1)Japanese Patent Laid-Open No. 6-116095 (claims 1-4, paragraphs [0005] and [0006], FIG. 1)

しかし、上記特許文献2に示される方法では、得られる優先配向が、(111)面及び(100)面、或いは(100)面及び(200)面と、優先配向が複数の配向面となるため、その用途が限られる、或いは、特定用途に用いたとしてもその性能を十分に発揮することができていなかった。   However, in the method disclosed in Patent Document 2, the preferred orientation obtained is (111) plane and (100) plane, or (100) plane and (200) plane, and the preferred orientation is a plurality of orientation planes. However, its application is limited, or even if it is used for a specific application, its performance cannot be fully exhibited.

本発明の目的は、配向制御層の結晶の異常粒成長を抑制することにより、微細な結晶組織で(100)面に優先的に結晶配向した配向制御層を有する強誘電体薄膜の製造方法を提供することにある。 An object of the present invention is to provide a method for producing a ferroelectric thin film having an orientation control layer preferentially crystallized in the (100) plane with a fine crystal structure by suppressing abnormal grain growth of crystals in the orientation control layer. It is to provide.

本発明の別の目的は、(100)面に優先的に結晶配向が制御された強誘電体薄膜の膜厚をその用途に合わせて任意に調整することが可能な、強誘電体薄膜の製造方法を提供することにある。   Another object of the present invention is to produce a ferroelectric thin film capable of arbitrarily adjusting the film thickness of the ferroelectric thin film whose crystal orientation is preferentially controlled on the (100) plane according to the application. It is to provide a method.

本発明者等は、上記従来の優先配向させた強誘電体薄膜について鋭意検討し、強誘電体薄膜をゾルゲル法を用いて形成する際、結晶面が(111)軸方向に配向した下部電極を有する基板の下部電極上に、強誘電体薄膜形成用組成物を塗布し、乾燥・仮焼成して得られたゲル膜を本焼成して結晶化させた層厚を、ある特定の範囲内にすることで、シード層やバッファ層を設けることなく、下部電極の(111)軸方向に依存しない、(100)面に優先的に結晶配向が制御された強誘電体薄膜を簡便に得ることができること、また、上記得られた(100)面に優先的に結晶配向が制御された強誘電体薄膜を下地層として用い、この下地層の上に更に強誘電体薄膜を形成すると、膜厚に関わらず、下地層の結晶配向と同じ結晶配向を有する強誘電体薄膜を得ることができること、更に、(100)面に優先的に結晶配向が制御された強誘電体薄膜を形成する前に、核の発生密度を高める層として、結晶粒径制御層を導入することで、結晶の異常粒成長を抑制し、微細な結晶組織で(100)面に優先的に結晶配向が制御された強誘電体薄膜を得ることができること、をそれぞれ見出し、本発明を完成させた。   The present inventors diligently studied the conventional ferroelectric thin film preferentially oriented, and when forming the ferroelectric thin film using the sol-gel method, the lower electrode whose crystal plane is oriented in the (111) axial direction is formed. A layer thickness obtained by applying a composition for forming a ferroelectric thin film on a lower electrode of a substrate, drying and pre-baking the gel film, and crystallizing the resulting film is within a specific range. By doing so, it is possible to easily obtain a ferroelectric thin film whose crystal orientation is controlled preferentially on the (100) plane without depending on the (111) axis direction of the lower electrode without providing a seed layer or a buffer layer. In addition, if a ferroelectric thin film whose crystal orientation is preferentially controlled on the (100) plane obtained as described above is used as a base layer, and a ferroelectric thin film is further formed on the base layer, the film thickness can be increased. Regardless of the strength, it has the same crystal orientation as that of the underlying layer. An electric thin film can be obtained, and before forming a ferroelectric thin film whose crystal orientation is preferentially controlled on the (100) plane, a crystal grain size control layer is provided as a layer for increasing the generation density of nuclei. Introducing a ferroelectric thin film in which the crystal orientation is controlled preferentially in the (100) plane with a fine crystal structure by suppressing the abnormal grain growth of the crystal by introducing the present invention. Completed.

本発明の第1の観点は、図に示すように、結晶面が(111)軸方向に配向した下部電極11を有する基板10の下部電極11上に、強誘電体薄膜形成用組成物を塗布し、加熱して結晶化させることにより下部電極11上に強誘電体薄膜を製造する方法において、強誘電体薄膜形成用組成物を下部電極11上に塗布、仮焼して層厚が1nm〜10nmの結晶粒径制御層12を形成し、この結晶粒径制御層12の上に強誘電体薄膜形成用組成物を塗布、仮焼した後、焼成して配向制御層を形成し、強誘電体薄膜形成用組成物の塗布量を配向制御層13の結晶化後の層厚が35nm〜150nmの範囲内になるように設定して配向制御層13の優先的な結晶配向を(100)面にすることを特徴とする。 As shown in FIG. 2 , a first aspect of the present invention is that a composition for forming a ferroelectric thin film is formed on a lower electrode 11 of a substrate 10 having a lower electrode 11 having a crystal plane oriented in the (111) axis direction. In a method for producing a ferroelectric thin film on the lower electrode 11 by applying and crystallizing by heating, a composition for forming a ferroelectric thin film is applied on the lower electrode 11 and calcined to have a layer thickness of 1 nm. A crystal grain size control layer 12 having a thickness of 10 nm to 10 nm is formed, and a ferroelectric thin film forming composition is applied onto the crystal grain size control layer 12 and calcined, and then fired to form an orientation control layer. The preferential crystal orientation of the orientation control layer 13 is set by setting the coating amount of the composition for forming a dielectric thin film so that the thickness of the orientation control layer 13 after crystallization is in the range of 35 nm to 150 nm (100). It is characterized by having a surface .

本発明の第2の観点は、第1の観点に基づく発明であって、結晶粒径制御層12を形成するための仮焼温度が175℃〜315℃の範囲内にあることを特徴とする。 A second aspect of the present invention is an invention based on the first aspect, characterized in that the calcining temperature for forming the crystal grain size control layer 12 is in the range of 175 ° C. to 315 ° C. .

本発明の第3の観点は、第1の観点又はの観点に基づく発明であって、強誘電体薄膜形成用組成物の一部を下部電極11上に塗布、仮焼、焼成して配向制御層13を形成した後に、強誘電体薄膜形成用組成物の残部を配向制御層13上に塗布、仮焼、焼成して配向制御層13の結晶配向と同じ結晶配向を有する膜厚調整層14を形成することを特徴とする。 A third aspect of the present invention is an invention based on the first aspect or the second viewpoint, coating a portion of the ferroelectric thin film-forming composition on the lower electrode 11, calcining, and firing After forming the orientation control layer 13, the remainder of the composition for forming a ferroelectric thin film is applied onto the orientation control layer 13, calcined, and fired to have the same crystal orientation as that of the orientation control layer 13. The adjustment layer 14 is formed.

本発明の第の観点は、第の観点に基づく発明であって、強誘電体薄膜形成用組成物の残部を塗布した後の膜厚調整層14を形成するための仮焼温度が200℃〜450℃の範囲内にあることを特徴とする。 A fourth aspect of the present invention is an invention based on the third aspect , wherein the calcining temperature for forming the film thickness adjusting layer 14 after applying the remainder of the composition for forming a ferroelectric thin film is 200. It is characterized by being in the range of from ℃ to 450 ℃.

本発明の第の観点は、第1の観点ないし第4の観点のいずれか1つの観点に基づく発明であって、更に強誘電体薄膜がPb含有ペロブスカイト型酸化物であり、強誘電体薄膜形成用組成物がβ−ジケトン類及び多価アルコール類を含んでいることを特徴とする。 A fifth aspect of the present invention is an invention based on any one of the first to fourth aspects, wherein the ferroelectric thin film is a Pb-containing perovskite oxide, and the ferroelectric thin film The forming composition contains a β-diketone and a polyhydric alcohol.

本発明の第の観点は、第の観点に基づく発明であって、β−ジケトン類がアセチルアセトンであり、多価アルコール類がプロピレングリコールであることを特徴とする。 A sixth aspect of the present invention is an invention based on the fifth aspect , characterized in that the β -diketone is acetylacetone and the polyhydric alcohol is propylene glycol.

本発明の第の観点は、第1の観点ないし第6の観点のいずれか1つの観点に基づく方法により製造された(100)面に優先的に結晶配向した強誘電体薄膜である。 A seventh aspect of the present invention is a ferroelectric thin film preferentially crystallized in the (100) plane manufactured by a method based on any one of the first to sixth aspects .

本発明の第の観点は、第の観点に基づく強誘電体薄膜を有する薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、又はLCノイズフィルタ素子の複合電子部品である。 An eighth aspect of the present invention is a thin film capacitor having a ferroelectric thin film based on the seventh aspect , a capacitor, an IPD, a DRAM memory capacitor, a multilayer capacitor, a gate insulator of a transistor, a nonvolatile memory, a pyroelectric infrared It is a composite electronic component of a detection element, a piezoelectric element, an electro-optical element, an actuator, a resonator, an ultrasonic motor, or an LC noise filter element.

本発明の第1の観点では、結晶面が(111)軸方向に配向した下部電極を有する基板の下部電極上に、強誘電体薄膜形成用組成物を塗布し、仮焼して層厚が1nm〜10nmの結晶粒径制御層を形成し、前記結晶粒径制御層の上に前記強誘電体薄膜形成用組成物を塗布、仮焼した後、焼成して配向制御層を形成し、前記強誘電体薄膜形成用組成物の塗布量を前記配向制御層の結晶化後の層厚が35nm〜150nmの範囲内になるように設定して前記配向制御層の優先的な結晶配向を(100)面にする。このように、結晶粒径制御層を形成した後で、この結晶粒径制御層の上に配向制御層を設けることにより、配向制御層の結晶の異常粒成長が抑制でき、この結果、配向制御層を微細な結晶組織で(100)面に優先的に結晶配向させることができる。 In the first aspect of the present invention, a composition for forming a ferroelectric thin film is applied onto a lower electrode of a substrate having a lower electrode having a crystal plane oriented in the (111) axis direction, and calcined to obtain a layer thickness. A crystal grain size control layer of 1 nm to 10 nm is formed, the ferroelectric thin film forming composition is applied on the crystal grain size control layer, calcined, and then fired to form an orientation control layer. The application amount of the composition for forming a ferroelectric thin film is set so that the thickness of the orientation control layer after crystallization is in the range of 35 nm to 150 nm, and the preferential crystal orientation of the orientation control layer is set to (100 ) Face. Thus, after forming the crystal grain size control layer, by providing the orientation control layer on the crystal grain size control layer, abnormal grain growth of the crystals in the orientation control layer can be suppressed. As a result, the orientation control is controlled. The layer can be preferentially crystallized in the (100) plane with a fine crystal structure.

本発明の第2の観点では、結晶粒径制御層を形成するための仮焼温度が175℃〜315℃の範囲内にあるようにすることで、175℃〜315℃の間で(100)配向をした初期核を生成させることができる。 In the second aspect of the present invention, the calcining temperature for forming the crystal grain size control layer is in the range of 175 ° C. to 315 ° C. , so that the temperature is between 175 ° C. and 315 ° C. (100) Oriented initial nuclei can be generated.

本発明の第3の観点では、配向制御層を形成した後で、配向制御層の結晶配向と同じ結晶配向を有する膜厚調整層を形成することで、(100)面に優先的に結晶配向が制御された強誘電体薄膜の膜厚をその用途に合わせて任意に調整することができる。 In the third aspect of the present invention, after forming the orientation control layer, a film thickness adjusting layer having the same crystal orientation as that of the orientation control layer is formed, whereby the crystal orientation is preferentially formed on the (100) plane. The film thickness of the ferroelectric thin film in which is controlled can be arbitrarily adjusted according to the application .

本発明の参考の実施形態である基板上に形成した強誘電体薄膜の断面図である。It is sectional drawing of the ferroelectric thin film formed on the board | substrate which is reference embodiment of this invention. 本発明の実施形態である基板上に形成した強誘電体薄膜の断面図である。Is a cross-sectional view of a ferroelectric thin film formed on a substrate is the implementation form of the present invention. 実施例1、2、5、11、12、13、15、16、19、20のXRDパターンを示す図である。なお、実施例1、2、5、6、9、11は実施例でなく、参考実施例である。 Examples 1 and 2, 5, 6, 9, 11 and 12, is a view showing an XRD pattern of 13, 15, 16, 19, 20. Examples 1, 2, 5, 6, 9, and 11 are not examples but reference examples. 比較例1、2、3のXRDパターンを示す図である。なお、比較例2、3は参考比較例である。 It is a figure which shows the XRD pattern of the comparative examples 1, 2, and 3. FIG. Comparative examples 2 and 3 are reference comparative examples. 参考実施例9の表面SEM像(倍率10000倍)である。10 is a surface SEM image of Reference Example 9 (magnification 10,000 times). 実施例13の表面SEM像(倍率50000倍)である。It is a surface SEM image of Example 13 (magnification 50000 times).

次に本発明を実施するための形態を図面に基づいて説明する。
本発明は、図に示すように、結晶面が(111)軸方向に配向した下部電極11を有する基板10の下部電極11上に、強誘電体薄膜形成用組成物を塗布し、加熱して結晶化させることにより下部電極11上に強誘電体薄膜13を製造する方法の改良である。
Next, an embodiment for carrying out the present invention will be described with reference to the drawings.
In the present invention, as shown in FIG. 2 , a ferroelectric thin film forming composition is applied onto a lower electrode 11 of a substrate 10 having a lower electrode 11 whose crystal plane is oriented in the (111) axis direction, and heated. This is an improvement of the method of manufacturing the ferroelectric thin film 13 on the lower electrode 11 by crystallization.

本発明の特徴ある構成は、強誘電体薄膜形成用組成物を下部電極11上に塗布、仮焼して層厚が1nm〜10nmの結晶粒径制御層12を形成し、この結晶粒径制御層12の上に強誘電体薄膜形成用組成物を塗布、仮焼した後、焼成して配向制御層を形成し、強誘電体薄膜形成用組成物の塗布量を配向制御層13の結晶化後の層厚が35nm〜150nmの範囲内になるように設定して配向制御層13の優先的な結晶配向を(100)面にするところにある。このように、形成する配向制御層13の結晶化後の層厚を35nm〜150nmの範囲内にすることで、(100)面に優先的に結晶配向が制御された強誘電体薄膜をシード層やバッファ層を設けることなく、簡便に得ることができる。このように、結晶化後の層厚を上記範囲内にすることで、得られる配向制御層13を(100)面に優先的に結晶配向させることができるのは、表面エネルギーが最小になるように自己配向することによるものと推察される。配向制御層13の結晶化後の層厚は35nm〜150nmである。35nm未満では(110)配向などの他の配向となるため好ましくなく、150nmを超えると同様に他の配向となるため好ましくないからである。更に好ましくは45nm〜90nmである。この好ましい範囲の理由は、45nm未満では仮焼条件の最適な温度幅が狭く安定して(100)配向を得るのが困難であるからであり、90nmを超えると同様に仮焼の最適温度が狭くなるためであるからである。また結晶粒径制御層12を形成した後で、この結晶粒径制御層12の上に配向制御層を設けることによって、核の発生密度が高められるので、配向制御層13の結晶の異常粒成長が抑制することができ、結果として、微細な結晶組織で(100)面に優先的に結晶配向した配向制御層13を得ることができる。 A characteristic configuration of the present invention is that a ferroelectric thin film forming composition is applied onto the lower electrode 11 and calcined to form a crystal grain size control layer 12 having a layer thickness of 1 nm to 10 nm. The composition for forming a ferroelectric thin film is applied onto the layer 12, calcined, and then fired to form an orientation control layer, and the amount of the composition for forming the ferroelectric thin film is crystallized from the orientation control layer 13. The subsequent layer thickness is set in the range of 35 nm to 150 nm, and the preferential crystal orientation of the orientation control layer 13 is set to the (100) plane . Thus, by setting the layer thickness after crystallization of the orientation control layer 13 to be formed in the range of 35 nm to 150 nm, the ferroelectric thin film whose crystal orientation is controlled preferentially on the (100) plane is formed as a seed layer. Or without providing a buffer layer. Thus, by setting the layer thickness after crystallization within the above range, the resulting orientation control layer 13 can be preferentially crystallized in the (100) plane so that the surface energy is minimized. This is probably due to self-orientation. The thickness of the orientation control layer 13 after crystallization is 35 nm to 150 nm. If it is less than 35 nm, it is not preferable because other orientations such as (110) orientation are obtained, and if it exceeds 150 nm, other orientations are similarly undesirable. More preferably, it is 45 nm-90 nm. The reason for this preferable range is that if the temperature range is less than 45 nm, the optimum temperature range of the calcining conditions is narrow and it is difficult to stably obtain (100) orientation. This is because it becomes narrower. Further, by forming an orientation control layer on the crystal grain size control layer 12 after forming the crystal grain size control layer 12, the generation density of nuclei can be increased, so that abnormal grain growth of crystals in the orientation control layer 13 can be achieved. As a result, it is possible to obtain the orientation control layer 13 having a fine crystal structure and crystal orientation preferentially in the (100) plane.

なお、図1は本発明の特徴ある結晶粒径制御層を有しない参考の実施形態である基板上に形成した強誘電体薄膜を示す断面図である。 FIG. 1 is a cross-sectional view showing a ferroelectric thin film formed on a substrate which is a reference embodiment having no characteristic crystal grain size control layer of the present invention .

強誘電体薄膜を製造する基板10としては、シリコン基板やサファイア基板などの耐熱性基板が用いられる。また、この基板10上に形成する結晶面が(111)軸方向に配向した下部電極11としては、PtやIr、Ruなどの導電性を有し、強誘電体薄膜と反応しない材料が用いられる。製造する強誘電体薄膜はPb含有ペロブスカイト型酸化物であることが好適であり、PZTやPLZT、PMnZT、PNbZTなどが挙げられる。   As the substrate 10 for manufacturing the ferroelectric thin film, a heat resistant substrate such as a silicon substrate or a sapphire substrate is used. Further, as the lower electrode 11 in which the crystal plane formed on the substrate 10 is oriented in the (111) axis direction, a material having conductivity such as Pt, Ir, Ru, etc., which does not react with the ferroelectric thin film is used. . The ferroelectric thin film to be produced is preferably a Pb-containing perovskite oxide, and examples thereof include PZT, PLZT, PMnZT, and PNbZT.

強誘電体薄膜形成用組成物は、複合金属酸化物を構成するための原料が所望の金属原子比を与えるような割合となるように、有機溶媒中に溶解している有機金属化合物溶液からなる。   The composition for forming a ferroelectric thin film is composed of an organometallic compound solution dissolved in an organic solvent so that the raw materials for constituting the composite metal oxide have a ratio that gives a desired metal atomic ratio. .

複合金属酸化物原料は、Pb、La、Zr及びTiの各金属元素に、有機基がその酸素又は窒素原子を介して結合している化合物が好適である。例えば、金属アルコキシド、金属ジオール錯体、金属トリオール錯体、金属カルボン酸塩、金属β−ジケトネート錯体、金属β−ジケトエステル錯体、金属β−イミノケト錯体、及び金属アミノ錯体からなる群より選ばれた1種又は2種以上が例示される。特に好適な化合物は、金属アルコキシド、その部分加水分解物、有機酸塩である。このうち、Pb化合物、La化合物としては、酢酸塩(酢酸鉛:Pb(OAc)2、酢酸ランタン:La(OAc)3)、鉛ジイソプロポキシド:Pb(OiPr)2、ランタントリイソプロポキシド:La(OiPr)3などが挙げられる。Ti化合物としては、チタンテトラエトキシド:Ti(OEt)4、チタンテトライソプロポキシド:Ti(OiPr)4、チタンテトラn−ブトキシド:Ti(OiBu)4、チタンテトライソブトキシド:Ti(OiBu)4、チタンテトラt−ブトキシド:Ti(OtBu)4、チタンジメトキシジイソプロポキシド:Ti(OMe)2(OiPr)2などのアルコキシドが挙げられる。Zr化合物としては、上記Ti化合物と同様なアルコキシド類が好ましい。金属アルコキシドはそのまま使用しても良いが、分解を促進させるためにその部分加水分解物を使用しても良い。 The composite metal oxide raw material is preferably a compound in which an organic group is bonded to each metal element of Pb, La, Zr, and Ti through an oxygen or nitrogen atom. For example, one kind selected from the group consisting of metal alkoxide, metal diol complex, metal triol complex, metal carboxylate, metal β-diketonate complex, metal β-diketoester complex, metal β-iminoketo complex, and metal amino complex Or 2 or more types are illustrated. Particularly suitable compounds are metal alkoxides, partial hydrolysates thereof, and organic acid salts. Among these, as Pb compounds and La compounds, acetate salts (lead acetate: Pb (OAc) 2 , lanthanum acetate: La (OAc) 3 ), lead diisopropoxide: Pb (OiPr) 2 , lanthanum triisopropoxide : La (OiPr) 3 and the like. As the Ti compound, titanium tetraethoxide: Ti (OEt) 4 , titanium tetraisopropoxide: Ti (OiPr) 4 , titanium tetra n-butoxide: Ti (OiBu) 4 , titanium tetraisobutoxide: Ti (OiBu) 4 And alkoxides such as titanium tetra-t-butoxide: Ti (OtBu) 4 and titanium dimethoxydiisopropoxide: Ti (OMe) 2 (OiPr) 2 . The Zr compound is preferably an alkoxide similar to the Ti compound. Although the metal alkoxide may be used as it is, a partially hydrolyzed product thereof may be used in order to promote decomposition.

強誘電体薄膜形成用組成物を調製するには、これらの原料を所望の強誘電体薄膜組成に相当する比率で適当な溶媒に溶解して、塗布に適した濃度に調製する。   In order to prepare a composition for forming a ferroelectric thin film, these raw materials are dissolved in an appropriate solvent at a ratio corresponding to the desired ferroelectric thin film composition, and adjusted to a concentration suitable for coating.

この調整は、典型的には、以下のような液合成フローによって、前駆溶液となる強誘電体薄膜形成用組成物を得ることができる。反応容器に、Zr源(例えばZrテトラn−ブトキシド)と、Ti源(例えばTiイソプロポキシド)と、安定化剤(例えばアセチルアセトン)を入れて、窒素雰囲気中で還流する。その次に還流後の化合物にPb源(例えば酢酸鉛三水和物)とを添加するとともに、溶剤(例えばプロピレングリコール)を添加し、窒素雰囲気中で還流し、減圧蒸留して副生成物を除去した後、この溶液に更にプロイソグリコールを添加して濃度を調節し、更に、この溶液にn−ブタノールを添加する。この結果、当該強誘電体薄膜形成用組成物を得る。   In this adjustment, typically, a composition for forming a ferroelectric thin film that becomes a precursor solution can be obtained by the following liquid synthesis flow. A reaction vessel is charged with a Zr source (eg, Zr tetra-n-butoxide), a Ti source (eg, Ti isopropoxide), and a stabilizer (eg, acetylacetone), and refluxed in a nitrogen atmosphere. Next, a Pb source (eg, lead acetate trihydrate) is added to the refluxed compound, a solvent (eg, propylene glycol) is added, the mixture is refluxed in a nitrogen atmosphere, and distilled under reduced pressure to produce a by-product. After removal, additional proisoglycol is added to the solution to adjust the concentration, and n-butanol is added to the solution. As a result, the composition for forming a ferroelectric thin film is obtained.

ここで用いる強誘電体薄膜形成用組成物の溶媒は、使用する原料に応じて適宜決定されるが、一般的には、カルボン酸、アルコール(例えば、多価アルコールであるプロピレングリコール)、エステル、ケトン類(例えば、アセトン、メチルエチルケトン)、エーテル類(例えば、ジメチルエーテル、ジエチルエーテル)、シクロアルカン類(例えば、シクロヘキサン、シクロヘキサノール)、芳香族系(例えば、ベンゼン、トルエン、キシレン)、その他テトラヒドロフランなど、或いはこれらの2種以上の混合溶媒を用いることができる。   The solvent of the composition for forming a ferroelectric thin film used here is appropriately determined according to the raw material to be used. Generally, a carboxylic acid, an alcohol (for example, propylene glycol which is a polyhydric alcohol), an ester, Ketones (eg acetone, methyl ethyl ketone), ethers (eg dimethyl ether, diethyl ether), cycloalkanes (eg cyclohexane, cyclohexanol), aromatics (eg benzene, toluene, xylene), other tetrahydrofuran, Or these 2 or more types of mixed solvents can be used.

カルボン酸としては、具体的には、n−酪酸、α−メチル酪酸、i−吉草酸、2−エチル酪酸、2,2−ジメチル酪酸、3,3−ジメチル酪酸、2,3−ジメチル酪酸,3−メチルペンタン酸、4−メチルペンタン酸、2−エチルペンタン酸、3−エチルペンタン酸、2,2−ジメチルペンタン酸、3,3−ジメチルペンタン酸、2,3−ジメチルペンタン酸、2−エチルヘキサン酸、3−エチルヘキサン酸を用いるのが好ましい。   Specific examples of the carboxylic acid include n-butyric acid, α-methylbutyric acid, i-valeric acid, 2-ethylbutyric acid, 2,2-dimethylbutyric acid, 3,3-dimethylbutyric acid, 2,3-dimethylbutyric acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, 2,2-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2- It is preferable to use ethylhexanoic acid or 3-ethylhexanoic acid.

また、エステルとしては、酢酸エチル、酢酸プロピル、酢酸n−ブチル、酢酸sec−ブチル、酢酸tert−ブチル、酢酸イソブチル、酢酸n−アミル、酢酸sec−アミル、酢酸tert−アミル、酢酸イソアミルを用いるのが好ましく、アルコールとしては、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソ−ブチルアルコール、1−ペンタノール、2−ペンタノール、2−メチル−2−ペンタノール、2−メトキシエタノールを用いるのが好適である。   As the ester, ethyl acetate, propyl acetate, n-butyl acetate, sec-butyl acetate, tert-butyl acetate, isobutyl acetate, n-amyl acetate, sec-amyl acetate, tert-amyl acetate, isoamyl acetate are used. As the alcohol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butyl alcohol, 1-pentanol, 2-pentanol, 2-methyl-2-pentanol, 2-methoxy It is preferred to use ethanol.

なお、強誘電体薄膜形成用組成物の有機金属化合物溶液中の有機金属化合物の合計濃度は、金属酸化物換算量で0.1〜20質量%程度とすることが好ましい。   The total concentration of the organometallic compound in the organometallic compound solution of the ferroelectric thin film forming composition is preferably about 0.1 to 20% by mass in terms of metal oxide.

この有機金属化合物溶液中には、必要に応じて安定化剤として、β−ジケトン類(例えば、アセチルアセトン、ヘプタフルオロブタノイルピバロイルメタン、ジピバロイルメタン、トリフルオロアセチルアセトン、ベンゾイルアセトン等)、β−ケトン酸類(例えば、アセト酢酸、プロピオニル酢酸、ベンゾイル酢酸等)、β−ケトエステル類(例えば、上記ケトン酸のメチル、プロピル、ブチル等の低級アルキルエステル類)、オキシ酸類(例えば、乳酸、グリコール酸、α−オキシ酪酸、サリチル酸等)、上記オキシ酸の低級アルキルエステル類、オキシケトン類(例えば、ジアセトンアルコール、アセトイン等)、ジオール、トリオール、高級カルボン酸、アルカノールアミン類(例えば、ジエタノールアミン、トリエタノールアミン、モノエタノールアミン)、多価アミン等を、(安定化剤分子数)/(金属原子数)で0.2〜3程度添加しても良い。   In this organometallic compound solution, β-diketones (for example, acetylacetone, heptafluorobutanoylpivaloylmethane, dipivaloylmethane, trifluoroacetylacetone, benzoylacetone, etc.) are used as stabilizers as necessary. , Β-ketone acids (for example, acetoacetic acid, propionylacetic acid, benzoylacetic acid, etc.), β-ketoesters (for example, lower alkyl esters such as methyl, propyl, and butyl of the above ketone acids), oxyacids (for example, lactic acid, Glycolic acid, α-oxybutyric acid, salicylic acid, etc.), lower alkyl esters of the above oxyacids, oxyketones (eg, diacetone alcohol, acetoin, etc.), diols, triols, higher carboxylic acids, alkanolamines (eg, diethanolamine, Triethanolamine, Roh ethanolamine), a polyvalent amine or the like, may be added from 0.2 to 3 approximately at (stabilizer number of molecules) / (number of metal atoms).

強誘電体薄膜形成用組成物はβ−ジケトン類及び多価アルコール類を含んでいることが好適である。このうち、β−ジケトン類としてはアセチルアセトンが、多価アルコール類としてはプロピレングリコールが特に好ましい。   The composition for forming a ferroelectric thin film preferably contains a β-diketone and a polyhydric alcohol. Of these, acetylacetone is particularly preferable as the β-diketone, and propylene glycol is particularly preferable as the polyhydric alcohol.

上記調製された有機金属化合物溶液を濾過処理等によって、パーティクルを除去して、粒径0.5μm以上(特に0.3μm以上とりわけ0.2μm以上)のパーティクルの個数を溶液1mL当り50個以下(50個/mL以下)とするのが好ましい。有機金属化合物溶液中の粒径0.5μm以上のパーティクルの個数が50個/mLを超えると、長期保存安定性が劣るものとなる。この有機金属化合物溶液中の粒径0.5μm以上のパーティクルの個数は少ない程好ましく、特に30個/mL以下であることが好ましい。   Particles are removed from the prepared organometallic compound solution by filtration or the like, and the number of particles having a particle size of 0.5 μm or more (especially 0.3 μm or more, especially 0.2 μm or more) is 50 or less per mL of solution ( 50 / mL or less). When the number of particles having a particle diameter of 0.5 μm or more in the organometallic compound solution exceeds 50 particles / mL, long-term storage stability is deteriorated. The smaller the number of particles having a particle size of 0.5 μm or more in this organometallic compound solution, the more preferable, and particularly preferably 30 particles / mL or less.

上記パーティクル個数となるように、調製後の有機金属化合物溶液を処理する方法は特に限定されるものではないが、例えば、次のような方法が挙げられる。第1の方法としては、市販の0.2μm孔径のメンブランフィルターを使用し、シリンジで圧送する濾過法である。第2の方法としては、市販の0.05μm孔径のメンブランフィルターと加圧タンクを組み合せた加圧濾過法である。第3の方法としては、上記第2の方法で使用したフィルターと溶液循環槽を組み合せた循環濾過法である。   The method for treating the organometallic compound solution after preparation so as to achieve the number of particles is not particularly limited, and examples thereof include the following method. The first method is a filtration method in which a commercially available membrane filter having a pore size of 0.2 μm is used and pressure-fed with a syringe. The second method is a pressure filtration method in which a commercially available membrane filter having a pore size of 0.05 μm and a pressure tank are combined. The third method is a circulation filtration method in which the filter used in the second method and the solution circulation tank are combined.

いずれの方法においても、溶液圧送圧力によって、フィルターによるパーティクル捕捉率が異なる。圧力が低いほど捕捉率が高くなることは一般的に知られており、特に、第1の方法、第2の方法について、粒径0.5μm以上のパーティクルの個数を50個以下とする条件を実現するためには、溶液を低圧で非常にゆっくりとフィルターに通すのが好ましい。   In any method, the particle capture rate by the filter varies depending on the solution pressure. It is generally known that the lower the pressure, the higher the capture rate. In particular, in the first method and the second method, the number of particles having a particle size of 0.5 μm or more is set to 50 or less. In order to achieve, it is preferable to pass the solution through the filter very slowly at low pressure.

強誘電体薄膜形成用組成物を用いて強誘電体薄膜を形成するには、(111)軸方向に配向した下部電極の上に、上記組成物をスピンコート、ディップコート、LSMCD(Liquid Source Misted Chemical Deposition)法等の塗布法を用いて塗布し、ホットプレートなどを用いて乾燥・仮焼成を行い、塗布から乾燥・仮焼成までの工程を繰り返して、所望の範囲内の層厚のゲル膜を形成してから、一括で本焼成することにより得られる。   In order to form a ferroelectric thin film using the composition for forming a ferroelectric thin film, the composition is spin-coated, dip-coated, or LSMCD (Liquid Source Misted) on the lower electrode oriented in the (111) axial direction. The film is coated using a coating method such as Chemical Deposition), dried and pre-baked using a hot plate, etc., and the steps from coating to drying / pre-baking are repeated to obtain a gel film having a layer thickness within a desired range. It is obtained by carrying out main baking in a lump after forming.

乾燥・仮焼成は、溶媒を除去するとともに有機金属化合物を熱分解又は加水分解して複合酸化物に転化させるために行うことから、空気中、酸化雰囲気中、又は含水蒸気雰囲気中で行う。空気中での加熱でも、加水分解に必要な水分は空気中の湿気により十分に確保される。この加熱は、溶媒の除去のための低温加熱と、有機金属化合物の分解のための高温加熱の2段階で実施しても良い。   The drying / pre-baking is performed in order to remove the solvent and thermally decompose or hydrolyze the organometallic compound to convert it into a composite oxide. Therefore, it is performed in air, in an oxidizing atmosphere, or in a steam-containing atmosphere. Even in heating in the air, the moisture required for hydrolysis is sufficiently secured by the humidity in the air. This heating may be performed in two stages: low temperature heating for removing the solvent and high temperature heating for decomposing the organometallic compound.

本焼成は、乾燥・仮焼成で得られた薄膜を結晶化温度以上の温度で焼成して結晶化させるための工程であり、これにより強誘電体薄膜が得られる。この結晶化工程の焼成雰囲気はO2、N2、Ar、N2O又はH2等或いはこれらの混合ガス等が好適である。 The main baking is a process for baking and crystallizing the thin film obtained by drying and pre-baking at a temperature higher than the crystallization temperature, whereby a ferroelectric thin film is obtained. The firing atmosphere in this crystallization step is preferably O 2 , N 2 , Ar, N 2 O, H 2, or a mixed gas thereof.

乾燥・仮焼成は、150〜550℃、1〜10分間程度行われる。ここで、上記の温度範囲に関し、上記結晶粒径制御層を強誘電体薄膜中に導入しない参考の実施形態の場合は、150℃〜200℃又は285℃〜315℃の範囲内とすることが望ましい。これは、250℃前後の温度では膜の加熱温度が適当でなく、基板と膜の界面に(100)配向である初期核が生成されないからである。一方、本実施の形態である結晶粒径制御層を強誘電体薄膜中に導入する場合は、175℃〜315℃の範囲内とすることが望ましい。これは、結晶化温度の低い結晶粒径制御層を導入したことにより175℃〜315℃の間で(100)配向した初期核が生成されるからである。 Drying and calcination are performed at 150 to 550 ° C. for about 1 to 10 minutes. Here, regarding the above temperature range, in the case of the reference embodiment in which the crystal grain size control layer is not introduced into the ferroelectric thin film, the temperature may be in the range of 150 ° C. to 200 ° C. or 285 ° C. to 315 ° C. desirable. This is because when the temperature is around 250 ° C., the heating temperature of the film is not appropriate, and initial nuclei having a (100) orientation are not generated at the interface between the substrate and the film. On the other hand, when the crystal grain size control layer according to the present embodiment is introduced into the ferroelectric thin film, it is desirable to set the temperature within the range of 175 ° C. to 315 ° C. This is because the introduction of a crystal grain size control layer having a low crystallization temperature generates initial nuclei with (100) orientation between 175 ° C. and 315 ° C.

本焼成は450〜800℃で1〜60分間程度行われる。本焼成は、急速加熱処理(RTA処理)で行っても良い。RTA処理で本焼成する場合、その昇温速度を10〜100℃/秒とすることが好ましい。   The main baking is performed at 450 to 800 ° C. for about 1 to 60 minutes. The main baking may be performed by rapid heating treatment (RTA treatment). When the main baking is performed by the RTA treatment, the temperature rising rate is preferably 10 to 100 ° C./second.

結晶粒径制御層12としては、チタン酸鉛、チタン酸ジルコン酸鉛、ジルコン酸鉛等が挙げられる。また、結晶粒径制御層12の層厚は1nm〜10nmが好ましい。結晶粒径制御層12の層厚を上記範囲内としたのは、10nmを超えると、核の発生密度の向上効果が得られず、結果として微細な結晶組織が得られないためである。   Examples of the crystal grain size control layer 12 include lead titanate, lead zirconate titanate, and lead zirconate. The layer thickness of the crystal grain size control layer 12 is preferably 1 nm to 10 nm. The reason why the thickness of the crystal grain size control layer 12 is within the above range is that if it exceeds 10 nm, the effect of improving the nucleus generation density cannot be obtained, and as a result, a fine crystal structure cannot be obtained.

結晶粒径制御層12は、上述した配向制御層13を形成するのと同様に、(111)軸方向に配向した下部電極の上に、結晶粒径制御層用組成物をスピンコート、ディップコート、LSMCD(Liquid Source Misted Chemical Deposition)法等の塗布法を用いて塗布し、ホットプレートなどを用いて大気雰囲気中、150〜550℃、1〜10分間乾燥・仮焼成を行い、塗布から乾燥・仮焼成までの工程を繰り返して、所望の範囲内の層厚のゲル膜を形成することにより得られる。この結晶粒径制御層12を設ける場合には、配向制御層13は結晶粒径制御層12の上に形成される。   The crystal grain size control layer 12 is spin-coated and dip coated with the composition for the crystal grain size control layer on the lower electrode oriented in the (111) axial direction in the same manner as the orientation control layer 13 is formed. , Applied using a coating method such as LSMCD (Liquid Source Misted Chemical Deposition) method, dried and pre-baked in an air atmosphere at 150 to 550 ° C. for 1 to 10 minutes using a hot plate or the like. It is obtained by repeating the steps up to pre-baking to form a gel film having a layer thickness within a desired range. When the crystal grain size control layer 12 is provided, the orientation control layer 13 is formed on the crystal grain size control layer 12.

また、配向制御層13を形成した後に、この配向制御層13を下地層として、下地層の上に更に下地層の結晶配向と同じ結晶配向を有する膜厚調整層14を形成することが好適である。下地層の上に膜厚調整層14を形成することで、配向制御層13の優先配向面に倣って、配向制御層13と同じ傾向の結晶配向面が形成されるため、この膜厚調整層14によって、配向制御層により(100)面に優先的に結晶配向が制御された強誘電体薄膜の膜厚をその用途に合わせて任意に調整することが可能となる。   Further, after forming the orientation control layer 13, it is preferable to form the film thickness adjusting layer 14 having the same crystal orientation as the crystal orientation of the underlayer on the underlayer using the orientation control layer 13 as the underlayer. is there. By forming the film thickness adjusting layer 14 on the underlayer, a crystal orientation plane having the same tendency as the orientation control layer 13 is formed following the preferential orientation plane of the orientation control layer 13. 14 makes it possible to arbitrarily adjust the film thickness of the ferroelectric thin film whose crystal orientation is preferentially controlled in the (100) plane by the orientation control layer in accordance with the application.

膜厚調整層14は、配向制御層13と同種のPb含有ペロブスカイト型強誘電体膜である。膜厚調整層14の層厚は5000nm未満が好ましい。膜厚調整層14の層厚を上記範囲内としたのは、5000nm以上ではプロセス時間が長くなることと、配向制御層13の優先配向面に倣う傾向が小さくなり、結果として、(100)面の配向度が小さくなるためである。   The film thickness adjusting layer 14 is a Pb-containing perovskite ferroelectric film of the same type as the orientation control layer 13. The thickness of the film thickness adjusting layer 14 is preferably less than 5000 nm. The reason why the thickness of the film thickness adjusting layer 14 is within the above range is that the process time becomes longer at 5000 nm or more, and the tendency to follow the preferential alignment surface of the alignment control layer 13 decreases, and as a result, the (100) surface This is because the degree of orientation becomes small.

膜厚調整層14は、上述した配向制御層13を形成するのと同様に、配向制御層13の上に、膜厚調整層用組成物をスピンコート、ディップコート、LSMCD(Liquid Source Misted Chemical Deposition)法等の塗布法を用いて塗布し、ホットプレートなどを用いて大気雰囲気中、150〜550℃、1〜10分間乾燥・仮焼成を行い、塗布から乾燥・仮焼成までの工程を繰り返して、所望の範囲内の膜厚のゲル膜を形成してから、酸素雰囲気中、450〜800℃、1〜60分間本焼成することにより得られる。   The film thickness adjusting layer 14 is formed on the alignment control layer 13 by spin coating, dip coating, or LSMCD (Liquid Source Misted Chemical Deposition). ) Coating using a coating method, etc., and drying and pre-baking at 150 to 550 ° C. for 1 to 10 minutes in an air atmosphere using a hot plate or the like, and repeating the steps from coating to drying and pre-baking It is obtained by forming a gel film having a film thickness within a desired range, followed by main baking at 450 to 800 ° C. for 1 to 60 minutes in an oxygen atmosphere.

このようにして製造された本発明の強誘電体薄膜は、(100)面に優先的に結晶配向が制御されたものとなり、大きなe31圧電定数をもつ。 The ferroelectric thin film of the present invention thus manufactured has a crystal orientation controlled preferentially on the (100) plane and has a large e 31 piezoelectric constant.

また、本発明の強誘電体薄膜は、薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、又はLCノイズフィルタ素子の複合電子部品における構成材料として使用することができる。   The ferroelectric thin film of the present invention includes a thin film capacitor, a capacitor, an IPD, a DRAM memory capacitor, a multilayer capacitor, a transistor gate insulator, a nonvolatile memory, a pyroelectric infrared detection element, a piezoelectric element, an electro-optical element, It can be used as a constituent material in composite electronic parts of actuators, resonators, ultrasonic motors, or LC noise filter elements.

次に本発明の実施例を比較例とともに詳しく説明する。以下に示す実施例1〜11は実施例ではなく参考実施例であり、比較例2、3は参考比較例である。 Next, examples of the present invention will be described in detail together with comparative examples. Examples 1 to 11 shown below are reference examples, not examples, and Comparative Examples 2 and 3 are reference comparative examples.

<結晶粒径制御層用組成物、配向制御層用組成物及び膜厚調整層用組成物の調製>
これらの組成物の液合成フローは、典型的には以下のプロセスに従った。
<Preparation of Crystal Grain Size Control Layer Composition, Orientation Control Layer Composition, and Film Thickness Adjustment Layer Composition>
The liquid synthesis flow of these compositions typically followed the following process.

まず、反応容器にジルコニウムテトラn−ブトキシド(Zr源)及び/又はチタニウムテトライソプロポキシド(Ti源)と、アセチルアセトン(安定化剤)とを入れて、窒素雰囲気中で還流した。次いでこの化合物に酢酸鉛3水和物(Pb源)とを添加するとともに、プロピレングリコール(溶剤)を添加し、窒素雰囲気中で還流し、減圧蒸留して副生成物を除去した後に、この溶液に更にプロピレングリコールを添加して濃度を調節し、更にこの溶液にn-ブタノールを添加することで、前駆溶液となる上記組成物を得た。   First, zirconium tetra n-butoxide (Zr source) and / or titanium tetraisopropoxide (Ti source) and acetylacetone (stabilizer) were placed in a reaction vessel and refluxed in a nitrogen atmosphere. Next, lead acetate trihydrate (Pb source) is added to this compound, and propylene glycol (solvent) is added. The mixture is refluxed in a nitrogen atmosphere and distilled under reduced pressure to remove by-products. Further, propylene glycol was added to adjust the concentration, and n-butanol was further added to this solution to obtain the above composition to be a precursor solution.

また、組成物の液合成フローは、具体的には以下のプロセスに従った。   Moreover, the liquid synthesis flow of the composition specifically followed the following process.

まず、反応容器にTiイソプロポキシド(Ti源)と、アセチルアセトン(安定化剤)を入れて、窒素雰囲気中で還流した。次いでこの化合物に酢酸鉛3水和物(Pb源)とを添加するとともに、プロピレングリコール(溶剤)を添加し、窒素雰囲気中で還流し、減圧蒸留して副生成物を除去した後に、この溶液に更にプロピレングリコールを添加して濃度を調節し、更に、希釈アルコールを添加することで、以下の表1、表2に示す各濃度に調整された、酸化物換算で各金属比がPb/Ti=125/100の金属化合物を含有する結晶粒径制御層用組成物を得た。   First, Ti isopropoxide (Ti source) and acetylacetone (stabilizer) were placed in a reaction vessel and refluxed in a nitrogen atmosphere. Next, lead acetate trihydrate (Pb source) is added to this compound, and propylene glycol (solvent) is added, refluxed in a nitrogen atmosphere, and distilled under reduced pressure to remove by-products. Further, propylene glycol was added to adjust the concentration, and further diluted alcohol was added to adjust the concentrations to the concentrations shown in Table 1 and Table 2 below. A composition for a crystal grain size control layer containing a metal compound of = 125/100 was obtained.

まず、反応容器にZrテトラn−ブトキシド(Z源)と、Tiイソプロポキシド(Ti源)と、アセチルアセトン(安定化剤)とを入れて、窒素雰囲気中で還流した。次いでこの化合物に酢酸鉛3水和物(Pb源)とを添加するとともに、プロピレングリコール(溶剤)を添加し、窒素雰囲気下で還流し、減圧蒸留して副生成物を除去した後に、この溶液に更にプロピレングリコールを添加して濃度を調節し、更に、希釈アルコールを添加することで、以下の表1、表2に示す所望の濃度に調整された、酸化物換算で各金属比がPb/Zr/Ti=110/52/48の金属化合物を含有する配向制御層用組成物、膜厚調整用組成物を得た。上記結晶粒径制御層用組成物、配向制御層用組成物及び膜厚調整用組成物を構成する各有機金属化合物溶液は、市販の0.2μm孔径のメンブランフィルターを使用し、シリンジで圧送して濾過することにより粒径0.5μm以上の個数がそれぞれ溶液1mL当たり1個、2個及び1個であった。 First, Zr tetra n-butoxide (Z source), Ti isopropoxide (Ti source), and acetylacetone (stabilizer) were placed in a reaction vessel and refluxed in a nitrogen atmosphere. Next, lead acetate trihydrate (Pb source) is added to this compound, and propylene glycol (solvent) is added. The mixture is refluxed under a nitrogen atmosphere and distilled under reduced pressure to remove by-products. Further, propylene glycol was added to adjust the concentration, and further diluted alcohol was added to adjust the desired concentration shown in Tables 1 and 2 below. A composition for orientation control layer and a composition for film thickness adjusting layer containing a metal compound of Zr / Ti = 110/52/48 were obtained. Each organometallic compound solution constituting the composition for crystal grain size control layer, the composition for orientation control layer, and the composition for film thickness adjustment layer uses a commercially available membrane filter having a pore size of 0.2 μm and is pumped with a syringe. As a result of filtration, the number of particles having a particle size of 0.5 μm or more was 1, 2 and 1 per 1 mL of the solution, respectively.

<実施例1>
基板として、表面にスパッタリング法にてPt下部電極膜を形成した6インチシリコン基板を用意した。この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後3500rpmで15秒間の条件で、上記調製した10質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った。この配向制御層用組成物の塗布、仮焼成の工程を1回行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚35nmの配向制御層を得た。これを実施例1の強誘電体薄膜とした。
<Example 1>
As a substrate, a 6-inch silicon substrate having a Pt lower electrode film formed on the surface by a sputtering method was prepared. On the Pt lower electrode film of this substrate, the above prepared composition for an orientation control layer having a concentration of 10% by mass was applied by spin coating under the conditions of 500 rpm for 3 seconds and then 3500 rpm for 15 seconds. Subsequently, drying and pre-baking were performed by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate. After performing the steps of applying the composition for orientation control layer and pre-firing once, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer thickness. A 35 nm orientation control layer was obtained. This was used as the ferroelectric thin film of Example 1.

<実施例2>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後3000rpmで15秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、150℃で5分間加熱して乾燥・仮焼成を行った。この配向制御層用組成物を、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚60nmの配向制御層を得た。これを実施例2の強誘電体薄膜とした。
<Example 2>
A substrate similar to that of Example 1 was prepared, and the above prepared 12 mass% concentration orientation control was performed on the Pt lower electrode film of the substrate by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 15 seconds. The layer composition was applied. Subsequently, drying and pre-baking were performed by heating at 150 ° C. for 5 minutes in an air atmosphere using a hot plate. The composition for orientation control layer was crystallized by performing main firing at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature elevation rate of 10 ° C./second to obtain an orientation control layer having a layer thickness of 60 nm. This was used as the ferroelectric thin film of Example 2.

<実施例3>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、150℃で5分間加熱して乾燥・仮焼成を行った。この配向制御層用組成物の塗布、仮焼成の工程を1回行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚75nmの配向制御層を得た。これを実施例3の強誘電体薄膜とした。
<Example 3>
A substrate similar to that in Example 1 was prepared, and the above prepared 12 mass% concentration control was performed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. The layer composition was applied. Subsequently, drying and pre-baking were performed by heating at 150 ° C. for 5 minutes in an air atmosphere using a hot plate. After performing the steps of applying the composition for orientation control layer and pre-firing once, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer thickness. A 75 nm alignment control layer was obtained. This was designated as the ferroelectric thin film of Example 3.

<実施例4>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後3000rpmで15秒間の条件で、上記調製した10質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、175℃で5分間加熱して乾燥・仮焼成を行った。この配向制御層用組成物の塗布、仮焼成の工程を2回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚90nmの配向制御層を得た。次に、配向制御層上に、スピンコート法により、3000rpmで15秒間の条件で、上記調製した10質量%濃度の膜厚調整層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、175℃で5分間加熱して乾燥・仮焼成を行った。この膜厚調整層用組成物の塗布、仮焼成の工程を6回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚270nmの膜厚調整層を得た。これを実施例4の強誘電体薄膜とした。
<Example 4>
A substrate similar to that in Example 1 was prepared, and the above prepared 10 mass% concentration orientation control was performed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 15 seconds. The layer composition was applied. Subsequently, drying and pre-baking were performed by heating at 175 ° C. for 5 minutes in an air atmosphere using a hot plate. After repeating the steps of applying the composition for orientation control layer and pre-firing twice, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer thickness. A 90 nm orientation control layer was obtained. Next, the composition for film thickness adjusting layer having a concentration of 10% by mass prepared above was applied on the orientation control layer by spin coating under conditions of 3000 rpm for 15 seconds. Subsequently, drying and pre-baking were performed by heating at 175 ° C. for 5 minutes in an air atmosphere using a hot plate. After repeating the steps of applying the film thickness adjusting layer composition and pre-baking 6 times, the film was crystallized by performing main baking at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second, A film thickness adjusting layer having a thickness of 270 nm was obtained. This was designated as the ferroelectric thin film of Example 4.

<実施例5>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで15秒間の条件で、上記調製した5質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、175℃で5分間加熱して乾燥・仮焼成の工程を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚75nmの配向制御層を得た。次に、配向制御層上に、スピンコート法により、3000rpmで15秒間の条件で、上記調製した10質量%濃度の膜厚調整層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った。この膜厚調整層用組成物の塗布、仮焼成の工程を6回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚270nmの膜厚調整層を得た。これを実施例5の強誘電体薄膜とした。
<Example 5>
A substrate similar to that of Example 1 was prepared, and the above prepared 5 mass% concentration orientation control was performed on the Pt lower electrode film of the substrate by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 15 seconds. The layer composition was applied. Subsequently, after heating and drying at 175 ° C. for 5 minutes in an air atmosphere using a hot plate, a heating and heating process is performed at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second. Baking was performed to crystallize to obtain an orientation control layer having a layer thickness of 75 nm. Next, the composition for film thickness adjusting layer having a concentration of 10% by mass prepared above was applied on the orientation control layer by spin coating under conditions of 3000 rpm for 15 seconds. Subsequently, drying and pre-baking were performed by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate. After repeating the steps of applying the film thickness adjusting layer composition and pre-baking 6 times, the film was crystallized by performing main baking at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second, A film thickness adjusting layer having a thickness of 270 nm was obtained. This was designated as the ferroelectric thin film of Example 5.

<実施例6>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで15秒間の条件で、上記調製した5質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った。この配向制御層用組成物の塗布、仮焼成の工程を3回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚60nmの配向制御層を得た。これを実施例6の強誘電体薄膜とした。
<Example 6>
A substrate similar to that of Example 1 was prepared, and the above prepared 5 mass% concentration orientation control was performed on the Pt lower electrode film of the substrate by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 15 seconds. The layer composition was applied. Subsequently, using a hot plate, drying and pre-baking were performed by heating at 200 ° C. for 5 minutes in an air atmosphere. After repeating the steps of applying the composition for orientation control layer and pre-firing three times, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer thickness. A 60 nm alignment control layer was obtained. This was designated as the ferroelectric thin film of Example 6.

<実施例7>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚75nmの配向制御層を得た。これを実施例7の強誘電体薄膜とした。
<Example 7>
A substrate similar to that in Example 1 was prepared, and the above prepared 12 mass% concentration control was performed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. The layer composition was applied. Subsequently, after drying and pre-baking by heating at 200 ° C. for 5 minutes in an air atmosphere using a hot plate, main baking is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second. And crystallized to obtain an orientation control layer having a layer thickness of 75 nm. This was designated as the ferroelectric thin film of Example 7.

<実施例8>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚75nmの配向制御層を得た。次に、配向制御層上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した5質量%濃度の膜厚調整層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚20nmの膜厚調整層を得た。これを実施例8の強誘電体薄膜とした。
<Example 8>
A substrate similar to that in Example 1 was prepared, and the above prepared 12 mass% concentration control was performed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. The layer composition was applied. Subsequently, after drying and pre-baking by heating at 200 ° C. for 5 minutes in an air atmosphere using a hot plate, main baking is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second. And crystallized to obtain an orientation control layer having a layer thickness of 75 nm. Next, the above-prepared composition for a film thickness adjusting layer having a concentration of 5% by mass was applied on the orientation control layer by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. Subsequently, after drying and pre-baking by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate, main baking is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second. The film was crystallized to obtain a film thickness adjusting layer having a layer thickness of 20 nm. This was designated as the ferroelectric thin film of Example 8.

<実施例9>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚75nmの配向制御層を得た。次に、配向制御層上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の膜厚調整層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った。この膜厚調整層用組成物の塗布、仮焼成の工程を4回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚300nmの膜厚調整層を得た。これを実施例9の強誘電体薄膜とした。
<Example 9>
A substrate similar to that in Example 1 was prepared, and the above prepared 12 mass% concentration control was performed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. The layer composition was applied. Subsequently, after drying and pre-baking by heating at 200 ° C. for 5 minutes in an air atmosphere using a hot plate, main baking is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second. And crystallized to obtain an orientation control layer having a layer thickness of 75 nm. Next, the above-prepared composition for a film thickness adjusting layer having a concentration of 12% by mass was applied on the orientation control layer by spin coating under the conditions of 500 rpm for 3 seconds and then 2000 rpm for 20 seconds. Subsequently, drying and pre-baking were performed by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate. After repeating the steps of applying the film thickness adjusting layer composition and pre-firing four times, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer. A film thickness adjusting layer having a thickness of 300 nm was obtained. This was designated as the ferroelectric thin film of Example 9.

<実施例10>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、315℃で5分間加熱して乾燥・仮焼成を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚75nmの配向制御層を得た。次に、配向制御層上に、スピンコート法により、3000rpmで15秒間の条件で、上記調製した10質量%濃度の膜厚調整層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った。この膜厚調整層用組成物の塗布、仮焼成の工程を6回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚270nmの膜厚調整層を得た。これを実施例10の強誘電体薄膜とした。
<Example 10>
A substrate similar to that in Example 1 was prepared, and the above prepared 12 mass% concentration control was performed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. The layer composition was applied. Subsequently, after drying and pre-baking by heating at 315 ° C. for 5 minutes in an air atmosphere using a hot plate, main baking is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second. And crystallized to obtain an orientation control layer having a layer thickness of 75 nm. Next, the composition for film thickness adjusting layer having a concentration of 10% by mass prepared above was applied on the orientation control layer by spin coating under conditions of 3000 rpm for 15 seconds. Subsequently, drying and pre-baking were performed by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate. After repeating the steps of applying the film thickness adjusting layer composition and pre-baking 6 times, the film was crystallized by performing main baking at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second, A film thickness adjusting layer having a thickness of 270 nm was obtained. This was designated as the ferroelectric thin film of Example 10.

<実施例11>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、175℃で5分間加熱して乾燥・仮焼成を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚75nmの配向制御層を得た。次に、配向制御層上に、スピンコート法により、3000rpmで15秒間の条件で、上記調製した10質量%濃度の膜厚調整層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った。この膜厚調整層用組成物の塗布、仮焼成の工程を6回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚270nmの膜厚調整層を得た。これを実施例11の強誘電体薄膜とした。
<Example 11>
A substrate similar to that in Example 1 was prepared, and the above prepared 12 mass% concentration control was performed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. The layer composition was applied. Subsequently, after drying and pre-baking by heating at 175 ° C. for 5 minutes in an air atmosphere using a hot plate, main baking is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a heating rate of 10 ° C./second. And crystallized to obtain an orientation control layer having a layer thickness of 75 nm. Next, the composition for film thickness adjusting layer having a concentration of 10% by mass prepared above was applied on the orientation control layer by spin coating under conditions of 3000 rpm for 15 seconds. Subsequently, drying and pre-baking were performed by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate. After repeating the steps of applying the film thickness adjusting layer composition and pre-baking 6 times, the film was crystallized by performing main baking at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second, A film thickness adjusting layer having a thickness of 270 nm was obtained. This was designated as the ferroelectric thin film of Example 11.

<実施例12>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した1質量%濃度の結晶粒径制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、175℃で5分間加熱して乾燥・仮焼成を行い、層厚2nmの結晶粒径制御層を得た。次いで、結晶粒径制御層上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、175℃で5分間加熱して乾燥・仮焼成を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚60nmの配向制御層を得た。これを実施例12の強誘電体薄膜とした。
<Example 12>
A substrate similar to that in Example 1 was prepared, and the 1% by mass concentration crystal grains prepared above were formed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. A composition for a diameter control layer was applied. Subsequently, using a hot plate, heating and drying at 175 ° C. for 5 minutes in an air atmosphere were performed to perform pre-baking and obtain a crystal grain size control layer having a layer thickness of 2 nm. Next, the 12% by mass concentration composition for orientation control layer prepared above was applied on the crystal grain size control layer by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. Subsequently, after drying and pre-baking by heating at 175 ° C. for 5 minutes in an air atmosphere using a hot plate, main baking is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a heating rate of 10 ° C./second. This was crystallized to obtain an orientation control layer having a layer thickness of 60 nm. This was designated as the ferroelectric thin film of Example 12.

<実施例13>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した1質量%濃度の結晶粒径制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行い、層厚2nmの結晶粒径制御層を得た。次いで、結晶粒径制御層上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚75nmの配向制御層を得た。次に、配向制御層上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の膜厚調整層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った。この膜厚調整層用組成物の塗布、仮焼成の工程を4回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚300nmの膜厚調整層を得た。これを実施例13の強誘電体薄膜とした。
<Example 13>
A substrate similar to that in Example 1 was prepared, and the 1% by mass concentration crystal grains prepared above were formed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. A composition for a diameter control layer was applied. Subsequently, using a hot plate, heating and drying at 200 ° C. for 5 minutes in an air atmosphere were performed, followed by drying and pre-baking to obtain a crystal grain size control layer having a layer thickness of 2 nm. Next, the 12% by mass concentration composition for orientation control layer prepared above was applied on the crystal grain size control layer by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. Subsequently, after drying and pre-baking by heating at 200 ° C. for 5 minutes in an air atmosphere using a hot plate, main baking is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second. And crystallized to obtain an orientation control layer having a layer thickness of 75 nm. Next, the above-prepared composition for a film thickness adjusting layer having a concentration of 12% by mass was applied on the orientation control layer by spin coating under the conditions of 500 rpm for 3 seconds and then 2000 rpm for 20 seconds. Subsequently, drying and pre-baking were performed by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate. After repeating the steps of applying the film thickness adjusting layer composition and pre-firing four times, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer. A film thickness adjusting layer having a thickness of 300 nm was obtained. This was designated as the ferroelectric thin film of Example 13.

<実施例14>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した2質量%濃度の結晶粒径制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行い、層厚5nmの結晶粒径制御層を得た。次いで、結晶粒径制御層上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚75nmの配向制御層を得た。次に、配向制御層上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の膜厚調整層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った。この膜厚調整層用組成物の塗布、仮焼成の工程を4回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚300nmの膜厚調整層を得た。これを実施例14の強誘電体薄膜とした。
<Example 14>
A substrate similar to that in Example 1 was prepared, and on the Pt lower electrode film of this substrate, the above prepared 2% by weight crystal grains were prepared by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. A composition for a diameter control layer was applied. Subsequently, using a hot plate, heating and drying at 200 ° C. for 5 minutes in an air atmosphere were performed, followed by drying and pre-baking to obtain a crystal grain size control layer having a layer thickness of 5 nm. Next, the 12% by mass concentration composition for orientation control layer prepared above was applied on the crystal grain size control layer by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. Subsequently, after drying and pre-baking by heating at 200 ° C. for 5 minutes in an air atmosphere using a hot plate, main baking is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second. And crystallized to obtain an orientation control layer having a layer thickness of 75 nm. Next, the above-prepared composition for a film thickness adjusting layer having a concentration of 12% by mass was applied on the orientation control layer by spin coating under the conditions of 500 rpm for 3 seconds and then 2000 rpm for 20 seconds. Subsequently, drying and pre-baking were performed by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate. After repeating the steps of applying the film thickness adjusting layer composition and pre-firing four times, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer. A film thickness adjusting layer having a thickness of 300 nm was obtained. This was designated as the ferroelectric thin film of Example 14.

<実施例15>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した1質量%濃度の結晶粒径制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行い、層厚2nmの結晶粒径制御層を得た。次いで、結晶粒径制御層上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った。この配向制御層用組成物の塗布、仮焼成の工程を2回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚150nmの配向制御層を得た。次に、配向制御層上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の膜厚調整層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った。この膜厚調整層用組成物の塗布、仮焼成の工程を4回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚300nmの膜厚調整層を得た。これを実施例15の強誘電体薄膜とした。
<Example 15>
A substrate similar to that in Example 1 was prepared, and the 1% by mass concentration crystal grains prepared above were formed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. A composition for a diameter control layer was applied. Subsequently, using a hot plate, heating and drying at 200 ° C. for 5 minutes in an air atmosphere were performed, followed by drying and pre-baking to obtain a crystal grain size control layer having a layer thickness of 2 nm. Next, the 12% by mass concentration composition for orientation control layer prepared above was applied on the crystal grain size control layer by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. Subsequently, using a hot plate, drying and pre-baking were performed by heating at 200 ° C. for 5 minutes in an air atmosphere. After repeating the steps of applying the composition for orientation control layer and pre-firing twice, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer thickness. A 150 nm orientation control layer was obtained. Next, the above-prepared composition for a film thickness adjusting layer having a concentration of 12% by mass was applied on the orientation control layer by spin coating under the conditions of 500 rpm for 3 seconds and then 2000 rpm for 20 seconds. Subsequently, drying and pre-baking were performed by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate. After repeating the steps of applying the film thickness adjusting layer composition and pre-firing four times, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer. A film thickness adjusting layer having a thickness of 300 nm was obtained. This was designated as the ferroelectric thin film of Example 15.

<実施例16>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した1質量%濃度の結晶粒径制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行い、層厚2nmの結晶粒径制御層を得た。次いで、結晶粒径制御層上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚75nmの配向制御層を得た。次に、配向制御層上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の膜厚調整層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った。この膜厚調整層用組成物の塗布、仮焼成の工程を4回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させた。上記膜厚調整層用組成物の塗布、仮焼成の工程を4回繰り返した後、一度本焼成を行い、この工程を10回繰り返し、層厚3000nmの膜厚調整層を得た。これを実施例16の強誘電体薄膜とした。
<Example 16>
A substrate similar to that in Example 1 was prepared, and the 1% by mass concentration crystal grains prepared above were formed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. A composition for a diameter control layer was applied. Subsequently, using a hot plate, heating and drying at 200 ° C. for 5 minutes in an air atmosphere were performed, followed by drying and pre-baking to obtain a crystal grain size control layer having a layer thickness of 2 nm. Next, the 12% by mass concentration composition for orientation control layer prepared above was applied on the crystal grain size control layer by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. Subsequently, after drying and pre-baking by heating at 200 ° C. for 5 minutes in an air atmosphere using a hot plate, main baking is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second. And crystallized to obtain an orientation control layer having a layer thickness of 75 nm. Next, the above-prepared composition for a film thickness adjusting layer having a concentration of 12% by mass was applied on the orientation control layer by spin coating under the conditions of 500 rpm for 3 seconds and then 2000 rpm for 20 seconds. Subsequently, drying and pre-baking were performed by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate. After repeating the steps of applying the film thickness adjusting layer composition and pre-baking four times, the film was crystallized by performing main baking at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second. After repeating the process of application | coating of the said film thickness adjustment layer composition and temporary baking 4 times, this baking was once performed, this process was repeated 10 times, and the film thickness adjustment layer with a layer thickness of 3000 nm was obtained. This was designated as the ferroelectric thin film of Example 16.

<実施例17>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後3000rpmで20秒間の条件で、上記調製した1質量%濃度の結晶粒径制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行い、層厚2nmの結晶粒径制御層を得た。次いで、結晶粒径制御層上に、スピンコート法により、500rpmで3秒間、その後3000rpmで20秒間の条件で、上記調製した10質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚45nmの配向制御層を得た。次に、配向制御層上に、スピンコート法により、500rpmで3秒間、その後3000rpmで20秒間の条件で、上記調製した10質量%濃度の膜厚調整層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った。この膜厚調整層用組成物の塗布、仮焼成の工程を6回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚270nmの膜厚調整層を得た。これを実施例17の強誘電体薄膜とした。
<Example 17>
A substrate similar to that of Example 1 was prepared, and the 1% by mass concentration crystal grains prepared above were formed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 20 seconds. A composition for a diameter control layer was applied. Subsequently, using a hot plate, heating and drying at 200 ° C. for 5 minutes in an air atmosphere were performed, followed by drying and pre-baking to obtain a crystal grain size control layer having a layer thickness of 2 nm. Next, the 10% by mass composition for orientation control layer prepared above was applied onto the crystal grain size control layer by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 20 seconds. Subsequently, after drying and pre-baking by heating at 200 ° C. for 5 minutes in an air atmosphere using a hot plate, main baking is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second. This was crystallized to obtain an orientation control layer having a layer thickness of 45 nm. Next, on the orientation control layer, the above-prepared composition for a film thickness adjusting layer having a concentration of 10% by mass was applied by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 20 seconds. Subsequently, drying and pre-baking were performed by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate. After repeating the steps of applying the film thickness adjusting layer composition and pre-baking 6 times, the film was crystallized by performing main baking at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second, A film thickness adjusting layer having a thickness of 270 nm was obtained. This was designated as the ferroelectric thin film of Example 17.

<実施例18>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後3000rpmで20秒間の条件で、上記調製した1質量%濃度の結晶粒径制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行い、層厚2nmの結晶粒径制御層を得た。次いで、結晶粒径制御層上に、スピンコート法により、500rpmで3秒間、その後3000rpmで20秒間の条件で、上記調製した10質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った。この配向制御層用組成物の塗布、仮焼成の工程を2回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚90nmの配向制御層を得た。次に、配向制御層上に、スピンコート法により、500rpmで3秒間、その後3000rpmで20秒間の条件で、上記調製した10質量%濃度の膜厚調整層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った。この膜厚調整層用組成物の塗布、仮焼成の工程を6回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚270nmの膜厚調整層を得た。これを実施例18の強誘電体薄膜とした。
<Example 18>
A substrate similar to that of Example 1 was prepared, and the 1% by mass concentration crystal grains prepared above were formed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 20 seconds. A composition for a diameter control layer was applied. Subsequently, using a hot plate, heating and drying at 200 ° C. for 5 minutes in an air atmosphere were performed, followed by drying and pre-baking to obtain a crystal grain size control layer having a layer thickness of 2 nm. Next, the 10% by mass composition for orientation control layer prepared above was applied onto the crystal grain size control layer by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 20 seconds. Subsequently, using a hot plate, drying and pre-baking were performed by heating at 200 ° C. for 5 minutes in an air atmosphere. After repeating the steps of applying the composition for orientation control layer and pre-firing twice, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer thickness. A 90 nm orientation control layer was obtained. Next, on the orientation control layer, the above-prepared composition for a film thickness adjusting layer having a concentration of 10% by mass was applied by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 20 seconds. Subsequently, drying and pre-baking were performed by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate. After repeating the steps of applying the film thickness adjusting layer composition and pre-baking 6 times, the film was crystallized by performing main baking at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second, A film thickness adjusting layer having a thickness of 270 nm was obtained. This was designated as the ferroelectric thin film of Example 18.

<実施例19>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後3000rpmで15秒間の条件で、上記調製した1質量%濃度の結晶粒径制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、250℃で5分間加熱して乾燥・仮焼成を行い、層厚2nmの結晶粒径制御層を得た。次いで、結晶粒径制御層上に、スピンコート法により、500rpmで3秒間、その後3000rpmで20秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、250℃で5分間加熱して乾燥・仮焼成を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚60nmの配向制御層を得た。これを実施例19の強誘電体薄膜とした。
<Example 19>
A substrate similar to that in Example 1 was prepared, and the 1% by mass concentration crystal grains prepared above were formed on the Pt lower electrode film of the substrate by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 15 seconds. A composition for a diameter control layer was applied. Subsequently, using a hot plate, heating and drying at 250 ° C. for 5 minutes in an air atmosphere were carried out for drying and pre-baking to obtain a crystal grain size control layer having a layer thickness of 2 nm. Next, the above-prepared composition for 12 mass% orientation control layer was applied onto the crystal grain size control layer by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 20 seconds. Subsequently, after drying and pre-baking by heating at 250 ° C. for 5 minutes in an air atmosphere using a hot plate, main baking is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a heating rate of 10 ° C./second. This was crystallized to obtain an orientation control layer having a layer thickness of 60 nm. This was designated as the ferroelectric thin film of Example 19.

<実施例20>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後3000rpmで15秒間の条件で、上記調製した1質量%濃度の結晶粒径制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行い、層厚2nmの結晶粒径制御層を得た。次いで、結晶粒径制御層上に、スピンコート法により、500rpmで3秒間、その後3000rpmで20秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚60nmの配向制御層を得た。これを実施例20の強誘電体薄膜とした。
<Example 20>
A substrate similar to that in Example 1 was prepared, and the 1% by mass concentration crystal grains prepared above were formed on the Pt lower electrode film of the substrate by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 15 seconds. A composition for a diameter control layer was applied. Subsequently, using a hot plate, heating and drying at 300 ° C. for 5 minutes in an air atmosphere were performed for drying and pre-baking to obtain a crystal grain size control layer having a layer thickness of 2 nm. Next, the above-prepared composition for 12 mass% orientation control layer was applied onto the crystal grain size control layer by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 20 seconds. Subsequently, after drying and pre-baking by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate, main baking is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second. This was crystallized to obtain an orientation control layer having a layer thickness of 60 nm. This was designated as the ferroelectric thin film of Example 20.

<比較例1>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した5質量%濃度の結晶粒径制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行い、層厚2nmの結晶粒径制御層を得た。次いで、結晶粒径制御層上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した5質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った。この配向制御層用組成物の塗布、仮焼成の工程を2回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚20nmの配向制御層を得た。次に、配向制御層上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の膜厚調整層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った。この膜厚調整層用組成物の塗布、仮焼成の工程を4回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚300nmの膜厚調整層を得た。これを比較例1の強誘電体薄膜とした。
<Comparative Example 1>
A substrate similar to that of Example 1 was prepared, and the 5% by mass concentration of crystal grains prepared above was formed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. A composition for a diameter control layer was applied. Subsequently, using a hot plate, heating and drying at 200 ° C. for 5 minutes in an air atmosphere were performed, followed by drying and pre-baking to obtain a crystal grain size control layer having a layer thickness of 2 nm. Subsequently, the 5 mass% composition for orientation control layer prepared above was applied on the crystal grain size control layer by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. Subsequently, using a hot plate, drying and pre-baking were performed by heating at 200 ° C. for 5 minutes in an air atmosphere. After repeating the steps of applying the composition for orientation control layer and pre-firing twice, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer thickness. A 20 nm alignment control layer was obtained. Next, the above-prepared composition for a film thickness adjusting layer having a concentration of 12% by mass was applied on the orientation control layer by spin coating under the conditions of 500 rpm for 3 seconds and then 2000 rpm for 20 seconds. Subsequently, drying and pre-baking were performed by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate. After repeating the steps of applying the film thickness adjusting layer composition and pre-firing four times, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer. A film thickness adjusting layer having a thickness of 300 nm was obtained. This was used as the ferroelectric thin film of Comparative Example 1.

<比較例2>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後3000rpmで20秒間の条件で、上記調製した11質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った。この配向制御層用組成物の塗布、仮焼成の工程を3回行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚170nmの配向制御層を得た。これを比較例2の強誘電体薄膜とした。
<Comparative example 2>
A substrate similar to that in Example 1 was prepared, and the above prepared 11 mass% concentration control was performed on the Pt lower electrode film of the substrate by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 20 seconds. The layer composition was applied. Subsequently, using a hot plate, drying and pre-baking were performed by heating at 200 ° C. for 5 minutes in an air atmosphere. After performing the steps of applying the composition for orientation control layer and pre-firing three times, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer thickness A 170 nm orientation control layer was obtained. This was used as the ferroelectric thin film of Comparative Example 2.

<比較例3>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後3000rpmで20秒間の条件で、上記調製した10質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った。この配向制御層用組成物の塗布、仮焼成の工程を6回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚270nmの配向制御層を得た。これをの強誘電体薄膜とした。
<Comparative Example 3>
A substrate similar to that of Example 1 was prepared, and the above prepared 10 mass% concentration control was performed on the Pt lower electrode film of the substrate by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 20 seconds. The layer composition was applied. Subsequently, using a hot plate, drying and pre-baking were performed by heating at 200 ° C. for 5 minutes in an air atmosphere. After repeating the steps of applying the composition for orientation control layer and pre-firing six times, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer thickness. A 270 nm orientation control layer was obtained. This was a ferroelectric thin film.

<比較試験>
実施例1〜20及び比較例1〜3で得られた強誘電体薄膜について、以下の手法により、各層の層厚、優先配向面、配向度、平均粒子径を求めた。その結果を表3、4にそれぞれ示す。また、実施例1、2、5、11、12、13、15、16、19、20のXRDパターンを図3に、比較例1〜3のXRDパターンを図4に、実施例5の表面SEM像(倍率10000倍)を図5に、実施例6の表面SEM像(倍率50000倍)を図6にそれぞれ示す。
(1) 層厚(膜厚)測定:各層の層厚は、強誘電体薄膜を分光エリプソメーター(J.A.Woollam社製:M−2000)により測定して、「結晶粒径制御層と配向制御層の合算の層厚」、「配向制御層の層厚」及び「膜厚調整層の層厚」をそれぞれ求めた。また「結晶粒径制御層の層厚」は、「結晶粒径制御層と配向制御層の合算の層厚」から「配向制御層の層厚」を減することにより算出した。
(2) 優先配向面:誘電体結晶の優先配向面は、強誘電体薄膜をX線回折装置(XRD;Bruker社製:MXP18HF)により測定し、得られた回折結果のうち、最も強度の高い配向面を優先配向面とした。
(3) 配向度:誘電体結晶の(100)面における配向度は、上記(2)で得られた回折結果から、(100)面の強度/((100)面の強度+(110)面の強度+(111)面の強度)を計算することにより算出した。
(4) 平均粒子径:誘電体結晶の平均粒子径は、強誘電体薄膜表面を走査型電子顕微鏡(SEM;HITACHI社製:S−900)により撮影し、電子顕微鏡写真(表面像)に写っている、任意の結晶粒子30個に対して、結晶粒子の粒径(最長径と最短径)をノギスを用いて測定し、これらの測定結果から平均粒子径を算出した。
<Comparison test>
About the ferroelectric thin film obtained in Examples 1-20 and Comparative Examples 1-3, the layer thickness of each layer, the priority orientation surface, the orientation degree, and the average particle diameter were calculated | required with the following methods. The results are shown in Tables 3 and 4, respectively. Further, the XRD patterns of Examples 1 , 2 , 5 , 6 , 9 , 9 , 12, 13 , 15, 16 , 16 , and 20 are shown in FIG. 3, and the XRD patterns of Comparative Examples 1 to 3 are shown in FIG. 5 shows a surface SEM image (magnification 10,000 times) of FIG. 5, and FIG. 6 shows a surface SEM image (magnification 50,000 times) of Example 6. FIG.
(1) Measurement of layer thickness (film thickness): The thickness of each layer was determined by measuring a ferroelectric thin film with a spectroscopic ellipsometer (JA Woollam Co., Ltd .: M-2000). “Total thickness of orientation control layer”, “layer thickness of orientation control layer”, and “layer thickness of film thickness adjusting layer” were determined. The “layer thickness of the crystal grain size control layer” was calculated by subtracting the “layer thickness of the orientation control layer” from the “total thickness of the crystal grain size control layer and the orientation control layer”.
(2) Preferential orientation plane: The preferential orientation plane of the dielectric crystal is determined by measuring the ferroelectric thin film with an X-ray diffractometer (XRD; manufactured by Bruker: MXP18HF), and has the highest intensity among the obtained diffraction results. The orientation plane was designated as the preferential orientation plane.
(3) Degree of orientation: The degree of orientation in the (100) plane of the dielectric crystal is determined from the diffraction result obtained in (2) above: (100) plane strength / ((100) plane strength + (110) plane) (Intensity + (111) plane strength)).
(4) Average particle size: The average particle size of the dielectric crystal is obtained by photographing the surface of the ferroelectric thin film with a scanning electron microscope (SEM; manufactured by HITACHI: S-900) and showing it in an electron micrograph (surface image). For 30 arbitrary crystal particles, the particle size (longest diameter and shortest diameter) of the crystal particles was measured using calipers, and the average particle diameter was calculated from these measurement results.

表3、表4及び図3、図4から明らかなように、配向制御層の厚さを30nm〜150nmの範囲内とした実施例1〜20では、0.78〜0.91と高い配向度で(100)面に優先的に結晶配向が制御された強誘電体薄膜を得ることができた。また、膜厚調整層を設けた実施例4、5、8〜11、13〜18でも、(100)面が優先的に結晶配向していることから、膜厚調整層は配向制御層の優先配向面と同じ結晶配向面が維持されていること、この膜厚調整層によって(100)面に優先的に結晶配向が制御された強誘電体薄膜の厚さを任意に調整することが可能であることが確認された。   As is clear from Tables 3 and 4 and FIGS. 3 and 4, in Examples 1 to 20 in which the thickness of the orientation control layer was in the range of 30 nm to 150 nm, the degree of orientation was as high as 0.78 to 0.91. Thus, a ferroelectric thin film in which the crystal orientation was preferentially controlled on the (100) plane could be obtained. In Examples 4, 5, 8-11, and 13-18, in which the film thickness adjusting layer is provided, the (100) plane is preferentially crystallized, so that the film thickness adjusting layer is a priority of the orientation control layer. The same crystal orientation plane as the orientation plane is maintained, and the thickness of the ferroelectric thin film whose crystal orientation is preferentially controlled to the (100) plane can be arbitrarily adjusted by this film thickness adjusting layer. It was confirmed that there was.

一方、配向制御層の厚さが20nmの比較例1では(110)面が優先配向されてしまい、配向制御層の厚さが170nmの比較例2では(111)面が優先配向されてしまい、配向制御層の厚さが270nmの比較例3では(111)面が優先配向されていた。   On the other hand, in Comparative Example 1 where the thickness of the orientation control layer is 20 nm, the (110) plane is preferentially oriented, and in Comparative Example 2 where the thickness of the orientation control layer is 170 nm, the (111) plane is preferentially oriented. In Comparative Example 3 where the thickness of the orientation control layer was 270 nm, the (111) plane was preferentially oriented.

また、図5、図6からも明らかなように、実施例2〜12の結晶粒径制御層を設けずに形成した強誘電体薄膜に比べて、実施例13〜20の結晶粒径制御層を設け、その上に形成した強誘電体薄膜は、最表層における平均粒子径が非常に微細な結晶組織になることが確認された。   As apparent from FIGS. 5 and 6, the crystal grain size control layers of Examples 13 to 20 are compared with the ferroelectric thin film formed without providing the crystal grain size control layers of Examples 2 to 12. It was confirmed that the ferroelectric thin film formed thereon had a crystal structure with a very fine average particle diameter in the outermost layer.

本発明の製造方法では、(100)面に優先的に結晶配向した強誘電体薄膜をシード層やバッファ層を設けることなく、簡便に得ることができ、また得られた(100)面優先配向のPZT膜などのPb含有ペロブスカイト型強誘電体薄膜は、大きなe31圧電定数をもち、アクチュエータ、センサー、ジャイロ、インクジェットヘッド、オートフォーカスなどMEMSアプリケーションとして用いることができる。 In the production method of the present invention, a ferroelectric thin film preferentially crystallized on the (100) plane can be easily obtained without providing a seed layer or a buffer layer, and the obtained (100) plane preferred orientation is obtained. Pb-containing perovskite ferroelectric thin films such as PZT films have a large e 31 piezoelectric constant and can be used for MEMS applications such as actuators, sensors, gyros, inkjet heads, and autofocus.

10 基板
11 下部電極
12 結晶粒径制御層
13 配向制御層(下地層)
14 膜厚調整層
10 Substrate 11 Lower electrode 12 Crystal grain size control layer 13 Orientation control layer (underlayer)
14 Thickness adjustment layer

本発明は、(100)面に優先的に結晶配向が制御されたPZT強誘電体薄膜を簡便に製造する方法に関する。 The present invention relates to a method for easily producing a PZT ferroelectric thin film whose crystal orientation is preferentially controlled in the (100) plane.

本発明の目的は、配向制御層の結晶の異常粒成長を抑制することにより、微細な結晶組織で(100)面に優先的に結晶配向した配向制御層を有するPZT強誘電体薄膜の製造方法を提供することにある。 An object of the present invention is to produce a PZT ferroelectric thin film having an orientation control layer preferentially crystallized in the (100) plane with a fine crystal structure by suppressing the abnormal grain growth of crystals in the orientation control layer. Is to provide.

本発明の別の目的は、(100)面に優先的に結晶配向が制御された強誘電体薄膜の膜厚をその用途に合わせて任意に調整することが可能な、PZT強誘電体薄膜の製造方法を提供することにある。 Another object of the present invention is to provide a PZT ferroelectric thin film capable of arbitrarily adjusting the film thickness of a ferroelectric thin film whose crystal orientation is preferentially controlled on the (100) plane according to the application. It is to provide a manufacturing method.

本発明の第1の観点は、図2に示すように、結晶面が(111)軸方向に配向した下部電極を有する基板の前記下部電極上に、Pb化合物及びTi化合物を含む第1強誘電体薄膜形成用組成物を塗布、仮焼して層厚が1nm〜10nmの結晶粒径制御層を形成し、前記結晶粒径制御層の上にPb化合物、Zr化合物及びTi化合物を含む第2強誘電体薄膜形成用組成物を塗布し、仮焼した後、焼成して配向制御層を形成し、前記第2強誘電体薄膜形成用組成物の塗布量を前記配向制御層の結晶化後の層厚が45nm〜150nmの範囲内になるように設定して前記配向制御層の優先的な結晶配向を(100)面にし、かつ最表層における平均粒子径を0.14以下の範囲にすることを特徴とする。 As shown in FIG. 2, the first aspect of the present invention is a first ferroelectric containing a Pb compound and a Ti compound on the lower electrode of a substrate having a lower electrode whose crystal plane is oriented in the (111) axis direction. A body thin film forming composition is applied and calcined to form a crystal grain size control layer having a layer thickness of 1 nm to 10 nm. A Pb compound, a Zr compound, and a Ti compound are included on the crystal grain size control layer . (2) A composition for forming a ferroelectric thin film is applied, calcined, and then fired to form an orientation control layer, and the coating amount of the second ferroelectric thin film formation composition is crystallized in the orientation control layer. The subsequent layer thickness is set in the range of 45 nm to 150 nm so that the preferential crystal orientation of the orientation control layer is the (100) plane , and the average particle size in the outermost layer is 0.14 or less. It is characterized by a range .

本発明の第の観点は、第1の観点に基づく発明であって、第2強誘電体薄膜形成用組成物の一部を結晶粒径制御層12の上に塗布、仮焼、焼成して配向制御層13を形成した後に、第2強誘電体薄膜形成用組成物の残部を配向制御層13上に塗布、仮焼、焼成して配向制御層13の結晶配向と同じ結晶配向を有する膜厚調整層14を形成することを特徴とする。 The second aspect of the present invention is an invention based on the first viewpoint, applying a portion of the second ferroelectric thin film-forming composition on the crystal grain diameter control layer 12, calcination, After forming the orientation control layer 13 by firing, the rest of the composition for forming the second ferroelectric thin film is applied on the orientation control layer 13, calcined, and fired to obtain the same crystal orientation as the crystal orientation of the orientation control layer 13. It is characterized by forming a film thickness adjusting layer 14 having

本発明の第1の観点では、結晶面が(111)軸方向に配向した下部電極を有する基板の下部電極上に、Pb化合物及びTi化合物を含む第1強誘電体薄膜形成用組成物を塗布、仮焼して層厚が1nm〜10nmの結晶粒径制御層を形成し、前記結晶粒径制御層の上にPb化合物、Zr化合物及びTi化合物を含む第2強誘電体薄膜形成用組成物を塗布、仮焼した後、焼成して配向制御層を形成し、第2強誘電体薄膜形成用組成物の塗布量を前記配向制御層の結晶化後の層厚が45nm〜150nmの範囲内になるように設定して前記配向制御層の優先的な結晶配向を(100)面にし、かつ最表層における平均粒子径を0.14以下の範囲にする。このように、結晶粒径制御層を形成した後で、この結晶粒径制御層の上に配向制御層を設けることにより、配向制御層の結晶の異常粒成長が抑制でき、この結果、配向制御層を微細な結晶組織で(100)面に優先的に結晶配向させることができる。 In the first aspect of the present invention, a first ferroelectric thin film forming composition containing a Pb compound and a Ti compound is applied on a lower electrode of a substrate having a lower electrode whose crystal plane is oriented in the (111) axial direction. And calcining to form a crystal grain size control layer having a layer thickness of 1 nm to 10 nm, and a composition for forming a second ferroelectric thin film comprising a Pb compound, a Zr compound and a Ti compound on the crystal grain size control layer After the product is applied and calcined, it is baked to form an orientation control layer, and the coating thickness of the second ferroelectric thin film forming composition is 45 nm to 150 nm after crystallization of the orientation control layer. The preferential crystal orientation of the orientation control layer is set to the (100) plane , and the average particle diameter in the outermost layer is set to a range of 0.14 or less . Thus, after forming the crystal grain size control layer, by providing the orientation control layer on the crystal grain size control layer, abnormal grain growth of the crystals in the orientation control layer can be suppressed. As a result, the orientation control is controlled. The layer can be preferentially crystallized in the (100) plane with a fine crystal structure.

次に本発明を実施するための形態を図面に基づいて説明する。
本発明は、図2に示すように、結晶面が(111)軸方向に配向した下部電極11を有する基板10の下部電極11上に、強強誘電体薄膜形成用組成物を塗布し、加熱して結晶化させることにより下部電極11上にPZT強誘電体薄膜(以下、単に「強誘電体薄膜」という。)13を製造する方法の改良である。
Next, an embodiment for carrying out the present invention will be described with reference to the drawings.
In the present invention, as shown in FIG. 2, a ferroelectric thin film forming composition is applied on a lower electrode 11 of a substrate 10 having a lower electrode 11 whose crystal plane is oriented in the (111) axis direction, and heated. This is an improvement of a method of manufacturing a PZT ferroelectric thin film (hereinafter simply referred to as “ferroelectric thin film”) 13 on the lower electrode 11 by crystallization.

本発明の特徴ある構成は、Pb化合物及びTi化合物を含む第1強誘電体薄膜形成用組成物を下部電極11上に塗布し、仮焼して層厚が1nm〜10nmの結晶粒径制御層12を形成し、この結晶粒径制御層12の上にPb化合物、Zr化合物及びTi化合物を含む第2強誘電体薄膜形成用組成物を塗布、仮焼した後、焼成して配向制御層を形成し、第2強誘電体薄膜形成用組成物の塗布量を配向制御層13の結晶化後の層厚が45nm〜150nmの範囲内になるように設定して配向制御層13の優先的な結晶配向を(100)面にし、かつ最表層における平均粒子径を0.14以下の範囲にするところにある。このように、形成する配向制御層13の結晶化後の層厚を45nm〜150nmの範囲内にすることで、(100)面に優先的に結晶配向が制御されたPZT強誘電体薄膜をシード層やバッファ層を設けることなく、簡便に得ることができる。このように、結晶化後の層厚を上記範囲内にすることで、得られる配向制御層13を(100)面に優先的に結晶配向させることができるのは、表面エネルギーが最小になるように自己配向することによるものと推察される。配向制御層13の結晶化後の層厚は45nm〜150nmである。45nm未満では(110)配向などの他の配向となるため好ましくなく、150nmを超えると同様に他の配向となるため好ましくないからである。更に好ましくは45nm〜90nmである。この好ましい範囲の理由は、45nm未満では仮焼条件の最適な温度幅が狭く安定して(100)配向を得るのが困難であるからであり、90nmを超えると同様に仮焼の最適温度が狭くなるためであるからである。また結晶粒径制御層12を形成した後で、この結晶粒径制御層12の上に配向制御層を設けることによって、核の発生密度が高められるので、配向制御層13の結晶の異常粒成長が抑制することができ、結果として、微細な結晶組織で(100)面に優先的に結晶配向した配向制御層13を得ることができる。 A characteristic configuration of the present invention is that a first ferroelectric thin film forming composition containing a Pb compound and a Ti compound is applied onto the lower electrode 11 and calcined to obtain a crystal grain size control layer having a thickness of 1 nm to 10 nm. 12 is formed, the Pb compound on the grain size control layer 12 is coated with a second ferroelectric thin film-forming composition comprising a Zr compound and Ti compound, after calcination, the orientation control layer by firing And setting the coating amount of the second ferroelectric thin film forming composition so that the layer thickness after crystallization of the orientation control layer 13 is in the range of 45 nm to 150 nm. The crystal orientation is the (100) plane , and the average particle diameter in the outermost layer is in the range of 0.14 or less . Thus, the PZT ferroelectric thin film whose crystal orientation is preferentially controlled on the (100) plane is obtained by setting the thickness of the orientation control layer 13 to be formed after crystallization within the range of 45 nm to 150 nm. It can be easily obtained without providing a seed layer or a buffer layer. Thus, by setting the layer thickness after crystallization within the above range, the resulting orientation control layer 13 can be preferentially crystallized in the (100) plane so that the surface energy is minimized. This is probably due to self-orientation. The layer thickness of the orientation control layer 13 after crystallization is 45 nm to 150 nm. If it is less than 45 nm, it is not preferable because other orientations such as (110) orientation are obtained, and if it exceeds 150 nm, other orientations are similarly undesirable. More preferably, it is 45 nm-90 nm. The reason for this preferable range is that if the temperature range is less than 45 nm, the optimum temperature range of the calcining conditions is narrow and it is difficult to stably obtain (100) orientation. This is because it becomes narrower. Further, by forming an orientation control layer on the crystal grain size control layer 12 after forming the crystal grain size control layer 12, the generation density of nuclei can be increased, so that abnormal grain growth of crystals in the orientation control layer 13 can be achieved. As a result, it is possible to obtain the orientation control layer 13 having a fine crystal structure and crystal orientation preferentially in the (100) plane.

強誘電体薄膜を製造する基板10としては、シリコン基板やサファイア基板などの耐熱性基板が用いられる。また、この基板10上に形成する結晶面が(111)軸方向に配向した下部電極11としては、PtやIr、Ruなどの導電性を有し、強誘電体薄膜と反応しない材料が用いられる。製造する強誘電体薄膜はPb含有ペロブスカイト型酸化物であるPZTであるAs the substrate 10 for manufacturing the ferroelectric thin film, a heat resistant substrate such as a silicon substrate or a sapphire substrate is used. Further, as the lower electrode 11 in which the crystal plane formed on the substrate 10 is oriented in the (111) axis direction, a material having conductivity such as Pt, Ir, Ru, etc., which does not react with the ferroelectric thin film is used. . Ferroelectric thin film manufacturing is P ZT Ru Pb containing perovskite oxide der.

複合金属酸化物原料は、Pb、Zr及びTiの各金属元素に、有機基がその酸素又は窒素原子を介して結合している化合物が好適である。例えば、金属アルコキシド、金属ジオール錯体、金属トリオール錯体、金属カルボン酸塩、金属β−ジケトネート錯体、金属β−ジケトエステル錯体、金属β−イミノケト錯体、及び金属アミノ錯体からなる群より選ばれた1種又は2種以上が例示される。特に好適な化合物は、金属アルコキシド、その部分加水分解物、有機酸塩である。このうち、Pb化合物としては、酢酸塩(酢酸鉛:Pb(OAc 2 )、鉛ジイソプロポキシド:Pb(OiPr 2 どが挙げられる。Ti化合物としては、チタンテトラエトキシド:Ti(OEt)4、チタンテトライソプロポキシド:Ti(OiPr)4、チタンテトラn−ブトキシド:Ti(OiBu)4、チタンテトライソブトキシド:Ti(OiBu)4、チタンテトラt−ブトキシド:Ti(OtBu)4、チタンジメトキシジイソプロポキシド:Ti(OMe)2(OiPr)2などのアルコキシドが挙げられる。Zr化合物としては、上記Ti化合物と同様なアルコキシド類が好ましい。金属アルコキシドはそのまま使用しても良いが、分解を促進させるためにその部分加水分解物を使用しても良い。 The composite metal oxide raw material is preferably a compound in which an organic group is bonded to each metal element of Pb , Zr, and Ti via an oxygen or nitrogen atom. For example, one kind selected from the group consisting of metal alkoxide, metal diol complex, metal triol complex, metal carboxylate, metal β-diketonate complex, metal β-diketoester complex, metal β-iminoketo complex, and metal amino complex Or 2 or more types are illustrated. Particularly suitable compounds are metal alkoxides, partial hydrolysates thereof, and organic acid salts. Among them, as a Pb compound, acetate (lead acetate: Pb (OAc) 2), lead diisopropoxide: Pb (OiPr) 2, etc. can be mentioned. As the Ti compound, titanium tetraethoxide: Ti (OEt) 4 , titanium tetraisopropoxide: Ti (OiPr) 4 , titanium tetra n-butoxide: Ti (OiBu) 4 , titanium tetraisobutoxide: Ti (OiBu) 4 And alkoxides such as titanium tetra-t-butoxide: Ti (OtBu) 4 and titanium dimethoxydiisopropoxide: Ti (OMe) 2 (OiPr) 2 . The Zr compound is preferably an alkoxide similar to the Ti compound. Although the metal alkoxide may be used as it is, a partially hydrolyzed product thereof may be used in order to promote decomposition.

<実施例11>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後2000rpmで20秒間の条件で、上記調製した12質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、175℃で5分間加熱して乾燥・仮焼成を行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚60nmの配向制御層を得た。次に、配向制御層上に、スピンコート法により、3000rpmで15秒間の条件で、上記調製した10質量%濃度の膜厚調整層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、300℃で5分間加熱して乾燥・仮焼成を行った。この膜厚調整層用組成物の塗布、仮焼成の工程を6回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚270nmの膜厚調整層を得た。これを実施例11の強誘電体薄膜とした。
<Example 11>
A substrate similar to that in Example 1 was prepared, and the above prepared 12 mass% concentration control was performed on the Pt lower electrode film of this substrate by spin coating at 500 rpm for 3 seconds and then at 2000 rpm for 20 seconds. The layer composition was applied. Subsequently, after drying and pre-baking by heating at 175 ° C. for 5 minutes in an air atmosphere using a hot plate, main baking is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a heating rate of 10 ° C./second. This was crystallized to obtain an orientation control layer having a layer thickness of 60 nm . Next, the composition for film thickness adjusting layer having a concentration of 10% by mass prepared above was applied on the orientation control layer by spin coating under conditions of 3000 rpm for 15 seconds. Subsequently, drying and pre-baking were performed by heating at 300 ° C. for 5 minutes in an air atmosphere using a hot plate. After repeating the steps of applying the film thickness adjusting layer composition and pre-baking 6 times, the film was crystallized by performing main baking at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second, A film thickness adjusting layer having a thickness of 270 nm was obtained. This was designated as the ferroelectric thin film of Example 11.

<比較例2>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後3000rpmで20秒間の条件で、上記調製した11質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った。この配向制御層用組成物の塗布、仮焼成の工程を3回行った後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚170nmの配向制御層を得た。この配向制御層上には膜厚調整層を形成しなかった。これを比較例2の強誘電体薄膜とした。
<Comparative example 2>
A substrate similar to that in Example 1 was prepared, and the above prepared 11 mass% concentration control was performed on the Pt lower electrode film of the substrate by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 20 seconds. The layer composition was applied. Subsequently, using a hot plate, drying and pre-baking were performed by heating at 200 ° C. for 5 minutes in an air atmosphere. After performing the steps of applying the composition for orientation control layer and pre-firing three times, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer thickness A 170 nm orientation control layer was obtained. No film thickness adjusting layer was formed on this orientation control layer. This was used as the ferroelectric thin film of Comparative Example 2.

<比較例3>
実施例1と同様の基板を用意し、この基板のPt下部電極膜上に、スピンコート法により、500rpmで3秒間、その後3000rpmで20秒間の条件で、上記調製した10質量%濃度の配向制御層用組成物を塗布した。続いて、ホットプレートを用い、大気雰囲気中、200℃で5分間加熱して乾燥・仮焼成を行った。この配向制御層用組成物の塗布、仮焼成の工程を6回繰り返した後、昇温速度10℃/秒で酸素雰囲気中700℃、1分間加熱する本焼成を行って結晶化させ、層厚270nmの配向制御層を得た。この配向制御層上には膜厚調整層を形成しなかった。これを比較例3の強誘電体薄膜とした。
<Comparative Example 3>
A substrate similar to that of Example 1 was prepared, and the above prepared 10 mass% concentration control was performed on the Pt lower electrode film of the substrate by spin coating at 500 rpm for 3 seconds and then at 3000 rpm for 20 seconds. The layer composition was applied. Subsequently, using a hot plate, drying and pre-baking were performed by heating at 200 ° C. for 5 minutes in an air atmosphere. After repeating the steps of applying the composition for orientation control layer and pre-firing six times, the main calcination is performed by heating at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the layer thickness. A 270 nm orientation control layer was obtained. No film thickness adjusting layer was formed on this orientation control layer. This was used as the ferroelectric thin film of Comparative Example 3 .

また、図5、図6からも明らかなように、実施例1〜11の結晶粒径制御層を設けずに形成した強誘電体薄膜に比べて、実施例12〜20の結晶粒径制御層を設け、その上に形成した強誘電体薄膜は、最表層における平均粒子径が非常に微細な結晶組織になることが確認された。 As apparent from FIGS. 5 and 6, the crystal grain size control layers of Examples 12 to 20 are compared with the ferroelectric thin film formed without providing the crystal grain size control layers of Examples 1 to 11. It was confirmed that the ferroelectric thin film formed thereon had a crystal structure with a very fine average particle diameter in the outermost layer.

Claims (8)

結晶面が(111)軸方向に配向した下部電極を有する基板の前記下部電極上に、強誘電体薄膜形成用組成物を塗布し、仮焼した後、焼成して結晶化させることにより前記下部電極上に強誘電体薄膜を製造する方法において、
前記強誘電体薄膜形成用組成物を前記下部電極上に塗布、仮焼して層厚が1nm〜10nmの結晶粒径制御層を形成し、前記結晶粒径制御層の上に前記強誘電体薄膜形成用組成物を塗布、仮焼した後、焼成して配向制御層を形成し、
前記強誘電体薄膜形成用組成物の塗布量を前記配向制御層の結晶化後の層厚が35nm〜150nmの範囲内になるように設定して前記配向制御層の優先的な結晶配向を(100)面にすることを特徴とする強誘電体薄膜の製造方法。
The composition for forming a ferroelectric thin film is applied on the lower electrode of the substrate having the lower electrode with the crystal plane oriented in the (111) axis direction, calcined, and then fired to crystallize the lower electrode. In a method of manufacturing a ferroelectric thin film on an electrode,
The ferroelectric thin film forming composition is applied on the lower electrode and calcined to form a crystal grain size control layer having a layer thickness of 1 nm to 10 nm, and the ferroelectric material is formed on the crystal grain size control layer. After applying and calcining the thin film forming composition , firing to form an orientation control layer,
The application amount of the composition for forming a ferroelectric thin film is set so that the layer thickness after crystallization of the orientation control layer is in the range of 35 nm to 150 nm, and the preferential crystal orientation of the orientation control layer is ( 100) A method for producing a ferroelectric thin film, characterized in that the surface is a plane.
前記結晶粒径制御層を形成するための仮焼温度が175℃〜315℃の範囲内にある請求項1記載の強誘電体薄膜の製造方法。 The method for producing a ferroelectric thin film according to claim 1, wherein a calcination temperature for forming the crystal grain size control layer is in a range of 175 ° C to 315 ° C. 前記強誘電体薄膜形成用組成物の一部を前記下部電極上に塗布、仮焼、焼成して配向制御層を形成した後に、前記強誘電体薄膜形成用組成物の残部を前記配向制御層上に塗布、仮焼、焼成して前記配向制御層の結晶配向と同じ結晶配向を有する膜厚調整層を形成する請求項1又は2記載の強誘電体薄膜の製造方法。 A portion of the composition for forming a ferroelectric thin film is applied on the lower electrode, calcined, and baked to form an orientation control layer, and then the remainder of the composition for forming a ferroelectric thin film is transferred to the orientation control layer. The method for producing a ferroelectric thin film according to claim 1 or 2 , wherein a film thickness adjusting layer having the same crystal orientation as that of the orientation control layer is formed by coating, calcining and firing. 前記強誘電体薄膜形成用組成物の残部を塗布した後の前記膜厚調整層を形成するための仮焼温度が200℃〜450℃の範囲内にある請求項記載の強誘電体薄膜の製造方法。 4. The ferroelectric thin film according to claim 3 , wherein a calcining temperature for forming the film thickness adjusting layer after applying the remainder of the composition for forming a ferroelectric thin film is in a range of 200 ° C. to 450 ° C. 5. Production method. 前記強誘電体薄膜がPb含有ペロブスカイト型酸化物であり、前記強誘電体薄膜形成用組成物がβ−ジケトン類及び多価アルコール類を含んでいる請求項1ないし4いずれか1項に記載の強誘電体薄膜の製造方法。 The ferroelectric thin film is a Pb-containing perovskite oxide, according to the ferroelectric thin film-forming composition β- diketones and one of claims 4 or claims 1 contains a polyhydric alcohol A method of manufacturing a ferroelectric thin film. 前記β−ジケトン類がアセチルアセトンであり、前記多価アルコール類がプロピレングリコールである請求項記載の強誘電体薄膜の製造方法。 The method for producing a ferroelectric thin film according to claim 5, wherein the β-diketone is acetylacetone and the polyhydric alcohol is propylene glycol. 請求項1ないしいずれか1項に記載の方法により製造された(100)面に優先的に結晶配向した強誘電体薄膜。 It claims 1 to ferroelectric thin film crystal orientation preferentially to the (100) plane produced by the method according to any of the preceding paragraphs. 請求項記載の強誘電体薄膜を有する薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、又はLCノイズフィルタ素子の複合電子部品。 A thin film capacitor having a ferroelectric thin film according to claim 7 , a capacitor, an IPD, a DRAM memory capacitor, a multilayer capacitor, a gate insulator of a transistor, a nonvolatile memory, a pyroelectric infrared detection element, a piezoelectric element, an electro-optical element, Composite electronic parts of actuators, resonators, ultrasonic motors, or LC noise filter elements.
JP2014071589A 2011-05-17 2014-03-31 Method for manufacturing PZT ferroelectric thin film Active JP5644975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071589A JP5644975B2 (en) 2011-05-17 2014-03-31 Method for manufacturing PZT ferroelectric thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011110680 2011-05-17
JP2011110680 2011-05-17
JP2014071589A JP5644975B2 (en) 2011-05-17 2014-03-31 Method for manufacturing PZT ferroelectric thin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012073402A Division JP5613910B2 (en) 2011-05-17 2012-03-28 Method for manufacturing PZT ferroelectric thin film

Publications (2)

Publication Number Publication Date
JP2014168072A true JP2014168072A (en) 2014-09-11
JP5644975B2 JP5644975B2 (en) 2014-12-24

Family

ID=51617588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071589A Active JP5644975B2 (en) 2011-05-17 2014-03-31 Method for manufacturing PZT ferroelectric thin film

Country Status (1)

Country Link
JP (1) JP5644975B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116095A (en) * 1991-02-13 1994-04-26 Mitsubishi Materials Corp Method for controlling crystal orientation property of ferroelectric thin film
JPH0799252A (en) * 1993-06-22 1995-04-11 Sharp Corp Manufacture of ferroelectric film and semiconductor device using manufacture thereof
JPH10251022A (en) * 1997-03-10 1998-09-22 Mitsubishi Materials Corp Formation of thin pzt film, and thin pzt film
JP2004292218A (en) * 2003-03-26 2004-10-21 National Institute Of Advanced Industrial & Technology Ferroelectric film
JP2006199507A (en) * 2005-01-18 2006-08-03 National Institute Of Advanced Industrial & Technology Substrate for formation of (111)-oriented pzt-type dielectric film and (111)-oriented pzt-type dielectric film formed by using the substrate
JP2006332368A (en) * 2005-05-26 2006-12-07 Hitachi Cable Ltd Piezoelectric thin film element and its manufacturing method
JP2007277082A (en) * 2007-03-26 2007-10-25 Texas Instr Japan Ltd Method of forming ferroelectric film by sol-gel process and method of manufacturing capacitor
JP2008042069A (en) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd Piezoelectric element, and its manufacturing method
JP2010208915A (en) * 2009-03-12 2010-09-24 Mitsubishi Materials Corp Composition and method for forming ferroelectric thin film, and ferroelectric thin film formed by the method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116095A (en) * 1991-02-13 1994-04-26 Mitsubishi Materials Corp Method for controlling crystal orientation property of ferroelectric thin film
JPH0799252A (en) * 1993-06-22 1995-04-11 Sharp Corp Manufacture of ferroelectric film and semiconductor device using manufacture thereof
JPH10251022A (en) * 1997-03-10 1998-09-22 Mitsubishi Materials Corp Formation of thin pzt film, and thin pzt film
JP2004292218A (en) * 2003-03-26 2004-10-21 National Institute Of Advanced Industrial & Technology Ferroelectric film
JP2006199507A (en) * 2005-01-18 2006-08-03 National Institute Of Advanced Industrial & Technology Substrate for formation of (111)-oriented pzt-type dielectric film and (111)-oriented pzt-type dielectric film formed by using the substrate
JP2006332368A (en) * 2005-05-26 2006-12-07 Hitachi Cable Ltd Piezoelectric thin film element and its manufacturing method
JP2008042069A (en) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd Piezoelectric element, and its manufacturing method
JP2007277082A (en) * 2007-03-26 2007-10-25 Texas Instr Japan Ltd Method of forming ferroelectric film by sol-gel process and method of manufacturing capacitor
JP2010208915A (en) * 2009-03-12 2010-09-24 Mitsubishi Materials Corp Composition and method for forming ferroelectric thin film, and ferroelectric thin film formed by the method

Also Published As

Publication number Publication date
JP5644975B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5613910B2 (en) Method for manufacturing PZT ferroelectric thin film
JP5828293B2 (en) Method for manufacturing PZT ferroelectric thin film
KR102007543B1 (en) METHOD OF FORMING PNbZT FERROELECTRIC THIN FILM
KR102384736B1 (en) Mn-doped pzt-based piezoelectric film formation composition and mn-doped pzt-based piezoelectric film
JP2015065430A (en) PNbZT THIN FILM MANUFACTURING METHOD
JP6481394B2 (en) Mn-doped PZT piezoelectric film
JP6787172B2 (en) PZT-based ferroelectric thin film and its manufacturing method
JP2014103226A (en) Method for producing ferroelectric thin film
JP5644975B2 (en) Method for manufacturing PZT ferroelectric thin film
JP2010235402A (en) Composition for ferroelectric thin film formation, method for ferroelectric thin film formation and ferroelectric thin film formed by the method
JP5526591B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP6237399B2 (en) Ce-doped PZT piezoelectric film
JP5293347B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5644975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250