JP2014167925A - Method of producing composite electric wire - Google Patents

Method of producing composite electric wire Download PDF

Info

Publication number
JP2014167925A
JP2014167925A JP2014087984A JP2014087984A JP2014167925A JP 2014167925 A JP2014167925 A JP 2014167925A JP 2014087984 A JP2014087984 A JP 2014087984A JP 2014087984 A JP2014087984 A JP 2014087984A JP 2014167925 A JP2014167925 A JP 2014167925A
Authority
JP
Japan
Prior art keywords
continuous long
strength continuous
long fibers
electric wire
composite electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014087984A
Other languages
Japanese (ja)
Inventor
Hirotaka Kamijiyou
弘貴 上條
Toshiyuki Tachibana
敏行 立花
Toshihide Sugawara
寿秀 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOEI DENSHI KK
MARUHACHI KK
Railway Technical Research Institute
Original Assignee
KYOEI DENSHI KK
MARUHACHI KK
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOEI DENSHI KK, MARUHACHI KK, Railway Technical Research Institute filed Critical KYOEI DENSHI KK
Priority to JP2014087984A priority Critical patent/JP2014167925A/en
Publication of JP2014167925A publication Critical patent/JP2014167925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a composite electric wire which gives sufficient adhesion to both a conductive linear body and a plurality of high-strength continuous long fibers, and has high mechanical strength.SOLUTION: A method of producing a composite electric wire provided with a plurality of high-strength continuous long fibers along the longitudinal-direction axis includes a step of delivering a bundle of a high-strength continuous long fiber on a virtual plane, a fiber opening step of attracting the bundle flowing on the virtual plane in the direction vertical to the virtual plane and holding the positional state of the high-strength continuous long fibers, while imparting deflection to the high-strength continuous long fibers so as to be separated mutually in parallel, a plating step of applying a plating of a conductive material to the high-strength continuous long fibers and a recovery step of bundling the high-strength continuous long fibers together and recovering them continuously.

Description

本発明は、長手方向軸に沿って連続長繊維を与えた複合電線の製造方法に関し、特に、長手方向軸に沿って複数本の高強度連続長繊維を与えた複合電線の製造方法に関する。   The present invention relates to a method of manufacturing a composite electric wire provided with continuous long fibers along a longitudinal axis, and particularly relates to a method of manufacturing a composite electric wire provided with a plurality of high-strength continuous long fibers along a longitudinal axis.

主線となる導電性線状体の長手方向軸に沿って高強度連続長繊維を与えて機械的強度を高めた複合電線がある。かかる複合電線では、導電性線状体と高強度連続長繊維との接着が不十分であると、高強度連続長繊維の機械的性質を十分に複合電線に反映させることができない。   There is a composite electric wire in which mechanical strength is increased by giving high-strength continuous long fibers along the longitudinal axis of a conductive linear body serving as a main line. In such a composite electric wire, if the adhesion between the conductive linear body and the high-strength continuous long fiber is insufficient, the mechanical properties of the high-strength continuous long fiber cannot be sufficiently reflected in the composite electric wire.

ところで、このような複合電線の1つとして、正の線膨張係数を有する導電性材料に負の線膨張係数を有する高強度連続長繊維を与えて、熱膨張を抑えて機械的強度を高めた複合電線がある。かかる複合電線は、温度変化に伴う熱伸縮が問題となる場所で使用され、鉄道の電気施設用のトロリ線や吊架線などでも使用される。   By the way, as one of such composite electric wires, a high-strength continuous long fiber having a negative linear expansion coefficient is given to a conductive material having a positive linear expansion coefficient, thereby suppressing thermal expansion and increasing mechanical strength. There are composite wires. Such a composite electric wire is used in a place where thermal expansion and contraction due to a temperature change is a problem, and is also used for a trolley wire or a suspended wire for a railway electric facility.

例えば、特許文献1では、導電性線状体の外周部にその長手方向に沿って伸びる溝を設け、該溝内に負の線膨張係数を有する高分子材料からなるロッド状体、ヤーンプリプレグやシートプリプレグを巻いた繊維などの高強度連続長繊維を配置して、接着剤で固定した複合電線を開示している。導電性線状体に形成された溝内に高強度連続長繊維を外から連続的に一様に押し込むことができて、溝内の繊維を接着時に押さえ続けることができて接着性を向上させ、また繊維密度を向上させ、高強度連続長繊維の機械的性質を十分に複合電線に与えることができると述べている。   For example, in Patent Document 1, a groove extending along the longitudinal direction is provided in the outer peripheral portion of a conductive linear body, and a rod-shaped body made of a polymer material having a negative linear expansion coefficient, a yarn prepreg, A composite electric wire in which high-strength continuous long fibers such as fibers wound with a sheet prepreg are arranged and fixed with an adhesive is disclosed. High-strength continuous long fibers can be continuously and uniformly pushed into the grooves formed in the conductive linear body from the outside, and the fibers in the grooves can be kept pressed during bonding, improving adhesion. Furthermore, it states that the fiber density can be improved and the mechanical properties of high-strength continuous long fibers can be sufficiently imparted to the composite electric wire.

また、電線の長手方向軸に沿って複数の高強度連続長繊維を与えて機械的強度を高めた複合電線も知られている。   A composite electric wire is also known in which a plurality of high-strength continuous long fibers are provided along the longitudinal axis of the electric wire to increase the mechanical strength.

例えば、特許文献2では、負の線膨張係数を有する高分子材料からなる高強度連続長繊維の束の周囲を正の線膨張係数を有する導電性材料で包囲しつつ互いを機械的に強固に密着させて複合化させた複合電線を開示している。導電性材料からなる円筒管内に負の線膨張係数を有する高分子材料からなる高強度連続長繊維を複数挿入してこれをスエージング加工することで複合電線を得ている。   For example, in Patent Document 2, a bundle of high-strength continuous long fibers made of a polymer material having a negative coefficient of linear expansion is surrounded by a conductive material having a positive coefficient of linear expansion while mechanically reinforcing each other. A composite electric wire which is brought into close contact with each other is disclosed. A composite electric wire is obtained by inserting a plurality of high-strength continuous long fibers made of a polymer material having a negative linear expansion coefficient into a cylindrical tube made of a conductive material and swaging them.

特許文献2では、スエージング加工に先だって、高強度連続長繊維を束ねてその外周にメッキを与え、このメッキと同種類の導電性材料からなる円筒管内に高強度連続長繊維の束を挿入し、スエージング加工することで複合電線を得ている。かかる方法により、導電性材料と高強度連続長繊維体との接着強度が向上し、複合電線に高強度連続長繊維の機械的性質をより反映できることを述べている。   In Patent Document 2, prior to swaging, high-strength continuous long fibers are bundled and plated on the outer periphery, and a bundle of high-strength continuous long fibers is inserted into a cylindrical tube made of the same type of conductive material as this plating. The composite wire is obtained by swaging. It is stated that the adhesive strength between the conductive material and the high-strength continuous long fiber body is improved by this method, and the mechanical properties of the high-strength continuous long fiber can be more reflected in the composite electric wire.

特開2006−172838号公報JP 2006-172838 A 特開2008−235259号公報JP 2008-235259 A

上記したような熱膨張を抑えて機械的強度を高めた複合電線に限らず、複数の高強度連続長繊維を与えた複合電線では、複数の高強度連続長繊維のそれぞれと導電性線状体との接着が十分に得られなければ、高強度連続長繊維の高い機械的強度を効率よく複合電線に反映させることはできない。   In addition to the composite electric wires that suppress the thermal expansion as described above and increase the mechanical strength, in the composite electric wires provided with a plurality of high-strength continuous long fibers, each of the plurality of high-strength continuous long fibers and the conductive linear body In other words, the high mechanical strength of high-strength continuous long fibers cannot be efficiently reflected in the composite electric wire.

本発明は、かかる事情に鑑みてなされたものであって、その目的とするところは、導電性線状体と複数の高強度連続長繊維のそれぞれの接着を十分に与え、高い機械的強度を有する複合電線の製造方法を提供することである。   The present invention has been made in view of such circumstances, and the object of the present invention is to sufficiently provide adhesion between the conductive linear body and the plurality of high-strength continuous long fibers, and to provide high mechanical strength. It is providing the manufacturing method of the composite electric wire which has.

本発明による複合電線の製造方法は、長手方向軸に沿って複数本の高強度連続長繊維を与えた複合電線の製造方法であって、前記高強度連続長繊維の束を仮想平面上に送出するステップと、前記仮想平面上を流れる前記束を前記仮想平面と垂直方向へ吸引して撓みを与えて前記高強度連続長繊維を互いに平行になるように離間させつつその位置状態を保持させる開繊ステップと、前記高強度連続長繊維に導電性材料からなるメッキを施すメッキ施工ステップと、前記高強度連続長繊維を束ねて連続的に回収する回収ステップと、を含むことを特徴とする。   A method of manufacturing a composite wire according to the present invention is a method of manufacturing a composite wire in which a plurality of high-strength continuous long fibers are provided along a longitudinal axis, and the bundle of high-strength continuous long fibers is sent out on a virtual plane. A step of sucking the bundle flowing on the imaginary plane in a direction perpendicular to the imaginary plane to give a deflection, and separating the high-strength continuous long fibers so as to be parallel to each other while maintaining the position state thereof. The method includes a fiber step, a plating step for plating the high-strength continuous long fiber with a conductive material, and a collection step for continuously collecting the high-strength continuous long fiber by bundling.

かかる発明によれば、導電性線状体の少なくとも一部を担うメッキからなる導電性材料を直接、高強度連続長繊維のそれぞれに付与するステップを有し、導電性線状体と複数の高強度連続長繊維のそれぞれとの間の接着を十分に与え、高い機械的強度を有する複合電線を与え得るのである。また、高強度連続長繊維の表面に均一に導電性材料をメッキすることができて、長手方向への電気抵抗の分布のバラツキを減じることができる。さらに、導電性のより優れた電気抵抗の低く、発熱量の小さい複合電線を得ることができる。   According to such an invention, the method includes the step of directly applying to each of the high-strength continuous long fibers a conductive material made of plating that bears at least a part of the conductive linear body. Adhesion between each of the continuous strength continuous fibers can be sufficiently provided, and a composite electric wire having high mechanical strength can be provided. Further, the conductive material can be uniformly plated on the surface of the high-strength continuous long fiber, and variation in the distribution of electrical resistance in the longitudinal direction can be reduced. Furthermore, it is possible to obtain a composite electric wire with higher electrical conductivity and lower electrical resistance and less calorific value.

上記した発明において、前記回収ステップに続いて、前記高強度連続長繊維を撚り合わせた撚り合わせ繊維束を形成するステップを含むことを特徴としてもよい。さらに、前記撚り合わせ繊維束の複数をさらに撚り合わせるステップを含むことを特徴としてもよい。かかる発明によれば、複数本の高強度連続長繊維同士の相対的な位置変動を抑制できて、高い機械的強度を有する複合電線を与え得るのである。   The above-described invention may include a step of forming a twisted fiber bundle obtained by twisting the high-strength continuous long fibers after the recovery step. Furthermore, the method may further include a step of further twisting a plurality of the twisted fiber bundles. According to this invention, the relative position fluctuation | variation of several high intensity | strength continuous continuous fibers can be suppressed, and the composite electric wire which has high mechanical strength can be given.

更に、上記した発明において、前記高強度連続長繊維を導電性材料からなる導電性線状体に埋入させるステップを含むことを特徴としてもよい。かかる発明によれば、導電性線状体との主部と、高強度連続長繊維に与えられた導電性線状体の一部を担うメッキとを一体化させて、導電性線状体と複数の高強度連続長繊維のそれぞれとの間の接着を十分に与え、高い機械的強度を有する複合電線を与え得るのである。   Furthermore, the above-described invention may include a step of embedding the high-strength continuous long fibers in a conductive linear body made of a conductive material. According to this invention, the main part of the conductive linear body and the plating that bears a part of the conductive linear body given to the high-strength continuous long fibers are integrated, and the conductive linear body and Adhesion between each of the plurality of high-strength continuous long fibers can be sufficiently provided, and a composite electric wire having high mechanical strength can be provided.

更に、上記した発明において、前記メッキ施工ステップは、前記高強度連続長繊維のそれぞれに無電解メッキを施す無電解メッキ施工ステップと、無電解メッキを施された前記高強度連続長繊維のそれぞれに電解メッキを施す電解メッキ施工ステップとを含むことを特徴としてもよい。かかる発明によれば、導電性線状体の少なくとも一部を担うメッキからなる導電性材料を高強度連続長繊維のそれぞれに効率よく付与できるのである。   Furthermore, in the above-described invention, the plating step includes an electroless plating step for applying electroless plating to each of the high-strength continuous long fibers, and each of the high-strength continuous long fibers subjected to electroless plating. An electroplating application step for performing electroplating. According to this invention, a conductive material made of plating that bears at least part of the conductive linear body can be efficiently applied to each of the high-strength continuous long fibers.

更に、上記した発明において、前記無電解メッキ施工ステップと、前記電解メッキ施工ステップとの間に、前記高強度連続長繊維の束を仮想平面上に送出するステップと、前記仮想平面上で前記高強度連続長繊維を互いに平行になるように離間させつつその位置状態を保持させる第2の開繊ステップと、を含むことを特徴としてもよい。かかる発明によれば、導電性線状体の少なくとも一部を担う電解メッキからなる導電性材料を直接、高強度連続長繊維のそれぞれに効率よく付与できるのである。   Furthermore, in the above-described invention, between the electroless plating application step and the electrolytic plating application step, a step of sending the bundle of high-strength continuous long fibers onto a virtual plane; And a second opening step for maintaining the position state of the continuous continuous long-strand fibers while being spaced apart from each other in parallel with each other. According to this invention, the conductive material made of electrolytic plating that bears at least a part of the conductive linear body can be efficiently applied directly to each of the high-strength continuous long fibers.

更に、上記した発明において、前記導電性材料は実質的に銅合金からなり、前記電解メッキ施工ステップは、電解銅メッキを施すステップであることを特徴としてもよい。かかる発明によれば、導電性特性に優れる複合電線を与え得るのである。   Furthermore, in the above-described invention, the conductive material may be substantially made of a copper alloy, and the electrolytic plating application step may be a step of performing electrolytic copper plating. According to this invention, it is possible to provide a composite electric wire having excellent conductivity characteristics.

更に、上記した発明において、前記高強度連続長繊維は低熱膨張高分子材料からなることを特徴としてもよい。また、前記低熱膨張高分子材料は負の線膨張係数を有することを特徴としてもよい。かかる発明によれば、導電性線状体と複数の高強度連続長繊維のそれぞれとの間の接着が十分に与えられるから、低熱膨張高分子材料からなり、さらに負の線膨張係数を有するような場合であっても、機械的性質の異なる導電性線状体と高強度連続長繊維の間で互いに剥離などを生じさせることなく、高い機械的強度を有する複合電線を与え得るのである。   Furthermore, in the above-described invention, the high-strength continuous long fibers may be made of a low thermal expansion polymer material. The low thermal expansion polymer material may have a negative coefficient of linear expansion. According to such an invention, since the adhesion between the conductive linear body and each of the plurality of high-strength continuous long fibers is sufficiently provided, it is made of a low thermal expansion polymer material and further has a negative linear expansion coefficient. Even in such a case, a composite electric wire having high mechanical strength can be provided without causing separation between the conductive linear bodies having different mechanical properties and the high-strength continuous long fibers.

本発明による製造方法により製造される複合電線の斜視図である。It is a perspective view of the composite electric wire manufactured by the manufacturing method by this invention. 本発明による製造方法により製造される複合電線の断面図である。It is sectional drawing of the composite electric wire manufactured by the manufacturing method by this invention. 本発明による製造方法を示す工程図である。It is process drawing which shows the manufacturing method by this invention. 本発明による製造方法の一工程を表す図である。It is a figure showing 1 process of the manufacturing method by this invention. 本発明による製造方法の一工程を表す図である。It is a figure showing 1 process of the manufacturing method by this invention. 本発明による製造方法の一工程を表す図である。It is a figure showing 1 process of the manufacturing method by this invention. 本発明による製造方法の一工程を表す図である。It is a figure showing 1 process of the manufacturing method by this invention. 本発明による製造方法の一工程を表す図である。It is a figure showing 1 process of the manufacturing method by this invention.

まず、本発明による製造方法で得られる複合電線について図1及び2を用いてその詳細を説明する。   First, the details of the composite electric wire obtained by the manufacturing method according to the present invention will be described with reference to FIGS.

図1及び2に示すように、複合電線1は、電力を導くための長尺の電線であり、略円形状の断面を有する。複合電線1は、導電主線としての導電性線状体2と、導電性線状体2の機械的強度を高めるために芯線として与えられる高強度連続長繊維3とからなる。   As shown in FIGS. 1 and 2, the composite electric wire 1 is a long electric wire for guiding electric power and has a substantially circular cross section. The composite electric wire 1 includes a conductive linear body 2 as a conductive main line and high-strength continuous long fibers 3 provided as a core wire in order to increase the mechanical strength of the conductive linear body 2.

導電性線状体2は、電力輸送用の導電性材料からなり、例えば、銅又は銅系合金などの導電性の高い材料からなる。   The conductive linear body 2 is made of a conductive material for power transportation, and is made of a highly conductive material such as copper or a copper-based alloy, for example.

高強度連続長繊維3は、少なくとも導電性状体2よりも高い引張強度を有し、例えば、炭素繊維やアラミド繊維などの高強度繊維である。ここでは、温度変化による複合電線1の長手方向の伸びを低減させることを目的に、低熱膨張の高分子材料であって、負の熱膨張係数を有する高分子材料からなる連続長繊維である。高強度連続長繊維3の1本の繊維径は約10ミクロンである。   The high-strength continuous long fiber 3 has a tensile strength higher than that of the conductive material 2 and is, for example, a high-strength fiber such as carbon fiber or aramid fiber. Here, for the purpose of reducing the elongation in the longitudinal direction of the composite electric wire 1 due to a temperature change, it is a continuous long fiber made of a polymer material having a low thermal expansion coefficient and having a negative thermal expansion coefficient. One fiber diameter of the high-strength continuous long fiber 3 is about 10 microns.

高強度連続長繊維3は、複合電線1の長手方向中心軸、すなわち、導電性線状体2の長手方向中心軸近傍に集合配置され、かかる領域を長繊維集合領域4とする。長繊維集合領域4のマトリクス2’は、導電性状体2と実質的に同材料からなる。   The high-strength continuous long fibers 3 are collectively arranged in the vicinity of the central axis in the longitudinal direction of the composite electric wire 1, that is, in the vicinity of the central axis in the longitudinal direction of the conductive linear body 2. The matrix 2 ′ of the long fiber assembly region 4 is made of substantially the same material as that of the conductive body 2.

ところで、長繊維集合領域4内において、高強度連続長繊維3同士は互いに接触しておらず、高強度連続長繊維3の全てを1カ所に束ねたときに比べて、マトリクス2’との接触面積を増加させることができる。これによりマトリクス2’との強固な接着が得られる。また、マトリクス2’は導電性線状体2と実質的に同材料であるため、マトリクス2’と導電性線状体2とも強固に接着できる。つまり、高強度連続長繊維3を導電性線状体2に対して強固に固定できる。   By the way, in the long fiber assembly region 4, the high-strength continuous long fibers 3 are not in contact with each other, and compared with the case where all the high-strength continuous long fibers 3 are bundled in one place, the contact with the matrix 2 ′. The area can be increased. Thereby, strong adhesion with the matrix 2 'is obtained. Further, since the matrix 2 ′ is substantially the same material as the conductive linear body 2, the matrix 2 ′ and the conductive linear body 2 can be firmly bonded. That is, the high-strength continuous long fiber 3 can be firmly fixed to the conductive linear body 2.

ここで、複合電線1に与えられる熱履歴が大きくなっても、複数の高強度連続長繊維3のそれぞれがマトリクス2’で強固に固定されていることから、高強度連続長繊維3とマトリクス2’との間での線膨張係数の差による歪みをマトリクス2’で分散できる。故に、高強度連続長繊維3とマトリクス2’との間で剥離を生じないのである。つまり、負の線膨張係数を有するような高分子材料を適用しても、複数本の高強度連続長繊維3の1本1本と導電性線状体2との強固に接着でき、固定できる。   Here, even if the thermal history applied to the composite electric wire 1 is increased, each of the plurality of high-strength continuous long fibers 3 is firmly fixed by the matrix 2 ′. Distortion due to the difference in coefficient of linear expansion between the matrix 2 and the matrix 2 can be dispersed. Therefore, no peeling occurs between the high-strength continuous long fibers 3 and the matrix 2 '. That is, even when a polymer material having a negative linear expansion coefficient is applied, each of the plurality of high-strength continuous long fibers 3 and the conductive linear body 2 can be firmly bonded and fixed. .

次に上記したような複合電線1の製造方法について、図3に従って、図4乃至図8を適宜、用いてその詳細を説明する。   Next, the manufacturing method of the composite wire 1 as described above will be described in detail with reference to FIG.

図4を参照すると、高強度連続長繊維3を束ねた高強度連続長繊維集束体3aが仮想平面25上に送出されて(第1の送出工程:S1)、高強度連続長繊維3を1本ずつ仮想平面25上で平行になるように離間して配置した状態に開繊する(第1の開繊工程;S2)。詳細には、高強度連続長繊維集束体3aを巻回したボビン21から高強度連続長繊維集束体3aを仮想平面25上に向かって一方向に引き出し、開繊処理部22を通過する際に、その吸気管23の発生する下降気流によって下方向へ吸引して「撓み」を与える(図4(b)参照)。これにより、前記した引き出し方向と垂直の横方向にも拡がって高強度連続長繊維集束体3aが高強度連続長繊維3の1本ずつに開繊されるのである。   Referring to FIG. 4, a high-strength continuous long fiber bundle 3a in which high-strength continuous long fibers 3 are bundled is sent onto a virtual plane 25 (first sending step: S1). The fibers are opened in a state of being spaced apart so as to be parallel on the virtual plane 25 (first opening step; S2). Specifically, when the high-strength continuous long-fiber bundle 3a is pulled out in one direction from the bobbin 21 wound with the high-strength continuous long-fiber bundle 3a toward the virtual plane 25 and passes through the fiber opening processing unit 22. Then, the air is sucked downward by the downdraft generated by the intake pipe 23 to give “bend” (see FIG. 4B). As a result, the high-strength continuous long-fiber bundle 3a is spread in the lateral direction perpendicular to the above-described drawing direction, and the high-strength continuous long-fiber bundles 3a are opened one by one.

開繊された高強度連続長繊維集束体3aを開繊処理部22の後段にある後部ロール24で横方向位置をチャックしながら引き取る(開繊繊維3b)。つまり、開繊繊維3bは後部ロール24で引き取られた際に、仮想平面25上に互いに離間して並べられたままの状態で引き取られる。   The high-strength continuous long-fiber bundle 3a that has been opened is taken up while the lateral position is chucked by the rear roll 24 at the rear stage of the opening processing unit 22 (opened fiber 3b). That is, when the opened fiber 3b is taken up by the rear roll 24, the opened fiber 3b is taken up in a state of being arranged apart from each other on the virtual plane 25.

次に、開繊繊維3bの高強度連続長繊維3にメッキを施す(メッキ施工工程;S11)。なお、メッキ施工工程(S11)は、無電解メッキ工程(S3)、第2の送出工程(S4)第2の開繊工程(S5)、及び電解メッキ工程(S6)に細分化される。   Next, the high-strength continuous long fiber 3 of the spread fiber 3b is plated (plating process: S11). The plating process (S11) is subdivided into an electroless plating process (S3), a second delivery process (S4), a second opening process (S5), and an electrolytic plating process (S6).

図5を参照すると、無電解メッキ工程(S3)では、前処理として、イオン交換樹脂を原料とした前処理剤がスプレー31により開繊繊維3bの高強度連続長繊維3の各々の表面に塗布される。この開繊繊維3bは仮想平面26上に射影したときに互いに離間して並べられた状態のまま、メッキ槽32の中を通過せしめられる。前処理によるイオン交換により、金属イオンが開繊繊維3bの表面に付着し、マトリクス2’と同材料からなる析出物が生じる。これにより、開繊繊維3bの表面にはマトリクス2’と同材料からなる皮膜が形成される。なお、前処理に先立って、開繊繊維3bの高強度連続長繊維3の洗浄が行われ得る。   Referring to FIG. 5, in the electroless plating step (S3), as a pretreatment, a pretreatment agent made of an ion exchange resin as a raw material is applied to each surface of the high-strength continuous long fibers 3 of the spread fibers 3b by a spray 31. Is done. The spread fibers 3b are allowed to pass through the plating tank 32 while being arranged apart from each other when projected onto the virtual plane 26. Through ion exchange by pretreatment, metal ions adhere to the surface of the spread fiber 3b, and precipitates made of the same material as the matrix 2 'are generated. Thereby, a film made of the same material as the matrix 2 ′ is formed on the surface of the spread fiber 3 b. Prior to the pretreatment, the high-strength continuous long fibers 3 of the spread fibers 3b can be washed.

無電解メッキ工程(S3)において、開繊繊維3bは互いに離間して配置されているので開繊繊維3bの高強度連続長繊維3の1本1本に対して確実にメッキが与えられる。高分子材料からなる高強度連続長繊維3は、きわめて低い導電性であるが、無電解メッキ工程(S3)により、銅又は銅系合金などの導電性の高いマトリクス2’と同材料の皮膜を与えられることで、導電被膜繊維3cとなる。これにより、後述する電解メッキ工程(S6)で更に高速で導電性の高いマトリクス2’と同材料の皮膜を容易に与えることができるのである。   In the electroless plating step (S3), the spread fibers 3b are arranged so as to be spaced apart from each other, so that each of the high-strength continuous long fibers 3 of the spread fibers 3b is reliably plated. The high-strength continuous long fiber 3 made of a polymer material has a very low electrical conductivity, but the electroless plating step (S3) forms a coating of the same material as the highly conductive matrix 2 'such as copper or a copper-based alloy. By giving, it becomes the conductive coating fiber 3c. As a result, it is possible to easily provide a coating of the same material as the matrix 2 'having higher conductivity at a higher speed in the later-described electrolytic plating step (S6).

なお、無電解メッキ工程(S3)の後、導電被膜繊維3cに残存するメッキ液の液切りや、工場内の引き回し等を行うため、適宜、導電被膜繊維3cを束ねて図示しないローラなどに巻き取られる。そこで、後述する電解メッキ工程(S6)に先だって、巻き取られた導電被膜繊維3cを送出し(第2の送出工程;S4)、再び開繊する(第2の開繊工程;S5)。なお、第2の送出工程(S4)と第2の開繊工程(S5)はそれぞれ前述した第1の送出工程(S1)と第1の開繊工程(S2)と同様であるので、詳細な説明を省略する。   After the electroless plating step (S3), the conductive coating fiber 3c is appropriately bundled and wound around a roller (not shown) in order to drain the plating solution remaining on the conductive coating fiber 3c or route it in the factory. Taken. Therefore, prior to the electrolytic plating step (S6) described later, the wound conductive coating fiber 3c is sent out (second sending step; S4) and opened again (second opening step; S5). The second delivery step (S4) and the second opening step (S5) are the same as the first delivery step (S1) and the first opening step (S2), respectively. Description is omitted.

図6を参照すると、導電被膜繊維3cに電解メッキが施される(電解メッキ工程;S6)。詳細には、仮想平面27上に開繊された導電被膜繊維3cはメッキ槽42内において電解液を通過する。メッキ槽42内でその表面にマトリクス2’と同材料がメッキされる。導電被膜繊維3cにおいては、高い導電性を得ているため、マトリクス2’と同材料の皮膜を速やかに得ることができて、厚い被膜を短時間で得られる。また、第2の開繊工程(S5)により、導電被膜繊維3cの高強度連続長繊維3は仮想平面上に並べられた状態にあって、図示しない対向電極との電極間距離を一定にできる。故に、安定して厚いマトリクス2’と同材料の皮膜を与え得る。   Referring to FIG. 6, electrolytic plating is performed on the conductive coating fiber 3 c (electrolytic plating step; S <b> 6). Specifically, the conductive coating fiber 3 c opened on the virtual plane 27 passes through the electrolytic solution in the plating tank 42. The same material as the matrix 2 ′ is plated on the surface of the plating tank 42. Since the conductive coating fiber 3c has high conductivity, a coating of the same material as the matrix 2 'can be obtained quickly, and a thick coating can be obtained in a short time. Further, by the second fiber opening step (S5), the high-strength continuous long fibers 3 of the conductive coated fibers 3c are in a state of being arranged on a virtual plane, and the distance between the counter electrodes (not shown) can be made constant. . Therefore, a coating of the same material as the thick matrix 2 'can be stably provided.

導電被膜繊維3cは、マトリクス2’と同材料の電解メッキ皮膜を得てメッキ高強度連続長繊維3dとなる。なお、電解メッキ工程(S6)は、電解銅メッキからなるマトリクス2’を施す工程である。かかる場合、導電性線状体2も銅又は銅系合金であるから、導電性線状体2、及び、高強度連続長繊維3との接着がより強固になる。   The conductive coating fiber 3c obtains an electrolytic plating film made of the same material as that of the matrix 2 'and becomes a plated high-strength continuous long fiber 3d. The electrolytic plating step (S6) is a step of applying a matrix 2 'made of electrolytic copper plating. In this case, since the conductive linear body 2 is also copper or a copper-based alloy, the adhesion between the conductive linear body 2 and the high-strength continuous long fibers 3 is further strengthened.

図7を参照すると、メッキ高強度連続長繊維3dは、集束されて高強度連続長繊維束3eとされる(回収工程;S7)。詳細には、開繊したままのメッキ高強度連続長繊維3dは、これを束ねるガイド43に従って束ねられ、高強度連続長繊維束3eとなってボビン44に巻き取られる。   Referring to FIG. 7, the plated high-strength continuous long fibers 3d are converged into a high-strength continuous long fiber bundle 3e (recovery step; S7). Specifically, the plated high-strength continuous long fibers 3d that have been opened are bundled according to a guide 43 that bundles them, and are wound around the bobbin 44 as a high-strength continuous long-fiber bundle 3e.

続いて、高強度連続長繊維束3eを開いて、撚り合わせて、1次撚り合わせ繊維束を作製する(1次撚り合わせ工程;S8)。さらにかかる撚り合わせ繊維束の複数をさらに撚り合わせた2次撚り合わせ繊維束3fを形成する(2次撚り合わせ工程;S9)。なお、例えば、2次撚り合わせ工程(S9)を省略してもよい。また、1次撚り合わせ工程(S8)だけあってもよい。   Subsequently, the high-strength continuous long fiber bundle 3e is opened and twisted to produce a primary twisted fiber bundle (primary twisting step; S8). Further, a secondary twisted fiber bundle 3f is formed by further twisting a plurality of such twisted fiber bundles (secondary twisting step; S9). For example, the secondary twisting step (S9) may be omitted. Further, only the primary twisting step (S8) may be provided.

次に、2次撚り合わせ繊維束3fは導電性のマトリクス2’に埋入される(埋入工程;S10)。すなわち、導電性のマトリクス2’で2次撚り合わせ繊維束3fを被覆した複合電線1を得る。かかる埋入工程(S10)では、例えば、図8(a)及び(b)に示すように、筒状体である導電性のマトリクス2’の中空部に2次撚り合わせ繊維束3fを差し込み、これを4つのダイス45の中心45aに回転させながら送り込み、ダイス45により加圧鍛造するのである。かかるスエージング加工によれば、連続的に長尺の複合電線1を得ることができて好適であるが、他の公知の複合化手法も採用され得る。なお、埋入工程(S10)を省略してもよい。   Next, the secondary twisted fiber bundle 3f is embedded in the conductive matrix 2 '(embedding step; S10). That is, the composite electric wire 1 in which the secondary twisted fiber bundle 3f is covered with the conductive matrix 2 'is obtained. In the embedding step (S10), for example, as shown in FIGS. 8A and 8B, the secondary twisted fiber bundle 3f is inserted into the hollow portion of the conductive matrix 2 ′ that is a cylindrical body, This is fed while being rotated to the center 45 a of the four dies 45, and pressure forged by the dies 45. According to such swaging processing, it is preferable that the continuous composite electric wire 1 can be obtained continuously, but other known composite methods can also be adopted. The embedding step (S10) may be omitted.

以上のS1乃至S11のステップにより、導電性線状体2と複数の高強度連続長繊維3のそれぞれの接着を十分に与え、高い機械的強度を有する複合電線1を得ることができる。また、高強度連続長繊維3の表面に均一にマトリクス2’と同材料の皮膜をメッキにより与えることで、長手方向への電気抵抗の分布のバラツキを減じることができる。さらに、銅又は銅系合金などの導電性の高いマトリクス2’と同材料のメッキとすることで導電性のより優れた電気抵抗の低く、発熱量の小さい複合電線1を得ることができる。   By the steps S1 to S11 described above, it is possible to obtain the composite electric wire 1 having a high mechanical strength by sufficiently giving the respective adhesion between the conductive linear body 2 and the plurality of high-strength continuous long fibers 3. In addition, by uniformly coating the surface of the high-strength continuous long fiber 3 with the same material as that of the matrix 2 ′, variations in the distribution of electrical resistance in the longitudinal direction can be reduced. Furthermore, by using the same material as that of the highly conductive matrix 2 ′ such as copper or a copper-based alloy, the composite electric wire 1 having a higher electrical resistance and a lower electric resistance and a smaller calorific value can be obtained.

なお、本実施例において、メッキ施工工程(S11)は、無電解メッキ工程(S3)、第2の送出工程(S4)、第2の開繊工程(S5)、及び電解メッキ工程(S6)としたが、例えば無電解メッキ工程(S3)だけであってもよい。また、第2の送出工程(S4)と第2の開繊工程(S5)とを省略してもよい。   In this embodiment, the plating process (S11) includes an electroless plating process (S3), a second delivery process (S4), a second opening process (S5), and an electrolytic plating process (S6). However, for example, only the electroless plating step (S3) may be performed. Moreover, you may abbreviate | omit a 2nd delivery process (S4) and a 2nd fiber opening process (S5).

以上、本発明による代表的実施例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した請求項の範囲を逸脱することなく種々の代替実施例及び改変例を見出すことができるだろう。   As mentioned above, although the typical Example by this invention was described, this invention is not necessarily limited to this, A person skilled in the art will be able to perform various without departing from the gist of the present invention or the scope of the appended claims. Alternative embodiments and modifications may be found.

1 複合電線
2 導電性線状体
2’ マトリクス
3 高強度連続長繊維
4 長繊維集合領域
22 開繊処理部
32 無電解メッキ槽
42 電解メッキ槽
43 ガイド
44 ボビン
DESCRIPTION OF SYMBOLS 1 Composite electric wire 2 Conductive linear body 2 'Matrix 3 High-strength continuous long fiber 4 Long fiber gathering area | region 22 Opening process part 32 Electroless plating tank 42 Electrolytic plating tank 43 Guide 44 Bobbin

Claims (9)

長手方向軸に沿って複数本の高強度連続長繊維を与えた複合電線の製造方法であって、
前記高強度連続長繊維の束を仮想平面上に送出するステップと、
前記仮想平面上を流れる前記束を前記仮想平面と垂直方向へ吸引して撓みを与えて前記高強度連続長繊維を互いに平行になるように離間させつつその位置状態を保持させる開繊ステップと、
前記高強度連続長繊維に導電性材料からなるメッキを施すメッキ施工ステップと、
前記高強度連続長繊維を束ねて連続的に回収する回収ステップと、
を含むことを特徴とする複合電線の製造方法。
A method of manufacturing a composite electric wire provided with a plurality of high-strength continuous long fibers along a longitudinal axis,
Delivering the bundle of high-strength continuous filaments on a virtual plane;
A fiber opening step for sucking the bundle flowing on the virtual plane in a direction perpendicular to the virtual plane to give the deflection and maintaining the position state while separating the high-strength continuous long fibers so as to be parallel to each other;
A plating construction step of plating the high-strength continuous long fiber with a conductive material;
A recovery step of bundling the high-strength continuous long fibers and continuously recovering them;
The manufacturing method of the composite electric wire characterized by including.
前記回収ステップに続いて、前記高強度連続長繊維を撚り合わせた撚り合わせ繊維束を形成するステップを含むことを特徴とする請求項1記載の複合電線の製造方法。   2. The method of manufacturing a composite electric wire according to claim 1, further comprising a step of forming a twisted fiber bundle obtained by twisting the high-strength continuous long fibers after the collecting step. 前記撚り合わせ繊維束の複数をさらに撚り合わせるステップを含むことを特徴とする請求項2記載の複合電線の製造方法。   The method of manufacturing a composite electric wire according to claim 2, further comprising a step of twisting a plurality of the twisted fiber bundles. 前記高強度連続長繊維を導電性材料からなる導電性線状体に埋入させるステップを含むことを特徴とする請求項1乃至3のうちの1つに記載の複合電線の製造方法。   4. The method of manufacturing a composite electric wire according to claim 1, further comprising a step of embedding the high-strength continuous long fibers in a conductive linear body made of a conductive material. 前記メッキ施工ステップは、前記高強度連続長繊維のそれぞれに無電解メッキを施す無電解メッキ施工ステップと、無電解メッキを施された前記高強度連続長繊維のそれぞれに電解メッキを施す電解メッキ施工ステップとを含むことを特徴とする請求項1乃至4のうちの1つに記載の複合電線の製造方法。   The plating step includes electroless plating for applying electroless plating to each of the high-strength continuous long fibers, and electroplating for applying electrolytic plating to each of the high-strength continuous long fibers subjected to electroless plating. The method of manufacturing a composite wire according to claim 1, further comprising a step. 前記無電解メッキ施工ステップと、前記電解メッキ施工ステップとの間に、
前記高強度連続長繊維の束を仮想平面上に送出するステップと、
前記仮想平面上で前記高強度連続長繊維を互いに平行になるように離間させつつその位置状態を保持させる第2の開繊ステップと、を含むことを特徴とする請求項5記載の複合電線の製造方法。
Between the electroless plating construction step and the electrolytic plating construction step,
Delivering the bundle of high-strength continuous filaments on a virtual plane;
The second opening step of maintaining the position state while separating the high-strength continuous long fibers so as to be parallel to each other on the virtual plane, The composite electric wire according to claim 5, Production method.
前記導電性材料は実質的に銅合金からなり、前記電解メッキ施工ステップは、電解銅メッキを施すステップであることを特徴とする請求項5又は6に記載の複合電線の製造方法。   The method for manufacturing a composite electric wire according to claim 5 or 6, wherein the conductive material is substantially made of a copper alloy, and the electrolytic plating step is a step of performing electrolytic copper plating. 前記高強度連続長繊維は低熱膨張高分子材料からなることを特徴とする請求項1乃至7のうちの1つに記載の複合電線の製造方法。   8. The method of manufacturing a composite electric wire according to claim 1, wherein the high-strength continuous long fibers are made of a low thermal expansion polymer material. 前記低熱膨張高分子材料は負の線膨張係数を有することを特徴とする請求項8記載の複合電線の製造方法。
9. The method of manufacturing a composite electric wire according to claim 8, wherein the low thermal expansion polymer material has a negative coefficient of linear expansion.
JP2014087984A 2014-04-22 2014-04-22 Method of producing composite electric wire Pending JP2014167925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014087984A JP2014167925A (en) 2014-04-22 2014-04-22 Method of producing composite electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014087984A JP2014167925A (en) 2014-04-22 2014-04-22 Method of producing composite electric wire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010280368A Division JP5559672B2 (en) 2010-12-16 2010-12-16 Manufacturing method of composite wire

Publications (1)

Publication Number Publication Date
JP2014167925A true JP2014167925A (en) 2014-09-11

Family

ID=51617505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014087984A Pending JP2014167925A (en) 2014-04-22 2014-04-22 Method of producing composite electric wire

Country Status (1)

Country Link
JP (1) JP2014167925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017781B2 (en) 2018-03-31 2022-02-09 名古屋メッキ工業株式会社 Copper plating method for fibers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163197A (en) * 2003-11-28 2005-06-23 Mitsubishi Rayon Co Ltd Method for producing metal-coated carbon fiber
JP2008235259A (en) * 2007-02-19 2008-10-02 Railway Technical Res Inst Manufacture method of low thermal expansion linear body
JP2009256870A (en) * 2003-07-08 2009-11-05 Fukui Prefecture Method of spreading filament bundle and apparatus used in the method
JP2010100934A (en) * 2008-09-24 2010-05-06 Du Pont Toray Co Ltd Conductive high tenacity fiber yarn and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256870A (en) * 2003-07-08 2009-11-05 Fukui Prefecture Method of spreading filament bundle and apparatus used in the method
JP2005163197A (en) * 2003-11-28 2005-06-23 Mitsubishi Rayon Co Ltd Method for producing metal-coated carbon fiber
JP2008235259A (en) * 2007-02-19 2008-10-02 Railway Technical Res Inst Manufacture method of low thermal expansion linear body
JP2010100934A (en) * 2008-09-24 2010-05-06 Du Pont Toray Co Ltd Conductive high tenacity fiber yarn and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017781B2 (en) 2018-03-31 2022-02-09 名古屋メッキ工業株式会社 Copper plating method for fibers

Similar Documents

Publication Publication Date Title
JP2005523569A (en) Aluminum conductor composite core reinforced cable and manufacturing method
JP5437507B2 (en) Manufacturing method of low thermal expansion linear body
US10633756B2 (en) Plated fiber, carbon fiber, wire harness and plating method
JP6492979B2 (en) Glass fiber bundle and manufacturing method thereof
JP5559672B2 (en) Manufacturing method of composite wire
JP2014167925A (en) Method of producing composite electric wire
JP2015022948A (en) Electric wire for high frequency and method for producing the same
JP2013026077A (en) Covered wire and manufacturing method therefor
US20150262725A1 (en) Composite conductor
JP6399668B1 (en) Fiber conductor, fiber electric wire and manufacturing method thereof
JP5857993B2 (en) Flat cable
JP2016212960A (en) Polymer fiber conductive wire and manufacturing method thereof
KR20190037592A (en) Ovehead transmission system having an overrhead cable and construction method thereof
US20170018331A1 (en) Multi-core electric power metal conductive wire and method of manufacture thereof
CN208529718U (en) A kind of apparatus for shaping of flexible cable
KR101785890B1 (en) Central tension member for an overhead cable and the overhead cable comprising the same
US8471149B2 (en) Shielded electrical cable and method of making the same
CN113964610B (en) Carbon fiber cold and hot wire joint adopting hinging process and hinging forming process thereof
CN117649983B (en) Preparation process of steel wire embedded cable
JP5938069B2 (en) Manufacturing method of metal laminated sheathed cable
CN213025440U (en) Spiral cable for industrial robot
CN111696706B (en) Insulated wire
JP6948561B2 (en) Manufacturing method of stranded conductor
JP2020049573A (en) Electrical discharge machining electrode wire
JP3927988B1 (en) Manufacturing method of galvanized steel wire for optical drop cable

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150907