JP2014167421A - Prediction method of bearing damage state and peeling lifetime - Google Patents

Prediction method of bearing damage state and peeling lifetime Download PDF

Info

Publication number
JP2014167421A
JP2014167421A JP2013039137A JP2013039137A JP2014167421A JP 2014167421 A JP2014167421 A JP 2014167421A JP 2013039137 A JP2013039137 A JP 2013039137A JP 2013039137 A JP2013039137 A JP 2013039137A JP 2014167421 A JP2014167421 A JP 2014167421A
Authority
JP
Japan
Prior art keywords
bearing
contact
damage
peeling
predicting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013039137A
Other languages
Japanese (ja)
Other versions
JP6062766B2 (en
Inventor
Kiichi Kitagawa
貴一 北川
Tomoya Sakaguchi
智也 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2013039137A priority Critical patent/JP6062766B2/en
Publication of JP2014167421A publication Critical patent/JP2014167421A/en
Application granted granted Critical
Publication of JP6062766B2 publication Critical patent/JP6062766B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a prediction method of a bearing damage state and a prediction method of a peeling lifetime that have a high prediction accuracy and can respond to the case in which the hardness of a bearing component member is changed.SOLUTION: The state of a damage occurring in a component member of a bearing during an operation of the bearing is predicted on the basis of the contact pressure when the component member is in contact with the other component members of the bearing, and the plasticity exponent or a parameter including the plasticity exponent as a factor. The peeling lifetime of the component member during the operation of the bearing is predicted on the basis of the contact pressure when the component member of the bearing is in contact with the other component members of the bearing, the plasticity exponent, the sliding rate, and the surface roughness of the component member and the other component members.

Description

本発明は、軸受の運転において発生する軸受構成部材の表面損傷の形態を予測する方法に関する。また、本発明は、表面損傷としてピーリングの発生が予測される場合において、軸受構成部材のピーリングが発生するまでの負荷回数(以降、ピーリング寿命)を予測する方法に関する。   The present invention relates to a method for predicting the form of surface damage of a bearing component that occurs in the operation of a bearing. The present invention also relates to a method for predicting the number of loads (hereinafter referred to as peeling life) until peeling of a bearing component occurs when peeling is predicted as surface damage.

転がり軸受の表面損傷はフレーキング、ピーリング、摩耗、スミアリングに大別できる。このうち、フレーキングは、転がり軸受が荷重を受けて運転されたとき転がり接触の繰返し数がある値を越えると軌道面や転動体の表面がうろこ状にはがれる現象であり、この現象の発生をもって転がり軸受の定格寿命が決められる。   Rolling bearing surface damage can be broadly divided into flaking, peeling, wear, and smearing. Of these, flaking is a phenomenon in which when the rolling bearing is operated under load and the number of rolling contact cycles exceeds a certain value, the raceway surface and the surface of the rolling element peel off in a scaly manner. The rated life of the rolling bearing is determined.

ピーリングは、転がり接触の繰返し数がある値を越えると表面が数μmから10μmの深さではく離する現象である。ピーリングの発生がよく見られる例としては、潤滑油膜が不十分な状態での粗面と平滑面との転動により、平滑面側に生じる場合が挙げられる。ピーリング損傷寿命を向上させ、軸受の長寿命化を図ることのできる軸受構成部材の研究が従来よりなされている(特許文献1、2参照)。   Peeling is a phenomenon in which the surface peels off at a depth of several μm to 10 μm when the number of rolling contact repetitions exceeds a certain value. As an example in which the occurrence of peeling is often seen, there is a case in which the peeling occurs on the smooth surface side due to rolling of the rough surface and the smooth surface in a state where the lubricating oil film is insufficient. Research on bearing components that can improve the peeling damage life and extend the life of the bearing has been made (see Patent Documents 1 and 2).

スミアリングは、転がり軸受の表面に生じた微小な焼付きが集合したものである。スミアリングの原因としては、転動体の転がり運動中に滑りが生じ、これに対して潤滑剤の性能が不足していることが考えられる。スミアリング損傷を防止するべく滑りを発生させないように、運転条件、軸受寿命等を考慮し、円筒ころ軸受にラジアル方向の予圧を与えることが行われている。また、予圧を常時付与するスミアリング対策方法を適用しない、スミアリング損傷防止装置も研究されている(特許文献3参照)。   Smearing is a collection of minute seizures generated on the surface of a rolling bearing. As a cause of smearing, it is considered that slip occurs during the rolling motion of the rolling element, and the performance of the lubricant is insufficient. In order to prevent the occurrence of slipping in order to prevent smearing damage, a preload in the radial direction is applied to the cylindrical roller bearing in consideration of operating conditions, bearing life, and the like. In addition, a smearing damage prevention apparatus that does not apply a smearing countermeasure method that always applies preload has been studied (see Patent Document 3).

このように軸受の表面損傷にはいくつかの種類があるため、軸受の設計において、軸受に上記のいずれの表面損傷が発生するかを予測することは重要である。そこで、転がり接触する軸受構成部材の表面粗さから、軸受の運転において発生する表面損傷の形態を予測することが考えられている。予め2円筒試験機等による転動実験によって、転がり接触する部材の表面粗さと運転の結果発生する表面損傷の形態との対応関係を調査し、得られた対応関係を基にして、予測対象の軸受において、転がり接触する軸受構成部材の表面粗さから、発生する表面損傷の形態を予測する方法である。   As described above, since there are several types of bearing surface damage, it is important to predict which surface damage will occur in the bearing in the bearing design. Thus, it is considered to predict the form of surface damage that occurs in the operation of the bearing from the surface roughness of the bearing component that is in rolling contact. The correspondence between the surface roughness of the rolling contact member and the form of surface damage that occurs as a result of operation is investigated in advance by a rolling experiment using a two-cylinder testing machine, etc., and based on the obtained correspondence, This is a method for predicting the form of surface damage that occurs from the surface roughness of a bearing component in rolling contact with a bearing.

特開平10−196658号公報Japanese Patent Laid-Open No. 10-196658 特開2012−219995号公報JP 2012-219995 A 特開2011−190844号公報JP 2011-190844 A

しかしながら、転がり接触する軸受構成部材の表面粗さから、軸受の運転において発生する表面損傷を予測する上記の予測方法では、軸受の設計において軸受構成部材の硬さを変更すると、変更前の硬さに対して実験して得た表面粗さと表面損傷との対応関係データが、変更後の硬さに対しては有効でないため、予測ができなくなるという問題がある。また、実際の表面接触状態をより正確に反映させて、予測精度を更に向上させることが望まれている。   However, in the above prediction method for predicting the surface damage that occurs in the operation of the bearing from the surface roughness of the bearing component in rolling contact, if the hardness of the bearing component is changed in the bearing design, the hardness before the change However, since the correspondence data between the surface roughness and the surface damage obtained by the experiment is not effective for the hardness after the change, there is a problem that the prediction cannot be performed. Moreover, it is desired to further improve the prediction accuracy by more accurately reflecting the actual surface contact state.

本発明はこのような問題に対処するためになされたものであり、予測精度に優れ、軸受構成部材の硬さを変更する場合にも対応できる、軸受損傷形態の予測方法及びピーリング寿命の予測方法を提供することを目的とする。   The present invention has been made to cope with such a problem, and has an excellent prediction accuracy and can cope with a case where the hardness of a bearing component member is changed, and a bearing damage form prediction method and a peeling life prediction method. The purpose is to provide.

本発明の軸受損傷形態の予測方法は、軸受の損傷の形態を予測する方法であり、軸受の構成部材と該軸受の他の構成部材との接触における接触圧力と、塑性指数または塑性指数を因子とするパラメータとから、該軸受の運転において該構成部材に発生する損傷の形態を予測することを特徴とする。   The method for predicting a bearing damage mode according to the present invention is a method for predicting a mode of damage to a bearing. The contact pressure and the plasticity index or the plasticity index in the contact between a component of the bearing and another component of the bearing are factors. From this parameter, the form of damage that occurs in the structural member during the operation of the bearing is predicted.

上記の塑性指数ψは、ψ=(E/H)(Rq/R)0.5で与えられる量である。ここで、Rqは等価粗面の自乗平均粗さ、Rは等価粗面の突起先端の曲率半径、Eは等価ヤング率、Hは硬さである。各記号は以下の式で与えられる。
等価粗面の自乗平均粗さRq
Rq=(Rq +Rq 0.5
等価粗面の突起先端の曲率半径R
R=(R +R 0.5
等価ヤング率
(1/E)=(1/2)((1−ν )/E+(1−ν )/E
ここで、RqおよびRqは接触2物体の自乗平均表面粗さ、RおよびRは接触2物体の突起先端の曲率半径、νおよびνは接触2物体のポアソン比、EおよびEは接触2物体のヤング率であり、下付き添え字1と2は2物体の物体番号を表す。
The plastic index ψ is an amount given by ψ = (E / H) (Rq / R) 0.5 . Here, Rq is the root mean square roughness of the equivalent rough surface, R is the radius of curvature of the protrusion tip of the equivalent rough surface, E is the equivalent Young's modulus, and H is the hardness. Each symbol is given by:
Root mean square roughness Rq of equivalent rough surface
Rq = (Rq 1 2 + Rq 2 2 ) 0.5
Radius of curvature R at the tip of the equivalent rough surface protrusion
R = (R 1 2 + R 2 2 ) 0.5
Equivalent Young's modulus (1 / E) = (1/2) ((1-ν 1 2 ) / E 1 + (1-ν 2 2 ) / E 2 )
Here, Rq 1 and Rq 2 are the mean square surface roughness of the two contact objects, R 1 and R 2 are the curvature radii of the protrusion tips of the two contact objects, ν 1 and ν 2 are the Poisson's ratio of the two contact objects, E 1 And E 2 is the Young's modulus of the two contact objects, and the subscripts 1 and 2 represent the object numbers of the two objects.

上記の軸受損傷形態の予測方法は、上記接触が、上記構成部材の平滑面と上記他の構成部材の粗面との転がり接触であることを特徴とする。   The method for predicting the bearing damage mode is characterized in that the contact is a rolling contact between a smooth surface of the constituent member and a rough surface of the other constituent member.

上記の軸受損傷形態の予測方法は、上記損傷がピーリング、フレーキング、摩耗、スミアリングのうち、いずれの形態であるかを予測することを特徴とする。   The bearing damage mode prediction method is characterized in that it is predicted which type of peeling, flaking, wear, or smearing is caused by the damage.

上記の軸受損傷形態の予測方法は、実験結果を基に予め作成された、接触圧力と、塑性指数または塑性指数を因子とするパラメータとを座標軸とし、損傷の形態の別により領域区分した損傷形態図を用いて予測することを特徴とする。   The above bearing damage form prediction method uses a contact pressure and a plastic index or a parameter with the plastic index as a factor, which are created in advance based on the experimental results, as coordinate axes, and is classified according to the type of damage. It is characterized by predicting using a figure.

本発明のピーリング寿命の予測方法は、軸受の運転開始後に軸受の構成部材にピーリングが確認されるまでの負荷回数であるピーリング寿命を予測する方法であり、軸受の構成部材と該軸受の他の構成部材との接触における接触圧力、塑性指数、すべり割合、及び該構成部材と該他の構成部材の表面粗さから、該軸受の運転における該構成部材のピーリング寿命を予測することを特徴とする。   The method for predicting the peeling life according to the present invention is a method for predicting the peeling life, which is the number of loads until the peeling is confirmed in the bearing component after the operation of the bearing is started. The peeling life of the component member in the operation of the bearing is predicted from the contact pressure, the plasticity index, the slip ratio in contact with the component member, and the surface roughness of the component member and the other component member. .

上記のピーリング寿命の予測方法は、上記接触が、上記構成部材の平滑面と上記他の構成部材の粗面との転がり接触であることを特徴とする。   The peeling life prediction method is characterized in that the contact is a rolling contact between a smooth surface of the component member and a rough surface of the other component member.

上記のピーリング寿命の予測方法は、実験結果を基に予め作成された、接触圧力、塑性指数、すべり割合、及び表面粗さを入力としピーリング寿命を出力とする実験式を用いて、上記ピーリング寿命を予測することを特徴とする。   The peeling life prediction method described above is based on the experimental results, which are preliminarily created based on the experimental results, using the empirical formula that inputs the contact pressure, plasticity index, slip ratio, and surface roughness and outputs the peeling life. It is characterized by predicting.

本発明の軸受損傷形態の予測方法は、軸受構成部材間の接触における接触圧力と、塑性指数または塑性指数を因子とするパラメータとに基づいて予測する方法である。軸受構成部材の硬さを変更する場合、硬さの変更は塑性指数の変更として反映され、変更後の塑性指数を用いることで変更後の表面損傷形態を予測することができる。こうして、本発明の軸受損傷形態の予測方法は、軸受構成部材の硬さの変更にも対応できる。また、本発明の軸受損傷形態の予測方法は、表面粗さに加えて、硬さ、ヤング率等の情報を因子として含む塑性指数を用いるので、表面粗さによる従来の予測方法に比べ、予測精度の向上が得られる。   The method for predicting a bearing damage mode according to the present invention is a method for predicting based on a contact pressure in contact between bearing constituent members and a plasticity index or a parameter having a plasticity index as a factor. When changing the hardness of the bearing component, the change in hardness is reflected as a change in the plastic index, and the changed surface damage form can be predicted by using the changed plastic index. Thus, the method for predicting the bearing damage mode according to the present invention can cope with a change in the hardness of the bearing constituent member. In addition, the prediction method of the bearing damage mode according to the present invention uses a plasticity index including information such as hardness and Young's modulus as factors in addition to the surface roughness. Improved accuracy is obtained.

本発明のピーリング寿命の予測方法は、軸受構成部材間の接触における接触圧力、塑性指数、すべり割合、及び表面粗さに基づいて予測する方法である。軸受構成部材の硬さを変更する場合、硬さの変更は塑性指数の変更として反映され、変更後の塑性指数を用いることで変更後のピーリング寿命を予測することができる。こうして、本発明のピーリング寿命の予測方法は、軸受構成部材の硬さの変更にも対応できる。   The peeling life prediction method of the present invention is a method for prediction based on contact pressure, plasticity index, slip ratio, and surface roughness in contact between bearing components. When changing the hardness of the bearing component, the change in hardness is reflected as a change in the plastic index, and the changed peeling index can be predicted by using the changed plastic index. Thus, the peeling life prediction method of the present invention can cope with a change in the hardness of the bearing constituent member.

本発明の軸受損傷形態の予測方法の一実施例で用いられる損傷形態図の概略図である。It is the schematic of the damage form figure used with one Example of the prediction method of the bearing damage form of this invention. 本発明の軸受損傷形態の予測方法の一実施例で予め行う実験に用いられる2円筒試験機の概略図である。It is the schematic of the 2 cylinder test machine used for the experiment previously performed with one Example of the prediction method of the bearing damage form of this invention. 上記2円筒試験機に使用される駆動側のストレート試験片((a))および従動側のR60試験片((b))の断面図である。It is sectional drawing of the drive side straight test piece ((a)) and driven side R60 test piece ((b)) used for the said 2 cylinder test machine. 上記従動側のR60試験片の各負荷回数における接触部の光学顕微鏡観察像である。It is an optical microscope observation image of the contact part in each load frequency of the said R60 test piece of the driven side. 上記実験における負荷回数に対する等価粗面の自乗平均粗さを示すグラフである。It is a graph which shows the root mean square roughness of the equivalent rough surface with respect to the load frequency in the said experiment. 上記実験における負荷回数に対する塑性指数を示すグラフである。It is a graph which shows the plastic index with respect to the load frequency in the said experiment. 上記実験における負荷回数に対する等価粗面の突起先端の曲率半径を示すグラフである。It is a graph which shows the curvature radius of the protrusion front-end | tip of an equivalent rough surface with respect to the load frequency in the said experiment. 本発明のピーリング寿命の測定方法の一実施例で用いられるピーリング寿命の実験式のグラフである。It is a graph of the empirical formula of peeling lifetime used in one Example of the measuring method of peeling lifetime of this invention.

本発明の軸受損傷形態の予測方法は、軸受の構成部材と該軸受の他の構成部材との接触における接触圧力と、塑性指数または塑性指数を因子するパラメータとから、該軸受の運転において該構成部材に発生する損傷の形態を予測する。上記接触圧力と、上記塑性指数または塑性指数を因子するパラメータに加え、該接触に関わる更なるパラメータを考慮してもよい。上記軸受としては転がり軸受が挙げられ、該接触としては転がり接触が挙げられ、上記構成部材及び他の構成部材としては、軸受の内輪、外輪などの軌道輪、玉やころなどの転動体、および保持器から選ばれた組合せが挙げられる。上記接触圧力としては、ヘルツの最大接触圧力が挙げられる。   The method for predicting a bearing damage mode according to the present invention is based on the contact pressure in contact between a component of the bearing and another component of the bearing, and the plastic index or a parameter factoring the plastic index. Predict the type of damage that will occur to the part. In addition to the contact pressure and the parameters that factor the plasticity index or plasticity index, additional parameters related to the contact may be considered. Examples of the bearing include a rolling bearing, and examples of the contact include a rolling contact. Examples of the constituent member and other constituent members include bearing rings such as an inner ring and an outer ring of the bearing, rolling elements such as balls and rollers, and Examples include combinations selected from cages. Examples of the contact pressure include the maximum contact pressure of Hertz.

上記の塑性指数ψは、ψ=(E/H)(Rq/R)0.5で与えられる量である。ここで、Rqは等価粗面の自乗平均粗さ、Rは等価粗面の突起先端の曲率半径、Eは等価ヤング率、Hは硬さである。各記号は以下の式で与えられる。
等価粗面の自乗平均粗さRq
Rq=(Rq +Rq 0.5
等価粗面の突起先端の曲率半径R
R=(R +R 0.5
等価ヤング率
(1/E)=(1/2)((1−ν )/E+(1−ν )/E
ここで、RqおよびRqは接触2物体の自乗平均表面粗さ、RおよびRは接触2物体の突起先端の曲率半径、νおよびνは接触2物体のポアソン比、EおよびEは接触2物体のヤング率であり、下付き添え字1と2は2物体の物体番号を表す。
The plastic index ψ is an amount given by ψ = (E / H) (Rq / R) 0.5 . Here, Rq is the root mean square roughness of the equivalent rough surface, R is the radius of curvature of the protrusion tip of the equivalent rough surface, E is the equivalent Young's modulus, and H is the hardness. Each symbol is given by:
Root mean square roughness Rq of equivalent rough surface
Rq = (Rq 1 2 + Rq 2 2 ) 0.5
Radius of curvature R at the tip of the equivalent rough surface protrusion
R = (R 1 2 + R 2 2 ) 0.5
Equivalent Young's modulus (1 / E) = (1/2) ((1-ν 1 2 ) / E 1 + (1-ν 2 2 ) / E 2 )
Here, Rq 1 and Rq 2 are the mean square surface roughness of the two contact objects, R 1 and R 2 are the curvature radii of the protrusion tips of the two contact objects, ν 1 and ν 2 are the Poisson's ratio of the two contact objects, E 1 And E 2 is the Young's modulus of the two contact objects, and the subscripts 1 and 2 represent the object numbers of the two objects.

予測対象となる損傷としては、軸受の運転開始後、最初に上記構成部材に発生する損傷が挙げられる。例えば、軸受の運転開始後、軸受の振動値が最初に所定の大きさを越えた時点で、顕微鏡等により上記構成部材の表面に確認される損傷である。所定の大きさとしては、運転初期における振動値の所定倍(例えば5倍)が挙げられる。またこのほか、予め軸受の用途などを考慮し設定した基準時刻における損傷が挙げられる。   Examples of damage to be predicted include damage that first occurs in the above-described components after the start of operation of the bearing. For example, the damage is confirmed on the surface of the component member by a microscope or the like when the vibration value of the bearing first exceeds a predetermined magnitude after the operation of the bearing is started. Examples of the predetermined magnitude include a predetermined value (for example, 5 times) a vibration value in the initial stage of operation. In addition to this, damage at a reference time set in advance in consideration of the application of the bearing and the like can be mentioned.

軸受の構成部材の損傷形態には、摩擦に伴い表面から物質が徐々に失われる現象である摩耗のほか、転がり接触の繰返し数がある値を越えると表面が数μmから10μmの深さではく離する現象であるピーリング、転がり軸受が荷重を受けて運転されたとき転がり接触の繰返し数がある値を越えると軌道面や転動体の表面がうろこ状にはがれる現象であるフレーキング、転がり軸受の表面に生じた微小な焼付きが集合したもので、転がり運動にすべり運動が加わって生じることがあるスミアリングがある。   In addition to wear, which is a phenomenon in which materials are gradually lost from the surface due to friction, the surface of the bearing component is separated at a depth of several to 10 μm when the number of rolling contact cycles exceeds a certain value. Peeling, which is a phenomenon that occurs when rolling bearings are operated under load, and flaking, which is a phenomenon where the surface of the raceway and rolling elements peel off in a scaly manner when the number of rolling contact cycles exceeds a certain value There is a smearing that is caused by the addition of sliding motion to rolling motion.

本発明の軸受損傷の予測は、接触における接触圧力と塑性指数(または塑性指数を因子とするパラメータ)との組に対して、そのときに軸受の構成部材に発生するピーリング、フレーキング、摩耗、スミアリングなどの損傷形態の別を予測する方式が好ましい。   The prediction of bearing damage according to the present invention is based on the combination of the contact pressure and the plasticity index (or the parameter with the plasticity index as a factor) in contact, and the peeling, flaking, wear, A method of predicting the type of damage such as smearing is preferable.

ピーリングの発生がよく見られる例としては、潤滑油膜が不十分な状態での粗面と平滑面との転動により、平滑面側に生じる場合が挙げられる。そこで、本発明の軸受損傷形態の予測方法の一実施形態として、軸受の構成部材が平滑面を有し該軸受の他の構成部材が粗面を有して、これらの面が転がり接触する場合において、該接触における接触圧力と、塑性指数または塑性指数を因子とするパラメータとから、該軸受の運転において該構成部材の該平滑面に発生する損傷の形態を予測することが挙げられる。本発明において、平滑面と粗面の語は、相対的な粗さの大小を表す。例としては、算術平均粗さRa、二乗平均粗さRq等に関し、粗面が平滑面の10倍以上の粗さである場合、粗面が平滑面の5倍以上の粗さである場合、粗面が平滑面の3倍以上の粗さである場合、粗面が0.1μm以上で平滑面が0.1μm未満である場合が挙げられる。   As an example in which the occurrence of peeling is often seen, there is a case in which the peeling occurs on the smooth surface side due to rolling of the rough surface and the smooth surface in a state where the lubricating oil film is insufficient. Therefore, as one embodiment of the method for predicting a bearing damage mode according to the present invention, a component of the bearing has a smooth surface, and other components of the bearing have a rough surface, and these surfaces are in rolling contact. And predicting the form of damage occurring on the smooth surface of the component member during the operation of the bearing from the contact pressure in the contact and the plastic index or a parameter having the plastic index as a factor. In the present invention, the terms smooth surface and rough surface represent relative roughness. As an example, regarding arithmetic average roughness Ra, root mean square roughness Rq, etc., when the rough surface is 10 times or more rough than the smooth surface, when the rough surface is 5 times or more rough than the smooth surface, When the rough surface is 3 times or more rough than the smooth surface, the rough surface is 0.1 μm or more and the smooth surface is less than 0.1 μm.

一般に、十分な潤滑膜が形成されている転がり軸受はフレーキングにより寿命に至るが、潤滑膜が不十分な場合には、ピーリングやスミアリングなどの表面損傷が生じる。そこで、本発明の軸受損傷形態の予測方法は、潤滑膜が不十分な場合を主な対象とし、油膜パラメータが3以下のとき、特に1以下のときに有用である。あるいは、境界潤滑や混合潤滑の場合に有用である。   In general, a rolling bearing in which a sufficient lubricating film is formed reaches the end of its life due to flaking, but when the lubricating film is insufficient, surface damage such as peeling and smearing occurs. Therefore, the bearing damage mode prediction method of the present invention is mainly used when the lubricating film is insufficient, and is useful when the oil film parameter is 3 or less, particularly 1 or less. Alternatively, it is useful for boundary lubrication or mixed lubrication.

本発明の実施形態としては、予め実験結果に基づいて、接触圧力と塑性指数(または塑性指数を因子とするパラメータ)との組に対して損傷の形態を対応づけた情報を有する予測手段を作成し、該予測手段を予測対象の軸受に適用する形が挙げられる。特に、実験結果を基に予め作成された、接触圧力と塑性指数(または塑性指数を因子とするパラメータ)とを座標軸とし損傷の形態の別により領域区分した損傷形態図を予測手段として用いることが好ましい。   As an embodiment of the present invention, based on experimental results, a prediction means having information that associates a damage form with a set of a contact pressure and a plasticity index (or a parameter having a plasticity index as a factor) is created in advance. And the form which applies this prediction means to the bearing of prediction object is mentioned. In particular, it is possible to use, as a predicting means, a damage configuration diagram that is preliminarily created based on experimental results and uses a contact pressure and a plasticity index (or a parameter having a plasticity index as a factor) as coordinate axes to divide the area into regions according to the type of damage. preferable.

予め行う実験としては、2円筒試験機や軸受などの実験装置を用いた実験が挙げられる。上記予測手段の作成において、接触圧力と塑性指数(または塑性指数を因子とするパラメータ)との組に対して対応づけられる損傷の形態としては、運転の開始後、最初に発生する損傷の形態が挙げられる。例えば、当該設定値で運転を開始された実験装置の振動値を測定し、この振動値が所定の大きさを最初に越えた時点で顕微鏡等により確認される表面損傷の形態である。所定の大きさとしては、運転初期における振動値の所定倍(例えば5倍)が挙げられる。またこのほか、予め軸受の用途などを考慮し設定した基準時刻における損傷の形態が挙げられる。   As an experiment to be performed in advance, an experiment using an experimental apparatus such as a two-cylinder tester or a bearing can be given. In the creation of the prediction means, the form of damage associated with the set of the contact pressure and the plasticity index (or the parameter with the plasticity index as a factor) is the form of damage that occurs first after the start of operation. Can be mentioned. For example, it is a form of surface damage that is measured by a microscope or the like when a vibration value of an experimental apparatus that has started operation at the set value is measured and the vibration value first exceeds a predetermined magnitude. Examples of the predetermined magnitude include a predetermined value (for example, 5 times) a vibration value in the initial stage of operation. In addition to this, the form of damage at the reference time set in advance in consideration of the application of the bearing and the like can be mentioned.

上記の損傷形態図は、例えば、サンプルとなるいくつかの接触圧力と塑性指数(または塑性指数を因子とするパラメータ)との組において発生する損傷の形態の別を調べたのち、その結果を補完処理して得られる。   The above damage morphologies supplement the results after examining the different types of damage that occur in, for example, several sample contact pressures and plastic index (or parameters with plastic index as a factor). It is obtained by processing.

上記の損傷形態図の一例としては、図1に示されているような、接触圧力(最大接触圧力Pmax)を縦軸、塑性指数を横軸とし、区分された領域に対応する損傷の形態を表示した平面図が挙げられる。 As an example of the above damage form diagram, as shown in FIG. 1, the contact pressure (maximum contact pressure P max ) is the vertical axis, the plasticity index is the horizontal axis, and the form of damage corresponding to the segmented region. The top view which displayed is mentioned.

上記の損傷形態図を作成するために行う実験の一例を以下に記す。下記実験は、軸受鋼(SUJ2)を対象にした表面損傷の生成過程を観察するものであり、ピーリングの発生が観察されたケースである。   An example of an experiment performed to create the above-described damage pattern is described below. The following experiment observes the generation process of the surface damage for the bearing steel (SUJ2), and is a case where the occurrence of peeling is observed.

試験は図2に示す2円筒試験機で行った。上下の回転軸のうち、下側の軸をベルト4を介してモータ5を駆動した。上軸は、試験片1の接触部のトラクションにより従動する。試験片1は軸中央のテーパ部に幅押えで取り付け、軸の左右両端はハウジングに取り付けられた軸受によって支持される。上下の軸間距離は40mmである。試験片1はバネ3によって押し付けられつつ接触している。潤滑油は試験片1の接触部付近に給油口2から循環供給される。   The test was conducted with a two-cylinder tester shown in FIG. Of the upper and lower rotary shafts, the motor 5 was driven via the belt 4 on the lower shaft. The upper shaft is driven by the traction of the contact portion of the test piece 1. The test piece 1 is attached to the taper portion at the center of the shaft with a width presser, and both left and right ends of the shaft are supported by bearings attached to the housing. The distance between the upper and lower axes is 40 mm. The test piece 1 is in contact while being pressed by the spring 3. The lubricating oil is circulated and supplied from the oil supply port 2 in the vicinity of the contact portion of the test piece 1.

実験には図3および表1に示す円筒形状の試験片を使用した。駆動軸側には接触部の断面が直線状の試験片(ストレート試験片、図3(a))を、従動側には接触部の断面が円弧状である試験片(R60試験片、図3(b))を装着した。0.06μmRaの試験片の外径面は超仕上げ加工、また0.33μmRaの試験片は研削加工によるものである。また表面粗さ測定には非接触式のレーザー顕微鏡を用いた。   For the experiment, cylindrical test pieces shown in FIG. 3 and Table 1 were used. On the drive shaft side, a test piece with a straight section of the contact portion (straight test piece, FIG. 3A) is provided. On the driven side, a test piece with a cross section of the contact portion in an arc shape (R60 test piece, FIG. 3). (B)) was mounted. The outer diameter surface of the 0.06 μm Ra test piece is obtained by superfinishing, and the 0.33 μm Ra test piece is obtained by grinding. A non-contact laser microscope was used for measuring the surface roughness.

試験条件を表2に示す。潤滑はVG2の低粘度な無添加の潤滑油を使用し、境界潤滑とした。負荷回数は、10回から10回に設定した。 Table 2 shows the test conditions. Lubrication was carried out using boundary-lubricated VG2 additive-free lubricating oil. The number of loads was set from 10 3 to 10 5 times.

駆動側のストレート試験片に比べ、表面の変化が大きい従動側R試験片の各負荷回数における接触部の光学顕微鏡観察像を図3に示す。図4(a)の実験前の表面に確認される加工目は、図4(b)および図4(c)の負荷回数が10回、10回において徐々に減少する。図4(c)ではわずかにピーリングが生成している。その後、図4(d)の負荷回数10回では、接触部全域にピーリングが広がる。 The optical microscope observation image of the contact part in each load frequency of the driven side R test piece with a large surface change compared with the drive side straight test piece is shown in FIG. The processed pattern confirmed on the surface before the experiment in FIG. 4A gradually decreases when the number of loads in FIGS. 4B and 4C is 10 3 times and 10 4 times. In FIG. 4C, peeling is slightly generated. Thereafter, the load count 10 5 times in FIG. 4 (d), peeling spreads the contact portion areas.

図5に、各負荷回数における等価粗面の自乗平均粗さRqを示す。全域のピーリングが生じるとRqは大きく増加する。   FIG. 5 shows the root mean square roughness Rq of the equivalent rough surface at each load. When peeling occurs in the entire area, Rq greatly increases.

上記で定義した、突起間接触の過酷度を推定するために算出した塑性指数ψ=(E/H)(Rq/R)0.5を図6に示す。この計算に必要となる等価粗面の突起先端の曲率半径Rを図7に示す。等価粗面の突起先端のRは10回の負荷回数で最大となりその後減少する。塑性指数は10回から10回の負荷回数において2を下回り、弾性的な接触状態にかなり近づく。その後はピーリングが進展した10回においては再び塑性的な接触状態となる。 FIG. 6 shows the plasticity index ψ = (E / H) (Rq / R) 0.5 calculated to estimate the severity of contact between the protrusions as defined above. FIG. 7 shows the radius of curvature R of the tip of the equivalent rough surface protrusion necessary for this calculation. R at the tip of the projection of the equivalent rough surface becomes maximum at the load count of 10 3 times and then decreases. The plasticity index is less than 2 at a load number of 10 3 to 10 4 times, and is much closer to an elastic contact state. Thereafter the plastic contact state again in 10 5 times the peeling is developed.

10回において粗さが低下したにもかかわらず10回においてピーリングが生じ始めている。これらの条件では、粗さが低下したため、突起間干渉は弾性的な接触状態に近い。すなわち初期の突起間干渉においては、局所的な塑性変形と転がり疲れが進行し、10回の負荷を受けたところで、微小なはく離が生じたと理解される。 Peeling begins to occur at 10 4 times, even though the roughness decreases at 10 3 times. Under these conditions, since the roughness is reduced, the interprotrusion interference is close to an elastic contact state. That is, in the early projections interference, and proceeds rolling fatigue and local plastic deformation, where under load of 10 4 times, be understood that micro flaking occurs.

この実験では、10回以前の初期のころがり接触において、繰り返し負荷による疲れが接触表面の近傍で生じ、ピーリングに至っている。このように、運転初期すなわち運転開始前における塑性指数が、ピーリングの発生に大きな影響を及ぼすことがわかる。 In this experiment, the 10 three previous initial rolling contact occurs in the vicinity of fatigue contact surface by repeated load, it has led to peeling. Thus, it can be seen that the plasticity index at the initial stage of operation, that is, before the start of operation, has a great influence on the occurrence of peeling.

この実験の開始時の2円筒間接触における塑性指数と最大接触圧力との組に対して、損傷形態としてピーリングが対応するように、最大接触圧力と塑性指数とを座標軸とする平面に色分けプロットした。塑性指数と最大接触圧力との組を種々変更して同様の実験を行ない、損傷形態図を作成する。   Color-coded plots on the plane with the maximum contact pressure and the plastic index as the coordinate axes so that the peeling corresponds as a damage mode to the set of the plastic index and the maximum contact pressure in the contact between the two cylinders at the start of this experiment. . The same experiment is performed with various combinations of the plastic index and the maximum contact pressure, and a damage configuration diagram is created.

本発明のピーリング寿命の予測方法は、軸受の構成部材と該軸受の他の構成部材との接触における接触圧力、塑性指数、すべり割合、及び該構成部材と該他の構成部材の表面粗さから、該軸受の運転における該構成部材のピーリング寿命を予測する。上記軸受としては転がり軸受が挙げられ、該接触としては転がり接触が挙げられ、上記構成部材及び他の構成部材としては、軸受の内輪、外輪などの軌道輪、玉やころなどの転動体、および保持器から選ばれた組合せが挙げられる。上記接触圧力としては、ヘルツの最大接触圧力が挙げられる。上記の表面粗さとしては、算術平均粗さRa、二乗平均粗さRq等が挙げられる。   The method for predicting the peeling life of the present invention is based on the contact pressure, plasticity index, slip ratio, and surface roughness of the component member and the other component member in contact between the component member of the bearing and the other component member of the bearing. Predicting the peeling life of the component in operation of the bearing. Examples of the bearing include a rolling bearing, and examples of the contact include a rolling contact. Examples of the constituent member and other constituent members include bearing rings such as an inner ring and an outer ring of the bearing, rolling elements such as balls and rollers, and Examples include combinations selected from cages. Examples of the contact pressure include the maximum contact pressure of Hertz. Examples of the surface roughness include arithmetic average roughness Ra, root mean square roughness Rq, and the like.

上記の塑性指数ψは、ψ=(E/H)(Rq/R)0.5で与えられる量である。ここで、Rqは等価粗面の自乗平均粗さ、Rは等価粗面の突起先端の曲率半径、Eは等価ヤング率、Hは硬さである。各記号は以下の式で与えられる。
等価粗面の自乗平均粗さRq
Rq=(Rq +Rq 0.5
等価粗面の突起先端の曲率半径R
R=(R +R 0.5
等価ヤング率
(1/E)=(1/2)((1−ν )/E+(1−ν )/E
ここで、RqおよびRqは接触2物体の自乗平均表面粗さ、RおよびRは接触2物体の突起先端の曲率半径、νおよびνは接触2物体のポアソン比、EおよびEは接触2物体のヤング率であり、下付き添え字1と2は2物体の物体番号を表す。
The plastic index ψ is an amount given by ψ = (E / H) (Rq / R) 0.5 . Here, Rq is the root mean square roughness of the equivalent rough surface, R is the radius of curvature of the protrusion tip of the equivalent rough surface, E is the equivalent Young's modulus, and H is the hardness. Each symbol is given by:
Root mean square roughness Rq of equivalent rough surface
Rq = (Rq 1 2 + Rq 2 2 ) 0.5
Radius of curvature R at the tip of the equivalent rough surface protrusion
R = (R 1 2 + R 2 2 ) 0.5
Equivalent Young's modulus (1 / E) = (1/2) ((1-ν 1 2 ) / E 1 + (1-ν 2 2 ) / E 2 )
Here, Rq 1 and Rq 2 are the mean square surface roughness of the two contact objects, R 1 and R 2 are the curvature radii of the protrusion tips of the two contact objects, ν 1 and ν 2 are the Poisson's ratio of the two contact objects, E 1 And E 2 is the Young's modulus of the two contact objects, and the subscripts 1 and 2 represent the object numbers of the two objects.

上記すべり割合は、軸受の運動で上記構成部材と上記他の構成部材との間で起こるすべりにおいて、これらの部材のうち早い側の速度を遅い側の速度で割った値である。すべりが無い場合は1である。   The slip ratio is a value obtained by dividing the speed on the fast side of these members by the speed on the slow side in the slip that occurs between the constituent member and the other constituent member due to the motion of the bearing. 1 if there is no slip.

本発明におけるピーリング寿命は、軸受の運転開始後、軸受の構成部材の表面においてピーリングの発生した表面の割合がある一定値を超えるまでの負荷回数を表す。例えば、軸受の運転開始後、軸受の振動値が最初に所定の大きさを越えた時点で顕微鏡等により上記構成部材の表面を観察し、ピーリングが発生した表面の割合が一定値を超えたことが確認された場合に、運転の開始時刻から当該時点までの負荷回数をピーリング寿命とする。所定の大きさとしては、例えば、運転初期における振動値の所定倍(例えば5倍)が挙げられる。   The peeling life in the present invention represents the number of loads until the ratio of the surface where peeling occurs on the surface of the component of the bearing after the start of operation of the bearing exceeds a certain value. For example, after starting the bearing operation, when the vibration value of the bearing first exceeded a predetermined magnitude, the surface of the above component was observed with a microscope or the like, and the ratio of the surface where peeling occurred exceeded a certain value. Is confirmed, the number of loads from the start time of the operation to that time is defined as the peeling life. As the predetermined magnitude, for example, a predetermined multiple (for example, five times) a vibration value in the initial stage of operation can be cited.

軸受においてピーリングの発生がよく見られる例としては、上述のとおり、潤滑油膜が不十分な状態での粗面と平滑面との転動により、平滑面側に生じる場合が挙げられる。よって、本発明のピーリング寿命の予測方法の一実施形態としても、上記接触が、上記構成部材の平滑面と上記他の構成部材の粗面との転がり接触である場合が挙げられる。なお、平滑面と粗面の語の意義は、上述の軸受損傷形態の予測方法の場合と同じである。   As described above, an example in which the occurrence of peeling is often seen in a bearing is the case where it occurs on the smooth surface side due to rolling of the rough surface and the smooth surface in a state where the lubricating oil film is insufficient. Therefore, as one embodiment of the peeling life prediction method of the present invention, there is a case where the contact is a rolling contact between the smooth surface of the constituent member and the rough surface of the other constituent member. In addition, the meaning of the terms smooth surface and rough surface is the same as in the case of the prediction method of the above-described bearing damage mode.

本発明のピーリング寿命の予測方法は、上述の軸受損傷形態の予測方法によりピーリングの発生が予測される場合において、ピーリング寿命を予測するのに用いることができる。   The peeling life prediction method of the present invention can be used to predict the peeling life when the occurrence of peeling is predicted by the above-described bearing damage configuration prediction method.

また、本発明のピーリング寿命の予測方法は、潤滑膜が不十分な場合を主な対象とし、油膜パラメータが3以下のとき、特に1以下のときに有用である。あるいは、境界潤滑や混合潤滑の場合に有用である。   The peeling life prediction method of the present invention is mainly intended for cases where the lubricating film is insufficient, and is useful when the oil film parameter is 3 or less, particularly 1 or less. Alternatively, it is useful for boundary lubrication or mixed lubrication.

本発明の実施形態としては、予め実験に基づいて、接触圧力、塑性指数、すべり割合、及び表面粗さの組を入力としピーリング寿命を出力とする実験式を作成する。   As an embodiment of the present invention, based on experiments, an empirical formula is created in which a set of contact pressure, plasticity index, slip ratio, and surface roughness is input and peeling life is output.

予め行う実験としては、2円筒試験機や軸受などの実験装置を用いた実験が挙げられる。用いられる2円筒試験機としては、上述の実験例と同様なものが挙げられる。   As an experiment to be performed in advance, an experiment using an experimental apparatus such as a two-cylinder tester or a bearing can be given. Examples of the two-cylinder tester used include the same ones as in the above experimental example.

予測対象の軸受および予め行う実験装置において、予測対象(試験対象)である構成部材のピーリング寿命とは、該構成部材の表面に一定面積比率以上のピーリングの発生が初めて確認される負荷回数である。   In the bearing to be predicted and the experimental apparatus to be performed in advance, the peeling life of the component that is the prediction target (test target) is the number of loads at which peeling of a certain area ratio or more is first confirmed on the surface of the component. .

予め行う実験の実験装置において、試験対象となる構成部材と他の構成部材との接触における接触圧力としてヘルツの最大接触圧力Pmaxをとり、該接触における塑性指数をψ、すべり割合をN、粗い側表面粗さをY、細かい側表面粗さをXと表し、該構成部材のピーリング寿命をLと表す。このとき、上記の実験式の例としては、下記式(1)が挙げられる。

L=a×Pmax α×ψβ×Nγ×(Y/X)ε+b (1)

ここで、α、β、γ、ε及びa、bは定数であり、これらの定数は上記の接触におけるパラメータを変えた実験の結果から、回帰分析によって定められる。
In an experimental apparatus for an experiment to be performed in advance, the maximum contact pressure P max of Hertz is taken as the contact pressure in contact between the component to be tested and another component, the plasticity index in the contact is ψ, the slip ratio is N, and coarse The side surface roughness is represented by Y, the fine side surface roughness is represented by X, and the peeling life of the constituent members is represented by L. At this time, the following formula (1) is given as an example of the above empirical formula.

L = a × P max α × ψ β × N γ × (Y / X) ε + b (1)

Here, α, β, γ, ε, and a and b are constants, and these constants are determined by regression analysis from the results of the experiment in which the parameters in the contact are changed.

図8はこの実験式の一例のグラフであり、座標の横軸はPmax α×ψβ×Nγ×(Y/X)εで、縦軸はピーリング寿命Lである。この例では、係数はa=−24.47、b=61627、α=1.51、β=144.5、γ=3.34、ε=0.978である。 FIG. 8 is a graph of an example of this empirical formula. The horizontal axis of the coordinates is P max α × ψ β × N γ × (Y / X) ε , and the vertical axis is the peeling life L. In this example, the coefficients are a = −24.47, b = 61627, α = 1.51, β = 144.5, γ = 3.34, and ε = 0.978.

種々の転がり軸受において、上記の損傷形態の予測およびピーリング寿命の推定を行う方法を以下に記す。   In various rolling bearings, a method for predicting the damage form and estimating a peeling life will be described below.

通常、最大負荷を受ける非回転側の軌道面で損傷が生じる。そのため、そこでの油膜厚さを計算で求め、混合潤滑または境界潤滑であるかの判別を行う。次に、前記に該当する場合、該接触部の塑性指数ψおよび最大接触圧力Pmaxを計算し、図1を用いて損傷形態を判別する。 Usually, damage occurs on the non-rotating raceway surface that receives the maximum load. Therefore, the oil film thickness there is obtained by calculation to determine whether it is mixed lubrication or boundary lubrication. Next, in the above case, the plastic index ψ and the maximum contact pressure P max of the contact portion are calculated, and the damage form is determined using FIG.

上記でピーリングと判断された場合は、接触部のすべり割合を計算し、式(1)によりピーリング寿命の計算を行う。   When it is determined as peeling in the above, the sliding ratio of the contact portion is calculated, and the peeling life is calculated by the equation (1).

求められる寿命に至らない場合は、転がり軸受の内部諸元を変更し、例えば表面粗さの低減や、接触圧力の低減寿命などを図る。本発明はこのように利用することで、機械に組み込み利用する際に、想定外の短寿命になることを未然に防止することができる。   If the required life is not reached, the internal specifications of the rolling bearing are changed, for example, to reduce the surface roughness or reduce the contact pressure. By using the present invention in this way, it is possible to prevent an unexpected short life from occurring when incorporated in a machine.

なお、すべり割合の計算には、例えば非特許文献(坂口・赤松、トライボロジスト、2006年、自動調心ころ軸受の軸受特性に及ぼすころ転動面形状の影響(第1報))の方法などを用いることで行える。   For the calculation of the slip ratio, for example, the method of non-patent literature (Sakaguchi / Akamatsu, Tribologist, 2006, Influence of Roller Rolling Surface Shape on Bearing Characteristics of Spherical Roller Bearing (1st Report)) This can be done by using

本発明の軸受損傷形態の予測方法およびピーリング寿命の予測方法は、軸受構成部材の硬さを変更する場合等にも対応できる手段を用いる方法であるため、軸受材料の選定を含む軸受設計において好適に利用できる。   The bearing damage mode prediction method and the peeling life prediction method of the present invention are methods that use means that can cope with changes in the hardness of bearing components, and are therefore suitable for bearing design including selection of bearing materials. Available to:

1 試験片
2 給油口
3 バネ
4 ベルト
5 モータ
1 Test piece 2 Refueling port 3 Spring 4 Belt 5 Motor

Claims (7)

軸受の損傷の形態を予測する方法であって、
軸受の構成部材と該軸受の他の構成部材との接触における接触圧力と、塑性指数または塑性指数を因子とするパラメータとから、該軸受の運転において該構成部材に発生する損傷の形態を予測することを特徴とする軸受損傷形態の予測方法。
A method for predicting the form of damage to a bearing,
Predicting the form of damage that occurs in the component during operation of the bearing from the contact pressure in contact between the component of the bearing and the other component of the bearing, and the plasticity index or a parameter based on the plasticity index A method for predicting a bearing damage mode.
前記接触が、前記構成部材の平滑面と前記他の構成部材の粗面との転がり接触であることを特徴とする請求項1記載の軸受損傷形態の予測方法。   2. The method for predicting a bearing damage mode according to claim 1, wherein the contact is a rolling contact between a smooth surface of the component member and a rough surface of the other component member. 前記損傷がピーリング、フレーキング、摩耗、スミアリングのうち、いずれの形態であるかを予測することを特徴とする請求項1または請求項2記載の軸受損傷形態の予測方法。   3. The method for predicting a bearing damage mode according to claim 1, wherein the damage is predicted to be any one of peeling, flaking, wear, and smearing. 実験結果を基に予め作成された、接触圧力と、塑性指数または塑性指数を因子とするパラメータとを座標軸とし、損傷の形態の別により領域区分した損傷形態図を用いて予測することを特徴とする請求項3記載の軸受損傷形態の予測方法。   Predicted by using a damage morphology diagram that is preliminarily created based on the experimental results, using the contact pressure and the plastic index or the parameter with the plastic index as a factor as the coordinate axes, and categorized according to the type of damage. The method for predicting a bearing damage mode according to claim 3. 軸受の運転開始後に軸受の構成部材にピーリングが確認されるまでの負荷回数であるピーリング寿命を予測する方法であって、
軸受の構成部材と該軸受の他の構成部材との接触における接触圧力、塑性指数、すべり割合、及び該構成部材と該他の構成部材の表面粗さから、該軸受の運転における前記ピーリング寿命を予測することを特徴とするピーリング寿命の予測方法。
A method of predicting a peeling life, which is the number of loads until peeling is confirmed in a bearing component after the operation of the bearing is started,
The peeling life in the operation of the bearing is determined from the contact pressure, plasticity index, slip ratio, and surface roughness of the constituent member and the other constituent member in contact between the bearing constituent member and the other constituent member of the bearing. A method for predicting a peeling life characterized by predicting.
前記接触が、前記構成部材の平滑面と前記他の構成部材の粗面との転がり接触であることを特徴とする請求項5記載のピーリング寿命の予測方法。   6. The peeling life prediction method according to claim 5, wherein the contact is rolling contact between a smooth surface of the constituent member and a rough surface of the other constituent member. 実験結果を基に予め作成された、接触圧力、塑性指数、すべり割合、及び表面粗さを入力としピーリング寿命を出力とする実験式を用いて、前記ピーリング寿命を予測することを特徴とする請求項5または請求項6記載のピーリング寿命の予測方法。   The peeling life is predicted using an empirical formula that is preliminarily created based on the experimental results and uses the contact pressure, plasticity index, slip ratio, and surface roughness as input and the peeling life as output. The peeling life prediction method according to claim 5 or claim 6.
JP2013039137A 2013-02-28 2013-02-28 Bearing damage form and peeling life prediction method Expired - Fee Related JP6062766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013039137A JP6062766B2 (en) 2013-02-28 2013-02-28 Bearing damage form and peeling life prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013039137A JP6062766B2 (en) 2013-02-28 2013-02-28 Bearing damage form and peeling life prediction method

Publications (2)

Publication Number Publication Date
JP2014167421A true JP2014167421A (en) 2014-09-11
JP6062766B2 JP6062766B2 (en) 2017-01-18

Family

ID=51617181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039137A Expired - Fee Related JP6062766B2 (en) 2013-02-28 2013-02-28 Bearing damage form and peeling life prediction method

Country Status (1)

Country Link
JP (1) JP6062766B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112879423A (en) * 2021-01-08 2021-06-01 洛阳Lyc轴承有限公司 Joint bearing for rail vehicle vibration test bed and service life calculation method thereof
CN113266961A (en) * 2020-02-17 2021-08-17 Lg电子株式会社 Compressor and cooling system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107741A (en) * 1989-09-21 1991-05-08 Koyo Seiko Co Ltd Rolling friction testing device
WO2000068587A1 (en) * 1999-05-10 2000-11-16 Nsk Ltd. Rolling bearing
JP2007032662A (en) * 2005-07-26 2007-02-08 Denso Corp Design method for grasping damage form of rolling bearing
JP2012181169A (en) * 2011-03-03 2012-09-20 Ntn Corp Apparatus and method for monitoring state of rolling component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107741A (en) * 1989-09-21 1991-05-08 Koyo Seiko Co Ltd Rolling friction testing device
WO2000068587A1 (en) * 1999-05-10 2000-11-16 Nsk Ltd. Rolling bearing
JP2007032662A (en) * 2005-07-26 2007-02-08 Denso Corp Design method for grasping damage form of rolling bearing
JP2012181169A (en) * 2011-03-03 2012-09-20 Ntn Corp Apparatus and method for monitoring state of rolling component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113266961A (en) * 2020-02-17 2021-08-17 Lg电子株式会社 Compressor and cooling system
CN112879423A (en) * 2021-01-08 2021-06-01 洛阳Lyc轴承有限公司 Joint bearing for rail vehicle vibration test bed and service life calculation method thereof

Also Published As

Publication number Publication date
JP6062766B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
Li et al. Micro-pitting fatigue lives of lubricated point contacts: Experiments and model validation
Burdzik et al. Analysis of the impact of surface layer parameters on wear intensity of friction pairs
Chang et al. Application of surface replication combined with image analysis to investigate wear evolution on gear teeth–A case study
Ito et al. Generation mechanism of friction anisotropy by surface texturing under boundary lubrication
Mohd Yusof et al. Analysis of surface parameters and vibration of roller bearing
Khare et al. Spalling investigation of connecting rod
Gurumoorthy et al. Failure investigation of a taper roller bearing: A case study
Singh et al. Investigation of microstructural alterations in low-and high-speed intermediate-stage wind turbine gearbox bearings
US11586787B2 (en) Friction design method and surface roughness control method for sliding member and production method for sliding mechanism
JP6062766B2 (en) Bearing damage form and peeling life prediction method
Miyajima et al. Friction and wear properties of lead-free aluminum alloy bearing material with molybdenum disulfide layer by a reciprocating test
Prajapati et al. Assessment of topography parameters during running-in and subsequent rolling contact fatigue tests
Prajapati et al. Experimental analysis of contact fatigue damage using fractal methodologies
Okamoto et al. Role of cross-grooved type texturing in acceleration of initial running-in under lubricated fretting
Hasegawa et al. Estimation Method of Micropitting Life from SN Curve Established by Residual Stress Measurements and Numerical Contact Analysis
JPH0650344A (en) Rolling bearing
Guo et al. 3D surface characterizations of wear particles generated from lubricated regular concave cylinder liners
WO2006001144A1 (en) Rolling bearing
Stickel et al. The influence of topography on the specific dissipated friction power in ultra-mild sliding wear: Experiment and simulation
Morales-Espejel et al. Understanding and preventing surface distress
KR20140043960A (en) Surface treatment method for low friction of internal combustion engine material
Zhou et al. Prediction model of fractal dimensions in steady state through a multi-stage running in of Sn11Sb6Cu and AISI 1045 steel
Hejnová Service life assessment of the cam mechanisms
Wang et al. Experimental study of the smoothing effect of a ceramic rolling element on a bearing raceway in contaminated lubrication
Kong Numerical simulation and experimental study on adhesion effect of powder lubricating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161215

R150 Certificate of patent or registration of utility model

Ref document number: 6062766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees