JP2014165291A - Estimation method and device for mask characteristic, and exposure method and device - Google Patents

Estimation method and device for mask characteristic, and exposure method and device Download PDF

Info

Publication number
JP2014165291A
JP2014165291A JP2013034030A JP2013034030A JP2014165291A JP 2014165291 A JP2014165291 A JP 2014165291A JP 2013034030 A JP2013034030 A JP 2013034030A JP 2013034030 A JP2013034030 A JP 2013034030A JP 2014165291 A JP2014165291 A JP 2014165291A
Authority
JP
Japan
Prior art keywords
light intensity
optical system
light
intensity distribution
projection optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013034030A
Other languages
Japanese (ja)
Other versions
JP6260847B2 (en
JP2014165291A5 (en
Inventor
Koichi Kamijo
康一 上條
Taro Ogata
太郎 尾形
Toru Hirayama
亨 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013034030A priority Critical patent/JP6260847B2/en
Publication of JP2014165291A publication Critical patent/JP2014165291A/en
Publication of JP2014165291A5 publication Critical patent/JP2014165291A5/en
Application granted granted Critical
Publication of JP6260847B2 publication Critical patent/JP6260847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To accurately estimate, according to an illuminating condition, the state of diffraction light emitted at a diffraction angle large enough for it not to pass through the aperture diaphragm of a projection optical system from a mask.SOLUTION: A method for estimating the state of diffraction light generated from the pattern of a reticle comprises: a step 102 of setting the light intensity distribution of an illumination pupil; a step 108 of measuring the diffraction intensity distribution in the projection pupil of a projection optical system that forms the image of the pattern of a reticle; steps 110, 112 of obtaining weight coefficients for a plurality of light intensity distributions when the degree of correlation between a diffraction intensity distribution and each of the plurality of light intensity distributions, which are obtained by shifting a 0-order intensity distribution corresponding to the light intensity distribution of illumination pupil, increases; and a step 116 of estimating the state of opening outer diffraction light that does not enter the projection pupil, on the basis of a light intensity distribution outside the projection pupil among light intensity distributions obtained by the weighted sum of the plurality of light intensity distributions.

Description

本発明は、マスクから発生する回折光の状態を推定するマスク特性の推定技術、この推定技術を用いる露光技術、及びこの露光技術を用いるデバイス製造技術に関する。   The present invention relates to a mask characteristic estimation technique for estimating the state of diffracted light generated from a mask, an exposure technique using this estimation technique, and a device manufacturing technique using this exposure technique.

半導体デバイス等の電子デバイス(マイクロデバイス)を製造するためのリソグラフィ工程中で使用されるステッパー又はスキャニングステッパー等の露光装置(投影露光装置)において、レチクル(マスク)のパターンを高精度にウエハ等の基板に露光するためには、投影光学系の光学特性(例えば収差)を目標とする範囲内に維持する必要がある。また、露光を継続すると、積算照射エネルギーによって投影光学系の光学特性は次第に変動する。   In an exposure apparatus (projection exposure apparatus) such as a stepper or a scanning stepper used in a lithography process for manufacturing an electronic device (microdevice) such as a semiconductor device, a reticle (mask) pattern is formed on a wafer or the like with high accuracy. In order to expose the substrate, it is necessary to maintain the optical characteristics (for example, aberration) of the projection optical system within a target range. Further, when the exposure is continued, the optical characteristics of the projection optical system gradually change depending on the accumulated irradiation energy.

そこで、従来、露光中に例えば積算照射エネルギーに応じて投影光学系の光学特性の変動量を予測し、例えば投影光学系内の所定の光学部材の位置や角度等を補正する結像特性補正系を用いてその予測される光学特性の変動量を補正することが行われている(例えば、特許文献1を参照)。この場合、レチクルから射出される回折光(0次光を含む)のうち、投影光学系の入射瞳に入射する回折光に関しては、例えば投影光学系の像面側にステージに設けられて、投影光学系の射出瞳の光強度分布を計測する計測装置によってその光強度分布を計測できる。そして、この計測結果と積算照射エネルギーとに基づいて投影光学系の光学特性の変動量を予測することが可能である。   Therefore, conventionally, an imaging characteristic correction system that predicts the amount of change in the optical characteristics of the projection optical system during exposure, for example, according to the integrated irradiation energy, and corrects the position and angle of a predetermined optical member in the projection optical system, for example. Is used to correct the predicted variation in the optical characteristics (see, for example, Patent Document 1). In this case, of the diffracted light (including zero-order light) emitted from the reticle, the diffracted light that enters the entrance pupil of the projection optical system is provided on the stage on the image plane side of the projection optical system, for example, and projected. The light intensity distribution can be measured by a measuring device that measures the light intensity distribution of the exit pupil of the optical system. Based on the measurement result and the integrated irradiation energy, it is possible to predict the variation amount of the optical characteristics of the projection optical system.

米国特許出願公開第2006/244940号明細書US Patent Application Publication No. 2006/244940

実際には、レチクルからは投影光学系を介して像面に達する回折光、すなわち投影光学系の入射瞳に入射する回折光の外に、その入射瞳に入射できない程度に大きい回折角を持つ回折光、すなわち投影光学系の入射側の開口半角よりも大きい回折角を持つ回折光(以下、開口外回折光という。)も射出される。このような開口外回折光は基板には入射しないが、投影光学系の鏡筒に入射して鏡筒の温度分布、ひいては鏡筒内の光学素子の温度分布に影響を与える恐れがある。   Actually, in addition to the diffracted light that reaches the image plane from the reticle via the projection optical system, that is, the diffracted light that enters the entrance pupil of the projection optical system, the diffraction has a diffraction angle that is so large that it cannot enter the entrance pupil. Light, that is, diffracted light having a diffraction angle larger than the half angle of the aperture on the incident side of the projection optical system (hereinafter referred to as out-of-aperture diffracted light) is also emitted. Such diffracted light outside the aperture does not enter the substrate, but may enter the lens barrel of the projection optical system and affect the temperature distribution of the lens barrel, and thus the temperature distribution of the optical elements in the lens barrel.

しかしながら、開口外回折光は、投影光学系の像面側のステージに設けられて、投影光学系の射出瞳の光強度分布を計測する計測装置では計測できないという問題がある。さらに、開口外回折光の方向、強度、又はある領域での光強度分布等の状態は、そのレチクルの照明条件(照明光学系の射出瞳の光強度分布等)に応じて複雑に変化するため、開口外回折光の状態を推定するためには照明条件を考慮する必要がある。   However, there is a problem that the diffracted light outside the aperture cannot be measured by a measuring apparatus that is provided on the image plane side stage of the projection optical system and measures the light intensity distribution of the exit pupil of the projection optical system. Furthermore, the state of the direction, intensity, or light intensity distribution in a certain region of the diffracted light outside the aperture changes in a complicated manner depending on the illumination conditions of the reticle (light intensity distribution of the exit pupil of the illumination optical system, etc.). In order to estimate the state of diffracted light outside the aperture, it is necessary to consider the illumination conditions.

本発明の態様は、このような事情に鑑み、マスクから投影光学系の入射瞳に入射できない程度に大きい角度(回折角)で射出される回折光の光強度分布又は方向等の状態を、照明条件に応じて正確に推定することを目的とする。   In view of such circumstances, the aspect of the present invention illuminates a state such as a light intensity distribution or a direction of diffracted light emitted at an angle (diffraction angle) that is so large that the mask cannot enter the entrance pupil of the projection optical system. The purpose is to estimate accurately according to the conditions.

本発明の第1の態様によれば、マスクのパターンから発生する回折光の状態を推定するマスク特性の推定方法が提供される。この推定方法は、そのマスクのパターンを照明する照明光学系の射出瞳における第1光強度分布を設定することと、その照明光学系によって照明されたそのマスクのパターンの像を形成する投影光学系の射出瞳における第2光強度分布を求めることと、その投影光学系の射出瞳内でその第1光強度分布に対応する対応分布を互いに異なる量だけシフトさせて得られる複数の第3光強度分布とその第2光強度分布との相関度がそれぞれ高くなるときの複数のその第3光強度分布を求めることと、その投影光学系の射出瞳内で複数のその第3光強度分布の加重和とその第2光強度分布との相関度が高くなるように複数のその第3光強度分布の個別の係数を求めることと、その個別の係数を用いた複数のその第3光強度分布の加重和によって得られる第4光強度分布のうち、その投影光学系の射出瞳外の光強度分布に基づいて、そのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定することと、を含むものである。   According to the first aspect of the present invention, a mask characteristic estimation method for estimating the state of diffracted light generated from a mask pattern is provided. This estimation method sets a first light intensity distribution at an exit pupil of an illumination optical system that illuminates the mask pattern, and a projection optical system that forms an image of the mask pattern illuminated by the illumination optical system A plurality of third light intensities obtained by obtaining a second light intensity distribution at the exit pupil of the first optical power source and shifting corresponding distributions corresponding to the first light intensity distribution within the exit pupil of the projection optical system by different amounts. Obtaining a plurality of third light intensity distributions when the degree of correlation between the distribution and the second light intensity distribution is high, and weighting the plurality of third light intensity distributions within the exit pupil of the projection optical system Obtaining individual coefficients of the plurality of third light intensity distributions so that the degree of correlation between the sum and the second light intensity distribution is high, and a plurality of the third light intensity distributions using the individual coefficients. Obtained by weighted sum Based on the light intensity distribution outside the exit pupil of the projection optical system in the fourth light intensity distribution, estimating the state of diffracted light that is generated from the mask pattern and does not enter the entrance pupil of the projection optical system And.

また、第2の態様によれば、マスクのパターンから発生する回折光の状態を推定するマスク特性の推定方法が提供される。この推定方法は、そのマスクのパターンを照明する照明光学系の射出瞳の第1光強度分布を記憶することと、その照明光学系の射出瞳における互いに異なる複数の位置の制限された領域からの光でそのマスクのパターンを順次照明することと、その制限された領域が互いに異なる複数の位置にあるときに、それぞれその照明光学系によって照明されたそのマスクのパターンの像を形成する投影光学系の射出瞳におけるそのマスクのパターンからの光による第2光強度分布を求めることと、求められたその第2光強度分布に基づいて、そのマスクのパターンからの0次光及び1次以上の回折光を含む第3光強度分布を求めることと、その第3光強度分布に基づいてその投影光学系の射出瞳内でその第1光強度分布に対応する対応分布及びこの対応分布をシフトした光強度分布を重ね合わせることによって、第4光強度分布を求めることと、その第4光強度分布のうち、その投影光学系の射出瞳外の光強度分布に基づいて、そのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定することと、を含むものである。
なお、第1及び第2の態様において、第2光強度分布を求めることは、投影光学系の射出瞳における第2光強度分布を計測することであっても良い。
Further, according to the second aspect, there is provided a mask characteristic estimation method for estimating the state of diffracted light generated from a mask pattern. This estimation method stores the first light intensity distribution of the exit pupil of the illumination optical system that illuminates the pattern of the mask, and from a limited region at a plurality of different positions on the exit pupil of the illumination optical system. Illuminating the mask pattern with light sequentially, and a projection optical system that forms an image of the mask pattern illuminated by the illumination optical system when the restricted area is at a plurality of different positions. Determining the second light intensity distribution by the light from the mask pattern at the exit pupil of the mask and the zero-order light and the first or higher order diffraction from the mask pattern based on the determined second light intensity distribution A third light intensity distribution including light, a corresponding distribution corresponding to the first light intensity distribution in the exit pupil of the projection optical system based on the third light intensity distribution, and the pair The fourth light intensity distribution is obtained by superimposing the light intensity distributions shifted in distribution, and the mask is based on the light intensity distribution outside the exit pupil of the projection optical system of the fourth light intensity distribution. And estimating the state of diffracted light that is generated from the pattern and does not enter the entrance pupil of the projection optical system.
In the first and second aspects, obtaining the second light intensity distribution may be measuring the second light intensity distribution at the exit pupil of the projection optical system.

また、第3の態様によれば、照明光学系からの照明光でマスクのパターンを照明し、その照明光でそのパターン及び投影光学系を介して基板を露光する露光方法が提供される。この露光方法は、本発明の態様の推定方法を用いて、そのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定することと、推定されるその投影光学系の入射瞳に入らない回折光の状態に基づいて、その投影光学系を構成する少なくとも一つの光学部材の温度変動量を求めることと、その光学部材の温度変動量に基づくその投影光学系の光学特性の変動量を補正することと、を含むものである。   According to the third aspect, there is provided an exposure method in which a mask pattern is illuminated with illumination light from an illumination optical system, and the substrate is exposed with the illumination light through the pattern and the projection optical system. This exposure method uses the estimation method according to the aspect of the present invention to estimate the state of diffracted light that is generated from the mask pattern and does not enter the entrance pupil of the projection optical system, and the projection optics to be estimated Based on the state of diffracted light that does not enter the entrance pupil of the system, the temperature fluctuation amount of at least one optical member constituting the projection optical system is obtained, and the projection optical system based on the temperature fluctuation amount of the optical member is determined. And correcting the fluctuation amount of the optical characteristic.

また、第4の態様によれば、マスクのパターンから発生する回折光の状態を推定するマスク特性の推定装置が提供される。この推定装置は、そのマスクのパターンを照明する照明光学系の射出瞳における第1光強度分布の情報を記憶する記憶部と、その照明光学系によって照明されたそのマスクのパターンの像を形成する投影光学系の射出瞳における第2光強度分布を計測する光強度分布計測部と、その記憶部に記憶されているその第1光強度分布及びその光強度分布計測部で計測されたその第2光強度分布に基づいてそのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定する演算部と、を備え、その演算部は、その投影光学系の射出瞳内でその第1光強度分布に対応する対応分布を互いに異なる量だけシフトさせて得られる複数の第3光強度分布とその第2光強度分布との相関度がそれぞれ高くなるときの複数のその第3光強度分布を求め、その投影光学系の射出瞳内で複数のその第3光強度分布の加重和とその第2光強度分布との相関度が高くなるように複数のその第3光強度分布の個別の係数を求め、その個別の係数を用いた複数のその第3光強度分布の加重和によって得られる光強度分布のうち、その投影光学系の射出瞳外の光強度分布に基づいて、そのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定するものである。   According to the fourth aspect, there is provided a mask characteristic estimation device for estimating the state of diffracted light generated from a mask pattern. The estimation apparatus forms a storage unit that stores information on the first light intensity distribution at the exit pupil of the illumination optical system that illuminates the mask pattern, and an image of the mask pattern illuminated by the illumination optical system. A light intensity distribution measuring unit that measures the second light intensity distribution at the exit pupil of the projection optical system, the first light intensity distribution stored in the storage unit, and the second measured by the light intensity distribution measuring unit. A calculation unit that estimates a state of diffracted light that is generated from the mask pattern based on the light intensity distribution and does not enter the entrance pupil of the projection optical system, and the calculation unit includes an exit pupil of the projection optical system. A plurality of third light intensity distributions obtained by shifting corresponding distributions corresponding to the first light intensity distributions by different amounts from each other and the degree of correlation between the second light intensity distributions increases. 3rd light A plurality of third light intensity distributions such that the degree of correlation between the weighted sum of the plurality of third light intensity distributions and the second light intensity distribution is high within the exit pupil of the projection optical system. Based on the light intensity distribution outside the exit pupil of the projection optical system among the light intensity distributions obtained by calculating individual coefficients and weighted sum of the plurality of third light intensity distributions using the individual coefficients, The state of the diffracted light generated from the mask pattern and not entering the entrance pupil of the projection optical system is estimated.

また、第5の態様によれば、マスクのパターンから発生する回折光の状態を推定するマスク特性の推定装置が提供される。この推定装置は、そのマスクのパターンを照明する照明光学系の射出瞳における第1光強度分布の情報を記憶する記憶部と、その照明光学系の射出瞳における互いに異なる複数の位置の制限された領域からの光でそのマスクのパターンを順次照明させる照明制御部と、その制限された領域が互いに異なる複数の位置にあるときに、それぞれその照明光学系によって照明されたそのマスクのパターンの像を形成する投影光学系の射出瞳におけるそのマスクのパターンからの光による第2光強度分布を計測する光強度分布計測部と、その記憶部に記憶されているその第1光強度分布及びその光強度分布計測部で計測されたその第2光強度分布に基づいてそのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定する演算部と、を備え、その演算部は、計測されたその第2光強度分布に基づいて、そのマスクのパターンからの0次光及び1次以上の回折光を含む第3光強度分布を求め、その第3光強度分布に基づいてその投影光学系の射出瞳内でその第1光強度分布に対応する対応分布及びこの対応分布をシフトした光強度分布を重ね合わせることによって、第4光強度分布を求め、その第4光強度分布のうち、その投影光学系の射出瞳外の光強度分布に基づいて、そのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定するものである。   According to the fifth aspect, there is provided a mask characteristic estimating apparatus that estimates the state of diffracted light generated from a mask pattern. The estimation apparatus includes a storage unit that stores information on the first light intensity distribution in the exit pupil of the illumination optical system that illuminates the mask pattern, and a plurality of different positions in the exit pupil of the illumination optical system are limited. An illumination controller that sequentially illuminates the mask pattern with light from the area, and images of the mask pattern illuminated by the illumination optical system when the restricted area is at a plurality of different positions. A light intensity distribution measuring unit that measures a second light intensity distribution by light from the mask pattern at the exit pupil of the projection optical system to be formed, the first light intensity distribution stored in the storage unit, and the light intensity Based on the second light intensity distribution measured by the distribution measuring unit, the state of the diffracted light that is generated from the mask pattern and does not enter the entrance pupil of the projection optical system is estimated. A calculation unit, and the calculation unit obtains a third light intensity distribution including zero-order light and first-order or higher diffracted light from the mask pattern based on the measured second light intensity distribution. The fourth light intensity is obtained by superimposing a corresponding distribution corresponding to the first light intensity distribution and a light intensity distribution shifted from the corresponding distribution in the exit pupil of the projection optical system based on the third light intensity distribution. Distribution of the diffracted light that is generated from the mask pattern and does not enter the entrance pupil of the projection optical system based on the light intensity distribution outside the exit pupil of the projection optical system of the fourth light intensity distribution. The state is estimated.

また、第6の態様によれば、照明光学系からの照明光でマスクのパターンを照明し、その照明光でそのパターン及び投影光学系を介して基板を露光する露光装置が提供される。この露光装置は、そのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定するための、本発明の態様の推定装置と、その推定装置によって推定されるその投影光学系の入射瞳に入らない回折光の状態に基づいて、その投影光学系を構成する少なくとも一つの光学部材の温度変動量を求める温度演算部と、その温度演算部によって求められるその光学部材の温度変動量に基づいてその投影光学系の光学特性の変動量を補正する補正部と、を備えるものである。   According to the sixth aspect, there is provided an exposure apparatus that illuminates a mask pattern with illumination light from the illumination optical system and exposes the substrate with the illumination light through the pattern and the projection optical system. The exposure apparatus includes an estimation apparatus according to an aspect of the present invention for estimating a state of diffracted light generated from the mask pattern and not entering the entrance pupil of the projection optical system, and the estimation apparatus estimated by the estimation apparatus. Based on the state of the diffracted light that does not enter the entrance pupil of the projection optical system, a temperature calculation unit that calculates the temperature fluctuation amount of at least one optical member that constitutes the projection optical system, and the optical member that is calculated by the temperature calculation unit And a correction unit that corrects the fluctuation amount of the optical characteristics of the projection optical system based on the temperature fluctuation amount of the projection optical system.

また、第7の態様によれば、照明光学系からの照明光でマスクのパターンを照明し、その照明光でそのパターン及び投影光学系を介して基板を露光する露光装置が提供される。この露光装置は、そのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定する推定装置と、その推定装置によって推定されるその投影光学系の入射瞳に入らない回折光の状態に基づいて、その投影光学系を構成する少なくとも一つの光学部材の温度変動量を求める温度演算部と、その温度演算部によって求められるその光学部材の温度変動量に基づいてその投影光学系の光学特性の変動量を補正する補正部と、を備えるものである。   According to the seventh aspect, there is provided an exposure apparatus that illuminates a mask pattern with illumination light from the illumination optical system and exposes the substrate with the illumination light through the pattern and the projection optical system. The exposure apparatus estimates the state of diffracted light generated from the mask pattern and does not enter the entrance pupil of the projection optical system, and enters the entrance pupil of the projection optical system estimated by the estimation apparatus. A temperature calculation unit for determining a temperature fluctuation amount of at least one optical member constituting the projection optical system based on a state of the diffracted light, and a temperature calculation unit for determining the temperature fluctuation amount of the optical member obtained by the temperature calculation unit. And a correction unit that corrects the fluctuation amount of the optical characteristics of the projection optical system.

また、第8の態様によれば、本発明の態様の露光方法又は露光装置を用いて基板上に感光層のパターンを形成することと、そのパターンが形成されたその基板を処理することと、を含むデバイス製造方法が提供される。   Further, according to the eighth aspect, forming the pattern of the photosensitive layer on the substrate using the exposure method or exposure apparatus of the aspect of the present invention, processing the substrate on which the pattern is formed, A device manufacturing method is provided.

本発明の態様によれば、照明光学系の射出瞳に設定される光強度分布の情報と、投影光学系の射出瞳における光強度分布の計測結果とを用いることによって、マスクから投影光学系の入射瞳に入射できない程度に大きい角度(回折角)で射出される回折光の光強度分布又は方向等の状態を、照明条件に応じて正確に推定できる。   According to the aspect of the present invention, the information of the light intensity distribution set in the exit pupil of the illumination optical system and the measurement result of the light intensity distribution in the exit pupil of the projection optical system are used, so that A state such as a light intensity distribution or direction of diffracted light emitted at an angle (diffraction angle) that is so large that it cannot enter the entrance pupil can be accurately estimated according to the illumination conditions.

第1の実施形態に係る露光装置の概略構成を示す一部を断面とした図である。It is the figure which made the section which shows schematic structure of the exposure apparatus which concerns on 1st Embodiment into the cross section. 図1の露光装置の制御系等を示すブロック図である。2 is a block diagram showing a control system and the like of the exposure apparatus of FIG. (A)はレチクルのパターンの一部を示す拡大平面図、(B)は他のレチクルのパターンの一部を示す拡大平面図、(C)は照明光学系の瞳面(照明瞳面)における光強度分布の一例を示す図である。(A) is an enlarged plan view showing a part of a reticle pattern, (B) is an enlarged plan view showing a part of another reticle pattern, and (C) is a pupil plane (illumination pupil plane) of the illumination optical system. It is a figure which shows an example of light intensity distribution. 開口外回折光の状態の推定方法及び露光方法の一例を示すフローチャートである。It is a flowchart which shows an example of the estimation method of the state of diffracted light outside an aperture, and an exposure method. 投影光学系の瞳面(投影瞳面)における光強度分布を計測中の露光装置を示す図である。It is a figure which shows the exposure apparatus which is measuring light intensity distribution in the pupil plane (projection pupil plane) of a projection optical system. (A)は投影瞳面における0次回折光の光強度分布の一例を示す図、(B)は投影瞳面における0次及び1次の回折光の光強度分布の一例を示す図、(C)は0次回折光の光強度分布のシフト方向及びシフト量を示す図である。(A) is a diagram showing an example of the light intensity distribution of the 0th-order diffracted light on the projection pupil plane, (B) is a diagram showing an example of the light intensity distribution of the 0th-order and 1st-order diffracted light on the projection pupil plane, (C) FIG. 4 is a diagram showing a shift direction and a shift amount of a light intensity distribution of 0th-order diffracted light. 投影瞳面の計算領域内で推定される回折光の光強度分布の一例を示す図である。It is a figure which shows an example of the light intensity distribution of the diffracted light estimated in the calculation area | region of a projection pupil surface. (A)は第2の実施形態の照明瞳面における光強度分布の一例を示す図、(B)及び(C)は照明瞳面上の互いに異なる位置から射出される照明光によって投影瞳面に形成される光強度分布を示す図、(D)は垂直入射時にレチクルからの回折光によって投影瞳面に形成される光強度分布を示す図である。(A) is a figure which shows an example of the light intensity distribution in the illumination pupil plane of 2nd Embodiment, (B) and (C) are projection pupil planes by the illumination light inject | emitted from a mutually different position on an illumination pupil plane. FIG. 4D is a diagram showing a formed light intensity distribution, and FIG. 4D is a diagram showing a light intensity distribution formed on the projection pupil plane by diffracted light from the reticle when perpendicularly incident. 第2の実施形態に係る開口外回折光の状態の推定方法の一例を示すフローチャートである。It is a flowchart which shows an example of the estimation method of the state of diffracted light outside an aperture concerning a 2nd embodiment. 第2の実施形態において、投影瞳面の光強度分布を計測中の露光装置を示す図である。It is a figure which shows the exposure apparatus which is measuring light intensity distribution of a projection pupil surface in 2nd Embodiment. 第2の実施形態において投影瞳面の計算領域内で推定される回折光の光強度分布の一例を示す図である。It is a figure which shows an example of the light intensity distribution of the diffracted light estimated in the calculation area of a projection pupil surface in 2nd Embodiment. 変形例のレチクルのパターンの一部を示す拡大平面図である。It is an enlarged plan view which shows a part of pattern of the reticle of a modification. 電子デバイスの製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of an electronic device.

本発明の実施形態につき説明する。まず、本明細書において、ある光学系の入射瞳と光学的に共役な領域とは、その光学系の入射瞳が設定される面又はこの近傍の面と光学的に共役な面上の領域を含む。また、ある光学系の射出瞳と光学的に共役な領域とは、その光学系の射出瞳が設定される面又はこの近傍の面と光学的に共役な面上の領域を含む。
また、ある光学系の射出瞳における光強度分布を設定するか、又は計測するか若しくは求めることは、それぞれその光学系の射出瞳と光学的に共役な領域における光強度分布を設定するか、又は計測するか若しくは求めることを含む。同様に、ある光学系の射出瞳における光強度分布を記憶することは、その光学系の射出瞳と光学的に共役な領域における光強度分布を記憶することを含む。また、ある光学系の入射瞳に入射しない光の状態とは、この光学系の入射瞳と光学的に共役な領域に入射しない光の状態を含む。同様に、ある光学系の射出瞳外の光強度分布に基づいてある処理を行うことは、この光学系の射出瞳と光学的に共役な領域の外側の領域の光強度分布に基づいてその処理を行うことを含む。
An embodiment of the present invention will be described. First, in this specification, an area optically conjugate with an entrance pupil of an optical system is an area on a plane optically conjugate with a surface on which the entrance pupil of the optical system is set or a surface in the vicinity thereof. Including. Further, the region optically conjugate with the exit pupil of an optical system includes a region on a surface optically conjugate with a surface on which the exit pupil of the optical system is set or a surface in the vicinity thereof.
Also, setting or measuring or determining the light intensity distribution in the exit pupil of a certain optical system sets the light intensity distribution in a region optically conjugate with the exit pupil of that optical system, or Includes measuring or seeking. Similarly, storing the light intensity distribution at the exit pupil of an optical system includes storing the light intensity distribution in a region optically conjugate with the exit pupil of the optical system. The state of light that does not enter the entrance pupil of an optical system includes the state of light that does not enter a region optically conjugate with the entrance pupil of the optical system. Similarly, performing a certain process based on the light intensity distribution outside the exit pupil of a certain optical system is based on the light intensity distribution in a region outside the region optically conjugate with the exit pupil of this optical system. Including performing.

また、ある光学系(複数の光学系を含む場合を含む)のある射出瞳内の光強度分布に対して、その射出瞳と光学的に共役な領域内で対応する分布(以下、対応分布ともいう)とは、その光学系のその射出瞳内にその光強度分布を形成した光が、その射出瞳と光学的に共役な領域内に形成する光強度分布を含む。さらに、ある光学系の射出瞳内における一の光強度分布と他の光強度分布との相関度とは、この光学系の射出瞳と光学系に共役な領域におけるその一の光強度分布に対応する分布とその他の光強度分布に対応する分布との相関度を含む。   Further, a distribution corresponding to a light intensity distribution in an exit pupil of a certain optical system (including a case including a plurality of optical systems) in a region optically conjugate with the exit pupil (hereinafter referred to as a corresponding distribution). Means a light intensity distribution formed in a region optically conjugate with the exit pupil by the light having the light intensity distribution formed in the exit pupil of the optical system. Furthermore, the degree of correlation between one light intensity distribution in an exit pupil of an optical system and another light intensity distribution corresponds to that one light intensity distribution in a region conjugate to the exit pupil of the optical system and the optical system. And the degree of correlation between the distribution corresponding to other light intensity distributions.

[第1の実施形態]
第1の実施形態につき図1〜図7を参照して説明する。図1は、本実施形態に係る露光装置EXの全体構成を概略的に示す。露光装置EXは、一例としてスキャニングステッパー(スキャナー)よりなる走査露光型の投影露光装置である。露光装置EXは、投影光学系PLを備えている。以下、投影光学系PLの光軸AXと平行にZ軸を取り、これに直交する面(本実施形態ではほぼ水平面に平行な面)内でレチクルRと半導体ウエハ(以下、ウエハという。)Wとが相対走査される方向にX軸を、Z軸及びX軸に直交する方向にY軸を取って説明する。また、X軸、Y軸、及びZ軸に平行な軸の回りの回転方向をθx、θy、及びθz方向とも称する。
[First Embodiment]
A first embodiment will be described with reference to FIGS. FIG. 1 schematically shows the overall configuration of an exposure apparatus EX according to the present embodiment. The exposure apparatus EX is, for example, a scanning exposure type projection exposure apparatus composed of a scanning stepper (scanner). The exposure apparatus EX includes a projection optical system PL. Hereinafter, a reticle R and a semiconductor wafer (hereinafter referred to as a wafer) W are taken in a plane (a plane parallel to a horizontal plane in this embodiment) orthogonal to the Z axis parallel to the optical axis AX of the projection optical system PL. In the following description, the X axis is taken in the direction of the relative scanning and the Y axis is taken in the direction perpendicular to the Z axis and the X axis. In addition, the rotation directions around the axes parallel to the X axis, the Y axis, and the Z axis are also referred to as θx, θy, and θz directions.

露光装置EXは、露光用の照明光(露光光)ILを発生する露光用の光源30、光源30からの照明光ILを用いてレチクルR(マスク)を照明する照明光学系ILS、及びレチクルRを保持して移動するレチクルステージRSTを備えている。さらに、露光装置EXは、レチクルRから射出された照明光ILでウエハW(基板)を露光する投影光学系PL、ウエハWを保持して移動するウエハステージWST、レチクルRの特性(マスク特性)を推定する推定装置10(図2参照)、及び装置全体の動作を統括的に制御するコンピュータよりなる主制御装置14等(図2参照)を備えている。露光装置EXの露光本体部(照明光学系ILS、レチクルステージRST、投影光学系PL、及びウエハステージWSTを含む部分)は、温度制御された清浄な気体が供給されている環境チャンバ(不図示)内に設置されている。   The exposure apparatus EX includes an exposure light source 30 that generates exposure illumination light (exposure light) IL, an illumination optical system ILS that illuminates a reticle R (mask) using the illumination light IL from the light source 30, and a reticle R. Is provided with a reticle stage RST that moves while holding. Further, the exposure apparatus EX includes a projection optical system PL that exposes the wafer W (substrate) with illumination light IL emitted from the reticle R, a wafer stage WST that holds and moves the wafer W, and characteristics of the reticle R (mask characteristics). And a main control device 14 (see FIG. 2) including a computer that comprehensively controls the operation of the entire device. An exposure main body of exposure apparatus EX (a portion including illumination optical system ILS, reticle stage RST, projection optical system PL, and wafer stage WST) is an environmental chamber (not shown) to which a temperature-controlled clean gas is supplied. It is installed inside.

照明光ILとしては、一例としてArFエキシマレーザ光(波長193nm)が用いられている。なお、照明光としては、KrFエキシマレーザ光(波長248nm)、YAGレーザ若しくは固体レーザ(半導体レーザなど)の高調波、又は水銀ランプの輝線(i線等)なども使用できる。照明光学系ILSは、点線で概略構成を示すように、また、例えば米国特許出願公開第2003/0025890号明細書などに開示されているように、光源30から供給される所定方向の直線偏光又は非偏光等の露光用の照明光ILを反射するミラーMR1、その反射光を多数の傾斜角可変のミラー要素のアレイで反射する空間光変調器32、そのミラー要素のアレイからの光を集光及び反射する集光光学系33及びミラーMR2、並びにその反射された光からその射出面に面光源(二次光源)を形成するフライアイレンズ34(オプティカルインテグレータ)を有する。本実施形態では、フライアイレンズ34の射出面又はこの近傍の面が照明光学系ILSの瞳面(以下、照明瞳面という。)IPPである。   As the illumination light IL, for example, ArF excimer laser light (wavelength 193 nm) is used. As illumination light, KrF excimer laser light (wavelength 248 nm), harmonics of a YAG laser or a solid-state laser (semiconductor laser, etc.), or a bright line (i-line etc.) of a mercury lamp can be used. The illumination optical system ILS has a predetermined configuration of linearly polarized light supplied from the light source 30 as indicated by a dotted line and disclosed in, for example, US Patent Application Publication No. 2003/0025890. A mirror MR1 that reflects illumination light IL for exposure such as non-polarized light, a spatial light modulator 32 that reflects the reflected light by an array of many tilt angle variable mirror elements, and collects light from the array of mirror elements And a condensing optical system 33 and a mirror MR2 for reflecting, and a fly-eye lens 34 (optical integrator) for forming a surface light source (secondary light source) on the exit surface from the reflected light. In the present embodiment, the exit surface of the fly-eye lens 34 or a surface in the vicinity thereof is a pupil plane (hereinafter referred to as illumination pupil plane) IPP of the illumination optical system ILS.

主制御装置14の制御のもとで照明制御部46(図2参照)が空間光変調器32の各ミラー要素の傾斜角を制御することで、照明瞳面IPPの光強度分布(光量分布)を円形領域、複数極領域、又は輪帯状の領域等で光強度(光量)が大きくなる種々の照明条件に対応する分布に設定できる。必要に応じて照明瞳面IPP又はこの近傍に、可変開口絞り35が設置される。一例として、照明瞳面IPP又はこの近傍に、円形開口を持つ可変開口絞り35が設置される場合、その円形開口内の領域を照明瞳37と称する。なお、照明瞳面IPP又はこの近傍に可変開口絞り35が設置されていない場合には、空間光変調器32の各ミラー要素からの反射光によって照明瞳面IPPにおける光強度分布の輪郭部(この光強度分布が所定レベル以上になる領域の輪郭部)が規定される。この場合には、一例として、この光強度分布が所定レベル以上になる領域に外接する円形の領域を照明瞳37と称する。照明瞳37は、通常は、コヒーレンスファクタ(いわゆるσ値)が1になる円周71I(図3(C)参照)で囲まれた領域のうち一部の領域である。照明瞳37は、照明光学系ILSの射出瞳と光学的に共役な領域である。   The illumination control unit 46 (see FIG. 2) controls the tilt angle of each mirror element of the spatial light modulator 32 under the control of the main control device 14, and thereby the light intensity distribution (light quantity distribution) of the illumination pupil plane IPP. Can be set to a distribution corresponding to various illumination conditions in which the light intensity (light quantity) increases in a circular region, a multipolar region, or a ring-shaped region. If necessary, a variable aperture stop 35 is installed on the illumination pupil plane IPP or in the vicinity thereof. As an example, when a variable aperture stop 35 having a circular aperture is installed at or near the illumination pupil plane IPP, an area within the circular aperture is referred to as an illumination pupil 37. When the variable aperture stop 35 is not installed in the illumination pupil plane IPP or in the vicinity thereof, the contour portion of the light intensity distribution on the illumination pupil plane IPP (this) is reflected by the reflected light from each mirror element of the spatial light modulator 32. The contour portion of the region where the light intensity distribution becomes a predetermined level or more is defined. In this case, as an example, a circular area circumscribing an area where the light intensity distribution is equal to or higher than a predetermined level is referred to as an illumination pupil 37. The illumination pupil 37 is usually a part of a region surrounded by a circumference 71I (see FIG. 3C) where the coherence factor (so-called σ value) is 1. The illumination pupil 37 is an area optically conjugate with the exit pupil of the illumination optical system ILS.

照明光学系ILSは、さらにその二次光源からの照明光ILでレチクルRのパターン面(下面)RaのX方向に細長いスリット状の照明領域IARを重畳して照明するコンデンサ光学系36、及び照明領域IARの形状を規定する可変視野絞り(不図示)等を有する。なお、空間光変調器32の代わりに交換可能に照明光路に配置される複数の回折光学素子等も使用可能である。   The illumination optical system ILS further includes a condenser optical system 36 that illuminates an elongated slit-shaped illumination area IAR in the X direction of the pattern surface (lower surface) Ra of the reticle R with illumination light IL from the secondary light source, and illumination It has a variable field stop (not shown) that defines the shape of the region IAR. In place of the spatial light modulator 32, a plurality of diffractive optical elements arranged in the illumination optical path in an interchangeable manner can also be used.

さらに、照明光学系ILSには、照明光ILから分岐した光の光量を計測する光電センサ(インテグレータセンサ)(不図示)が設けられ、このインテグレータセンサの計測値が主制御装置14に供給されている。主制御装置14ではその計測値から投影光学系PLの積算照射エネルギーをモニタできる。なお、積算照射エネルギーの代替情報として、露光継続時間を使用することも可能である。   Further, the illumination optical system ILS is provided with a photoelectric sensor (integrator sensor) (not shown) that measures the amount of light branched from the illumination light IL, and the measurement value of the integrator sensor is supplied to the main controller 14. Yes. The main controller 14 can monitor the integrated irradiation energy of the projection optical system PL from the measured value. In addition, it is also possible to use the exposure duration as alternative information for the integrated irradiation energy.

レチクルRはレチクルステージRSTの上面に真空吸着等により保持され、レチクルRのパターン面Raには、回路パターン等のデバイスパターン及びアライメントマーク(不図示)などが形成されている。レチクルステージRSTは、例えばリニアモータ等を含む図2のレチクルステージ駆動系41によって、XY平面内で微少駆動可能であると共に、走査方向(X方向)に指定された走査速度で駆動可能である。   The reticle R is held on the upper surface of the reticle stage RST by vacuum suction or the like, and a device pattern such as a circuit pattern and an alignment mark (not shown) are formed on the pattern surface Ra of the reticle R. The reticle stage RST can be driven minutely in the XY plane by the reticle stage drive system 41 of FIG. 2 including, for example, a linear motor and the like, and can be driven at a scanning speed specified in the scanning direction (X direction).

レチクルステージRSTの移動面内の位置情報(X方向、Y方向の位置、及びθz方向の回転角を含む)は、レーザ干渉計よりなるレチクル干渉計24によって、移動鏡22(又は鏡面加工されたステージ端面)を介して例えば0.5〜0.1nm程度の分解能で常時検出される。レチクル干渉計24の計測値は、図2の主制御装置14に送られる。主制御装置14は、その計測値に基づいてレチクルステージ駆動系41を制御することで、レチクルステージRSTの位置及び速度を制御する。   Position information within the moving surface of the reticle stage RST (including the position in the X direction, the Y direction, and the rotation angle in the θz direction) is transferred to the moving mirror 22 (or mirror-finished) by the reticle interferometer 24 including a laser interferometer. For example, it is always detected with a resolution of about 0.5 to 0.1 nm via the stage end face. The measurement value of reticle interferometer 24 is sent to main controller 14 in FIG. Main controller 14 controls the position and speed of reticle stage RST by controlling reticle stage drive system 41 based on the measured values.

投影光学系PLは、例えば両側テレセントリックで所定の投影倍率β(例えば1/4倍、1/5倍などの縮小倍率)を有する。投影光学系PLは、円筒状の鏡筒17内に複数の光学素子(不図示)を所定の位置関係で保持して構成されている。鏡筒17は、複数の環状の分割鏡筒を連結したものでもよい。投影光学系PLの瞳面(以下、投影瞳面という。)PLPに開口絞りASが設置されている。本実施形態では、開口絞りASの開口ASaで囲まれた領域を投影瞳71Aと称する。投影瞳71Aは、投影光学系PLの入射瞳及び射出瞳と光学的に共役である。投影瞳71Aの輪郭(円周)と光学的に共役な照明瞳面IPP上の円周が、σ値が1になる円周である。   The projection optical system PL is, for example, telecentric on both sides and has a predetermined projection magnification β (for example, a reduction magnification of 1/4 times, 1/5 times, etc.). The projection optical system PL is configured by holding a plurality of optical elements (not shown) in a predetermined positional relationship within a cylindrical barrel 17. The lens barrel 17 may be formed by connecting a plurality of annular divided lens barrels. An aperture stop AS is provided on the pupil plane (hereinafter referred to as projection pupil plane) PLP of the projection optical system PL. In the present embodiment, a region surrounded by the aperture Asa of the aperture stop AS is referred to as a projection pupil 71A. The projection pupil 71A is optically conjugate with the entrance pupil and the exit pupil of the projection optical system PL. The circumference on the illumination pupil plane IPP optically conjugate with the contour (circumference) of the projection pupil 71A is the circumference where the σ value is 1.

また、投影瞳面PLPは照明瞳面IPPと光学的に共役であり、投影瞳面PLPは、レチクルRのパターン面Ra(投影光学系PLの物体面)に対して光学的なフーリエ変換面でもある。なお、投影光学系PLは中間像を形成するタイプでもよく、開口絞りASは投影瞳面PLPの近傍の位置、投影瞳面PLPと光学的に共役な位置、又はこの近傍の位置に設置されていてもよい。さらに、投影光学系PLは、屈折系でもよいが、反射屈折系であってもよい。   Further, the projection pupil plane PLP is optically conjugate with the illumination pupil plane IPP, and the projection pupil plane PLP is also an optical Fourier transform plane with respect to the pattern surface Ra of the reticle R (the object plane of the projection optical system PL). is there. The projection optical system PL may be of a type that forms an intermediate image, and the aperture stop AS is installed at a position near the projection pupil plane PLP, a position optically conjugate with the projection pupil plane PLP, or a position near this position. May be. Further, the projection optical system PL may be a refractive system, but may also be a catadioptric system.

図1において、照明光学系ILSからの照明光ILによってレチクルRのパターン面Raの照明領域IARが照明されると、レチクルRを通過した照明光ILにより、投影光学系PLを介して照明領域IAR内のデバイスパターンの像が、ウエハWの一つのショット領域の露光領域IA(照明領域IARと光学的に共役な領域)に形成される。ウエハWは、一例としてシリコン等の半導体よりなる直径が200〜450mm程度の円板状の基材にフォトレジスト(感光材料)を数10〜200nm程度の厚さで塗布したものを含む。   In FIG. 1, when the illumination area IAR of the pattern surface Ra of the reticle R is illuminated by the illumination light IL from the illumination optical system ILS, the illumination area IAR passes through the reticle R and passes through the projection optical system PL. An image of the device pattern is formed in an exposure area IA (an area optically conjugate with the illumination area IAR) of one shot area of the wafer W. As an example, the wafer W includes a wafer formed by applying a photoresist (photosensitive material) with a thickness of about several tens to 200 nm to a disk-shaped base made of a semiconductor such as silicon and having a diameter of about 200 to 450 mm.

また、露光装置EXにおいて、液浸法を適用した露光を行うため、投影光学系PLを構成する最も像面側(ウエハW側)の光学素子の下端部の周囲を取り囲むように、局所液浸装置の一部を構成して、露光領域IAを含む液浸領域で露光用の液体Lq(例えば純水)の供給及び回収を行うノズルユニット18が設けられている。ノズルユニット18は、液体Lqを供給するための配管(不図示)を介して、液体供給装置43及び液体回収装置44(図2参照)に接続されている。なお、液浸タイプの露光装置としない場合には、上記の局所液浸装置は設けなくともよい。   Further, in the exposure apparatus EX, in order to perform exposure using the liquid immersion method, local liquid immersion is performed so as to surround the lower end portion of the optical element on the most image plane side (wafer W side) constituting the projection optical system PL. A nozzle unit 18 that constitutes a part of the apparatus and supplies and recovers the exposure liquid Lq (for example, pure water) in the liquid immersion area including the exposure area IA is provided. The nozzle unit 18 is connected to a liquid supply device 43 and a liquid recovery device 44 (see FIG. 2) via a pipe (not shown) for supplying the liquid Lq. If the immersion type exposure apparatus is not used, the above-mentioned local immersion apparatus need not be provided.

また、投影光学系PL内の複数の光学素子の保持機構に接触するように設置された配管(不図示)には、温度制御部28から供給用の配管29Aを介して温度制御された液体Co(例えば純水、フッ素系液体、又は冷媒等)が供給され、その投影光学系PL内の配管を流れた液体Coは回収用の配管29Bを介して温度制御部28に回収されている。温度制御部28で温度制御された液体Coを投影光学系PL内に循環させることで、照明光ILの積算照射エネルギーに起因する投影光学系PL内の複数の光学素子の温度上昇が抑制される。   In addition, a pipe (not shown) installed so as to be in contact with the holding mechanism of the plurality of optical elements in the projection optical system PL is provided with a liquid Co whose temperature is controlled from the temperature control unit 28 via the supply pipe 29A. (For example, pure water, fluorine-based liquid, refrigerant, or the like) is supplied, and the liquid Co that has flowed through the piping in the projection optical system PL is recovered by the temperature control unit 28 via the recovery piping 29B. By circulating the liquid Co whose temperature is controlled by the temperature controller 28 in the projection optical system PL, the temperature rise of the plurality of optical elements in the projection optical system PL due to the integrated irradiation energy of the illumination light IL is suppressed. .

さらに、投影光学系PLには、内部の所定の複数の光学素子(例えばレンズ)の姿勢を制御してディストーション及び球面収差等の波面収差で表される結像特性を補正する結像特性補正系16が設けられている。そのような結像特性補正系は、例えば米国特許出願公開第2006/244940号明細書に開示されている。
また、露光装置EXは、レチクルRのアライメントを行うためにレチクルRのアライメントマークの投影光学系PLによる像の位置を計測する空間像計測系(不図示)と、ウエハWのアライメントを行うために使用される例えば画像処理方式(FIA系)のアライメント系ALと、照射系45a及び受光系45bよりなりウエハWの表面の複数箇所のZ位置を計測する斜入射方式の多点のオートフォーカスセンサ(以下、多点AF系という)45(図2参照)と、を備えている。
Further, the projection optical system PL includes an imaging characteristic correction system that corrects imaging characteristics represented by wavefront aberrations such as distortion and spherical aberration by controlling the postures of a plurality of predetermined optical elements (for example, lenses) therein. 16 is provided. Such an imaging characteristic correction system is disclosed in, for example, US Patent Application Publication No. 2006/244940.
Further, the exposure apparatus EX performs an alignment of the wafer W with an aerial image measurement system (not shown) that measures the position of the image of the alignment mark of the reticle R by the projection optical system PL in order to align the reticle R. For example, an image processing type (FIA type) alignment system AL, an irradiation system 45a and a light receiving system 45b, and an oblique incidence type multi-point autofocus sensor for measuring Z positions at a plurality of locations on the surface of the wafer W ( (Hereinafter referred to as a multi-point AF system) 45 (see FIG. 2).

ウエハステージWSTは、不図示の複数のエアパッド(不図示)を介して、ベース盤WBのXY面に平行な上面に非接触で支持されている。ウエハステージWSTは、例えば平面モータ、又は直交する2組のリニアモータを含むステージ駆動系42(図2参照)によってX方向及びY方向に駆動可能である。ウエハステージWSTは、X方向、Y方向に駆動されるステージ本体と、ステージ本体に設けられてウエハWを真空吸着等で保持するウエハホルダWHと、ウエハWのZ位置、及びθx方向、θy方向のチルト角を制御するZステージ機構(不図示)とを備えている。   Wafer stage WST is supported in a non-contact manner on an upper surface parallel to the XY plane of base board WB via a plurality of air pads (not shown). Wafer stage WST can be driven in the X and Y directions by a stage drive system 42 (see FIG. 2) including, for example, a planar motor or two sets of orthogonal linear motors. Wafer stage WST includes a stage main body that is driven in the X direction and the Y direction, a wafer holder WH that is provided on the stage main body and holds wafer W by vacuum suction, the Z position of wafer W, the θx direction, and the θy direction. And a Z stage mechanism (not shown) for controlling the tilt angle.

また、ウエハステージWSTの位置情報を計測するためにレーザ干渉計よりなるウエハ干渉計26が配置されている。なお、ウエハ干渉計26の代わりに、回折格子と検出器とを組み合わせたエンコーダ方式の位置計測システムを使用してもよい。ウエハステージWSTの移動面内の位置情報(X方向、Y方向の位置、及びθz方向の回転角を含む)は、ウエハ干渉計26によって例えば0.5〜0.1nm程度の分解能で常時検出され、その計測値は主制御装置14に送られる。主制御装置14は、その計測値に基づいてステージ駆動系42を制御することで、ウエハステージWSTの位置及び速度を制御する。   In addition, a wafer interferometer 26 composed of a laser interferometer is arranged for measuring position information of wafer stage WST. Instead of the wafer interferometer 26, an encoder type position measurement system combining a diffraction grating and a detector may be used. Position information within the moving surface of wafer stage WST (including the position in the X direction, the Y direction, and the rotation angle in the θz direction) is always detected by the wafer interferometer 26 with a resolution of about 0.5 to 0.1 nm, for example. The measured value is sent to the main controller 14. Main controller 14 controls the position and speed of wafer stage WST by controlling stage drive system 42 based on the measurement value.

また、ウエハステージWSTに投影瞳71A内の光強度分布(光量分布)を計測できる計測部20が組み込まれている。計測部20は、ウエハWの表面と同じ高さの表面を有し、その表面にピンホール21Aaが形成された平板状のガラス基板21Aと、ピンホール21Aaを通過した照明光を集光する受光光学系21Bと、受光光学系21Bで集光された照明光を受光するCCD又はCMOS型の二次元の撮像素子21Cと、これらの部材を保持する筐体21Dとを有する。ピンホール21Aaを露光領域IA内に移動した状態で、受光光学系21Bによって、投影瞳面PLPに対して撮像素子21Cの受光面は光学的に共役になる。ただし、計測部20に入射する光束は開口絞りASを通過した光束だけであるため、撮像素子21Cの検出信号を画像処理部(不図示)で処理することによって、投影瞳面PLP上の投影瞳71Aの光強度分布を計測できる。計測された光強度分布は主制御装置14に供給される。なお、計測部20は、投影光学系PLの射出瞳の光強度分布を計測するとみなすこともできる。   In addition, measurement unit 20 capable of measuring the light intensity distribution (light quantity distribution) in projection pupil 71A is incorporated in wafer stage WST. The measuring unit 20 has a surface having the same height as the surface of the wafer W, a flat glass substrate 21A having a pinhole 21Aa formed on the surface, and light reception for condensing illumination light that has passed through the pinhole 21Aa. It has an optical system 21B, a CCD or CMOS type two-dimensional image sensor 21C that receives illumination light collected by the light receiving optical system 21B, and a housing 21D that holds these members. With the pinhole 21Aa moved into the exposure area IA, the light receiving surface of the image sensor 21C is optically conjugate with respect to the projection pupil plane PLP by the light receiving optical system 21B. However, since the light beam incident on the measurement unit 20 is only the light beam that has passed through the aperture stop AS, the projection pupil on the projection pupil plane PLP is processed by processing the detection signal of the image sensor 21C by an image processing unit (not shown). The light intensity distribution of 71A can be measured. The measured light intensity distribution is supplied to the main controller 14. Note that the measurement unit 20 can also be regarded as measuring the light intensity distribution of the exit pupil of the projection optical system PL.

コンピュータよりなる主制御装置14は、複数の演算プロセッサ、メモリ、記憶装置等を備えている。また、主制御装置14には、入出力部48、DVD(digital versatile disk)、CD−ROM、又はフラッシュメモリ等の記録媒体51のデータの記録及び再生を行う記録再生部50、磁気ディスク装置又は半導体の不揮発性メモリ等の記憶部52、演算プロセッサ及びメモリ等を含む演算部54、及び複数の露光装置及び複数のリソグラフィ装置に制御情報等を供給するホストコンピュータ12との間でデータの授受を行うインターフェース部(不図示)が接続されている。照明制御部46、光強度分布の計測部20、記憶部52、及び演算部54を含んで、レチクルRの特性を推定する推定装置10が構成されている。なお、演算部54は、主制御装置14を構成するコンピュータのソフトウェア上の一つの機能であってもよい。主制御装置14及び演算部54で実行されるプログラムは例えば記録媒体51に記録されており、記録媒体51から記録再生部50によって読み取ることができる。   The main controller 14 composed of a computer includes a plurality of arithmetic processors, a memory, a storage device, and the like. The main control unit 14 includes an input / output unit 48, a recording / reproducing unit 50 that records and reproduces data on a recording medium 51 such as a DVD (digital versatile disk), a CD-ROM, or a flash memory. Data is exchanged between a storage unit 52 such as a semiconductor non-volatile memory, a calculation unit 54 including a calculation processor and a memory, and a host computer 12 that supplies control information to a plurality of exposure apparatuses and a plurality of lithography apparatuses. An interface unit (not shown) is connected. The estimation apparatus 10 that estimates the characteristics of the reticle R includes the illumination control unit 46, the light intensity distribution measurement unit 20, the storage unit 52, and the calculation unit 54. Note that the arithmetic unit 54 may be one function on software of a computer constituting the main control device 14. The program executed by the main control device 14 and the calculation unit 54 is recorded in, for example, the recording medium 51 and can be read from the recording medium 51 by the recording / reproducing unit 50.

ウエハWの露光時に、基本的な動作として、レチクルR及びウエハWのアライメントが行われた後、ウエハステージWSTのX方向、Y方向への移動(ステップ移動)によって、ウエハWの露光対象のショット領域が投影光学系PLの露光領域の手前に移動する。そして、主制御装置14の制御のもとで、レチクルRのパターンの一部の投影光学系PLによる像でウエハWの当該ショット領域を露光しつつ、レチクルステージRST及びウエハステージWSTを同期駆動して、投影光学系PLに対してレチクルR及びウエハWを例えば投影倍率を速度比としてX方向に走査することによって、当該ショット領域の全面にレチクルRのパターンの像が走査露光される。このようにステップ移動と走査露光とを繰り返すことによって、ステップ・アンド・スキャン方式でウエハWの複数のショット領域に対して順次レチクルRのパターンの像が露光される。   As a basic operation during exposure of the wafer W, after the alignment of the reticle R and the wafer W is performed, the wafer stage WST is moved in the X direction and the Y direction (step movement), so that the shot of the wafer W to be exposed is shot. The area moves to the front of the exposure area of the projection optical system PL. Then, under the control of the main controller 14, the reticle stage RST and the wafer stage WST are synchronously driven while exposing the shot area of the wafer W with an image of a part of the pattern of the reticle R by the projection optical system PL. Thus, by scanning the reticle R and the wafer W with respect to the projection optical system PL in the X direction, for example, using the projection magnification as the speed ratio, the image of the pattern of the reticle R is scanned and exposed over the entire shot area. By repeating the step movement and the scanning exposure in this way, a pattern image of the reticle R is sequentially exposed to a plurality of shot regions of the wafer W by a step-and-scan method.

このような露光を継続すると、レチクルRのパターンから発生する回折光(0次光を含む)よりなる照明光ILが投影光学系PLを通過する際の積算照射エネルギーによって投影光学系PL内の複数の光学素子の温度が次第に上昇し、投影光学系PLの結像特性(例えば波面収差)が変動する。なお、本実施形態では、温度制御部28から投影光学系PL内に温度制御された冷却用の液体Coが供給されているため、それらの光学素子の温度分布は次第に飽和して、レチクルRから発生する回折光の光強度分布に応じたある温度分布に収束していく。また、各光学素子は熱膨張率が極めて小さいため、変形量は小さいが、屈折率分布がその温度分布に応じてわずかに変化する。そのため、回折光の光強度分布及び照明光ILの積算照射エネルギーに基づいて、各光学素子(又は光学特性の変動に最も大きく寄与する部分の光学素子)の温度分布の変動量及び収束したときの温度分布を計算によって求め、求められた温度分布から当該光学素子の屈折率分布を求めることで、露光中の各時点での投影光学系PLの結像特性の変動量が計算できる。   If such exposure is continued, a plurality of illumination light IL made of diffracted light (including zero-order light) generated from the pattern of the reticle R passes through the projection optical system PL. The temperature of the optical element gradually increases, and the imaging characteristics (for example, wavefront aberration) of the projection optical system PL change. In the present embodiment, since the temperature-controlled cooling liquid Co is supplied from the temperature control unit 28 into the projection optical system PL, the temperature distribution of these optical elements gradually saturates from the reticle R. It converges to a certain temperature distribution according to the light intensity distribution of the generated diffracted light. Further, each optical element has a very small coefficient of thermal expansion, so that the amount of deformation is small, but the refractive index distribution slightly changes according to the temperature distribution. Therefore, based on the light intensity distribution of the diffracted light and the integrated irradiation energy of the illumination light IL, the variation amount of the temperature distribution of each optical element (or the optical element of the part that contributes the most to the fluctuation of the optical characteristics) and the convergence time By obtaining the temperature distribution by calculation and obtaining the refractive index distribution of the optical element from the obtained temperature distribution, it is possible to calculate the variation amount of the imaging characteristics of the projection optical system PL at each time point during the exposure.

本実施形態では、レチクルRのパターンから発生する回折光のうち、投影光学系PLの投影瞳71A(開口絞りAS)を通過して像面に達する回折光による投影光学系PLの波面収差の変動量(以下、第1収差変動量という)と、投影光学系PLの入射瞳に入射できない程度に大きい回折角を持つ回折光、すなわち投影光学系PLの入射側の開口半角よりも大きい回折角を持つ回折光である開口外回折光による投影光学系PLの波面収差の変動量(以下、第2収差変動量という)とを求めるものとする。この場合、第1収差変動量は、投影光学系PL中の光学素子を回折光が通過することによる温度分布の変動に起因する。一方、第2収差変動量は、投影光学系PLの光学素子を保持する鏡筒17に開口外回折光が入射して、鏡筒17の温度分布が変動し、この温度分布の変動に伴って光学素子の温度分布が変動することに起因する。   In the present embodiment, of the diffracted light generated from the pattern of the reticle R, the fluctuation of the wavefront aberration of the projection optical system PL due to the diffracted light that passes through the projection pupil 71A (aperture stop AS) of the projection optical system PL and reaches the image plane. And a diffracted light having a diffraction angle that is so large that it cannot enter the entrance pupil of the projection optical system PL, that is, a diffraction angle larger than the half angle of the opening on the incident side of the projection optical system PL. It is assumed that a fluctuation amount of the wavefront aberration of the projection optical system PL (hereinafter referred to as a second aberration fluctuation amount) due to out-of-aperture diffracted light that is diffracted light is obtained. In this case, the first aberration fluctuation amount is caused by the fluctuation of the temperature distribution caused by the diffracted light passing through the optical element in the projection optical system PL. On the other hand, the second aberration fluctuation amount is that the diffracted light outside the aperture is incident on the lens barrel 17 holding the optical element of the projection optical system PL, the temperature distribution of the lens barrel 17 is fluctuated, and the temperature distribution fluctuates. This is because the temperature distribution of the optical element varies.

なお、投影光学系PLの入射瞳に入射する回折光、すなわち投影瞳71A(開口絞りAS)を通過する回折光の光強度分布は計測部20によって計測可能であるが、開口絞りASを通過できない開口外回折光の光強度分布は計測部20では計測できない。このため、本実施形態では、仮想的に、投影光学系PLの投影瞳面PLPにおいて投影瞳71Aの外側の領域にその開口外回折光が入射するものとして、推定装置10によってその開口外回折光の仮想的な光強度分布、その開口外回折光が投影光学系PLに入射する方向、及び/又はその開口外回折光の光強度等の状態を推定する。以下、推定装置10を用いてレチクルRから発生する開口外回折光の状態を推定する方法、及びこの推定方法により得られた結果を用いて投影光学系PLの光学特性としての結像特性を補正しながらウエハを露光する方法の一例につき、図4のフローチャートを参照して説明する。この動作は主制御装置14によって制御される。   Note that the light intensity distribution of the diffracted light incident on the entrance pupil of the projection optical system PL, that is, the diffracted light passing through the projection pupil 71A (aperture stop AS) can be measured by the measuring unit 20, but cannot pass through the aperture stop AS. The light intensity distribution of the diffracted light outside the aperture cannot be measured by the measuring unit 20. For this reason, in the present embodiment, it is assumed that the diffracted light outside the aperture is incident on a region outside the projection pupil 71A on the projection pupil plane PLP of the projection optical system PL. Are estimated, the direction in which the diffracted light outside the aperture is incident on the projection optical system PL, and / or the state of the light intensity of the diffracted light outside the aperture. Hereinafter, a method for estimating the state of diffracted light outside the aperture generated from the reticle R using the estimation device 10 and a result obtained by this estimation method are used to correct the imaging characteristics as the optical characteristics of the projection optical system PL. An example of a method for exposing a wafer will be described with reference to the flowchart of FIG. This operation is controlled by the main controller 14.

本実施形態では、一例として、レチクルRには、図3(A)に示すように、X方向に投影光学系PLの解像限界(傾斜照明をした場合を含む)に近いピッチ(周期)pxのライン・アンド・スペースパターン(以下、L&Sパターンという)60Xを含むデバイスパターンが形成されているものとする。L&Sパターン60Xは、光透過性のガラス基板56のパターン面の遮光膜59中に、X方向の幅px/2の開口部よりなるラインパターン60Xaと、X方向の幅px/2の遮光部よりなるスペースパターン60Xbとを交互に配列したものである。さらに、レチクルRを使用する場合の照明条件は一例として4極照明とする。   In the present embodiment, as an example, as shown in FIG. 3A, the reticle R has a pitch (period) px close to the resolution limit (including the case of tilted illumination) of the projection optical system PL in the X direction. It is assumed that a device pattern including a line and space pattern (hereinafter referred to as an L & S pattern) 60X is formed. The L & S pattern 60X includes a line pattern 60Xa including an opening having a width px / 2 in the X direction and a light shielding portion having a width px / 2 in the X direction in the light shielding film 59 on the pattern surface of the light transmissive glass substrate 56. The space patterns 60Xb are alternately arranged. Furthermore, the illumination conditions when using the reticle R are, for example, quadrupole illumination.

この場合、図1の照明光学系ILSの照明瞳面IPP上の照明瞳37の光強度分布70は、図3(C)に示すように、照明光学系ILSの光軸AXをX方向に挟むように配置された1対の領域70A,70B、及び光軸AXをY方向に挟むように配置された1対の領域70C,70Dにおいて光強度が大きくなる。なお、図3(C)の光強度分布70を用いる照明条件は、図3(B)に示すように、Y方向に投影光学系PLの解像限界に近いピッチpyのL&Sパターン60Y(ラインパターン60Ya及びスペースパターン60Yb)を含むデバイスパターンが形成されているレチクルR1の照明条件としても使用できる。   In this case, the light intensity distribution 70 of the illumination pupil 37 on the illumination pupil plane IPP of the illumination optical system ILS in FIG. 1 sandwiches the optical axis AX of the illumination optical system ILS in the X direction, as shown in FIG. The light intensity increases in the pair of regions 70A and 70B arranged in this manner and the pair of regions 70C and 70D arranged so as to sandwich the optical axis AX in the Y direction. The illumination condition using the light intensity distribution 70 in FIG. 3C is an L & S pattern 60Y (line pattern) having a pitch py close to the resolution limit of the projection optical system PL in the Y direction, as shown in FIG. 3B. It can also be used as illumination conditions for reticle R1 on which a device pattern including 60Ya and space pattern 60Yb) is formed.

まず、図4のステップ102において、主制御装置14は、記憶部52に記憶されている露光データファイルからレチクルRの照明条件を読み出し、この照明条件に対応する光強度分布70が設定されるように、照明制御部46を介して照明光学系ILSの空間光変調器32を駆動する。ただし、この段階ではレチクルステージRSTにはレチクルRはロードされていない。そして、図5に示すように、一例としてレチクルステージRSTに例えば素通しのガラス基板GPが載置されている状態で、ウエハステージWSTを駆動して計測部20の受光部を投影光学系PLの露光領域に移動し、照明光学系ILSからの照明光ILでガラス基板GPを照明し(又は素通しの状態で照明してもよい)、計測部20によって投影瞳71A内の光強度分布(以下、0次強度分布という)72(図6(A)参照)を計測する(ステップ104)。なお、計測部20を用いた計測時に、投影光学系PLと計測部20との間に液浸露光用の液体Lqは供給されていてもよいが、その液体Lqがない状態で計測を行ってもよい(以下、同様)。   First, in step 102 of FIG. 4, the main controller 14 reads the illumination condition of the reticle R from the exposure data file stored in the storage unit 52, and the light intensity distribution 70 corresponding to this illumination condition is set. In addition, the spatial light modulator 32 of the illumination optical system ILS is driven via the illumination control unit 46. However, at this stage, reticle R is not loaded on reticle stage RST. Then, as shown in FIG. 5, for example, in a state where a transparent glass substrate GP is placed on the reticle stage RST, for example, the wafer stage WST is driven to expose the light receiving unit of the measuring unit 20 to the projection optical system PL. Move to a region, illuminate the glass substrate GP with the illumination light IL from the illumination optical system ILS (or illuminate in a transparent state), and the light intensity distribution (hereinafter, 0) in the projection pupil 71A by the measurement unit 20 The next intensity distribution 72 (see FIG. 6A) is measured (step 104). Note that, during measurement using the measurement unit 20, the liquid Lq for immersion exposure may be supplied between the projection optical system PL and the measurement unit 20, but measurement is performed without the liquid Lq. (The same applies hereinafter).

このように計測される0次強度分布72は、照明瞳37内の光強度分布70を照明瞳面IPPと投影瞳面PLPとの間の倍率で伸縮した分布(光強度分布70に対応する分布)である。このため、図6(A)に示すように、0次強度分布72は、図3(C)の4つの領域70A〜70Dと共役な投影瞳面PLP上の領域70AP〜70DPで光強度が大きくなる。また、投影瞳面PLPで投影瞳71Aを含む正方形の領域をX方向、Y方向に所定幅で複数の画素に分割し、X方向にi番目でY方向にj番目の画素G(xi,yj)の光強度を関数org[i][j]の値とする。画素G(xi,yj)は、計測部20の撮像素子21Dの各画素に対応している。画素G(xi,yj)は、中心のX方向、Y方向の座標が(xi,yj)であることを意味している。なお、iは0〜I(Iは例えば数100〜数1000の整数)の整数、jは0〜J(Jは例えば数100〜数1000の整数)の整数である。このとき、計測された0次強度分布72は関数org[i][j]で表され、投影瞳71Aの外側の領域では関数org[i][j]の値は0である。   The zero-order intensity distribution 72 measured in this way is a distribution obtained by expanding and contracting the light intensity distribution 70 in the illumination pupil 37 at a magnification between the illumination pupil plane IPP and the projection pupil plane PLP (a distribution corresponding to the light intensity distribution 70). ). For this reason, as shown in FIG. 6A, the zero-order intensity distribution 72 has a large light intensity in the regions 70AP to 70DP on the projection pupil plane PLP conjugate with the four regions 70A to 70D in FIG. Become. Further, a square area including the projection pupil 71A on the projection pupil plane PLP is divided into a plurality of pixels with a predetermined width in the X direction and the Y direction, and the i th pixel in the X direction and the j th pixel G (xi, yj) in the Y direction. ) Is the value of the function org [i] [j]. The pixel G (xi, yj) corresponds to each pixel of the image sensor 21D of the measurement unit 20. The pixel G (xi, yj) means that the coordinates in the center X direction and Y direction are (xi, yj). Note that i is an integer from 0 to I (I is an integer from several hundred to several thousand), and j is an integer from 0 to J (J is an integer from several hundred to several thousand, for example). At this time, the measured zero-order intensity distribution 72 is represented by the function org [i] [j], and the value of the function org [i] [j] is 0 in the region outside the projection pupil 71A.

次に、ガラス基板GPをレチクルステージRSTからアンロードし、レチクルRをレチクルステージRSTにロードして、アライメントを行う(ステップ106)。そして、照明光学系ILSからの照明光ILでレチクルRを照明し、レチクルRからの回折光による投影瞳71A内の光強度分布(以下、回折強度分布という)74(図6(B)参照)を計測部20によって計測する(ステップ108)。計測された回折強度分布74の情報は記憶部52に記憶される。   Next, the glass substrate GP is unloaded from the reticle stage RST, the reticle R is loaded onto the reticle stage RST, and alignment is performed (step 106). Then, the reticle R is illuminated with the illumination light IL from the illumination optical system ILS, and the light intensity distribution (hereinafter referred to as diffraction intensity distribution) 74 in the projection pupil 71A due to the diffracted light from the reticle R (see FIG. 6B). Is measured by the measuring unit 20 (step 108). Information of the measured diffraction intensity distribution 74 is stored in the storage unit 52.

図5において、レチクルRのL&Sパターン60Xからは、投影光学系PLの入射瞳(ひいては投影瞳71A)に入射する回折光DL(0次光を含む)の外に、θx方向の回折角が大きいためにその入射瞳に入射しない開口外回折光HDA,HDBも射出される。ステップ108で計測される回折強度分布74は、回折光DLによって形成される分布である。図6(B)に示すように、投影瞳71A内の回折強度分布74は、0次光が入射する領域70AP〜70DP、及びX方向の±1次回折光が入射する領域70BD1,70AD2で光強度が大きくなる。この場合、図6(B)のX方向にi番目でY方向にj番目の画素G(xi,yj)の平均的な光強度を関数dif[i][j]の値とすると、計測された回折強度分布74は関数dif[i][j]で表される。投影瞳71Aの外側の領域では関数dif[i][j]の値は0である。計測された強度分布72,74の情報は演算部54に供給され、演算部54は以下のステップ110〜116の演算処理を行う。   In FIG. 5, from the L & S pattern 60X of the reticle R, the diffraction angle in the θx direction is large in addition to the diffracted light DL (including the 0th order light) incident on the entrance pupil (and thus the projection pupil 71A) of the projection optical system PL. Therefore, out-of-aperture diffracted lights HDA and HDB that do not enter the entrance pupil are also emitted. The diffraction intensity distribution 74 measured in step 108 is a distribution formed by the diffracted light DL. As shown in FIG. 6B, the diffraction intensity distribution 74 in the projection pupil 71A has light intensity in the regions 70AP to 70DP where the 0th order light is incident and the regions 70BD1 and 70AD2 where the ± first order diffracted light in the X direction is incident. Becomes larger. In this case, when the average light intensity of the i-th pixel G (xi, yj) in the X direction and the j-th pixel in the Y direction is the value of the function dif [i] [j] in FIG. The diffraction intensity distribution 74 is expressed by the function dif [i] [j]. The value of the function dif [i] [j] is 0 in the area outside the projection pupil 71A. Information of the measured intensity distributions 72 and 74 is supplied to the calculation unit 54, and the calculation unit 54 performs the calculation processing of the following steps 110 to 116.

まず、ステップ110において、仮想的に投影瞳面PLP上で、0次強度分布72をX方向及び/又はY方向にシフトさせては回折強度分布74と重ね合わせて、以下の式で定義される相関関数v[p][q] を計算する。この場合、整数pはX方向のシフト量を画素単位で表し、整数qはY方向のシフト量を画素単位で表している。   First, in step 110, the 0th-order intensity distribution 72 is virtually shifted on the projection pupil plane PLP in the X direction and / or the Y direction, and is superimposed on the diffraction intensity distribution 74, and is defined by the following expression. Calculate the correlation function v [p] [q]. In this case, the integer p represents the shift amount in the X direction in pixel units, and the integer q represents the shift amount in the Y direction in pixel units.

Figure 2014165291
そして、相関関数vが極値(ピーク値)を取るときの0次強度分布72のX方向、Y方向のシフト量を求める。この結果求められた相関関数vが極値を取る回数を(K+1)回(Kは1以上の整数)とする。このとき、相関関数vがk番目(kは0〜Kの整数)の極値を取るときの0次強度分布72のX方向、Y方向のシフト量を表す整数(p,q)の組を(p[k], q[k])で表す。ただし、k=0は、X方向、Y方向のシフト量が0の場合(p[k]=0, q[k]=0)(シフト前の0次光の分布)であるとする。
Figure 2014165291
Then, the shift amount in the X direction and the Y direction of the zero-order intensity distribution 72 when the correlation function v takes an extreme value (peak value) is obtained. The number of times the correlation function v obtained as a result takes an extreme value is (K + 1) times (K is an integer of 1 or more). At this time, a set of integers (p, q) representing the shift amounts in the X direction and Y direction of the zero-order intensity distribution 72 when the correlation function v takes the k-th extreme value (k is an integer of 0 to K). (P [k], q [k]). However, k = 0 is assumed to be when the shift amount in the X direction and the Y direction is 0 (p [k] = 0, q [k] = 0) (distribution of 0th-order light before the shift).

図6(C)は、シフト量の組(p,q)に対して相関関数vの値の分布(値が大きいほど濃度が高く表されている)の一例を概念的に示す。原点(p,q)のピーク76Aは0次光と相関が高い部分であり、ピーク76Aの周囲の部分76Aa、さらにその周囲の部分76Abと次第に値が小さくなっている。同様に、ピーク76B及び76Cは、それぞれX方向の±1次回折光と相関が高い部分であり、図6(C)では、相関関数vの極値は3つあることになる。   FIG. 6C conceptually shows an example of the distribution of the value of the correlation function v with respect to the set of shift amounts (p, q) (the higher the value, the higher the density is expressed). The peak 76A at the origin (p, q) is a portion having a high correlation with the zero-order light, and the value gradually decreases with respect to the portion 76Aa around the peak 76A and further to the portion 76Ab around it. Similarly, the peaks 76B and 76C are portions where the correlation with the ± first-order diffracted light in the X direction is high, and in FIG. 6C, there are three extreme values of the correlation function v.

次に、ステップ112において、相関関数vがk番目の極値を取るときの、X方向、Y方向にシフトされた0次強度分布72(関数org[i+p[k]][j+q[k]])にそれぞれ重み係数a[k](k=0〜K)を与え、K個の極値を取ったときのX方向、Y方向にシフトされた0次強度分布72の加重和の分布関数res[i][j]を以下のように計算する。   Next, in step 112, the zero-order intensity distribution 72 (function org [i + p [k]] [j + q] shifted in the X and Y directions when the correlation function v takes the kth extreme value. [k]]) are respectively given weighting factors a [k] (k = 0 to K), and the weighted sum of the zero-order intensity distributions 72 shifted in the X and Y directions when K extreme values are taken. The distribution function res [i] [j] is calculated as follows.

Figure 2014165291
そして、その加重和の分布関数res[i][j]と、回折強度分布74を表す関数dif[i][j]との差分の二乗和が最小になるように、最小二乗法で係数a[k](k=0〜K)の値を決定する。具体的に、最尤関数Sを以下のように定義する。
Figure 2014165291
The coefficient a is calculated by the least square method so that the square sum of the difference between the distribution function res [i] [j] of the weighted sum and the function dif [i] [j] representing the diffraction intensity distribution 74 is minimized. The value of [k] (k = 0 to K) is determined. Specifically, the maximum likelihood function S is defined as follows.

Figure 2014165291
そして、この最尤関数Sの係数a[k]による偏微分が次式のように0になるときの係数a[k]を決定する(k=0〜K)。
∂S/∂a[k]=0 …(7)
次に、ステップ114において、ステップ112で決定された係数a[k](k=0〜K)、及びこのときのシフト量の組(p[k], q[k])を用いて0次強度分布72の関数org[i][j]をシフトした関数を用いて、上記の式(4)の加重和の分布関数res[i][j]の値を画素単位で計算する。ただし、この場合の計算は、図7に示すように、投影瞳面PLPにおいて、光軸AXを中心とする円形の投影瞳71A(この半径をrとする)を囲むように、光軸AXを中心として設定される半径が3rの領域(以下、計算領域という)71Bで行われる。このように計算領域71Bの半径が投影瞳71Aの半径の3倍になるのは、ステップ110で0次強度分布72をX方向、Y方向にシフトさせるときに、0次強度分布72と回折強度分布74とが重なる可能性のあるシフト量の絶対値は、最大で投影瞳71Aの直径(2r)であり、式(4)で規定される関数の値は、計算領域71Bの外部では0になるからである。
Figure 2014165291
Then, the coefficient a [k] when the partial differentiation of the maximum likelihood function S by the coefficient a [k] becomes 0 as shown in the following equation is determined (k = 0 to K).
∂S / ∂a [k] = 0 (7)
Next, in step 114, using the coefficient a [k] (k = 0 to K) determined in step 112 and the set of shift amounts (p [k], q [k]) at this time, the 0th order Using the function obtained by shifting the function org [i] [j] of the intensity distribution 72, the value of the distribution function res [i] [j] of the weighted sum in the above equation (4) is calculated in units of pixels. However, in this case, as shown in FIG. 7, in the projection pupil plane PLP, the optical axis AX is set so as to surround a circular projection pupil 71A (this radius is r) centered on the optical axis AX. This is performed in an area 71B having a radius 3r set as the center (hereinafter referred to as a calculation area) 71B. Thus, the radius of the calculation area 71B becomes three times the radius of the projection pupil 71A when the 0th-order intensity distribution 72 is shifted in the X and Y directions in step 110, and the 0th-order intensity distribution 72 and the diffraction intensity. The absolute value of the shift amount that may overlap the distribution 74 is the diameter (2r) of the projection pupil 71A at the maximum, and the value of the function defined by the equation (4) is 0 outside the calculation region 71B. Because it becomes.

ステップ112で決定された係数a[k]を用いて計算される式(4)の加重和の分布関数res[i][j]は、図7の計算領域71B内の光強度分布78を表す。一例として図6(C)に示すように、式(2)の相関関数v[p][q] の極値が、原点(k=0)、pがある正の値を取るとき(k=1とする)、及びpがある負の値を取るとき(k=2とする)であるとすると、係数a[0],a[1],a[2]がある値に決定される。これらの係数a[0]〜a[2]を用いて計算される光強度分布78は、投影瞳71A内の領域70AP〜70DPで光強度が大きくなる0次光の光強度分布と、領域70AP〜70DPを+X方向に移動した領域70AD1〜70DD1の+1次回折光の光強度分布と、領域70AP〜70DPを−X方向に移動した領域70AD2〜70DD2の−1次回折光の光強度分布と、を含んでいる。一例として、+1次回折光の分布のうち領域70BD1が投影瞳71A内にあり、−1次回折光の分布のうち領域70AD2が投影瞳71A内にある。   The distribution function res [i] [j] of the weighted sum of Expression (4) calculated using the coefficient a [k] determined in Step 112 represents the light intensity distribution 78 in the calculation region 71B of FIG. . As an example, as shown in FIG. 6C, when the extreme value of the correlation function v [p] [q] in the equation (2) has a positive value with the origin (k = 0) and p (k = 1) and when p takes a certain negative value (assuming k = 2), the coefficients a [0], a [1], and a [2] are determined to be certain values. The light intensity distribution 78 calculated using these coefficients a [0] to a [2] is a light intensity distribution of zero-order light in which the light intensity increases in the regions 70AP to 70DP in the projection pupil 71A, and the region 70AP. Light intensity distribution of + 1st order diffracted light of regions 70AD1 to 70DD1 moved in the + X direction through 70DP, and light intensity distribution of -1st order diffracted light in regions 70AD2 to 70DD2 moved in the -X direction of regions 70AP to 70DP. It is out. As an example, the region 70BD1 in the distribution of the + 1st order diffracted light is in the projection pupil 71A, and the region 70AD2 in the distribution of the −1st order diffracted light is in the projection pupil 71A.

この場合、投影瞳71A内の領域70AD1〜70DD1,70BD1,70AD2に入射する回折光(0次光を含む)が、図5のレチクルRのL&Sパターン60Xから発生して投影光学系PLの入射瞳に入射する光である。一方、計算領域71B内で投影瞳71Aの外側の輪帯状の領域にある領域70AD1,70CD1,70DD1及び70BD2,70CD2,70DD2に仮想的に入射する±1次回折光が、レチクルRのL&Sパターン60Xから発生して投影光学系PLの入射瞳に入射しない開口外回折光HDA及びHDBである。言い換えると、投影瞳71A内の光強度分布78aが、投影光学系PLの入射瞳に入射する回折光の分布であり、計算領域71B内で投影瞳71Aの外側の光強度分布78bが開口外回折光の分布を表している。従って、投影瞳面PLPにおける開口外回折光の仮想的な光強度分布78bが推定できた(計算によって求められた)ことになる。   In this case, diffracted light (including zero-order light) incident on the regions 70AD1 to 70DD1, 70BD1, and 70AD2 in the projection pupil 71A is generated from the L & S pattern 60X of the reticle R in FIG. 5 and is incident on the projection optical system PL. Is incident on the light. On the other hand, ± 1st-order diffracted light that virtually enters the regions 70AD1, 70CD1, 70DD1 and 70BD2, 70CD2, 70DD2 in the annular region outside the projection pupil 71A in the calculation region 71B is from the L & S pattern 60X of the reticle R. Out-aperture diffracted light HDA and HDB that are generated and do not enter the entrance pupil of the projection optical system PL. In other words, the light intensity distribution 78a in the projection pupil 71A is the distribution of diffracted light incident on the entrance pupil of the projection optical system PL, and the light intensity distribution 78b outside the projection pupil 71A in the calculation area 71B is out-of-aperture diffraction. Represents the distribution of light. Therefore, the virtual light intensity distribution 78b of the diffracted light outside the aperture on the projection pupil plane PLP can be estimated (calculated).

次のステップ116において、ステップ114で得られた開口外回折光HDA,HDBの仮想的な光強度分布78bより、レチクルRを用いた露光時に図1の投影光学系PLの鏡筒17に対する開口外回折光HDA,HDBの入射位置及び強度を推定する。一例として、図7において、計算領域71Bの内部で投影瞳71A外の領域をX方向、Y方向に所定幅の複数の単位領域H(xi,yj)に分割し、光強度分布78bから各単位領域(xi,yj)内の平均的な光強度を仮想的に単位領域H(xi,yj)に入射する開口外回折光の光強度として求める。なお、単位領域H(xi,yj)は、中心のX方向、Y方向の座標が(xi,yj)であることを意味している。単位領域H(xi,yj)は、投影瞳71A内の一つの画素の整数倍の大きさでもよい。   In the next step 116, from the virtual light intensity distribution 78b of the diffracted light HDA and HDB outside the aperture obtained in step 114, the outside of the aperture with respect to the lens barrel 17 of the projection optical system PL of FIG. The incident positions and intensities of the diffracted lights HDA and HDB are estimated. As an example, in FIG. 7, the area outside the projection pupil 71A inside the calculation area 71B is divided into a plurality of unit areas H (xi, yj) having a predetermined width in the X and Y directions, and each unit is determined from the light intensity distribution 78b. The average light intensity in the region (xi, yj) is obtained as the light intensity of the diffracted light outside the aperture that is virtually incident on the unit region H (xi, yj). The unit area H (xi, yj) means that the coordinates in the center X direction and Y direction are (xi, yj). The unit area H (xi, yj) may be an integer multiple of one pixel in the projection pupil 71A.

また、図7の投影瞳面PLPにおいて、光軸AXから単位領域H(xi,yj)の中心までの距離rh(i,j)、及び光軸AXを通りX軸に平行な直線に対して、光軸AXと単位領域H(xi,yj)の中心とを結ぶ直線がなす角度φ(i,j)を求める。このとき、仮想的に単位領域H(xi,yj)に入射する開口外回折光を図1の開口外回折光HDAとすると、開口外回折光HDAの鏡筒17に対するXY平面内での入射方向は角度φ(i,j)である。さらに、その入射方向における開口外回折光HDAの回折角をhφAとして、投影光学系PLの前群光学系(開口絞りASと物体面との間の光学系)の焦点距離をfaとすると、図7の単位領域H(xi,yj)の距離rh(i,j)を用いてほぼ次の関係がある。   Further, in the projection pupil plane PLP of FIG. 7, a distance rh (i, j) from the optical axis AX to the center of the unit area H (xi, yj) and a straight line passing through the optical axis AX and parallel to the X axis. Then, an angle φ (i, j) formed by a straight line connecting the optical axis AX and the center of the unit region H (xi, yj) is obtained. At this time, if the outside-aperture diffracted light that virtually enters the unit region H (xi, yj) is the outside-aperture diffracted light HDA in FIG. 1, the incident direction of the outside-aperture diffracted light HDA in the XY plane with respect to the lens barrel 17 Is the angle φ (i, j). Furthermore, when the diffraction angle of the outside-aperture diffracted light HDA in the incident direction is hφA and the focal length of the front group optical system (an optical system between the aperture stop AS and the object plane) of the projection optical system PL is fa, Using the distance rh (i, j) of 7 unit regions H (xi, yj), the following relationship is obtained.

fa・sin(hφA)=rh(i,j) …(8)
従って、式(8)から投影瞳71A外の領域にある単位領域H(xi,yj)に入射する開口外回折光HDAの回折角hφAを求めることができる。同様に、図1の−X方向に射出される開口外回折光HDBに関しても、XY平面内での入射方向、この方向での回折角hφB、及び光強度を求めることができる。このようにして、計算領域71B内で投影瞳71A外の領域に入射する全部の開口外回折光の入射方向、回折角、及び光強度を単位領域H(xi,yj)を単位として推定できる(計算によって求めることができる)。
fa · sin (hφA) = rh (i, j) (8)
Accordingly, the diffraction angle hφA of the outside-aperture diffracted light HDA incident on the unit region H (xi, yj) in the region outside the projection pupil 71A can be obtained from Expression (8). Similarly, regarding the out-of-aperture diffracted light HDB emitted in the −X direction in FIG. 1, the incident direction in the XY plane, the diffraction angle hφB in this direction, and the light intensity can be obtained. In this way, the incidence direction, diffraction angle, and light intensity of all out-of-aperture diffracted light incident on the area outside the projection pupil 71A in the calculation area 71B can be estimated in the unit area H (xi, yj) as a unit ( Can be calculated).

なお、以下では説明の便宜上、レチクルRから発生する開口外回折光は開口外回折光HDA,HDBのみであるとする。また、レチクルRと投影光学系PLとの位置関係(例えば走査露光時の平均的な位置関係でもよい)は既知であり、投影光学系PLの鏡筒17の形状、及び鏡筒17と鏡筒17内の複数の光学素子との位置関係も既知である。これらの位置関係及び形状の情報と、上記の開口外回折光HDA,HDBの入射方向及び回折角とから、これらの開口外回折光HDA,HDBの鏡筒17に対する入射位置を計算できる。さらに、開口外回折光HDA,HDBの光強度も単位領域H(xi,yj)の光強度として求められている。このようにして求められた開口外回折光の鏡筒17に対する入射位置及び光強度の情報は記憶部52に記憶される。   In the following, for the convenience of explanation, it is assumed that the out-of-aperture diffracted light generated from the reticle R is only out-of-aperture diffracted light HDA and HDB. Further, the positional relationship between the reticle R and the projection optical system PL (for example, an average positional relationship during scanning exposure may be known), the shape of the barrel 17 of the projection optical system PL, and the barrel 17 and the barrel. The positional relationship with a plurality of optical elements in 17 is also known. From the positional relationship and shape information, and the incident direction and diffraction angle of the above-mentioned diffracted light HDA, HDB, the incident position of these diffracted light HDA, HDB with respect to the lens barrel 17 can be calculated. Further, the light intensity of the diffracted light HDA and HDB outside the aperture is also obtained as the light intensity of the unit region H (xi, yj). Information on the incident position and light intensity of the diffracted light outside the aperture with respect to the lens barrel 17 thus obtained is stored in the storage unit 52.

次のステップ118で、ウエハステージWSTにフォトレジストが塗布された未露光のウエハWをロードしてアライメントを行う。そして、主制御装置14内の第1収差計算部は、ステップ108で計測された図6(B)の投影瞳71A内の回折強度分布74及び照明光学系ILS内のインテグレータセンサ(不図示)を介して検出される積算照射エネルギーより、投影光学系PLの第1収差変動量(投影瞳71Aを通過する回折光による投影光学系PLの波面収差の変動量)を計算する(ステップ120)。   In the next step 118, alignment is performed by loading an unexposed wafer W coated with a photoresist on wafer stage WST. Then, the first aberration calculation unit in the main controller 14 uses the diffraction intensity distribution 74 in the projection pupil 71A of FIG. 6B measured in step 108 and the integrator sensor (not shown) in the illumination optical system ILS. The first aberration fluctuation amount of the projection optical system PL (the fluctuation amount of the wavefront aberration of the projection optical system PL due to the diffracted light passing through the projection pupil 71A) is calculated from the integrated irradiation energy detected via the projection optical system PL (step 120).

さらに、主制御装置14内の温度演算部は、ステップ116で求められた開口外回折光HDA,HDBの鏡筒17に対する入射位置及び光強度、並びにインテグレータセンサ(不図示)を介して検出される積算照射エネルギーより、例えば有限要素法によって鏡筒17の温度分布の変動量、ひいては鏡筒17内の光学素子、例えば開口外回折光HDA,HDBが鏡筒17に入射する位置に近い光学素子の温度分布の変動量(又はこの光学素子の温度平均値の変動量)を計算する。さらに、主制御装置14内の第2収差計算部は、その光学素子の温度分布(又は温度の平均値)の変動量より、投影光学系PLの第2収差変動量(開口外回折光HDA,HDBによる投影光学系PLの波面収差の変動量)を計算する(ステップ122)。そして、その第2収差計算部は、計算されたその第1収差変動量と第2収差変動量とを加算して得られる合計収差変動量の情報を結像特性補正系16の制御部に出力する。これに応じて、結像特性補正系16がその合計収差変動量を相殺するように投影光学系PLの結像特性を補正する(ステップ124)。これによって、投影光学系PLの結像特性は良好な状態に維持される。なお、主制御装置14内の第1収差計算部、温度演算部、及び第2収差演算部は、コンピュータのソフトウェア上の機能であるが、これらの機能をハードウェアで実現してもよい。   Further, the temperature calculation unit in the main controller 14 is detected via the incident position and light intensity of the outside-aperture diffracted light HDA and HDB obtained in step 116 with respect to the lens barrel 17 and an integrator sensor (not shown). From the integrated irradiation energy, for example, the amount of variation in the temperature distribution of the lens barrel 17 by the finite element method, and thus the optical elements in the lens barrel 17, for example, optical elements close to the position where the diffracted light HDA, HDB outside the aperture enters the lens barrel 17. A fluctuation amount of the temperature distribution (or a fluctuation amount of the temperature average value of the optical element) is calculated. Further, the second aberration calculator in the main controller 14 determines the second aberration fluctuation amount (out-of-aperture diffracted light HDA, The fluctuation amount of the wavefront aberration of the projection optical system PL by HDB is calculated (step 122). Then, the second aberration calculation unit outputs information on the total aberration variation obtained by adding the calculated first aberration variation and second aberration variation to the control unit of the imaging characteristic correction system 16. To do. In response to this, the imaging characteristic correction system 16 corrects the imaging characteristic of the projection optical system PL so as to cancel out the total aberration fluctuation amount (step 124). Thereby, the imaging characteristics of the projection optical system PL are maintained in a good state. The first aberration calculator, the temperature calculator, and the second aberration calculator in the main controller 14 are functions on the software of the computer, but these functions may be realized by hardware.

この状態で、レチクルRのパターンの投影光学系PLによる像でウエハWを走査露光する(ステップ126)。露光済みのウエハWをアンロードした後(ステップ128)、次のウエハに露光する場合に(ステップ130)、動作はステップ118に戻り、次のウエハのロード、投影光学系PLの結像特性の変動量の計算及び補正、並びにウエハの露光が繰り返される。   In this state, the wafer W is scanned and exposed with an image of the pattern of the reticle R by the projection optical system PL (step 126). After unloading the exposed wafer W (step 128), when the next wafer is exposed (step 130), the operation returns to step 118, and the next wafer is loaded and the imaging characteristics of the projection optical system PL are changed. The calculation and correction of the variation amount and the exposure of the wafer are repeated.

このように本実施形態によれば、0次強度分布72をシフトさせて回折強度分布74との相関度が高いときのシフト量及びシフト方向を求め、この相関度が高いときのシフト量及びシフト方向で0次強度分布72をシフトさせて得られる分布の係数a[k]の値を決定し、そのシフトさせて得られる分布の加重和により、計算領域71B内で投影瞳71A外の領域に仮想的に入射する開口外回折光の光強度分布を推定している。従って、0次強度分布72と回折強度分布74とを求めるだけで、計算によって開口外回折光の光強度分布を正確にかつ効率的に推定できる。   As described above, according to the present embodiment, the shift amount and the shift direction when the correlation degree with the diffraction intensity distribution 74 is high by shifting the zero-order intensity distribution 72 are obtained, and the shift amount and shift when the correlation degree is high. The value of the coefficient a [k] of the distribution obtained by shifting the zeroth-order intensity distribution 72 in the direction is determined, and the weighted sum of the distribution obtained by the shift is used to move the region outside the projection pupil 71A within the calculation region 71B. The light intensity distribution of diffracted light outside the aperture that is virtually incident is estimated. Therefore, the light intensity distribution of the diffracted light outside the aperture can be estimated accurately and efficiently only by obtaining the 0th-order intensity distribution 72 and the diffraction intensity distribution 74.

さらに、その光強度分布からその開口外回折光が投影光学系PLの鏡筒17に入射する位置及びその入射するときの光強度を求めて鏡筒17の温度分布、ひいては鏡筒17内の光学素子の温度分布を求めているため、開口外回折光に起因する投影光学系PLの結像特性の変動量を求めることができる。従って、この結像特性の変動量を結像特性補正系16によって補正することにより、開口外回折光が鏡筒17に入射する場合でも、投影光学系PLの結像特性を良好な状態に維持して、高精度に露光を行うことができる。   Further, from the light intensity distribution, the position where the diffracted light outside the aperture is incident on the lens barrel 17 of the projection optical system PL and the light intensity at the time of the incidence are obtained to determine the temperature distribution of the lens barrel 17 and thus the optical in the lens barrel 17. Since the temperature distribution of the element is obtained, it is possible to obtain the variation amount of the imaging characteristics of the projection optical system PL due to the diffracted light outside the aperture. Therefore, by correcting the fluctuation amount of the imaging characteristic by the imaging characteristic correction system 16, the imaging characteristic of the projection optical system PL is maintained in a good state even when diffracted light outside the aperture is incident on the lens barrel 17. Thus, exposure can be performed with high accuracy.

上述のように、本実施形態の露光装置EXは、レチクルのパターンから発生する回折光の状態(レチクル特性)を推定する推定装置10を備えている。そして、推定装置10は、レチクルRのパターンを照明する照明光学系ILSの照明瞳37(射出瞳と光学的に共役な領域)における光強度分布70(第1光強度分布)の情報を記憶する記憶部52と、照明光学系ILSによって照明されたレチクルRのパターンの像を形成する投影光学系PLの投影瞳71A(射出瞳と光学的に共役な領域)における回折強度分布74(第2光強度分布)を計測する計測部20と、光強度分布70及び回折強度分布74に基づいてレチクルRのパターンから発生して投影光学系PLの入射瞳に入射しない開口外回折光HDA,HDBの状態を推定する演算部54と、を備えている。そして、演算部54は、上記のステップ110、112、114、116の処理を行って開口外回折光HDA,HDBの投影瞳面PLPの投影瞳71A外の領域における光強度分布等の状態を推定している。   As described above, the exposure apparatus EX of the present embodiment includes the estimation apparatus 10 that estimates the state (reticle characteristics) of diffracted light generated from a reticle pattern. Then, the estimating apparatus 10 stores information on the light intensity distribution 70 (first light intensity distribution) in the illumination pupil 37 (region optically conjugate with the exit pupil) of the illumination optical system ILS that illuminates the pattern of the reticle R. A diffraction intensity distribution 74 (second light) in the projection pupil 71A (region optically conjugate with the exit pupil) of the storage unit 52 and the projection optical system PL that forms an image of the pattern of the reticle R illuminated by the illumination optical system ILS. The state of the diffracted light HDA and HDB outside the aperture that is generated from the pattern of the reticle R based on the light intensity distribution 70 and the diffraction intensity distribution 74 and does not enter the entrance pupil of the projection optical system PL based on the light intensity distribution 70 and the diffraction intensity distribution 74 And a calculation unit 54 that estimates Then, the calculation unit 54 performs the processing of the above steps 110, 112, 114, and 116 to estimate the state of the light intensity distribution and the like in the region outside the projection pupil 71A of the projection pupil plane PLP of the diffracted light HDA and HDB outside the aperture. doing.

また、本実施形態のレチクル特性の推定方法は、推定装置10を用いてレチクルRのパターンから発生する回折光の状態を推定する方法である。この推定方法は、レチクルRのパターンを照明する照明光学系ILSの照明瞳37における光強度分布70(第1光強度分布)を設定するステップ102と、照明光学系ILSによって照明されたレチクルRのパターンの像を形成する投影光学系PLの投影瞳71Aにおける回折強度分布74(第2光強度分布)を計測するステップ108と、を有する。さらに、この推定方法は、光強度分布70に対応する投影瞳71A内の0次強度分布72(対応分布)をシフトさせて得られる複数の光強度分布(org[i+p][j+q]:第3光強度分布)と回折強度分布74との相関度がそれぞれ高くなるときの複数の光強度分布(org[i+p][j+q])を求めるステップ110と、投影瞳71A内で複数の光強度分布(org[i+p][j+q])の重み係数a[k]を用いた加重和(res[i][j])と回折強度分布74との相関度が高くなるようにその個別の係数a[k]を求めるステップ112と、その係数a[k]を用いた複数の光強度分布(org[i+p][j+q])の加重和によって得られる光強度分布78(第4光強度分布)のうち、投影瞳71A外の光強度分布78bに基づいて、レチクルRのパターンから発生して投影瞳71Aに入らない開口外回折光HDA,HDBの鏡筒17に対する入射方向及び光強度を推定するステップ114,116と、を有する。   The reticle characteristic estimation method of the present embodiment is a method of estimating the state of diffracted light generated from the pattern of the reticle R using the estimation device 10. This estimation method includes step 102 for setting a light intensity distribution 70 (first light intensity distribution) in the illumination pupil 37 of the illumination optical system ILS that illuminates the pattern of the reticle R, and the reticle R illuminated by the illumination optical system ILS. Measuring 108 the diffraction intensity distribution 74 (second light intensity distribution) in the projection pupil 71A of the projection optical system PL that forms a pattern image. Further, in this estimation method, a plurality of light intensity distributions (org [i + p] [j + q] obtained by shifting the zero-order intensity distribution 72 (corresponding distribution) in the projection pupil 71A corresponding to the light intensity distribution 70. ]: Step 110 for obtaining a plurality of light intensity distributions (org [i + p] [j + q]) when the degree of correlation between the third light intensity distribution) and the diffraction intensity distribution 74 is high, and the projection pupil 71A The correlation between the weighted sum (res [i] [j]) using the weight coefficient a [k] of a plurality of light intensity distributions (org [i + p] [j + q]) and the diffraction intensity distribution 74 Step 112 for obtaining the individual coefficient a [k] so that the value becomes high, and a weighted sum of a plurality of light intensity distributions (org [i + p] [j + q]) using the coefficient a [k] Of the obtained light intensity distribution 78 (fourth light intensity distribution), based on the light intensity distribution 78b outside the projection pupil 71A, an extrarotation that does not enter the projection pupil 71A, which is generated from the pattern of the reticle R. And steps 114 and 116 for estimating the incident direction and light intensity of the folded light HDA and HDB with respect to the lens barrel 17.

本発明の態様によれば、照明瞳37に設定される光強度分布70の情報と、投影瞳71Aの光強度分布(回折強度分布74)の計測結果とを用いて、レチクルRから投影光学系PLの入射瞳に入射できない(投影瞳71Aに入射できない)程度に大きい回折角で射出される開口外回折光HDA,HDBの光強度分布、方向及び強度の状態を照明条件に応じて正確に推定できる。   According to the aspect of the present invention, from the reticle R to the projection optical system using the information on the light intensity distribution 70 set on the illumination pupil 37 and the measurement result of the light intensity distribution (diffraction intensity distribution 74) of the projection pupil 71A. Accurately estimate the light intensity distribution, direction, and intensity state of the diffracted light HDA and HDB outside the aperture emitted at a diffraction angle large enough not to enter the PL entrance pupil (cannot enter the projection pupil 71A) according to the illumination conditions. it can.

また、本実施形態の露光装置EXは、照明光学系ILSからの照明光ILでレチクルRのパターンを照明し、照明光ILでそのパターン及び投影光学系PLを介してウエハW(基板)を露光する露光装置である。露光装置EXは、レチクルRのパターンから発生して投影光学系PLの入射瞳に入らない開口外回折光HDA,HDBの状態を推定する処理(ステップ102〜116)を行う推定装置10と、推定装置10によって推定される開口外回折光HDA,HDBの状態に基づいて、投影光学系PLを構成する少なくとも一つの光学素子(光学部材)の温度変動量を求める処理(ステップ122)を行う主制御装置14内の温度演算部と、この温度演算部によって求められるその光学素子の温度変動量に基づいて投影光学系PLの結像特性(光学特性)の変動量を補正する処理(ステップ124)を行う結像特性補正系16と、を備えている。   Further, the exposure apparatus EX of the present embodiment illuminates the pattern of the reticle R with the illumination light IL from the illumination optical system ILS, and exposes the wafer W (substrate) through the pattern and the projection optical system PL with the illumination light IL. Exposure apparatus. The exposure apparatus EX includes an estimation apparatus 10 that performs processing (steps 102 to 116) for estimating the states of the diffracted light beams HDA and HDB that are generated from the pattern of the reticle R and do not enter the entrance pupil of the projection optical system PL. Main control for performing a process (step 122) for obtaining a temperature fluctuation amount of at least one optical element (optical member) constituting the projection optical system PL based on the state of the diffracted light HDA and HDB outside the aperture estimated by the apparatus 10 A temperature calculation unit in the apparatus 14 and a process of correcting the fluctuation amount of the imaging characteristic (optical characteristic) of the projection optical system PL based on the temperature fluctuation amount of the optical element obtained by the temperature calculation unit (step 124). And an imaging characteristic correction system 16 for performing the operation.

この露光装置EX又は露光装置EXを用いる露光方法によれば、レチクルRから発生する開口外回折光HDA,HDBに起因する投影光学系PLの結像特性の変動量をも補正できるため、投影光学系PLの結像特性をより高精度に目標とする状態に維持して、レチクルRのパターンの像をより高精度にウエハに露光できる。
なお、本実施形態では、ステップ104において、レチクルステージRSTにガラス基板GPを載置して(又は素通しの状態で)、計測部20を用いて図6(A)の0次強度分布72を計測している。しかしながら、本実施形態では、照明瞳37と投影瞳71Aとの間の倍率は既知であり、照明瞳37における光強度分布70は空間光変調器32によって目標とする分布を正確に設定できるため、照明瞳37に設定される光強度分布70の設計上の分布をその既知の倍率で伸縮した分布を0次強度分布72として使用してもよい。この場合には、ステップ104の計測工程を省略できる。
According to the exposure apparatus EX or the exposure method using the exposure apparatus EX, since the fluctuation amount of the imaging characteristic of the projection optical system PL caused by the out-of-aperture diffracted light HDA and HDB generated from the reticle R can be corrected, The pattern image of the reticle R can be exposed on the wafer with higher accuracy while maintaining the imaging characteristics of the system PL in a target state with higher accuracy.
In this embodiment, in step 104, the glass substrate GP is placed on the reticle stage RST (or in a plain state), and the zero-order intensity distribution 72 of FIG. doing. However, in the present embodiment, the magnification between the illumination pupil 37 and the projection pupil 71A is known, and the light intensity distribution 70 in the illumination pupil 37 can accurately set a target distribution by the spatial light modulator 32. A distribution obtained by expanding / contracting the design distribution of the light intensity distribution 70 set in the illumination pupil 37 by the known magnification may be used as the zero-order intensity distribution 72. In this case, the measurement process of step 104 can be omitted.

[第2の実施形態]
本発明の第2の実施形態につき図8(A)〜図11を参照して説明する。本実施形態においても第1の実施形態の図1及び図2に示す露光装置EXを使用する。露光装置EXは、レチクルRから発生する回折光の状態(レチクル特性)を推定する推定装置10を備えている。以下、図8(A)〜(D)及び図11において図3(C)、図6(A)、及び図7に対応する部分には同一の符号を付してその詳細な説明を省略する。また、図10において、図5に対応する部分には同一の符号を付してその詳細な説明を省略する。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIGS. Also in this embodiment, the exposure apparatus EX shown in FIGS. 1 and 2 of the first embodiment is used. The exposure apparatus EX includes an estimation apparatus 10 that estimates the state (reticle characteristics) of diffracted light generated from the reticle R. Hereinafter, in FIGS. 8A to 8D and FIG. 11, the same reference numerals are given to the portions corresponding to FIGS. 3C, 6A, and 7, and the detailed description thereof is omitted. . In FIG. 10, the same reference numerals are given to the portions corresponding to those in FIG. 5, and the detailed description thereof is omitted.

以下、本実施形態において、推定装置10を用いてレチクルRから発生する開口外回折光の状態を推定する方法、及びこの推定方法により得られた結果を用いて投影光学系PLの結像特性(光学特性)を補正しながら露光装置EXを用いてウエハを露光する方法の一例につき、図9のフローチャートを参照して説明する。この動作は図2の主制御装置14によって制御される。   Hereinafter, in the present embodiment, a method for estimating the state of diffracted light outside the aperture generated from the reticle R using the estimation device 10 and the imaging characteristics of the projection optical system PL (using the result obtained by this estimation method) ( An example of a method of exposing a wafer using the exposure apparatus EX while correcting the optical characteristics) will be described with reference to the flowchart of FIG. This operation is controlled by the main controller 14 shown in FIG.

本実施形態でも、一例として、レチクルRには、X方向に投影光学系PLの解像限界(傾斜照明をした場合を含む)に近いピッチpxのL&Sパターン60X(図3(A)参照)を含むデバイスパターンが形成されているものとする。
まず、図9のステップ132において、図2の主制御装置14は、一例としてホストコンピュータ12からレチクルR用の照明条件を入力し、入力された照明条件のデータを記憶部52に記憶する。ただし、本実施形態では、説明の便宜上、レチクルRを使用する場合の照明条件は一例として輪帯照明(照明瞳37内の輪帯状の領域で光強度が大きくなる光強度分布を用いる条件)とする。
Also in the present embodiment, as an example, the reticle R has an L & S pattern 60X (see FIG. 3A) having a pitch px close to the resolution limit (including the case of tilted illumination) of the projection optical system PL in the X direction. Assume that a device pattern is formed.
First, in step 132 in FIG. 9, main controller 14 in FIG. 2 inputs illumination conditions for reticle R from host computer 12 as an example, and stores the input illumination condition data in storage unit 52. However, in this embodiment, for convenience of explanation, illumination conditions when using the reticle R are, for example, annular illumination (conditions using a light intensity distribution in which the light intensity increases in an annular area in the illumination pupil 37). To do.

次に、図10に示すように、レチクルRをレチクルステージRSTにロードしてアライメントを行う(ステップ134)。そして、ステップ136において、ウエハステージWSTを駆動して計測部20の受光部を投影光学系PLの露光領域に移動する。さらに、空間光変調器32の多数のミラー要素からの反射光が、照明光学系ILSの照明瞳面IPP上で光軸AXを通りL&Sパターン60Xの周期方向に平行な直線に沿った領域であって、σ値が1の円周に近い一方(ここでは+X方向とする)の小さい円形の領域(以下、第1瞳点という)B1に集光されるように、照明制御部46を介して空間光変調器32の複数のミラー要素の傾斜角を制御する。第1瞳点B1の形状は正方形又は矩形等でもよい。また、照明瞳37(例えば可変開口絞り35の開口)は、ほぼσ値が1の円周で囲まれた領域と同じ大きさに設定されている。   Next, as shown in FIG. 10, the reticle R is loaded onto the reticle stage RST for alignment (step 134). In step 136, wafer stage WST is driven to move the light receiving unit of measuring unit 20 to the exposure area of projection optical system PL. Further, the reflected light from the many mirror elements of the spatial light modulator 32 is a region along a straight line passing through the optical axis AX and parallel to the periodic direction of the L & S pattern 60X on the illumination pupil plane IPP of the illumination optical system ILS. Thus, the light is focused on the small circular region (hereinafter referred to as the first pupil point) B1 that is close to the circumference of 1 with the σ value (here, referred to as + X direction) via the illumination control unit 46. The tilt angle of the plurality of mirror elements of the spatial light modulator 32 is controlled. The shape of the first pupil point B1 may be a square or a rectangle. Further, the illumination pupil 37 (for example, the opening of the variable aperture stop 35) is set to have the same size as the region surrounded by the circumference having a σ value of 1.

後述のように、投影瞳面PLPにおいてできるだけ広い範囲で開口外回折光の光強度分布を推定するためには、第1瞳点B1の大きさ(幅)をできるだけ小さくして、かつ第1瞳点B1の中心をできるだけσ値が1の円周に近づけることが好ましい。一例として、第1瞳点B1の大きさ(幅)は、σ値が1の領域の半径の1/10以下であることが好ましい。ただし、実際には第1瞳点B1からの光は計測部20によって検出されるため、第1瞳点B1の大きさは、計測部20の画素と照明瞳面IPP上で共役な領域(計測分解能)より小さくする必要はない。   As will be described later, in order to estimate the light intensity distribution of the out-of-aperture diffracted light in the widest possible range on the projection pupil plane PLP, the size (width) of the first pupil point B1 is made as small as possible and the first pupil is It is preferable to make the center of the point B1 as close to the circumference as possible with a σ value of 1. As an example, the size (width) of the first pupil point B1 is preferably 1/10 or less of the radius of the region where the σ value is 1. However, since the light from the first pupil point B1 is actually detected by the measurement unit 20, the size of the first pupil point B1 is a conjugate region (measurement) on the pixel of the measurement unit 20 and the illumination pupil plane IPP. It is not necessary to make it smaller than (resolution).

なお、第1瞳点B1の光強度が大きくなり過ぎる場合には、空間光変調器32の多数のミラー要素のうち一部のミラー要素からの光を可変開口絞り35の開口の外部の領域(又はフライアイレンズ34に入射しない部分)に捨ててもよい。
そして、光源30の発光を開始させて、第1瞳点B1からの照明光IL1でレチクルRのL&Sパターン60Xを照明する。第1瞳点B1は、照明瞳面IPP上で+X方向にシフトした位置にあるため、照明光IL1は、全体としてY軸に平行な軸の回りに右回りに傾斜したほぼ平行な光束としてレチクルRに入射する。レチクルRのL&Sパターン60Xからは、0次光DL0、+1次回折光DL1A、及び−1次回折光DL1Bが発生する。これらの回折光のうち、0次光DL0及び+1次回折光DL1Aは投影光学系PLの入射瞳に入射して投影瞳71Aに達するが、−1次回折光DL1Bは投影光学系PLの入射瞳に入射できない。
When the light intensity at the first pupil point B1 becomes too high, light from some of the mirror elements of the spatial light modulator 32 is transmitted to a region outside the aperture of the variable aperture stop 35 ( Alternatively, it may be thrown away in a portion that does not enter the fly-eye lens 34.
Then, light emission of the light source 30 is started, and the L & S pattern 60X of the reticle R is illuminated with the illumination light IL1 from the first pupil point B1. Since the first pupil point B1 is at a position shifted in the + X direction on the illumination pupil plane IPP, the illumination light IL1 as a whole is a reticle as a substantially parallel light beam tilted clockwise around an axis parallel to the Y axis. Incident to R. From the L & S pattern 60X of the reticle R, 0th-order light DL0, + 1st-order diffracted light DL1A, and -1st-order diffracted light DL1B are generated. Among these diffracted lights, the 0th-order light DL0 and the + 1st-order diffracted light DL1A are incident on the entrance pupil of the projection optical system PL and reach the projection pupil 71A, while the −1st-order diffracted light DL1B is incident on the entrance pupil of the projection optical system PL. Can not.

次のステップ138において、計測部20によって投影瞳面PLPの投影瞳71A内の光強度分布を計測し、照明光ILの発光を停止する。この際に計測されるのは、図8(B)に示すように、投影瞳71A内の0次光DL0及び+1次回折光DL1Aの位置及び光強度である。計測結果は記憶部52に記憶される。
次のステップ140において、空間光変調器32からの反射光が、照明瞳面IPP上で光軸AXを通りL&Sパターン60Xの周期方向に平行な直線に沿った領域であって、σ値が1の円周に近い他方(ここでは−X方向)の小さい円形の領域(以下、第2瞳点という)B2に集光されるように、照明制御部46を介して空間光変調器32の複数のミラー要素の傾斜角を制御する。一例として第2瞳点B2の形状は第1瞳点B1と同じである。
In the next step 138, the measurement unit 20 measures the light intensity distribution in the projection pupil 71A of the projection pupil plane PLP, and stops the emission of the illumination light IL. At this time, as shown in FIG. 8B, the positions and light intensities of the 0th-order light DL0 and the + 1st-order diffracted light DL1A in the projection pupil 71A are measured. The measurement result is stored in the storage unit 52.
In the next step 140, the reflected light from the spatial light modulator 32 is a region along the straight line passing through the optical axis AX and parallel to the periodic direction of the L & S pattern 60X on the illumination pupil plane IPP, and the σ value is 1. A plurality of spatial light modulators 32 via the illumination control unit 46 so that the light is condensed on the other circular region (hereinafter referred to as the second pupil point) B2 on the other side (here, in the −X direction) close to the circumference. Controls the tilt angle of the mirror element. As an example, the shape of the second pupil point B2 is the same as that of the first pupil point B1.

そして、光源30の発光を開始させて、第2瞳点B2からの照明光(Y軸に平行な軸の回りに左回りに傾斜したほぼ平行な光束)でレチクルRのL&Sパターン60Xを照明する。この際にも、レチクルRのL&Sパターン60Xからは、0次光DL0、+1次回折光DL1A、及び−1次回折光DL1Bが発生するが、今回は0次光DL0及び−1次回折光DL1Bは投影光学系PLの入射瞳に入射して投影瞳71Aに達するが、+1次回折光DL1Aは投影光学系PLの入射瞳に入射できない。次のステップ142において、計測部20によって投影瞳71A内の光強度分布を計測し、照明光ILの発光を停止する。この際に計測されるのは、図8(C)に示すように、投影瞳71A内の0次光DL0及び−1次回折光DL1Bの位置及び光強度である。計測結果は記憶部52に記憶される。   Then, light emission of the light source 30 is started, and the L & S pattern 60X of the reticle R is illuminated with illumination light from the second pupil point B2 (substantially parallel light beam tilted counterclockwise around an axis parallel to the Y axis). . At this time, the 0th order light DL0, the + 1st order diffracted light DL1A, and the −1st order diffracted light DL1B are generated from the L & S pattern 60X of the reticle R, but this time, the 0th order light DL0 and the −1st order diffracted light DL1B are projection optics. Although it enters the entrance pupil of the system PL and reaches the projection pupil 71A, the + 1st order diffracted light DL1A cannot enter the entrance pupil of the projection optical system PL. In the next step 142, the light intensity distribution in the projection pupil 71A is measured by the measurement unit 20, and the emission of the illumination light IL is stopped. At this time, as shown in FIG. 8C, the positions and light intensities of the 0th-order light DL0 and the −1st-order diffracted light DL1B in the projection pupil 71A are measured. The measurement result is stored in the storage unit 52.

次に、照明光学系ILSの照明条件をレチクルR用の輪帯照明に設定する(ステップ146)。このため、照明瞳37内の輪帯状の領域で光強度が大きくなるように、照明制御部46が空間光変調器32を駆動する。次に、一例として、演算部54は、照明瞳37内の光強度分布に対応する図8(A)の投影瞳71A内の光強度分布(以下、0次強度分布という)72Aを計算によって求める(ステップ148)。0次強度分布72Aは、照明瞳37内の輪帯状の領域(不図示)と相似な輪帯状の領域73Pで光強度が大きくなる。   Next, the illumination condition of the illumination optical system ILS is set to the annular illumination for the reticle R (step 146). For this reason, the illumination control unit 46 drives the spatial light modulator 32 so that the light intensity is increased in the annular zone in the illumination pupil 37. Next, as an example, the calculation unit 54 calculates a light intensity distribution (hereinafter referred to as a 0th-order intensity distribution) 72A in the projection pupil 71A in FIG. 8A corresponding to the light intensity distribution in the illumination pupil 37 by calculation. (Step 148). In the 0th-order intensity distribution 72A, the light intensity increases in an annular area 73P similar to an annular area (not shown) in the illumination pupil 37.

次のステップ150において、演算部54は、ステップ138,142の計測結果を合成することによって、投影瞳面PLPの投影瞳71Aの半径rの2倍の半径(2r)の領域71C(図8(D)参照)内におけるレチクルRのL&Sパターン60Xの仮想的なフーリエ変換パターン79を計算する。このフーリエ変換パターン79は、レチクルRをZ軸に平行な平行光束(レチクルRのパターン面Raに対する垂直入射光)で照明した場合に、レチクルRのL&Sパターン60Xから発生する0次光及び±1次回折光によって領域71C内に仮想的に形成される光強度分布である。垂直入射光による照明であるため、0次光DL0が光軸AX上にある。   In the next step 150, the calculation unit 54 combines the measurement results of steps 138 and 142 to thereby generate a region 71C (FIG. 8 (2)) having a radius (2r) that is twice the radius r of the projection pupil 71A of the projection pupil plane PLP. A virtual Fourier transform pattern 79 of the L & S pattern 60X of the reticle R is calculated in (D). This Fourier transform pattern 79 is obtained when the reticle R is illuminated with a parallel light beam parallel to the Z axis (perpendicular incident light with respect to the pattern surface Ra of the reticle R) and zero-order light and ± 1 generated from the L & S pattern 60X of the reticle R This is a light intensity distribution virtually formed in the region 71C by the next diffracted light. Since it is illumination by perpendicular incident light, the 0th-order light DL0 is on the optical axis AX.

本実施形態において、図8(B)、(C)に示すように、ステップ138,142で計測される1次回折光DL1A,DL1Bと0次光DL0との間隔は投影瞳71Aの直径(2r)以下である。このため、図8(D)において、0次光DL0の位置を投影瞳71Aの中心(光軸AX)におくと、1次回折光DL1A,DL1Bの位置は、確実に半径が2rの領域71C内に収まることになる。   In this embodiment, as shown in FIGS. 8B and 8C, the distance between the first-order diffracted light DL1A, DL1B and the zero-order light DL0 measured in steps 138, 142 is the diameter (2r) of the projection pupil 71A. It is as follows. Therefore, in FIG. 8D, when the position of the 0th-order light DL0 is placed at the center (optical axis AX) of the projection pupil 71A, the positions of the 1st-order diffracted lights DL1A and DL1B are surely within the region 71C having a radius of 2r. Will fit in.

図8(D)に示すように、計算されたレチクルRのフーリエ変換パターン79は、投影瞳71A内の0次光DL0、及び領域71C内で投影瞳71Aの外側の領域内の±1次回折光DL1A,DL1Bの光強度分布を含んでいる。フーリエ変換パターン79における0次光DL0と±1次回折光DL1A,DL1Bとの相対位置は、それぞれ図8(B)及び(C)の場合の相対位置と同じである。また、垂直入射では、レチクルRからの±1次回折光DL1A,DL1Bは投影光学系PLの入射瞳に入射することがなく投影瞳面PLPには達することがない。しかしながら、本実施形態の方法によって、垂直入射の際に、レチクルRからの±1次回折光DL1A,DL1Bが投影瞳面PLPに形成する仮想的な光強度分布が求められたことになる。   As shown in FIG. 8D, the calculated Fourier transform pattern 79 of the reticle R includes the zero-order light DL0 in the projection pupil 71A and the ± first-order diffracted light in the region outside the projection pupil 71A in the region 71C. The light intensity distribution of DL1A and DL1B is included. The relative positions of the 0th-order light DL0 and the ± 1st-order diffracted lights DL1A and DL1B in the Fourier transform pattern 79 are the same as the relative positions in FIGS. 8B and 8C, respectively. In the normal incidence, the ± first-order diffracted lights DL1A and DL1B from the reticle R do not enter the entrance pupil of the projection optical system PL and do not reach the projection pupil plane PLP. However, according to the method of the present embodiment, a virtual light intensity distribution formed on the projection pupil plane PLP by the ± first-order diffracted lights DL1A and DL1B from the reticle R at the time of vertical incidence is obtained.

図8(D)のフーリエ変換パターン79が求められれば、レチクルRの照明条件がどのような照明条件であっても、投影瞳面PLP上の光強度分布は、その照明条件の0次強度分布(照明瞳37の光強度分布に対応する投影瞳71Aにおける光強度分布)とフーリエ変換パターン79とのコンボリューション演算によって容易に求めることができる。そこで、演算部54は、図8(A)のレチクルR用の輪帯照明の0次強度分布72Aと、図8(D)のレチクルRのフーリエ変換パターン79とのコンボリューション演算を行って、図11に示す投影瞳面PLPの半径が3rの計算領域71B内の光強度分布78Aを求める。0次強度分布72Aは半径がrの投影瞳71A内に設定され、フーリエ変換パターン79は半径が2rの領域71C内にあるため、それらのコンボリューションによって求められる光強度分布78Aは、確実に計算領域71B内に収まっている。   If the Fourier transform pattern 79 shown in FIG. 8D is obtained, the light intensity distribution on the projection pupil plane PLP is the 0th-order intensity distribution of the illumination condition regardless of the illumination condition of the reticle R. It can be easily obtained by the convolution calculation of the Fourier transform pattern 79 (the light intensity distribution in the projection pupil 71A corresponding to the light intensity distribution of the illumination pupil 37). Therefore, the calculation unit 54 performs a convolution calculation between the zero-order intensity distribution 72A of the annular illumination for the reticle R in FIG. 8A and the Fourier transform pattern 79 of the reticle R in FIG. A light intensity distribution 78A in the calculation region 71B in which the radius of the projection pupil plane PLP shown in FIG. 11 is 3r is obtained. Since the zeroth-order intensity distribution 72A is set in the projection pupil 71A having the radius r and the Fourier transform pattern 79 is in the area 71C having the radius 2r, the light intensity distribution 78A obtained by the convolution is surely calculated. It falls within the area 71B.

計算された光強度分布78Aは、投影瞳71A内の領域73Pで光強度が大きくなる0次光の分布と、領域73Pを+X方向に移動した領域73PD1で光強度が大きくなる+1次回折光の分布と、領域73Pを−X方向に移動した領域73PD2で光強度が大きくなる−1次回折光の分布と、を含んでいる。一例として、±1次回折光の分布である領域73PD1,73PD2のうち光軸AX側の一部の領域が投影瞳71A内にある。この場合、図11の投影瞳71A内の領域(領域73P及び領域73PD1,73PD2の一部)に入射する回折光(0次光を含む)が、図10の照明光学系ILSの照明条件を輪帯照明に設定したときに、レチクルRのL&Sパターン60Xから発生して投影光学系PLの入射瞳に入射する光である。一方、計算領域71B内で投影瞳71Aの外側の輪帯状の領域(領域73PD1,73PD2の大部分)に仮想的に入射する±1次回折光が、図10の照明光学系ILSの照明条件を輪帯照明に設定したときに、レチクルRのL&Sパターン60Xから発生して投影光学系PLの入射瞳に入射しない開口外回折光HDC及びHDDである。言い換えると、投影瞳71A内の光強度分布78Aaが、投影光学系PLの入射瞳に入射する回折光の分布であり、計算領域71B内で投影瞳71Aの外側の光強度分布78Abが開口外回折光の分布を表している。従って、投影瞳面PLPにおける開口外回折光の仮想的な光強度分布78Abが推定できた(計算によって求められた)ことになる。   The calculated light intensity distribution 78A includes a zero-order light distribution in which the light intensity increases in the region 73P in the projection pupil 71A and a + first-order diffracted light distribution in which the light intensity increases in the region 73PD1 that moves the region 73P in the + X direction. And a distribution of −1st order diffracted light in which the light intensity increases in the region 73PD2 moved in the −X direction on the region 73P. As an example, a part of the region on the optical axis AX side in the region 73PD1, 73PD2 that is the distribution of ± first-order diffracted light is in the projection pupil 71A. In this case, the diffracted light (including zero-order light) incident on the region (region 73P and part of the regions 73PD1 and 73PD2) in the projection pupil 71A in FIG. 11 has the illumination condition of the illumination optical system ILS in FIG. This light is generated from the L & S pattern 60X of the reticle R and enters the entrance pupil of the projection optical system PL when the band illumination is set. On the other hand, ± 1st-order diffracted light that is virtually incident on the annular zone outside the projection pupil 71A (the majority of the regions 73PD1 and 73PD2) within the calculation region 71B is used as the illumination condition of the illumination optical system ILS in FIG. Out-of-aperture diffracted light HDC and HDD that are generated from the L & S pattern 60X of the reticle R and do not enter the entrance pupil of the projection optical system PL when the band illumination is set. In other words, the light intensity distribution 78Aa in the projection pupil 71A is a distribution of diffracted light incident on the entrance pupil of the projection optical system PL, and the light intensity distribution 78Ab outside the projection pupil 71A in the calculation area 71B is diffraction outside the aperture. Represents the distribution of light. Therefore, the virtual light intensity distribution 78Ab of the diffracted light outside the aperture on the projection pupil plane PLP can be estimated (obtained by calculation).

次のステップ152において、ステップ150で得られた開口外回折光HDC,HDDの仮想的な光強度分布78Abより、図4のステップ116と同様に、図7の単位領域H(xi,yj)を計算単位として、レチクルRを用いて輪帯照明を行いながら露光するときに、図10の投影光学系PLの鏡筒17に対する開口外回折光HDC,HDDの入射位置及び強度を推定する。このようにして求められた開口外回折光の鏡筒17に対する入射位置及び光強度の情報は記憶部52に記憶される。   In the next step 152, the unit region H (xi, yj) in FIG. 7 is determined from the virtual light intensity distribution 78Ab of the out-of-aperture diffracted light HDC and HDD obtained in step 150, as in step 116 in FIG. When the exposure is performed while performing annular illumination using the reticle R as a calculation unit, the incident position and intensity of the out-of-aperture diffracted light HDC and HDD with respect to the lens barrel 17 of the projection optical system PL in FIG. 10 are estimated. Information on the incident position and light intensity of the diffracted light outside the aperture with respect to the lens barrel 17 thus obtained is stored in the storage unit 52.

これ以降の動作は、図4のステップ118〜130と同様であり、主制御装置14内の温度演算部は、ステップ152で求められた開口外回折光の鏡筒17に対する入射位置及び光強度と、インテグレータセンサ(不図示)を介して検出される積算照射エネルギーとを用いて、鏡筒17の温度分布の変動量、ひいては鏡筒17内の光学素子の温度分布の変動量(又は温度平均値の変動量)を計算する。さらに、主制御装置14内の第2収差計算部は、その光学素子の温度分布(又は温度の平均値)の変動量より、投影光学系PLの第2収差変動量(開口外回折光HDC,HDDによる投影光学系PLの波面収差の変動量)を計算し、第1収差変動量(投影瞳71A内の光強度分布に起因する収差変動量)とその第2収差変動量とを加算して得られる合計収差変動量が結像特性補正系16によって補正される。この状態で露光を行うことによって、開口外回折光が鏡筒17に入射する場合でも、投影光学系PLの結像特性を良好な状態に維持して、高精度に露光を行うことができる。   The subsequent operation is the same as in steps 118 to 130 in FIG. 4, and the temperature calculation unit in the main controller 14 determines the incident position and light intensity of the diffracted light outside the aperture obtained in step 152 and the light intensity. Using the integrated irradiation energy detected via the integrator sensor (not shown), the variation amount of the temperature distribution of the lens barrel 17 and the variation amount of the temperature distribution of the optical element in the lens barrel 17 (or the temperature average value) The amount of change). Further, the second aberration calculator in the main controller 14 determines the second aberration fluctuation amount (out-aperture diffracted light HDC, HDC) of the projection optical system PL from the fluctuation amount of the temperature distribution (or average value of the temperature) of the optical element. The fluctuation amount of the wavefront aberration of the projection optical system PL by the HDD is calculated, and the first aberration fluctuation amount (aberration fluctuation amount due to the light intensity distribution in the projection pupil 71A) and the second aberration fluctuation amount are added. The total aberration fluctuation amount obtained is corrected by the imaging characteristic correction system 16. By performing exposure in this state, even when diffracted light outside the aperture is incident on the lens barrel 17, it is possible to perform exposure with high accuracy while maintaining the imaging characteristics of the projection optical system PL in a good state.

上述のように本実施形態の露光装置EXは、レチクルのパターンから発生する回折光の状態(レチクル特性)を推定するレチクル特性の推定装置10を備えている。そして、推定装置10は、レチクルRのパターンを照明する照明光学系ILSの照明瞳37(射出瞳と光学的に共役な領域)における光強度分布(第1光強度分布)の情報を記憶する記憶部52と、照明瞳37における互いに異なる位置の第1瞳点B1及び第2瞳点B2(制限された領域)からの光でレチクルRのパターンを順次照明させる照明制御部46と、を備えている。さらに、推定装置10は、第1瞳点B1及び第2瞳点B2が互いに異なる位置にあるときに、それぞれ照明光学系ILSによって照明されたレチクルRのパターンの像を形成する投影光学系PLの投影瞳71A(射出瞳と光学的に共役な領域)におけるレチクルRのパターンからの光による図8(B)及び(C)の光強度分布(第2光強度分布)を計測する計測部20と(ステップ138,142)、記憶部54に記憶されているその光強度分布及び計測部20で計測された光強度分布に基づいてレチクルRのパターンから発生してその投影光学系PLの入射瞳に入らない開口外回折光HDC,HDDの状態(方向及び光強度)を推定する演算部54と、を備えている。   As described above, the exposure apparatus EX of the present embodiment includes the reticle characteristic estimation apparatus 10 that estimates the state (reticle characteristic) of diffracted light generated from a reticle pattern. Then, the estimation device 10 stores information on the light intensity distribution (first light intensity distribution) in the illumination pupil 37 (region optically conjugate with the exit pupil) of the illumination optical system ILS that illuminates the pattern of the reticle R. And an illumination control unit 46 that sequentially illuminates the pattern of the reticle R with light from the first pupil point B1 and the second pupil point B2 (limited regions) at different positions on the illumination pupil 37. Yes. Further, the estimation apparatus 10 includes a projection optical system PL that forms an image of the pattern of the reticle R illuminated by the illumination optical system ILS when the first pupil point B1 and the second pupil point B2 are at different positions. A measuring unit 20 that measures the light intensity distribution (second light intensity distribution) of FIGS. 8B and 8C by light from the pattern of the reticle R in the projection pupil 71A (an area optically conjugate with the exit pupil); (Steps 138 and 142), which are generated from the pattern of the reticle R based on the light intensity distribution stored in the storage unit 54 and the light intensity distribution measured by the measurement unit 20, and enter the entrance pupil of the projection optical system PL. And a calculation unit 54 that estimates the state (direction and light intensity) of the diffracted light HDC and HDD that does not enter.

その演算部54は、その計測された光強度分布に基づいて、レチクルRのパターンからの0次光及び1次以上の回折光を含む投影瞳面PLPにおけるフーリエ変換パターン79(第3光強度分布)を求め(ステップ144)、そのフーリエ変換パターン79に基づいて投影瞳71A内で照明瞳37における光強度分布に対応する0次強度分布72A(対応分布)及びこの0次強度分布72Aをシフトした光強度分布を重ね合わせることによって、光強度分布78A(第4光強度分布)を求め(ステップ150)、この光強度分布78Aのうち、投影瞳71A外の光強度分布78Abに基づいて、レチクルRのパターンから発生して投影光学系PLの入射瞳に入らない開口外回折光HDC,HDDの状態(光強度分布、方向、及び/又は光強度)を推定している(ステップ152)。   Based on the measured light intensity distribution, the calculation unit 54 performs a Fourier transform pattern 79 (third light intensity distribution) on the projection pupil plane PLP including zeroth-order light and first-order or higher diffracted light from the pattern of the reticle R. ) (Step 144), and based on the Fourier transform pattern 79, the zero-order intensity distribution 72A (corresponding distribution) corresponding to the light intensity distribution in the illumination pupil 37 and the zero-order intensity distribution 72A are shifted in the projection pupil 71A. By superimposing the light intensity distributions, a light intensity distribution 78A (fourth light intensity distribution) is obtained (step 150). Based on the light intensity distribution 78Ab outside the projection pupil 71A in the light intensity distribution 78A, the reticle R is obtained. State of the diffracted light HDC and HDD outside the aperture that does not enter the entrance pupil of the projection optical system PL (light intensity distribution, direction, and / or light intensity) The estimates (step 152).

本実施形態の推定装置10又は推定方法によれば、照明瞳37に設定される光強度分布の情報と、投影瞳71AにおけるレチクルRからの0次光及び1次回折光の光強度分布の計測結果とを用いることによって、レチクルRから投影光学系PLの入射瞳に入射できない程度に大きい角度(回折角)で射出される開口外回折光HDC,HDDの光強度分布、方向、又は光強度の状態を、照明条件に応じて正確に推定できる。   According to the estimation apparatus 10 or the estimation method of the present embodiment, the information on the light intensity distribution set on the illumination pupil 37 and the measurement results of the light intensity distributions of the zeroth-order light and the first-order diffracted light from the reticle R at the projection pupil 71A. And the intensity distribution, direction, or light intensity of the out-of-aperture diffracted light HDC and HDD that are emitted at an angle (diffraction angle) that is so large that the reticle R cannot enter the entrance pupil of the projection optical system PL. Can be accurately estimated according to the illumination conditions.

また、本実施形態の露光装置EX又は露光方法によれば、レチクルRから発生する開口外回折光HDC,HDDに起因する投影光学系PLの結像特性の変動量をも補正できるため、投影光学系PLの結像特性をより高精度に目標とする状態に維持して、レチクルRのパターンの像をより高精度にウエハに露光できる。
なお、本実施形態では以下のような変形が可能である。
In addition, according to the exposure apparatus EX or the exposure method of the present embodiment, since the fluctuation amount of the imaging characteristics of the projection optical system PL caused by the out-of-aperture diffracted light HDC and HDD generated from the reticle R can be corrected, The pattern image of the reticle R can be exposed on the wafer with higher accuracy while maintaining the imaging characteristics of the system PL in a target state with higher accuracy.
In the present embodiment, the following modifications are possible.

本実施形態では、ステップ136,140で空間光変調器32を用いて第1瞳点B1、第2瞳点B2に照明光ILを集光している。これとは別に、ステップ136において、図10の可変開口絞り35の代わりに、第1瞳点B1の部分に小さい開口が形成された開口絞り板35Aを設置し、空間光変調器32からはその開口絞り35Aを均一な光強度分布の照明光ILで照明してもよい。そして、ステップ140では、その開口絞り35Aの小さい開口の位置を第2瞳点B2の位置に移動してもよい。   In this embodiment, the illumination light IL is condensed on the first pupil point B1 and the second pupil point B2 using the spatial light modulator 32 in steps 136 and 140. Separately from this, in step 136, instead of the variable aperture stop 35 of FIG. 10, an aperture stop plate 35A in which a small aperture is formed at the first pupil point B1 is installed. The aperture stop 35A may be illuminated with illumination light IL having a uniform light intensity distribution. In step 140, the position of the small aperture of the aperture stop 35A may be moved to the position of the second pupil point B2.

また、本実施形態では、ステップ148で、計算によって0次強度分布72Aを求めている。この代わりに、レチクルステージRSTからレチクルRを取り外した状態で、照明光学系ILSから照明光ILを投影光学系PLに照射して、計測部20によって投影瞳71Aの光強度分布を直接に計測してもよい。この計測結果が0次強度分布72Aとなる。
また、レチクルRのデバイスパターンがX方向以外の周期方向を持つパターンを含む場合(例えば図3(B)のL&Sパターン60Yを含む場合)には、照明瞳面IPPにおいて瞳点B1,B2と同様の瞳点をその周期方向の端部でσ値が1に近い領域に設定して、ステップ136,138と同様の工程(照明及び計測)を繰り返す必要がある。この場合には、ステップ144でレチクルRからの光のフーリエ変換パターン79を求める際に、追加して計測して得られた1次以上の回折光の光強度分布も加算する必要がある。
In the present embodiment, in step 148, the zero-order intensity distribution 72A is obtained by calculation. Instead, with the reticle R removed from the reticle stage RST, the illumination light IL is irradiated onto the projection optical system PL from the illumination optical system ILS, and the light intensity distribution of the projection pupil 71A is directly measured by the measurement unit 20. May be. This measurement result is a zero-order intensity distribution 72A.
Further, when the device pattern of the reticle R includes a pattern having a periodic direction other than the X direction (for example, when including the L & S pattern 60Y of FIG. 3B), the same as the pupil points B1 and B2 on the illumination pupil plane IPP It is necessary to set the pupil point in the region in which the σ value is close to 1 at the end in the period direction and repeat the same steps (illumination and measurement) as in steps 136 and 138. In this case, when obtaining the Fourier transform pattern 79 of the light from the reticle R in step 144, it is also necessary to add the light intensity distribution of the first or higher order diffracted light obtained by the additional measurement.

本実施形態では、レチクルRからの±1次回折光のうちの開口外回折光の状態を推定したが、レチクルRからの2次以上の回折光のうちの開口外回折光の状態を推定してもよい。
また、上記の各実施形態のレチクルからの開口外回折光の状態を推定する推定装置10及び推定方法は、レチクルのパターンが図12のレチクルR2のデバイスパターンDP2で示すように、L&Sパターン62X等の他にピッチp3,p4等の二次元のコンタクトホールパターン63A,63B等を含む場合にも適用できる。
In this embodiment, the state of out-of-aperture diffracted light out of ± first-order diffracted light from reticle R is estimated, but the state of out-of-aperture diffracted light out of second-order or higher diffracted light from reticle R is estimated. Also good.
In addition, the estimation apparatus 10 and the estimation method for estimating the state of diffracted light from the aperture of the reticle according to each of the embodiments described above include the L & S pattern 62X and the like as shown in the device pattern DP2 of the reticle R2 in FIG. In addition to this, the present invention can also be applied to cases including two-dimensional contact hole patterns 63A, 63B, etc., such as pitches p3, p4.

また、上記の実施形態の露光装置EX又は露光方法を用いて半導体デバイス等の電子デバイス(マイクロデバイス)を製造する場合、この電子デバイスは、図13に示すように、デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたマスク(レチクル)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造するステップ223、前述した実施形態の露光装置EXは露光方法によりマスクのパターンを基板に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。   When an electronic device (microdevice) such as a semiconductor device is manufactured using the exposure apparatus EX or the exposure method of the above embodiment, the electronic device has a function / performance design of the device as shown in FIG. Step 221 to be performed; Step 222 to manufacture a mask (reticle) based on this design step; Step 223 to manufacture a substrate (wafer) that is a base material of the device; Process of exposing pattern to substrate, process of developing exposed substrate, substrate processing step 224 including heating (curing) and etching process of developed substrate, device assembly step (dicing process, bonding process, packaging process, etc.) (Including the process) 225, the inspection step 226, etc. It is produced.

言い替えると、上記のデバイスの製造方法は、上記の実施形態の露光装置EX又は露光方法を用いて、マスクのパターンを介して基板(ウエハW)を露光する工程と、その露光された基板を処理する工程(即ち、基板のレジストを現像し、そのマスクのパターンに対応するマスク層をその基板の表面に形成する現像工程、及びそのマスク層を介してその基板の表面を加工(加熱及びエッチング等)する加工工程)と、を含んでいる。   In other words, the device manufacturing method includes the steps of exposing the substrate (wafer W) through the mask pattern using the exposure apparatus EX or the exposure method of the above embodiment, and processing the exposed substrate. (I.e., developing the resist on the substrate and forming a mask layer corresponding to the mask pattern on the surface of the substrate; and processing the surface of the substrate through the mask layer (heating, etching, etc.) ) Processing step).

このデバイス製造方法によれば、露光装置又は露光方法においてレチクルのパターンの像を高精度でウエハに露光できるようになるため、電子デバイスを効率的に高精度に製造できる。
なお、上記の実施形態のレチクル特性の推定方法及び推定装置は、ステッパー型の露光装置等にも適用できる。
According to this device manufacturing method, the reticle pattern image can be exposed onto the wafer with high accuracy in the exposure apparatus or the exposure method, so that the electronic device can be efficiently manufactured with high accuracy.
Note that the reticle characteristic estimation method and estimation apparatus of the above-described embodiment can also be applied to a stepper type exposure apparatus or the like.

また、本実施形態のデバイス製造方法では、特に半導体デバイスの製造方法について説明したが、本実施形態のデバイス製造方法は、半導体材料を使用したデバイスの他、例えば液晶パネルや磁気ディスクなどの半導体材料以外の材料を使用したデバイスの製造にも適用することができる。
なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
In the device manufacturing method of the present embodiment, the method of manufacturing a semiconductor device has been particularly described. However, the device manufacturing method of the present embodiment can be applied to a semiconductor material such as a liquid crystal panel or a magnetic disk in addition to a device using a semiconductor material. The present invention can also be applied to the manufacture of devices using other materials.
In addition, this invention is not limited to the above-mentioned embodiment, A various structure can be taken in the range which does not deviate from the summary of this invention.

EX…露光装置、ILS…照明光学系、R…レチクル、PL…投影光学系、W…ウエハ、IPP…照明瞳面、PLP…投影瞳面、10…レチクル特性の推定装置、14…主制御装置、20…光強度分布の計測部、37…照明瞳、52…記憶部、54…演算部、71A…投影瞳、71B…計算領域
EX ... exposure apparatus, ILS ... illumination optical system, R ... reticle, PL ... projection optical system, W ... wafer, IPP ... illumination pupil plane, PLP ... projection pupil plane, 10 ... reticle characteristic estimation apparatus, 14 ... main control apparatus 20 ... Light intensity distribution measurement unit, 37 ... illumination pupil, 52 ... storage unit, 54 ... calculation unit, 71A ... projection pupil, 71B ... calculation area

Claims (22)

マスクのパターンから発生する回折光の状態を推定するマスク特性の推定方法であって、
前記マスクのパターンを照明する照明光学系の射出瞳における第1光強度分布を設定することと、
前記照明光学系によって照明された前記マスクのパターンの像を形成する投影光学系の射出瞳における第2光強度分布を求めることと、
前記投影光学系の射出瞳内で前記第1光強度分布に対応する対応分布を互いに異なる量だけシフトさせて得られる複数の第3光強度分布と前記第2光強度分布との相関度がそれぞれ高くなるときの複数の前記第3光強度分布を求めることと、
前記投影光学系の射出瞳内で複数の前記第3光強度分布の加重和と前記第2光強度分布との相関度が高くなるように複数の前記第3光強度分布の個別の係数を求めることと、
前記個別の係数を用いた複数の前記第3光強度分布の加重和によって得られる第4光強度分布のうち、前記投影光学系の射出瞳外の光強度分布に基づいて、前記マスクのパターンから発生して前記投影光学系の入射瞳に入らない回折光の状態を推定することと、
を含むことを特徴とする推定方法。
An estimation method of mask characteristics for estimating a state of diffracted light generated from a mask pattern,
Setting a first light intensity distribution at an exit pupil of an illumination optical system that illuminates the mask pattern;
Obtaining a second light intensity distribution at an exit pupil of a projection optical system that forms an image of a pattern of the mask illuminated by the illumination optical system;
Correlation degrees between a plurality of third light intensity distributions obtained by shifting corresponding distributions corresponding to the first light intensity distributions by different amounts in the exit pupil of the projection optical system and the second light intensity distributions, respectively. Obtaining a plurality of the third light intensity distributions when increasing;
Individual coefficients of the plurality of third light intensity distributions are obtained so that the degree of correlation between the weighted sum of the plurality of third light intensity distributions and the second light intensity distribution is high within the exit pupil of the projection optical system. And
Based on the light intensity distribution outside the exit pupil of the projection optical system, among the fourth light intensity distributions obtained by the weighted sum of the plurality of third light intensity distributions using the individual coefficients, Estimating a state of diffracted light that is generated and does not enter the entrance pupil of the projection optical system;
The estimation method characterized by including.
複数の前記第3光強度分布を求めることは、
前記対応分布を互いに異なる量だけシフトさせて得られる複数の前記第3光強度分布と前記第2光強度分布との積和が極値を持つときの、前記対応分布の複数のシフト量を求めることを含むことを特徴とする請求項1に記載の推定方法。
Obtaining a plurality of the third light intensity distributions includes:
A plurality of shift amounts of the corresponding distribution when the sum of products of the plurality of third light intensity distributions and the second light intensity distributions obtained by shifting the corresponding distributions by different amounts have extreme values. The estimation method according to claim 1, further comprising:
複数の前記第3光強度分布の個別の係数を求めることは、
前記第3光強度分布の加重和と前記第2光強度分布との誤差の二乗和が最小になるように前記個別の係数を求めることを含むことを特徴とする請求項1又は2に記載の推定方法。
Obtaining individual coefficients of a plurality of the third light intensity distributions,
3. The method according to claim 1, further comprising: determining the individual coefficients so that a sum of squares of errors between the weighted sum of the third light intensity distributions and the second light intensity distribution is minimized. Estimation method.
マスクのパターンから発生する回折光の状態を推定するマスク特性の推定方法であって、
前記マスクのパターンを照明する照明光学系の射出瞳の第1光強度分布を記憶することと、
前記照明光学系の射出瞳における互いに異なる複数の位置の制限された領域からの光で前記マスクのパターンを順次照明することと、
前記制限された領域が互いに異なる複数の位置にあるときに、それぞれ前記照明光学系によって照明された前記マスクのパターンの像を形成する投影光学系の射出瞳における前記マスクのパターンからの光による第2光強度分布を求めることと、
求められた前記第2光強度分布に基づいて、前記マスクのパターンからの0次光及び1次以上の回折光を含む第3光強度分布を求めることと、
前記第3光強度分布に基づいて、前記投影光学系の射出瞳内で前記第1光強度分布に対応する対応分布及びこの対応分布をシフトした光強度分布を重ね合わせることによって、第4光強度分布を求めることと、
前記第4光強度分布のうち、前記投影光学系の射出瞳外の光強度分布に基づいて、前記マスクのパターンから発生して前記投影光学系の入射瞳に入らない回折光の状態を推定することと、
を含むことを特徴とする推定方法。
An estimation method of mask characteristics for estimating a state of diffracted light generated from a mask pattern,
Storing a first light intensity distribution of an exit pupil of an illumination optical system that illuminates the mask pattern;
Sequentially illuminating the pattern of the mask with light from restricted regions at a plurality of different positions in the exit pupil of the illumination optical system;
When the restricted region is at a plurality of different positions, the light from the mask pattern at the exit pupil of the projection optical system that forms an image of the mask pattern illuminated by the illumination optical system respectively. Obtaining two light intensity distributions;
Obtaining a third light intensity distribution including zero-order light and first-order or higher diffracted light from the mask pattern based on the obtained second light intensity distribution;
Based on the third light intensity distribution, a fourth light intensity is obtained by superimposing a corresponding distribution corresponding to the first light intensity distribution and a light intensity distribution shifted from the corresponding distribution in the exit pupil of the projection optical system. Finding the distribution;
Based on the light intensity distribution outside the exit pupil of the projection optical system in the fourth light intensity distribution, the state of diffracted light that is generated from the mask pattern and does not enter the entrance pupil of the projection optical system is estimated. And
The estimation method characterized by including.
前記第4光強度分布を求めるために、前記対応分布と前記第3光強度分布とのコンボリューションを行うことを特徴とする請求項4に記載の推定方法。   The estimation method according to claim 4, wherein convolution of the correspondence distribution and the third light intensity distribution is performed to obtain the fourth light intensity distribution. 前記制限された領域の幅は、コヒーレンスファクタが1の領域の半径の1/10以下であり、
前記第2光強度分布は、前記マスクのパターンからの0次光及び前記制限された領域の前記照明光学系の光軸からのシフト方向に対応する方向の少なくとも一方の1次回折光を含むことを特徴とする請求項4又は5に記載の推定方法。
The width of the limited region is 1/10 or less of the radius of the region having a coherence factor of 1,
The second light intensity distribution includes zero-order light from the mask pattern and at least one first-order diffracted light in a direction corresponding to a shift direction of the restricted region from the optical axis of the illumination optical system. The estimation method according to claim 4, wherein the estimation method is characterized.
前記投影光学系の射出瞳外の光強度分布は、この射出瞳の半径の3倍の円形領域内の光強度分布を含むことを特徴とする請求項1乃至6のいずれか一項に記載の推定方法。   7. The light intensity distribution outside the exit pupil of the projection optical system includes a light intensity distribution in a circular area that is three times the radius of the exit pupil. 8. Estimation method. 前記マスクのパターンから発生して前記投影光学系の入射瞳に入らない回折光の状態を推定することは、前記回折光の方向及び光強度を推定することであり、
推定される前記回折光の方向及び光強度を用いて、前記マスクのパターンから発生して前記投影光学系の入射瞳に入らない回折光の前記投影光学系内の光路を求めることを含むことを特徴とする請求項1乃至7のいずれか一項に記載の推定方法。
Estimating the state of diffracted light generated from the mask pattern and not entering the entrance pupil of the projection optical system is to estimate the direction and light intensity of the diffracted light,
Using the estimated direction and light intensity of the diffracted light to determine an optical path in the projection optical system of the diffracted light that is generated from the mask pattern and does not enter the entrance pupil of the projection optical system. The estimation method according to claim 1, wherein the estimation method is characterized.
照明光学系からの照明光でマスクのパターンを照明し、前記照明光で前記パターン及び投影光学系を介して基板を露光する露光方法において、
請求項1乃至8のいずれか一項に記載の推定方法を用いて、前記マスクのパターンから発生して前記投影光学系の入射瞳に入らない回折光の状態を推定することと、
推定される前記投影光学系の入射瞳に入らない回折光の状態に基づいて、前記投影光学系を構成する少なくとも一つの光学部材の温度変動量を求めることと、
前記光学部材の温度変動量に基づく前記投影光学系の光学特性の変動量を補正することと、
を含むことを特徴とする露光方法。
In an exposure method of illuminating a mask pattern with illumination light from an illumination optical system, and exposing the substrate with the illumination light through the pattern and the projection optical system,
Using the estimation method according to any one of claims 1 to 8, estimating a state of diffracted light that is generated from the mask pattern and does not enter the entrance pupil of the projection optical system;
Obtaining a temperature fluctuation amount of at least one optical member constituting the projection optical system based on the estimated state of diffracted light that does not enter the entrance pupil of the projection optical system;
Correcting the fluctuation amount of the optical characteristics of the projection optical system based on the temperature fluctuation amount of the optical member;
An exposure method comprising:
マスクのパターンから発生する回折光の状態を推定するマスク特性の推定装置であって、
前記マスクのパターンを照明する照明光学系の射出瞳における第1光強度分布の情報を記憶する記憶部と、
前記照明光学系によって照明された前記マスクのパターンの像を形成する投影光学系の射出瞳における第2光強度分布を計測する光強度分布計測部と、
前記記憶部に記憶されている前記第1光強度分布及び前記光強度分布計測部で計測された前記第2光強度分布に基づいて前記マスクのパターンから発生して前記投影光学系の入射瞳に入らない回折光の状態を推定する演算部と、を備え、
前記演算部は、
前記投影光学系の射出瞳内で前記第1光強度分布に対応する対応分布を互いに異なる量だけシフトさせて得られる複数の第3光強度分布と前記第2光強度分布との相関度がそれぞれ高くなるときの複数の前記第3光強度分布を求め、
前記投影光学系の射出瞳内で複数の前記第3光強度分布の加重和と前記第2光強度分布との相関度が高くなるように複数の前記第3光強度分布の個別の係数を求め、
前記個別の係数を用いた複数の前記第3光強度分布の加重和によって得られる光強度分布のうち、前記投影光学系の射出瞳外の光強度分布に基づいて、前記マスクのパターンから発生して前記投影光学系の入射瞳に入らない回折光の状態を推定することを特徴とする推定装置。
An apparatus for estimating a mask characteristic for estimating a state of diffracted light generated from a mask pattern,
A storage unit for storing information on the first light intensity distribution in the exit pupil of the illumination optical system that illuminates the mask pattern;
A light intensity distribution measuring unit that measures a second light intensity distribution at an exit pupil of a projection optical system that forms an image of the pattern of the mask illuminated by the illumination optical system;
Based on the first light intensity distribution stored in the storage unit and the second light intensity distribution measured by the light intensity distribution measurement unit, the light is generated from the mask pattern and applied to the entrance pupil of the projection optical system. A calculation unit that estimates the state of diffracted light that does not enter,
The computing unit is
Correlation degrees between a plurality of third light intensity distributions obtained by shifting corresponding distributions corresponding to the first light intensity distributions by different amounts in the exit pupil of the projection optical system and the second light intensity distributions, respectively. Obtaining a plurality of the third light intensity distributions when increasing,
Individual coefficients of the plurality of third light intensity distributions are obtained so that the degree of correlation between the weighted sum of the plurality of third light intensity distributions and the second light intensity distribution is high within the exit pupil of the projection optical system. ,
Of the light intensity distribution obtained by weighted sum of the plurality of third light intensity distributions using the individual coefficients, the light intensity distribution generated outside the exit pupil of the projection optical system is generated from the mask pattern. And estimating the state of the diffracted light that does not enter the entrance pupil of the projection optical system.
前記演算部は、複数の前記第3光強度分布を求めるために、前記対応分布を互いに異なる量だけシフトさせて得られる複数の前記第3光強度分布と前記第2光強度分布との積和が極値を持つときの前記対応分布の複数のシフト量を求めることを特徴とする請求項10に記載の推定装置。   The computing unit calculates a product sum of a plurality of the third light intensity distributions and the second light intensity distributions obtained by shifting the corresponding distributions by different amounts in order to obtain a plurality of the third light intensity distributions. The estimation device according to claim 10, wherein a plurality of shift amounts of the corresponding distribution when the has an extreme value are obtained. 前記演算部は、複数の前記第3光強度分布の個別の係数を求めるために、前記第3光強度分布の加重和と前記第2光強度分布との誤差の二乗和が最小になるように前記個別の係数を求めることを特徴とする請求項10又は11に記載の推定装置。   In order to obtain individual coefficients of a plurality of the third light intensity distributions, the arithmetic unit is configured to minimize a sum of squares of errors between the weighted sum of the third light intensity distributions and the second light intensity distributions. 12. The estimation apparatus according to claim 10, wherein the individual coefficient is obtained. マスクのパターンから発生する回折光の状態を推定するマスク特性の推定装置であって、
前記マスクのパターンを照明する照明光学系の射出瞳における第1光強度分布の情報を記憶する記憶部と、
前記照明光学系の射出瞳における互いに異なる複数の位置の制限された領域からの光で前記マスクのパターンを順次照明させる照明制御部と、
前記制限された領域が互いに異なる複数の位置にあるときに、それぞれ前記照明光学系によって照明された前記マスクのパターンの像を形成する投影光学系の射出瞳における前記マスクのパターンからの光による第2光強度分布を計測する光強度分布計測部と、
前記記憶部に記憶されている前記第1光強度分布及び前記光強度分布計測部で計測された前記第2光強度分布に基づいて前記マスクのパターンから発生して前記投影光学系の入射瞳に入らない回折光の状態を推定する演算部と、を備え、
前記演算部は、
計測された前記第2光強度分布に基づいて、前記マスクのパターンからの0次光及び1次以上の回折光を含む第3光強度分布を求め、
前記第3光強度分布に基づいて、前記投影光学系の射出瞳内で前記第1光強度分布に対応する対応分布及びこの対応分布をシフトした光強度分布を重ね合わせることによって、第4光強度分布を求め、
前記第4光強度分布のうち、前記投影光学系の射出瞳外の光強度分布に基づいて、前記マスクのパターンから発生して前記投影光学系の入射瞳に入らない回折光の状態を推定することを特徴とする推定装置。
An apparatus for estimating a mask characteristic for estimating a state of diffracted light generated from a mask pattern,
A storage unit for storing information on the first light intensity distribution in the exit pupil of the illumination optical system that illuminates the mask pattern;
An illumination controller for sequentially illuminating the pattern of the mask with light from a limited region at a plurality of different positions in the exit pupil of the illumination optical system;
When the restricted region is at a plurality of different positions, the light from the mask pattern at the exit pupil of the projection optical system that forms an image of the mask pattern illuminated by the illumination optical system respectively. A light intensity distribution measuring unit for measuring two light intensity distributions;
Based on the first light intensity distribution stored in the storage unit and the second light intensity distribution measured by the light intensity distribution measurement unit, the light is generated from the mask pattern and applied to the entrance pupil of the projection optical system. A calculation unit that estimates the state of diffracted light that does not enter,
The computing unit is
Based on the measured second light intensity distribution, a third light intensity distribution including zero-order light and first-order or higher diffracted light from the mask pattern is obtained,
Based on the third light intensity distribution, a fourth light intensity is obtained by superimposing a corresponding distribution corresponding to the first light intensity distribution and a light intensity distribution shifted from the corresponding distribution in the exit pupil of the projection optical system. Find the distribution
Based on the light intensity distribution outside the exit pupil of the projection optical system in the fourth light intensity distribution, the state of diffracted light that is generated from the mask pattern and does not enter the entrance pupil of the projection optical system is estimated. An estimation apparatus characterized by that.
前記演算部は、前記第4光強度分布を求めるために、前記対応分布と前記第3光強度分布とのコンボリューションを行うことを特徴とする請求項13に記載の推定装置。   The estimation device according to claim 13, wherein the calculation unit performs convolution of the correspondence distribution and the third light intensity distribution in order to obtain the fourth light intensity distribution. 前記制限された領域の幅は、コヒーレンスファクタが1の領域の半径の1/10以下であり、
前記第2光強度分布は、前記マスクのパターンからの0次光及び前記制限された領域の前記照明光学系の光軸からのシフト方向に対応する方向の少なくとも一方の1次回折光を含むことを特徴とする請求項13又は14に記載の推定装置。
The width of the limited region is 1/10 or less of the radius of the region having a coherence factor of 1,
The second light intensity distribution includes zero-order light from the mask pattern and at least one first-order diffracted light in a direction corresponding to a shift direction of the restricted region from the optical axis of the illumination optical system. The estimation apparatus according to claim 13 or 14, characterized in that
前記投影光学系の射出瞳外の光強度分布は、この射出瞳の半径の3倍の円形領域内の光強度分布を含むことを特徴とする請求項10乃至15のいずれか一項に記載の推定装置。   16. The light intensity distribution outside the exit pupil of the projection optical system includes a light intensity distribution in a circular region that is three times the radius of the exit pupil. Estimating device. 前記マスクのパターンから発生して前記投影光学系の入射瞳に入らない回折光の状態を推定することは、前記回折光の方向及び光強度を推定することであり、
前記演算部は、推定される前記回折光の方向及び光強度を用いて、前記マスクのパターンから発生して前記投影光学系の入射瞳に入らない回折光の前記投影光学系内の光路を求めることを特徴とする請求項10乃至16のいずれか一項に記載の推定装置。
Estimating the state of diffracted light generated from the mask pattern and not entering the entrance pupil of the projection optical system is to estimate the direction and light intensity of the diffracted light,
The calculation unit obtains an optical path in the projection optical system of the diffracted light that is generated from the mask pattern and does not enter the entrance pupil of the projection optical system, using the estimated direction and light intensity of the diffracted light. The estimation apparatus according to any one of claims 10 to 16, wherein the estimation apparatus is characterized in that
照明光学系からの照明光でマスクのパターンを照明し、前記照明光で前記パターン及び投影光学系を介して基板を露光する露光装置において、
前記マスクのパターンから発生して前記投影光学系の入射瞳に入らない回折光の状態を推定するための、請求項10乃至17のいずれか一項に記載の推定装置と、
前記推定装置によって推定される前記投影光学系の入射瞳に入らない回折光の状態に基づいて、前記投影光学系を構成する少なくとも一つの光学部材の温度変動量を求める温度演算部と、
前記温度演算部によって求められる前記光学部材の温度変動量に基づいて前記投影光学系の光学特性の変動量を補正する補正部と、
を備えることを特徴とする露光装置、
In an exposure apparatus that illuminates a pattern of a mask with illumination light from an illumination optical system and exposes the substrate with the illumination light through the pattern and the projection optical system,
An estimation apparatus according to any one of claims 10 to 17, for estimating a state of diffracted light generated from the mask pattern and not entering the entrance pupil of the projection optical system;
A temperature calculation unit for obtaining a temperature fluctuation amount of at least one optical member constituting the projection optical system based on a state of diffracted light that does not enter the entrance pupil of the projection optical system estimated by the estimation device;
A correction unit that corrects the fluctuation amount of the optical characteristics of the projection optical system based on the temperature fluctuation amount of the optical member obtained by the temperature calculation unit;
An exposure apparatus comprising:
照明光学系からの照明光でマスクのパターンを照明し、前記照明光で前記パターン及び投影光学系を介して基板を露光する露光装置において、
前記マスクのパターンから発生して前記投影光学系の入射瞳に入らない回折光の状態を推定する推定装置と、
前記推定装置によって推定される前記投影光学系の入射瞳に入らない回折光の状態に基づいて、前記投影光学系を構成する少なくとも一つの光学部材の温度変動量を求める温度演算部と、
前記温度演算部によって求められる前記光学部材の温度変動量に基づいて前記投影光学系の光学特性の変動量を補正する補正部と、
を備えることを特徴とする露光装置。
In an exposure apparatus that illuminates a pattern of a mask with illumination light from an illumination optical system and exposes the substrate with the illumination light through the pattern and the projection optical system,
An estimation device for estimating a state of diffracted light generated from the pattern of the mask and not entering the entrance pupil of the projection optical system;
A temperature calculation unit for obtaining a temperature fluctuation amount of at least one optical member constituting the projection optical system based on a state of diffracted light that does not enter the entrance pupil of the projection optical system estimated by the estimation device;
A correction unit that corrects the fluctuation amount of the optical characteristics of the projection optical system based on the temperature fluctuation amount of the optical member obtained by the temperature calculation unit;
An exposure apparatus comprising:
前記照明光学系によって照明された前記マスクのパターンの像を形成する投影光学系の射出瞳における光強度分布を計測する光強度分布計測部を備え、
前記推定装置は、前記光強度分布計測部によって計測される光強度分布を用いて、前記投影光学系の入射瞳に入らない前記回折光の状態を推定することを特徴とする請求項19に記載の露光装置。
A light intensity distribution measuring unit that measures a light intensity distribution in an exit pupil of a projection optical system that forms an image of the pattern of the mask illuminated by the illumination optical system;
The said estimation apparatus estimates the state of the said diffracted light which does not enter into the entrance pupil of the said projection optical system using the light intensity distribution measured by the said light intensity distribution measurement part. Exposure equipment.
請求項9に記載の露光方法を用いて基板上に感光層のパターンを形成することと、
前記パターンが形成された前記基板を処理することと、
を含むデバイス製造方法。
Forming a pattern of a photosensitive layer on a substrate using the exposure method according to claim 9;
Processing the substrate on which the pattern is formed;
A device manufacturing method including:
請求項18乃至20のいずれか一項に記載の露光装置を用いて基板上に感光層のパターンを形成することと、
前記パターンが形成された前記基板を処理することと、
を含むデバイス製造方法。
Forming a pattern of a photosensitive layer on a substrate using the exposure apparatus according to any one of claims 18 to 20,
Processing the substrate on which the pattern is formed;
A device manufacturing method including:
JP2013034030A 2013-02-23 2013-02-23 Exposure method and apparatus, and device manufacturing method Active JP6260847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013034030A JP6260847B2 (en) 2013-02-23 2013-02-23 Exposure method and apparatus, and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013034030A JP6260847B2 (en) 2013-02-23 2013-02-23 Exposure method and apparatus, and device manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017240414A Division JP6477850B2 (en) 2017-12-15 2017-12-15 Calculation apparatus and method, program, and exposure method

Publications (3)

Publication Number Publication Date
JP2014165291A true JP2014165291A (en) 2014-09-08
JP2014165291A5 JP2014165291A5 (en) 2016-04-14
JP6260847B2 JP6260847B2 (en) 2018-01-17

Family

ID=51615649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013034030A Active JP6260847B2 (en) 2013-02-23 2013-02-23 Exposure method and apparatus, and device manufacturing method

Country Status (1)

Country Link
JP (1) JP6260847B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018141713A1 (en) 2017-02-03 2018-08-09 Asml Netherlands B.V. Exposure apparatus
JP7378265B2 (en) 2019-10-18 2023-11-13 キヤノン株式会社 Exposure equipment, exposure method, and article manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347239A (en) * 1992-06-12 1993-12-27 Canon Inc Projection aligner and manufacture of semiconductor element using same
JP2002373857A (en) * 1994-04-22 2002-12-26 Canon Inc Projection aligner and method of manufacturing device
JP2006059834A (en) * 2004-08-17 2006-03-02 Nikon Corp Illumination optical device, regulating method of illumination optical device, exposure device and exposure method
JP2009041956A (en) * 2007-08-07 2009-02-26 Nikon Corp Pupil transmittance distribution measuring apparatus and method, projection exposure apparatus, and device manufacturing method
WO2012169090A1 (en) * 2011-06-06 2012-12-13 株式会社ニコン Illumination method, illumination optical device, and exposure device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347239A (en) * 1992-06-12 1993-12-27 Canon Inc Projection aligner and manufacture of semiconductor element using same
JP2002373857A (en) * 1994-04-22 2002-12-26 Canon Inc Projection aligner and method of manufacturing device
JP2006059834A (en) * 2004-08-17 2006-03-02 Nikon Corp Illumination optical device, regulating method of illumination optical device, exposure device and exposure method
JP2009041956A (en) * 2007-08-07 2009-02-26 Nikon Corp Pupil transmittance distribution measuring apparatus and method, projection exposure apparatus, and device manufacturing method
WO2012169090A1 (en) * 2011-06-06 2012-12-13 株式会社ニコン Illumination method, illumination optical device, and exposure device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018141713A1 (en) 2017-02-03 2018-08-09 Asml Netherlands B.V. Exposure apparatus
US11092903B2 (en) 2017-02-03 2021-08-17 Asml Netherlands B.V. Exposure apparatus
JP7378265B2 (en) 2019-10-18 2023-11-13 キヤノン株式会社 Exposure equipment, exposure method, and article manufacturing method

Also Published As

Publication number Publication date
JP6260847B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
US9535342B2 (en) Metrology method and apparatus, and device manufacturing method
JP5679130B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US9158194B2 (en) Metrology method and apparatus, and device manufacturing method
JP6521265B2 (en) Wavefront measurement method and apparatus, exposure method and apparatus, and device manufacturing method
JP4563923B2 (en) Alignment method optimization method
US9690207B2 (en) Sensor system for lithography
US20150212425A1 (en) Quantitative Reticle Distortion Measurement System
JP6521223B2 (en) Lithographic apparatus management method and apparatus, and exposure method and system
TW201830007A (en) Methods of adjusting a metrology apparatus, measuring a target and fabricating a target and computer program product
US7221434B2 (en) Exposure method and apparatus
JP2014135368A (en) Exposure device, measurement method and method of manufacturing device
US9513460B2 (en) Apparatus and methods for reducing autofocus error
US20190302622A1 (en) Lithography system, simulation apparatus, and pattern forming method
JP6260847B2 (en) Exposure method and apparatus, and device manufacturing method
JP6477850B2 (en) Calculation apparatus and method, program, and exposure method
JP2009054736A (en) Mark detecting method and equipment, position controlling method and equipment, exposing method and equipment, and device manufacturing method
JP2001250760A (en) Aberration measuring method, mask detecting method to use said method and exposure method
JP2009054737A (en) Mark detecting method and equipment, position controlling method and equipment, exposing method and equipment, and device manufacturing method
US9410796B2 (en) Lithographic apparatus and method
US20150220005A1 (en) Real-Time Reticle Curvature Sensing
JP6744596B2 (en) Lithographic apparatus management apparatus, program for the apparatus, exposure system, and device manufacturing method
JP2011049400A (en) Position detector, exposure device and manufacturing method of device
JP2014165423A (en) Lithography system, pattern forming method and exposure device
JP2014116438A (en) Method and device for computing light quantity distribution, recording medium with program for computing light quantity distribution recorded thereon, and exposure method and apparatus
JP2014130971A (en) Method and device for calculating light quantity distribution, recording medium recording program for calculating light quantity distribution, and method and device for exposure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171130

R150 Certificate of patent or registration of utility model

Ref document number: 6260847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250