JP2014164862A - Lithium battery manufacturing method - Google Patents

Lithium battery manufacturing method Download PDF

Info

Publication number
JP2014164862A
JP2014164862A JP2013033247A JP2013033247A JP2014164862A JP 2014164862 A JP2014164862 A JP 2014164862A JP 2013033247 A JP2013033247 A JP 2013033247A JP 2013033247 A JP2013033247 A JP 2013033247A JP 2014164862 A JP2014164862 A JP 2014164862A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
electrode terminal
sealing
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013033247A
Other languages
Japanese (ja)
Other versions
JP6078377B2 (en
Inventor
Haruhiko Satake
春彦 佐竹
Hiroshi Hamada
浩 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Tottori Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Tottori Co Ltd filed Critical FDK Tottori Co Ltd
Priority to JP2013033247A priority Critical patent/JP6078377B2/en
Publication of JP2014164862A publication Critical patent/JP2014164862A/en
Application granted granted Critical
Publication of JP6078377B2 publication Critical patent/JP6078377B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a lithium battery manufacturing method capable of improving safety and productivity while achieving good long-term storage performance.SOLUTION: The method includes: steps (s1-s6) of housing a positive electrode mixture 3, a negative electrode lithium 4 and an electrolyte in a bottomed battery can 2 having a positive electrode terminal part 11; sealing steps (s7-s11) of fitting a sealing body 9 including the negative electrode terminal part 7 with an opening of the battery can via a gasket 10; and a preliminary discharge step (s12) after the sealing step. Among respective execution periods of plural steps included in the sealing step, and a battery can conveying period during steps before and after the plural steps, within two predetermined periods, advance discharging steps (s7b-s11b) of short-circuiting between the battery can and the sealing body are executed. In the preliminary discharge step, a predetermined load is connected between the positive electrode terminal part and the negative electrode terminal part for a predetermined time, and discharging is done so that a total discharge capacity of a gross discharge capacity in the advance discharging step becomes a predetermined ratio of capacity to the theoretical capacity.

Description

本発明はリチウム電池の製造方法に関し、とくに、組み立て後のリチウム電池に対する予備放電工程に関する。   The present invention relates to a method for manufacturing a lithium battery, and more particularly to a preliminary discharge process for a lithium battery after assembly.

正極活物質として二酸化マンガン、フッ化黒鉛、酸化銅などを用いた正極と、リチウム金属あるいはリチウム合金からなる負極活物質を含む負極と、有機電解液とを用いたリチウム電池は、高エネルギー密度を有するとともに、優れた保存性を有して、各種小型携帯機器の電源、バックアップとして広く用いられている。   A lithium battery using a positive electrode using manganese dioxide, fluorinated graphite, copper oxide, or the like as a positive electrode active material, a negative electrode including a negative electrode active material made of lithium metal or a lithium alloy, and an organic electrolyte has a high energy density. In addition, it has excellent storability and is widely used as a power source and backup for various small portable devices.

ところで、リチウム電池における優れた保存性能は、電池の製造工程中に予備放電と呼ばれる処理を施すことで得られる。予備放電は、電池組み立て直後に予め理論容量に対して所定の割合(例えば、1〜3%)の容量を放電させることで行われる。それによって、リチウム電池は、リチウムイオンが正極活物質に電気化学的挿入されて正極活物質の活性度が下がり、貯蔵時に電解液の分解などによる特性劣化が防止される。   By the way, the outstanding preservation | save performance in a lithium battery is acquired by performing the process called preliminary discharge in the manufacturing process of a battery. The preliminary discharge is performed by discharging a predetermined ratio (for example, 1 to 3%) of capacity with respect to the theoretical capacity in advance immediately after battery assembly. Accordingly, in the lithium battery, lithium ions are electrochemically inserted into the positive electrode active material, the activity of the positive electrode active material is lowered, and deterioration of characteristics due to decomposition of the electrolyte during storage is prevented.

具体的には、リチウム電池における電解液として、プロピレンカーボネイト(PC)を主体とした有機電解液を用い、正極に導電材として炭素材料が含まれている場合、PCの分解電位が0.8Vであり、正極側の電位が金属リチウムに対して0.8V未満だと、PCが分解して炭素材料表面に抵抗体が生成し、それに伴ってガスが発生する。   Specifically, when an organic electrolyte mainly composed of propylene carbonate (PC) is used as an electrolyte in a lithium battery, and a carbon material is included as a conductive material in the positive electrode, the decomposition potential of PC is 0.8V. If the potential on the positive electrode side is less than 0.8 V with respect to metallic lithium, the PC is decomposed to generate a resistor on the surface of the carbon material, and gas is generated accordingly.

そこで、従来のリチウム電池の製造方法では、組み立て後の予備放電工程に際し、PCの分解電位以下にならないように監視しながら小さな電流を長時間かけて流すことで所定容量を予備放電していた。なお、以下の特許文献1には、予備放電の条件などを規定することで、リチウム電池の保存性能を向上させる技術について開示されている。また、以下の非特許文献1には、市販のリチウム電池の規格や性能などについて、詳しく記載されている。   Therefore, in the conventional method of manufacturing a lithium battery, a predetermined capacity is predischarged by flowing a small current over a long period of time while monitoring so as not to be below the decomposition potential of the PC during the predischarge process after assembly. The following Patent Document 1 discloses a technique for improving the storage performance of a lithium battery by defining predischarge conditions and the like. Non-Patent Document 1 below describes in detail the standards and performances of commercially available lithium batteries.

特開2009−152030号公報JP 2009-152030 A

稲電機株式会社、”取り扱いメーカー一覧、三洋電機、リチウム電池”、[online]、[平成24年12月25日検索]、インターネット<URL:http://www.inedenki.co.jp/pdf/sanyo_lit.pdf>Ina Denki Co., Ltd., “Handling Manufacturer List, Sanyo Electric, Lithium Battery”, [online], [Search on December 25, 2012], Internet <URL: http://www.inedenki.co.jp/pdf/ sanyo_lit.pdf>

上述したように、リチウム電池では、組み立て後の予備放電が必須の処理であり、その予備放電は、電解液の分解などを抑制するために、上記特許文献1に記載の技術も含め、小さな電流を長時間掛けて流す、所謂「定電流方式」で行われていた。そのため、リチウム電池の生産性を飛躍的に向上させることが困難であった。また、定電流方式での予備放電では、電池の1本1本に対して電流を監視ながら放電させるため、予備放電に供される設備が複雑となり、製造設備における初期コストを増加させる。さらに、電流を監視しながら放電を行わせるため、予備放電に関わる設備の電流監視系統に何らかのトラブルが発生すると、意図しない大きな電流が流れ続けて電池が発火する可能性すらある。   As described above, in the lithium battery, preliminary discharge after assembly is an essential process, and the preliminary discharge includes a small current including the technique described in Patent Document 1 in order to suppress decomposition of the electrolytic solution. In a so-called “constant current method”. For this reason, it has been difficult to dramatically improve the productivity of lithium batteries. Further, in the preliminary discharge by the constant current method, the discharge is performed while monitoring the current for each of the batteries, so that the equipment used for the preliminary discharge becomes complicated and the initial cost in the manufacturing equipment is increased. Furthermore, since the discharge is performed while monitoring the current, if any trouble occurs in the current monitoring system of the facility related to the preliminary discharge, an unintended large current may continue to flow and the battery may even ignite.

そこで、所定時間に、電池の正負両極間を短絡した状態で電流を流す「短絡方式」で予備放電を行うことも考えられるが、この短絡方式では、大きな電流が電池内に流れることになり、それに伴う種々の問題が発生する。具体的には、短絡方式による予備放電では、ジュール熱に起因して電池内の温度が上昇する。そして、電池内の各部位で熱伝導率や熱容量に差があるため、その温度の上昇特性は、電池内で不均一となる。すなわち、電池内に温度差が発生する。そして、その温度差に伴うゼーベック効果により、負極を構成する金属リチウムの微粉が電池内に堆積する。このリチウムの微粉がセパレーターの多孔質構造に入り込めば、極めて微細な短絡(微短絡)が発生する。   Therefore, it is conceivable to perform preliminary discharge in a “short circuit method” in which a current is passed in a state where the positive and negative electrodes of the battery are short-circuited at a predetermined time, but in this short circuit method, a large current flows in the battery, Various problems accompanying it occur. Specifically, in the preliminary discharge by the short circuit method, the temperature in the battery rises due to Joule heat. And since there exists a difference in heat conductivity and heat capacity in each location in a battery, the rise characteristic of the temperature becomes non-uniform in a battery. That is, a temperature difference is generated in the battery. And the metallic lithium fine powder which comprises a negative electrode accumulates in a battery by the Seebeck effect accompanying the temperature difference. If the lithium fine powder enters the porous structure of the separator, an extremely fine short circuit (fine short circuit) occurs.

リチウムの微粉による微短絡は、電池を長期に保存した際に、10年率で、小数点以下数%相当の微量の容量を損失させる原因となる。確かに、微短絡に起因する損失する容量の絶対値自体は極めて僅かなものである。しかし、ボビン形のリチウム電池であれば、初期容量の95%を10年間保持する程度の性能が求められており、微短絡に起因して損失する容量が僅かであっても、リチウム電池に求められる性能を維持できなくなる可能性がある。   The micro short circuit caused by the fine lithium powder causes a loss of a small amount of capacity equivalent to several percent below the decimal point at a 10-year rate when the battery is stored for a long period of time. Certainly, the absolute value of the capacity lost due to the fine short circuit is very small. However, a bobbin-type lithium battery is required to have a performance that can retain 95% of the initial capacity for 10 years, and even if the capacity that is lost due to a fine short circuit is small, it is required for the lithium battery. Performance may not be maintained.

したがって、本発明は良好な長期保存性能を達成しつつ、安全性と生産性を向上させることが可能なリチウム電池の製造方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a method for producing a lithium battery that can improve safety and productivity while achieving good long-term storage performance.

上記目的を達成するための本発明は、正極端子部を備えた有底の金属製電池缶内に、発電要素として、正極合剤からなる正極と、リチウム金属あるいはリチウム合金からなる負極活物質を含む負極と、前記正極と負極との間に介在するセパレーターと、非水電解液とが収納されているとともに、前記電池缶の開口を上方として、当該開口が、前記負極と電気的に接続された状態の金属製の封口体で封口されてなるリチウム電池の製造方法であって、
前記電池缶内に、前記発電要素を挿入するとともに、前記有機電解液を注入する発電要素充填工程と、
前記電池缶の開口に、負極端子部を含んで構成される前記封口体をガスケットを介して嵌着する封口工程と、
当該封口工程によって組み立てられたリチウム電池に対し、所定の電気容量を放電させる予備放電工程と、
を含み、
前記封口工程にはさらに複数の工程が含まれ、当該複数の工程のそれぞれの実行期間、および当該複数の工程において前後する工程間で前記電池缶を搬送する期間のうち、所定の2以上の期間において、前記電池缶と前記封口体との間を短絡させる事前放電工程を実行し、
前記予備放電工程では、前記正極端子部と前記負極端子部との間に所定の負荷を所定時間接続し、前記2以上の期間で実行した前記事前放電工程での総放電容量との合計放電容量が理論容量に対して所定の割合の容量となるように放電させる、
ことを特徴とするリチウム電池の製造方法としている。
In order to achieve the above object, the present invention provides a bottomed metal battery can having a positive electrode terminal portion, as a power generation element, a positive electrode made of a positive electrode mixture and a negative electrode active material made of lithium metal or a lithium alloy. Containing a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte are accommodated, and the opening of the battery can is upwardly connected to the negative electrode. A method for producing a lithium battery that is sealed with a metal seal in a state of
Inserting the power generation element into the battery can and injecting the organic electrolyte into the power generation element filling step;
A sealing step of fitting the sealing body including the negative electrode terminal portion into the opening of the battery can via a gasket;
For the lithium battery assembled by the sealing step, a preliminary discharge step for discharging a predetermined electric capacity,
Including
The sealing step further includes a plurality of steps, and each of the execution periods of the plurality of steps and a predetermined two or more periods among the periods in which the battery can is transported between the steps preceding and following the plurality of steps. In performing a pre-discharge step of short-circuiting between the battery can and the sealing body,
In the preliminary discharge step, a predetermined load is connected between the positive electrode terminal portion and the negative electrode terminal portion for a predetermined time, and the total discharge with the total discharge capacity in the preliminary discharge step executed in the two or more periods Discharging so that the capacity becomes a predetermined ratio of capacity with respect to the theoretical capacity,
This is a method for manufacturing a lithium battery.

また、前記封口工程には、前記複数の工程として、前記負極と電気的に接続された状態にある封口板をガスケットを介して前記電池開口に配置する封口板配置工程と、当該封口板の上に前記負極端子部となる負極端子板を積層する負極端子板積層工程と、前記電池缶の開口の縁端を内方に曲げるカール加工工程と、当該電池缶の開口を内方にかしめて前記積層状態にある前記封口板と前記負極端子板とからなる前記封口体を当該電池缶の開口に嵌着するかしめ工程とを含むとともに、当該複数の工程のいずれか2以上の工程の実行期間に前記事前放電工程を実行する、リチウム電池の製造方法とすることもできる。そして、前記負荷は30Ω以上であればより好ましい。   Further, in the sealing step, as the plurality of steps, a sealing plate arranging step of arranging a sealing plate in an electrically connected state with the negative electrode in the battery opening via a gasket, and a top of the sealing plate Negative electrode terminal plate laminating step of laminating the negative electrode terminal plate to be the negative electrode terminal portion, curling step of bending the edge of the opening of the battery can inward, and caulking the opening of the battery can inward And a caulking step of fitting the sealing body composed of the sealing plate and the negative electrode terminal plate in a laminated state into the opening of the battery can, and in an execution period of any two or more of the plurality of steps It can also be set as the manufacturing method of a lithium battery which performs the said preliminary discharge process. The load is more preferably 30Ω or more.

本発明に係るリチウム電池の製造方法によれば、生産性を向上させるとともに、製造時の安全性を確保できる。また、良好な長期保存性能を備えたリチウム電池を提供することができる。なお、その他の効果については以下の記載で明らかにする。   According to the method for manufacturing a lithium battery according to the present invention, productivity can be improved and safety during manufacturing can be ensured. In addition, a lithium battery having good long-term storage performance can be provided. Other effects will be clarified in the following description.

ボビン型リチウム電池の構造図である。It is a structural diagram of a bobbin type lithium battery. ボビン型リチウム電池の組み立て手順の一例を示す図である。It is a figure which shows an example of the assembly procedure of a bobbin type lithium battery. 本発明の実施例に係るリチウム電池の製造方法を示す図である。It is a figure which shows the manufacturing method of the lithium battery which concerns on the Example of this invention.

===本発明の技術的思想===
上述したように、「定電流方式」で予備放電を行う従来のリチウム電池の製造方法では、生産性の向上が見込まれない。しかし、容量の1〜3%を短絡方式によって放電させれば、発熱に伴う長期保存特性の劣化が問題となる。また、電解液を構成するPCが分解してガスが発生する、という問題もある。
=== Technical idea of the present invention ===
As described above, in the conventional method for manufacturing a lithium battery in which preliminary discharge is performed by the “constant current method”, improvement in productivity is not expected. However, if 1 to 3% of the capacity is discharged by the short-circuit method, deterioration of long-term storage characteristics due to heat generation becomes a problem. There is also a problem that the PC constituting the electrolytic solution is decomposed to generate gas.

しかしながら、短絡方式による予備放電を採用することで、生産性が向上することは明白であることから、本発明者は、短絡方式による予備放電を基本としつつ、この方式に関わる種々の問題を回避できる方法を模索した。具体的には、短絡方式による予備放電を実際に行って、室温で放電させながら電池缶の外面の各部位を熱電対によって測温するなどして、電流が流れてから発熱に至るまでの時間などについて検討した。そして、放電開始から約10分後には電池内に温度差が発生することや、外気温が低ければ温度差がさらに大きくなることを知見した。その一方で、電流が流れてから発熱に至るまでの時間や、電解液中のPCが分解するまでの時間は、瞬間的ではなく、数秒〜十数秒程度であれば短絡による予備放電が可能であることも知見した。   However, since it is clear that the productivity is improved by adopting the preliminary discharge by the short-circuit method, the present inventor avoided various problems related to this method while using the preliminary discharge by the short-circuit method as a basis. I searched for a possible method. Specifically, the time from the current flowing to the generation of heat by actually performing preliminary discharge by the short circuit method and measuring each part of the outer surface of the battery can with a thermocouple while discharging at room temperature Etc. were examined. And about 10 minutes after the discharge start, it discovered that a temperature difference generate | occur | produces in a battery, and a temperature difference will become still larger if external temperature is low. On the other hand, the time from when the current flows until it generates heat, or the time until the PC in the electrolyte decomposes is not instantaneous, and if it is several seconds to several tens of seconds, preliminary discharge by short circuit is possible. I also found that there was.

もちろん、数秒〜十数秒程度の予備放電では、必要とされる1〜3%の容量を放電させることはできない。短絡方式による短時間の予備放電を多数回に分けることも考えられるが、組み立て後に容量の1〜3%分を放電することが必要である以上、1回の予備放電に要する時間が短くても、連続して予備放電を実行できない以上、前後の予備放電の時間間隔や予備放電の回数などを考慮すると、予備放電に掛かる総体的な時間を劇的に短縮することはできず、生産性を向上させることができない。   Of course, the required 1 to 3% capacity cannot be discharged by preliminary discharge of several seconds to several tens of seconds. Although it is conceivable to divide the short-time preliminary discharge by the short-circuit method into a large number of times, it is necessary to discharge 1 to 3% of the capacity after assembly, so even if the time required for one preliminary discharge is short As long as the preliminary discharge cannot be performed continuously, considering the time interval of the preliminary discharge before and after and the number of preliminary discharges, the overall time required for the preliminary discharge cannot be drastically reduced. It cannot be improved.

そこで、本発明者は、予備放電をリチウム電池の組み立て後に行う、という旧来の常識を破棄することにした。そして、正極、負極、セパレーター、および電解液からなる発電要素が電池缶内に充填されてさえいれば、放電自体は可能であり、現在のリチウム電池の組み立て工程には、放電可能な状態となった時点から組立が完了するまでの間に、正極端子を兼ねる電池缶の一部と、負極と接続された金属部分とを同時に把持するなど、正極と負極とに電気的に同時に接触可能な工程が幾つか存在する、という事実に着目した。   Therefore, the present inventor decided to discard the conventional common sense that the preliminary discharge is performed after the lithium battery is assembled. As long as the power generation element composed of the positive electrode, the negative electrode, the separator, and the electrolytic solution is filled in the battery can, the discharge itself is possible, and the current lithium battery assembly process is in a dischargeable state. From the point in time until assembly is completed, a process that allows the positive electrode and the negative electrode to be in contact with each other simultaneously, such as simultaneously holding a part of the battery can also serving as the positive electrode terminal and the metal part connected to the negative electrode Focused on the fact that there are several.

従来、正極と負極とに同時に触れる工程で使用される治具や製造装置は、短絡が発生しないように構成されており、例えば、少なくとも電池に触れる部位が絶縁体で構成されていたり、正負の端子が短絡しない構造になっていたりした。そして、これらの正極と負極の双方に触れる工程の実行期間は、概ね5秒から10秒程度であり、この時間内であれば、短絡による発熱に起因する微短絡や電解液中のPCの分解などが発生しないはずである、と考えた。そして本発明は、上述した常識の破棄と、その破棄によって得た着目点とを出発点として鋭意研究を重ねた結果、想到したものである。   Conventionally, jigs and manufacturing apparatuses used in the process of simultaneously touching a positive electrode and a negative electrode are configured so as not to cause a short circuit. For example, at least a part that touches a battery is made of an insulator, or is positive or negative. The terminal did not short-circuit. And the execution period of the process which touches both these positive electrodes and negative electrodes is about 5 to 10 seconds, and if it is in this time, the micro short circuit resulting from the heat_generation | fever by a short circuit or decomposition | disassembly of PC in electrolyte solution will be carried out. And so on. The present invention has been conceived as a result of intensive investigations starting from the above-mentioned destruction of common sense and the point of interest obtained by the destruction.

===リチウム電池の構造===
図1に本発明の対象となるリチウム電池の概略構成を示した。ここに示したリチウム電池1は、円筒形のボビン型(またはインサイド・アウト型)と呼ばれるものであって、この図では円筒軸100の延長方向を上下(縦)方向としたときの縦断面図を示している。そして、このリチウム電池1は、正極端子を兼ねる有底円筒状の電池缶2、中空円筒状に成形された正極合剤3、負極4、円筒カップ状のセパレーター5、負極端子板7などによって構成されている。
=== Structure of lithium battery ===
FIG. 1 shows a schematic configuration of a lithium battery which is an object of the present invention. The lithium battery 1 shown here is called a cylindrical bobbin type (or inside-out type), and in this figure, a longitudinal sectional view when the extending direction of the cylindrical shaft 100 is the vertical (vertical) direction. Is shown. The lithium battery 1 includes a bottomed cylindrical battery can 2 also serving as a positive electrode terminal, a positive electrode mixture 3 formed into a hollow cylindrical shape, a negative electrode 4, a cylindrical cup-shaped separator 5, a negative electrode terminal plate 7, and the like. Has been.

電池缶2は金属製であって、その外底面には凸状の正極端子部11がプレス加工により形成されている。正極合剤3には、正極活物質となる二酸化マンガン(EMD)、導電材となる炭素材料、およびフッ素系バインダー(PTFE)を混合したものを中空円筒状のコアに成型・固結したものが使用されている。セパレーター5は、円筒袋状であり、ポリプロピレン、ポリエチレン、およびガラス繊維からなる複合素材でできている。   The battery can 2 is made of metal, and a convex positive terminal portion 11 is formed on the outer bottom surface thereof by pressing. The positive electrode mixture 3 is obtained by molding and solidifying a mixture of manganese dioxide (EMD) serving as a positive electrode active material, a carbon material serving as a conductive material, and a fluorine-based binder (PTFE) into a hollow cylindrical core. It is used. The separator 5 has a cylindrical bag shape and is made of a composite material made of polypropylene, polyethylene, and glass fiber.

負極4は、負極活物質となる金属リチウム板を丸めて中空筒状に成型したものであって、その一部には負極リード6の一端部6aがあらかじめ取り付けられている。この負極リード6は帯状の金属薄板で、その一端部6aが負極4に面状に固着した状態で接続されることで負極集電体が形成されている。なお、負極4にリチウム合金(例えば、リチウム・アルミニウム合金)を用いるリチウム電池もある。   The negative electrode 4 is formed by rolling a metallic lithium plate as a negative electrode active material into a hollow cylindrical shape, and one end portion 6a of the negative electrode lead 6 is attached in advance to a part thereof. The negative electrode lead 6 is a strip-shaped metal thin plate, and its one end 6a is connected to the negative electrode 4 in a state of being fixed in a planar shape, thereby forming a negative electrode current collector. There is also a lithium battery that uses a lithium alloy (for example, lithium-aluminum alloy) for the negative electrode 4.

また、電池缶2の開口端13側を上方として、この電池缶2の上部開口が封口体9によってガスケット10を介して封口されている。封口体9は、伏せた皿状の金属製負極端子板7の下方に円盤状の封口板8を積層してなり、負極リード6の他端部6bが、その封口板8の下面にスポット溶接されている。それによって、負極端子板7と負極4とが電気的に接続された状態となっている。   Further, with the opening end 13 side of the battery can 2 facing upward, the upper opening of the battery can 2 is sealed by the sealing body 9 via the gasket 10. The sealing body 9 is formed by laminating a disc-shaped sealing plate 8 below the flat plate-shaped metal negative electrode terminal plate 7, and the other end 6 b of the negative electrode lead 6 is spot welded to the lower surface of the sealing plate 8. Has been. Thereby, the negative electrode terminal plate 7 and the negative electrode 4 are in an electrically connected state.

===リチウム電池の組み立て===
図2に、上記構造のリチウム電池1の組み立て工程の一例を示した。まず、円筒状の絶縁体(絶縁円筒)をあらかじめ正極合剤3を挿入した電池缶2に着脱自在に被装させておき(s1)、つぎに、正極合剤3の内側にセパレーター5を配置する(s2)。そして、負極リード6の一端部6aが固着された状態の負極4をセパレーター5を介してリング状の正極合剤3の内側に挿入する(s3)。
=== Assembly of lithium battery ===
FIG. 2 shows an example of an assembly process of the lithium battery 1 having the above structure. First, a cylindrical insulator (insulating cylinder) is detachably mounted on the battery can 2 in which the positive electrode mixture 3 is inserted in advance (s1), and then the separator 5 is disposed inside the positive electrode mixture 3. (S2). Then, the negative electrode 4 with the one end 6a of the negative electrode lead 6 fixed thereto is inserted into the ring-shaped positive electrode mixture 3 through the separator 5 (s3).

次いで、電池缶2の上端側の周囲にビーディング部12を形成するとともに、負極リード6の他端部6bをガスケット10を介して載置した封口板8に溶接する(s4,s5)。つぎに、溶媒としてPCを含む有機電解液を電池缶2内に注液する(s6)。注液後、電池缶2内に封口板8を挿入する(s7)。このとき、ガスケット10を介して先のビーディング部12を座にして封口板8を載置する。また、負極端子板7を封口板8の上方に積層しつつ電池缶2内に挿入する(s7)。そして、電池缶2に被装されていた絶縁円筒を除去したのち、電池缶2の開口端13にカール(曲げ)加工を施す(s8,s9)。さらに、電池缶2のビーディング12から開口端13までの領域を内方にかしめ加工して電池缶2を密閉封口する(s10)。以上の工程により、リチウム電池1の組み立てが完了する。なお、正極合剤を挿入した電池缶2、セパレーター5、ガスケット10などの各部材は事前に乾燥処理を施した上、上述の電池組立はドライ雰囲気下で組立てている。   Next, the beading portion 12 is formed around the upper end side of the battery can 2 and the other end portion 6b of the negative electrode lead 6 is welded to the sealing plate 8 placed via the gasket 10 (s4, s5). Next, an organic electrolyte containing PC as a solvent is injected into the battery can 2 (s6). After the injection, the sealing plate 8 is inserted into the battery can 2 (s7). At this time, the sealing plate 8 is placed with the previous beading portion 12 as a seat through the gasket 10. Further, the negative electrode terminal plate 7 is inserted into the battery can 2 while being laminated above the sealing plate 8 (s7). Then, after the insulating cylinder mounted on the battery can 2 is removed, the opening end 13 of the battery can 2 is subjected to curling (bending) processing (s8, s9). Further, the area from the beading 12 to the opening end 13 of the battery can 2 is caulked inward to seal and seal the battery can 2 (s10). The assembly of the lithium battery 1 is completed through the above steps. Each member such as the battery can 2, the separator 5 and the gasket 10 into which the positive electrode mixture is inserted is subjected to a drying process in advance, and the above-described battery assembly is assembled in a dry atmosphere.

===本発明の実施例===
本発明の実施例に係る製造方法によって製造されるリチウム電池は、図1に示したボビン型リチウム電池1と同じ構造である。しかし、その方法において予備放電の仕方に特徴を有し、それによって、リチウム電池の生産性と、製造後のリチウム電池の長期保存特性を向上させることに成功している。概略的には、上述したリチウム電池1の組み立て工程中には、正極端子部11などの電池缶2の一部と、負極4と電気的に接続されている部分(負極端子板7、封口板8など)とに同時に接触する工程が幾つかある。そこで、本発明の実施例に係るリチウム電池の製造方法では、上述したリチウム電池1の組み立て工程に含まれる、正極と負極に同時接触する工程の実行期間中に短絡方式による予備放電を行い、最終的に予備放電させる容量の一部をリチウム電池1の組立が完了する前に放電させておくことに特徴を有している。
=== Embodiment of the Invention ===
The lithium battery manufactured by the manufacturing method according to the embodiment of the present invention has the same structure as the bobbin type lithium battery 1 shown in FIG. However, the method has a feature in the manner of preliminary discharge, and thereby has succeeded in improving the productivity of the lithium battery and the long-term storage characteristics of the lithium battery after manufacture. Schematically, during the assembly process of the lithium battery 1 described above, a part of the battery can 2 such as the positive electrode terminal part 11 and a part electrically connected to the negative electrode 4 (negative electrode terminal plate 7, sealing plate). 8) etc., there are several steps to contact at the same time. Therefore, in the method for manufacturing a lithium battery according to an embodiment of the present invention, preliminary discharge is performed by a short-circuit method during the execution period of the step of simultaneously contacting the positive electrode and the negative electrode included in the assembly step of the lithium battery 1 described above. A characteristic is that a part of the capacity for preliminary discharge is discharged before the assembly of the lithium battery 1 is completed.

図2に示した組み立て工程において、治具や製造機械は、例えば、封口板挿入工程(s7)、負極端子板挿入工程(s8)、絶縁筒除去工程(s9)、カール加工工程(s10)、かしめ加工工程(s11)などにおいて正極端子部11と負極端子板7に同時に接触する。そこで、電池缶2内に全ての発電要素(正極合剤3、負極4、電解液)が収容された後で、かつ正極端子部11と負極端子に同時に接触する工程(以下、端子部接触工程)にて用いられる治具や製造機械を、敢えて導電体で構成したり、正極端子部11と負極端子板7に接触する部位を電気的に接続させておいたりすれば、これらの端子部接触工程の実行期間中に正極と負極とが短絡され、容量の一部が放電されることになる。図3に、本発明の実施例に係るリチウム電池の製造方法を示した。図2に示した組み立て工程中の端子部接触工程(s7〜s11)に該当する工程(s7a〜s11a)の全てにおいて、短絡方式による予備放電(以下、事前放電:s7b〜s11b)を行っている。そして、組み立てが完了したのちに、最終的に必要とする放電容量のうち、事前放電によって放電されなかった容量分を予備放電(以下、本放電)する(s12)。   In the assembly process shown in FIG. 2, the jig and the manufacturing machine are, for example, a sealing plate insertion step (s 7), a negative electrode terminal plate insertion step (s 8), an insulating tube removal step (s 9), a curling step (s 10), In the caulking process (s11) or the like, the positive electrode terminal portion 11 and the negative electrode terminal plate 7 are simultaneously contacted. Therefore, after all the power generation elements (the positive electrode mixture 3, the negative electrode 4, and the electrolytic solution) are accommodated in the battery can 2, and the step of simultaneously contacting the positive electrode terminal portion 11 and the negative electrode terminal (hereinafter, the terminal portion contact step) If the jig or the manufacturing machine used in (1) is configured with a conductor, or the portion in contact with the positive electrode terminal portion 11 and the negative electrode terminal plate 7 is electrically connected, these terminal portion contacts During the process, the positive electrode and the negative electrode are short-circuited, and a part of the capacity is discharged. FIG. 3 shows a method for manufacturing a lithium battery according to an embodiment of the present invention. In all the steps (s7a to s11a) corresponding to the terminal portion contact step (s7 to s11) in the assembly process shown in FIG. 2, preliminary discharge (hereinafter referred to as predischarge: s7b to s11b) by the short circuit method is performed. . Then, after the assembly is completed, of the discharge capacity that is finally required, the capacity that has not been discharged by the pre-discharge is preliminarily discharged (hereinafter, main discharge) (s12).

===実施例に係る製造方法の有効性===
図3に示した製造方法において、組み立て完了後の本放電工程(s12)では、従来と同様の定電流方式によって放電したとしても、事前放電により一部の容量が放電されているため、確実に放電時間を短縮することができる。しかし、定電流方式による予備放電自体に長い時間を要し、また、電流監視系統のトラブルに起因する危険性も考慮する必要があることから、本発明の実施例に係る製造方法では、本放電工程(s12)に際し、正負の両極間所定の負荷(固定抵抗)を接続する方式(以下、定抵抗方式)で予備放電を行うことで、安全性を確保しつつ、予備放電に要する時間を劇的に短縮させることを検討した。もちろん、予備放電時間の短縮が可能であっても、エージング後の開路電圧(OV)が規定値を下回っていたり、長期保存特性が劣化してしまったりすれば、不良品の発生率が増加することになり、却って生産性を低下させてしまう。
=== Effectiveness of Manufacturing Method According to Examples ===
In the manufacturing method shown in FIG. 3, in the main discharge step (s12) after the assembly is completed, even if the discharge is performed by the constant current method similar to the conventional method, since a part of the capacity is discharged by the preliminary discharge, it is ensured. The discharge time can be shortened. However, since the preliminary discharge by the constant current method itself takes a long time and it is necessary to consider the risk due to the trouble of the current monitoring system, the manufacturing method according to the embodiment of the present invention uses the main discharge. In the step (s12), the preliminary discharge is performed by a method of connecting a predetermined load (fixed resistance) between the positive and negative electrodes (hereinafter referred to as a constant resistance method), so that the time required for the preliminary discharge is reduced while ensuring safety. To make it shorter. Of course, even if the preliminary discharge time can be shortened, if the open circuit voltage (OV) after aging falls below a specified value or the long-term storage characteristics deteriorate, the incidence of defective products increases. In other words, productivity is reduced.

そこで、CR2/38L型のリチウム電池をサンプルとして作製し、そのサンプルの製造過程における予備放電の有無、および本放電の条件などに基づいて本発明の実施例に係る製造方法の有効性を評価した。具体的には、製造条件が異なる4種類のサンプルのそれぞれについて150個の個体を作製し、全個体に対し、エージング後の開路電圧(OV)を測定する初期特性試験を行い、規定値未満で不良となった個体の出現率(%)を求めた、また、この初期特性試験において、OVが規格値以上となった個体に対して長期保存特性試験を行った。長期保存特性試験は、約10年間に相当する加速劣化試験(70℃114日保存)の後に、OVが規格値以下となった不良個体出現率(%)を求めることで行った。   Therefore, a CR2 / 38L type lithium battery was prepared as a sample, and the effectiveness of the manufacturing method according to the example of the present invention was evaluated based on the presence or absence of preliminary discharge in the manufacturing process of the sample and the conditions of the main discharge. . Specifically, 150 individuals were prepared for each of the four types of samples with different manufacturing conditions, and an initial characteristic test for measuring the open circuit voltage (OV) after aging was performed on all individuals. The appearance rate (%) of individuals that became defective was determined. In this initial property test, a long-term storage property test was performed on individuals whose OV exceeded the standard value. The long-term storage characteristic test was performed by obtaining the defective individual appearance rate (%) at which the OV was below the standard value after the accelerated deterioration test (stored at 70 ° C. for 114 days) corresponding to about 10 years.

以下の表1に各サンプルの予備放電条件と、試験結果とを示した。   Table 1 below shows the preliminary discharge conditions and test results of each sample.

Figure 2014164862
Figure 2014164862

表1において、サンプル1は、事前放電を行わず、組み立て後に短絡方式で予備放電を行ったものである。サンプル2〜4は、図3に示した製造方法により、サンプルの組み立て過程で事前放電工程により放電させ、組み立て後に、それぞれ、40Ω、30Ω、20Ωの抵抗を正負極間に挿入して定抵抗方式で本放電を行ったものである。なお、図(3)に示した五つの事前放電工程(s7b〜s11b)のそれぞれにおける放電容量の総量は、理論容量の0.3%となっている。そして、本放電工程(s12)では、事前放電工程(s7b〜s11b)の有無に拘わらず、合計の放電容量が約2%となるように放電させた。なお、表1には、本放電時の放電容量(%)も示した。   In Table 1, Sample 1 is one in which preliminary discharge is performed in a short-circuit manner after assembly without performing preliminary discharge. Samples 2 to 4 were discharged by a pre-discharge process in the process of assembling the samples according to the manufacturing method shown in FIG. 3, and after assembly, resistors of 40Ω, 30Ω, and 20Ω were respectively inserted between the positive and negative electrodes. This discharge was performed. In addition, the total amount of discharge capacity in each of the five preliminary discharge steps (s7b to s11b) shown in FIG. 3 is 0.3% of the theoretical capacity. And in this discharge process (s12), it was made to discharge so that a total discharge capacity might be set to about 2% irrespective of the presence or absence of a prior discharge process (s7b-s11b). Table 1 also shows the discharge capacity (%) during the main discharge.

表1より、事前放電をせずに、短絡方式で本放電を行ったサンプル1では、2.0%の個体が必要とする初期特性を満たすことができなかった。また、長期保存特性試験では、2.7%の不良個体が発生した。短絡方式での予備放電では、組み立て直後の電池が出力できる最大の電流で放電されるため、容量の2%を放電するまでの間(約10分)に電池内に温度差が発生する。そして、この温度差が上述した微短絡を発生させ、このことが、とくに、長期保存特性を劣化させたものと思われる。また、短絡方式の予備放電では、放電中の閉路電圧はほぼ0(V)で推移し続けるため、電解液中の微量のPCが分解した可能性や、正極合剤中のマンガンの還元なども考えられる。いずれにしても、短絡方式での予備放電では、生産性が低下することが確認できた。   From Table 1, Sample 1 which performed the main discharge by the short circuit method without performing the pre-discharge could not satisfy the initial characteristics required by 2.0% of the individuals. In the long-term storage characteristic test, 2.7% of defective individuals were generated. In the preliminary discharge in the short-circuit method, since the battery immediately after assembly is discharged at the maximum current that can be output, a temperature difference occurs in the battery until 2% of the capacity is discharged (about 10 minutes). This temperature difference causes the above-mentioned fine short circuit, which seems to have deteriorated the long-term storage characteristics. In addition, in the short-circuit type preliminary discharge, the closed-circuit voltage during discharge continues to be almost 0 (V), so there is a possibility that a small amount of PC in the electrolyte is decomposed, reduction of manganese in the positive electrode mixture, etc. Conceivable. In any case, it was confirmed that the productivity was lowered in the preliminary discharge by the short circuit method.

一方、事前放電を行ったサンプル2〜4では、全ての個体において、初期特性試験での不良が発生しなかった。また、長期保存特性試験において、30Ωの抵抗を介して本放電させたサンプル4で、0.6%の不良個体が発生したものの、それより大きな45Ωと40Ωの抵抗を介して本放電したサンプル2、4では、長期保存特性試験において、一つも不良が発生しなかった。いずれにしても、事前放電を実行したサンプル2〜4では、サンプル1に対して初期特性不良率、長期保存不良率がともに激減した。   On the other hand, in the samples 2 to 4 subjected to the preliminary discharge, no failure in the initial characteristic test occurred in all the individuals. Further, in the long-term storage characteristic test, in Sample 4 subjected to the main discharge through the 30Ω resistance, 0.6% of defective individuals were generated, but the sample 2 was subjected to the main discharge through the larger 45Ω and 40Ω resistors. In No. 4, no defect occurred in the long-term storage characteristic test. In any case, in samples 2 to 4 in which pre-discharge was performed, both the initial characteristic failure rate and the long-term storage failure rate were drastically reduced compared to sample 1.

そして、本実施例の製造方法によれば、まず、事前放電を行うことで、確実に予備放電に掛かる時間を短縮することができ、生産性を向上させることができる。また、本放電を定抵抗方式で行うことで、定電流方式による予備放電において問題となっていた。複雑な設備が不要となり、製造設備における初期コストを低減させることができる。さらに、電流を監視する必要がないので、予備放電に関わる設備自体のトラブル(過放電による発火など)を考慮する必要がなく、安全性も高い。   And according to the manufacturing method of a present Example, by performing a preliminary discharge first, the time concerning a preliminary discharge can be shortened reliably and productivity can be improved. Further, since the main discharge is performed by the constant resistance method, there has been a problem in the preliminary discharge by the constant current method. Complex equipment becomes unnecessary, and the initial cost in the production equipment can be reduced. Furthermore, since there is no need to monitor the current, it is not necessary to consider troubles in the facility itself related to preliminary discharge (ignition due to overdischarge, etc.), and safety is high.

なお、本放電に要する時間と接続する負荷とはほぼ反比例の関係にあり、負荷を小さくするほど本放電に要する時間を短縮することができるが、負荷が小さ過ぎると短絡に近い状態となるため、30Ω以上とした方がより好ましい。   Note that the time required for the main discharge and the connected load are almost inversely proportional. The smaller the load, the shorter the time required for the main discharge. However, if the load is too small, it will be in a state close to a short circuit. More preferably, it is 30Ω or more.

===その他の実施例===
上記実施例では、図3に示したように、組み立て工程中に5回、事前放電を実行しているが、この回数は増減可能である。例えば、注液工程後の工程において、正負の電極間を短絡できる機会がさらにあれば、5回より多くなる。事前放電に必要な容量分が確保できるのであれば、5回よりも少なくできる。また、生産ラインを構成する製造機械や治具の配置関係によっては、前後の工程間で電池缶を移載装置のピックアップなどで把持しながら搬送する場合もあり、その搬送に際して事前放電を行うことも可能である。
=== Other Embodiments ===
In the above embodiment, as shown in FIG. 3, the preliminary discharge is executed five times during the assembly process, but this number can be increased or decreased. For example, in the step after the liquid injection step, if there is a further opportunity to short-circuit between the positive and negative electrodes, the number is more than five. If the capacity required for pre-discharge can be secured, the number can be less than five. Also, depending on the arrangement relationship of the manufacturing machines and jigs that make up the production line, the battery can may be transported while being gripped by the pick-up of the transfer device between the previous and subsequent processes, and pre-discharge is performed during the transport. Is also possible.

また、生産設備によっては、あるいは電池の種類や構造によっては、組み立て工程が、図2に示したものとのは若干異なる場合もある。例えば、電池缶に絶縁円筒を被装しないで組み立てる場合では、その絶縁円筒を取り外す工程が存在しない。封口板が無く、負極端子板の下面に負極リードが溶接されている構造のリチウム電池もある。しかし、工程やリチウム電池の種類や構造がどのようなものであっても、適宜な工程や搬送の期間のいずれか2以上の期間に事前放電を行えばよい。   Further, depending on the production equipment or the type and structure of the battery, the assembly process may be slightly different from that shown in FIG. For example, when assembling a battery can without attaching an insulating cylinder, there is no step of removing the insulating cylinder. Some lithium batteries have a structure in which there is no sealing plate and a negative electrode lead is welded to the lower surface of the negative electrode terminal plate. However, regardless of the type of process and the type and structure of the lithium battery, pre-discharge may be performed in any two or more periods of the appropriate process and transport period.

もちろん、正負の電極端子間を短絡できる工程や搬送の期間があったとしても、そのときに短絡できる時間(以下、短絡可能時間)が長すぎれば、電池内に温度差が発生する可能性がある。したがって、事前放電の要否は、工程の実行時や搬送時の短絡可能時間によって決定すればよい。いずれにしても、温度差を発生させずに必要な容量分を放電することができれば、適宜な工程中や搬送中に短絡による事前放電を行うことができる。   Of course, even if there is a process that can short-circuit between the positive and negative electrode terminals and a period of conveyance, if the time that can be short-circuited at that time (hereinafter, short-circuitable time) is too long, a temperature difference may occur in the battery. is there. Therefore, whether or not the pre-discharge is necessary may be determined by the short-circuit possible time at the time of executing the process or at the time of transport. In any case, if a necessary capacity can be discharged without causing a temperature difference, pre-discharge due to a short circuit can be performed during an appropriate process or during conveyance.

上記実施例では、ボビン型リチウム電池の製造方法について説明したが、本発明はコイン型リチウム電池や円筒形のスパイラル型リチウム電池の製造方法にも適用可能である。   In the above embodiment, the method for manufacturing the bobbin type lithium battery has been described. However, the present invention can also be applied to a method for manufacturing a coin type lithium battery or a cylindrical spiral type lithium battery.

1 ボビン型リチウム電池、2 電池缶、11 正極端子、3 正極合剤、
5 セパレーター、4 負極リチウム、9 封口体、7 負極端子板、8 封口板、
6 負極リード、10 ガスケット
1 bobbin-type lithium battery, 2 battery can, 11 positive terminal, 3 positive electrode mixture,
5 Separator, 4 Lithium negative electrode, 9 Sealing body, 7 Negative electrode terminal plate, 8 Sealing plate,
6 Negative electrode lead, 10 Gasket

Claims (3)

正極端子部を備えた有底の金属製電池缶内に、発電要素として、正極合剤からなる正極と、リチウム金属あるいはリチウム合金からなる負極活物質を含む負極と、前記正極と負極との間に介在するセパレーターと、非水電解液とが収納されているとともに、前記電池缶の開口を上方として、当該開口が、前記負極と電気的に接続された状態の金属製の封口体で封口されてなるリチウム電池の製造方法であって、
前記電池缶内に、前記発電要素を挿入するとともに、前記有機電解液を注入する発電要素充填工程と、
前記電池缶の開口に、負極端子部を含んで構成される前記封口体をガスケットを介して嵌着する封口工程と、
当該封口工程によって組み立てられたリチウム電池に対し、所定の電気容量を放電させる予備放電工程と、
を含み、
前記封口工程にはさらに複数の工程が含まれ、当該複数の工程のそれぞれの実行期間、および当該複数の工程において前後する工程間で前記電池缶を搬送する期間のうち、所定の2以上の期間において、前記電池缶と前記封口体との間を短絡させる事前放電工程を実行し、
前記予備放電工程では、前記正極端子部と前記負極端子部との間に所定の負荷を所定時間接続し、前記2以上の期間で実行した前記事前放電工程での総放電容量との合計放電容量が理論容量に対して所定の割合の容量となるように放電させる、
ことを特徴とするリチウム電池の製造方法。
In a bottomed metal battery can having a positive electrode terminal portion, as a power generation element, a positive electrode made of a positive electrode mixture, a negative electrode containing a negative electrode active material made of lithium metal or a lithium alloy, and between the positive electrode and the negative electrode The separator and the non-aqueous electrolyte are contained in the battery can, and the opening of the battery can is turned upward, and the opening is sealed with a metal sealing body in a state of being electrically connected to the negative electrode. A method for producing a lithium battery comprising:
Inserting the power generation element into the battery can and injecting the organic electrolyte into the power generation element filling step;
A sealing step of fitting the sealing body including the negative electrode terminal portion into the opening of the battery can via a gasket;
For the lithium battery assembled by the sealing step, a preliminary discharge step for discharging a predetermined electric capacity,
Including
The sealing step further includes a plurality of steps, and each of the execution periods of the plurality of steps and a predetermined two or more periods among the periods in which the battery can is transported between the steps preceding and following the plurality of steps. In performing a pre-discharge step of short-circuiting between the battery can and the sealing body,
In the preliminary discharge step, a predetermined load is connected between the positive electrode terminal portion and the negative electrode terminal portion for a predetermined time, and the total discharge with the total discharge capacity in the preliminary discharge step executed in the two or more periods Discharging so that the capacity becomes a predetermined ratio of capacity with respect to the theoretical capacity,
A method for producing a lithium battery.
請求項1において、
前記封口工程には、前記複数の工程として、前記負極と電気的に接続された状態にある封口板をガスケットを介して前記電池開口に配置する封口板配置工程と、当該封口板の上に前記負極端子部となる負極端子板を積層する負極端子板積層工程と、前記電池缶の開口の縁端を内方に曲げるカール加工工程と、当該電池缶の開口を内方にかしめて前記積層状態にある前記封口板と前記負極端子板とからなる前記封口体を当該電池缶の開口に嵌着するかしめ工程とを含むとともに、当該複数の工程のいずれか2以上の工程の実行期間に前記事前放電工程を実行する、ことを特徴とするリチウム電池の製造方法。
In claim 1,
In the sealing step, as the plurality of steps, a sealing plate arrangement step of arranging a sealing plate in an electrically connected state with the negative electrode in the battery opening via a gasket, and the sealing plate on the sealing plate, Negative electrode terminal plate laminating step of laminating a negative electrode terminal plate to be a negative electrode terminal portion, curling step of bending the edge of the opening of the battery can inward, and the laminated state by caulking the opening of the battery can inward A caulking step of fitting the sealing body made of the sealing plate and the negative electrode terminal plate into the opening of the battery can, and the above-mentioned thing in the execution period of any two or more of the plurality of steps A method for producing a lithium battery, comprising performing a pre-discharge step.
請求項1または2において、前記負荷は30Ω以上であることを特徴とするリチウム電池の製造方法。   3. The method of manufacturing a lithium battery according to claim 1, wherein the load is 30Ω or more.
JP2013033247A 2013-02-22 2013-02-22 Lithium battery manufacturing method Expired - Fee Related JP6078377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013033247A JP6078377B2 (en) 2013-02-22 2013-02-22 Lithium battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013033247A JP6078377B2 (en) 2013-02-22 2013-02-22 Lithium battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2014164862A true JP2014164862A (en) 2014-09-08
JP6078377B2 JP6078377B2 (en) 2017-02-08

Family

ID=51615324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013033247A Expired - Fee Related JP6078377B2 (en) 2013-02-22 2013-02-22 Lithium battery manufacturing method

Country Status (1)

Country Link
JP (1) JP6078377B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3528322A4 (en) * 2017-07-11 2020-01-08 LG Chem, Ltd. Method for manufacturing secondary battery using lithium metal as negative electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102274602B1 (en) * 2017-09-01 2021-07-07 주식회사 엘지에너지솔루션 A method for manufacturing an electrochemical device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116275A (en) * 1980-02-18 1981-09-11 Hitachi Maxell Ltd Nonaqueous-electrolyte battery
JPS58175265A (en) * 1982-04-07 1983-10-14 Matsushita Electric Ind Co Ltd Manufacture of battery
JPS6149380A (en) * 1984-08-14 1986-03-11 Toshiba Battery Co Ltd Manufacture of non-aqueous solvent cell
JPH01320769A (en) * 1988-06-22 1989-12-26 Seiko Electronic Components Ltd Manufacture of organic electrolyte battery
JPH0831430A (en) * 1994-07-15 1996-02-02 Matsushita Electric Ind Co Ltd Manufacture of copper oxide battery
JPH08106910A (en) * 1994-10-06 1996-04-23 Fuji Elelctrochem Co Ltd Coin battery
JP2000048829A (en) * 1998-07-31 2000-02-18 Matsushita Electric Ind Co Ltd Battery and manufacture thereof
JP2009152030A (en) * 2007-12-20 2009-07-09 Panasonic Corp Method of manufacturing nonaqueous electrolyte cell
JP2011249216A (en) * 2010-05-28 2011-12-08 Fdk Energy Co Ltd Lithium battery
WO2012063429A1 (en) * 2010-11-12 2012-05-18 パナソニック株式会社 Lithium primary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116275A (en) * 1980-02-18 1981-09-11 Hitachi Maxell Ltd Nonaqueous-electrolyte battery
JPS58175265A (en) * 1982-04-07 1983-10-14 Matsushita Electric Ind Co Ltd Manufacture of battery
JPS6149380A (en) * 1984-08-14 1986-03-11 Toshiba Battery Co Ltd Manufacture of non-aqueous solvent cell
JPH01320769A (en) * 1988-06-22 1989-12-26 Seiko Electronic Components Ltd Manufacture of organic electrolyte battery
JPH0831430A (en) * 1994-07-15 1996-02-02 Matsushita Electric Ind Co Ltd Manufacture of copper oxide battery
JPH08106910A (en) * 1994-10-06 1996-04-23 Fuji Elelctrochem Co Ltd Coin battery
JP2000048829A (en) * 1998-07-31 2000-02-18 Matsushita Electric Ind Co Ltd Battery and manufacture thereof
JP2009152030A (en) * 2007-12-20 2009-07-09 Panasonic Corp Method of manufacturing nonaqueous electrolyte cell
JP2011249216A (en) * 2010-05-28 2011-12-08 Fdk Energy Co Ltd Lithium battery
WO2012063429A1 (en) * 2010-11-12 2012-05-18 パナソニック株式会社 Lithium primary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3528322A4 (en) * 2017-07-11 2020-01-08 LG Chem, Ltd. Method for manufacturing secondary battery using lithium metal as negative electrode

Also Published As

Publication number Publication date
JP6078377B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
US8378687B2 (en) Method of measuring characteristics regarding safety of battery
EP2896080B1 (en) Battery module and method for producing the same
US10205152B2 (en) Bushing forming a terminal for a lithium storage battery and related storage battery
KR100962819B1 (en) Method for evaluating battery safety under internal short-circuit condition, method for producing battery, and method for producing battery pack
JP5385218B2 (en) Usage of secondary battery
KR100897638B1 (en) Method of producing coin-shaped electrochemical element and coin-shaped electrochemical element
JP2000311719A (en) Lithium polymer battery and its manufacture
JP2005353519A (en) Electrochemical element
US20080014504A1 (en) Method of making and article of manufacture for an energy storage electrode apparatus
JP6078377B2 (en) Lithium battery manufacturing method
US7580243B2 (en) Method of making and article of manufacture for an ultracapacitor electrode apparatus
JP6271275B2 (en) Non-aqueous organic electrolyte for lithium primary battery and lithium primary battery
JP2016122592A (en) Spiral type lithium battery
JP6315099B2 (en) SOLID ELECTROLYTE AND METHOD FOR MANUFACTURING THE SAME
KR101969388B1 (en) Battery Pack Including Electrode Lead Being Extended Along External Surface of Battery Cell
KR100693079B1 (en) Sealed cell
JP2018073838A (en) Assembly battery cell having interleave electrode
JP2005056609A (en) Storage element and its manufacturing method
US9812698B2 (en) Method for manufacturing a connecting contact for an electrode of an electrochemical store, method for manufacturing an electrochemical store, and electrochemical store
JP6200656B2 (en) Lithium battery manufacturing method
JP2000100395A (en) Secondary battery
JP2007059650A (en) Coin-shaped storage cell
JPH1031992A (en) Lead-acid battery separator and its manufacture
JP2011249216A (en) Lithium battery
CN110888071A (en) Battery short circuit testing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160120

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170116

R150 Certificate of patent or registration of utility model

Ref document number: 6078377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees