JP2014163709A - Ph sensor, and oil deterioration level detection method using the sensor - Google Patents

Ph sensor, and oil deterioration level detection method using the sensor Download PDF

Info

Publication number
JP2014163709A
JP2014163709A JP2013032682A JP2013032682A JP2014163709A JP 2014163709 A JP2014163709 A JP 2014163709A JP 2013032682 A JP2013032682 A JP 2013032682A JP 2013032682 A JP2013032682 A JP 2013032682A JP 2014163709 A JP2014163709 A JP 2014163709A
Authority
JP
Japan
Prior art keywords
oil
electrode
sensor
glass
ionic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013032682A
Other languages
Japanese (ja)
Other versions
JP5946782B2 (en
Inventor
Akihiko Yano
昭彦 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013032682A priority Critical patent/JP5946782B2/en
Publication of JP2014163709A publication Critical patent/JP2014163709A/en
Application granted granted Critical
Publication of JP5946782B2 publication Critical patent/JP5946782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To determine a deterioration of an oil itself accompanied by a change in pH by directly immersing a pH electrode into a sample oil, and as a result, to enable a deterioration state of the oil such as a lubricating oil to be continuously detected on line.SOLUTION: A ph semiconductor sensor manufactured by using a glass electrode or an ISFET (Ion-Sensitive Field-Effect Transistor) structure directly immerses a pH sensor part, which is formed by coating a non-oil-soluble and electrically-conductive ion liquid film 15 on an outer surface of a sensor support body between a liquid junction part 23 at the side of a comparison electrode 20 serving as an active area and a pH responsive glass thin film 12 (or an ISFET electrode 10b), into an oil and determines a deterioration of the oil itself accompanying a change in pH. Preferably, a thickening agent is contained in a range of 1 to 50 mass% with respect to an ionic liquid 15.

Description

本発明は、エンジン油、タービン油、油圧作動油、ギヤ油などの、一般に潤滑油として用いられる油の劣化度を検知するpHセンサに係り、特に常温(−20℃〜100℃)で、ディーゼルエンジンの潤滑油等の油の経年的な劣化度を検知するpHセンサに関する。   The present invention relates to a pH sensor for detecting the deterioration level of oils generally used as lubricating oils such as engine oil, turbine oil, hydraulic hydraulic oil, and gear oil, and more particularly at normal temperature (−20 ° C. to 100 ° C.), diesel The present invention relates to a pH sensor that detects the deterioration of oil such as engine lubricating oil over time.

従来潤滑油等の油は、混合溶剤に溶かした液のpHを測定する方法により全酸価や全塩基価を求めている。
全酸価は油の中の酸性成分の全量、すなわち添加剤中の酸性物質、使用中に生成した有機酸などすべてを合せた量を示す。全酸価をもって潤滑油の精製度の目安としたり、製造工程の管理指標、使用潤滑油の管理あるいは潤滑油の酸化試験や実用試験後の劣化状態を知るための目安として広く用いられている。一般に潤滑油が劣化するにしたがって、全酸価は増加するのが通常である。
Conventionally, oils such as lubricating oils have been determined for total acid number and total base number by a method of measuring the pH of a solution dissolved in a mixed solvent.
The total acid value indicates the total amount of acidic components in the oil, that is, the total amount of acidic substances in the additives, organic acids generated during use, and the like. It is widely used as a guideline for the refinement degree of lubricating oil with the total acid number, as a guideline for manufacturing process control index, management of used lubricant oil, or for knowing deterioration state after oxidation test and practical test of lubricant oil. In general, as the lubricating oil degrades, the total acid number usually increases.

このような油の全酸価は、油の劣化指標として従来から用いられているが、油は非水系の液体であるため、油のpHは直接測定することが出来ず、そこで、JISK2501「石油製品及び潤滑油−中和価試験方法−」に示されるように、油をトルエン、2−プロパノールおよび少量の水の混合溶剤に溶かし、pHをモニターしながら塩酸標準2−プロパノール液または水酸化カリウム標準2−プロパノール液で滴定する方法が採用されている。   The total acid value of such an oil has been conventionally used as an index of deterioration of the oil. However, since the oil is a non-aqueous liquid, the pH of the oil cannot be directly measured. As shown in "Products and Lubricating Oils-Neutralization Test Method", dissolve the oil in a mixed solvent of toluene, 2-propanol and a small amount of water, and monitor hydrochloric acid standard 2-propanol solution or potassium hydroxide while monitoring the pH. A method of titration with a standard 2-propanol solution is employed.

そしてこのようなpHの測定は、図6(原理図)に示すように、ガラス電極10と比較電極20からなる構成のpH電極センサ1を用いて測定される。
即ち、ガラス電極10は、先端部にpHに敏感に応答するpH応答ガラス薄膜11が形成され(前記ガラス電極10の先端に用いるpH応答ガラスは、ケイ素とリチウムを主成分とし、その他pH測定用ガラスとしての性能向上を目的としていくつかの元素を副成分とし、係るpH応答ガラス薄膜11は周知であるのでその詳細な説明は省略する。)、内部に塩化カリウム(KCl)と中性のpH緩衝液からなるガラス電極10内部液12が満たされている。比較電極20は、内部に塩化カリウム溶液からなる比較電極内部液22が充填され、先端部に液絡部23と呼ぶ、いわば繊細な穴(アルミナやジルコニアなどの多孔性セラミックスが多用される)が形成され、溶液サンプルと電気的に連通する。図中26は内部液補充口である。14,24は夫々AgCl電極である。
Such pH is measured using a pH electrode sensor 1 having a configuration including a glass electrode 10 and a comparative electrode 20 as shown in FIG. 6 (principle diagram).
That is, the glass electrode 10 is formed with a pH-responsive glass thin film 11 that responds sensitively to pH at the tip (the pH-responsive glass used at the tip of the glass electrode 10 is mainly composed of silicon and lithium, and is used for other pH measurements. For the purpose of improving the performance as glass, several elements are used as subcomponents, and the pH-responsive glass thin film 11 is well known and will not be described in detail.) Inside, potassium chloride (KCl) and neutral pH A glass electrode 10 internal solution 12 made of a buffer solution is filled. The reference electrode 20 is filled with a reference electrode internal solution 22 made of a potassium chloride solution, and has a so-called delicate junction (a porous ceramic such as alumina or zirconia is often used) called a liquid junction 23 at the tip. Formed and in electrical communication with the solution sample. In the figure, 26 is an internal liquid replenishment port. 14 and 24 are AgCl electrodes, respectively.

そして該ガラス電極10と比較電極20からなるpH電極センサ1を溶液サンプルに浸すと、ガラス電極10はpH応答ガラス薄膜11の表面で溶液サンプルのpHに応じた起電力を発生し、比較電極20は液絡部23でイオンを介してサンプルと電気的に接触しつつ常に一定の起電力を発生する。そして演算部3を有するpH測定器本体5は、pH電極1のガラス電極10と比較電極20に発生する起電力の差(電圧)を電位差計4で計測し、演算部3で演算処理してサンプルのpHを表示する。このようなpH測定方法はガラス電極A法と呼ばれる(非特許文献1:JISK2501参照)。   When the pH electrode sensor 1 comprising the glass electrode 10 and the comparison electrode 20 is immersed in the solution sample, the glass electrode 10 generates an electromotive force according to the pH of the solution sample on the surface of the pH responsive glass thin film 11, and the comparison electrode 20. Always generates a constant electromotive force while being in electrical contact with the sample via ions at the liquid junction 23. The pH measuring device main body 5 having the calculation unit 3 measures the difference (voltage) of the electromotive force generated between the glass electrode 10 of the pH electrode 1 and the comparison electrode 20 with the potentiometer 4, and performs calculation processing with the calculation unit 3. Display the pH of the sample. Such a pH measurement method is called a glass electrode A method (see Non-Patent Document 1: JISK2501).

また、比較電極とガラス電極とを一体化した技術が特許第4733588号(特許文献1)に開示されている。しかし図1や図6に示すように、ガラス電極と比較電極が離れていると、この間が油である場合に両電極間が電気的に連通しないので測定できない。   Moreover, the technique which integrated the comparison electrode and the glass electrode is disclosed by patent 4733588 (patent document 1). However, as shown in FIG. 1 and FIG. 6, if the glass electrode and the comparative electrode are separated from each other, when the gap is oil, the electrodes are not electrically communicated with each other, so that measurement cannot be performed.

かかる技術を図1(本発明の前提技術)に基づいて説明するに、図1に示す前提技術において、一体型の電極センサは、比較電極20Aがガラス電極10Aの支持管34を取り囲むように一体に形成されており、ガラス電極10Aは、円筒状のガラス製の支持管34と、その支持管34の先端部に接合したガラス応答膜31とを備えている。即ち詳細にはこのガラス電極10Aの支持管34は前記比較電極の支持管24Aよりも若干先端部を突出させてあり、その先端部に前記ガラス応答膜31が接合されている。   This technique will be described with reference to FIG. 1 (a prerequisite technique of the present invention). In the prerequisite technique shown in FIG. 1, the integrated electrode sensor is integrated so that the comparison electrode 20A surrounds the support tube 34 of the glass electrode 10A. The glass electrode 10 </ b> A includes a cylindrical glass support tube 34 and a glass response film 31 bonded to the tip of the support tube 34. Specifically, the support tube 34 of the glass electrode 10A has a slightly protruding tip portion than the support tube 24A of the comparative electrode, and the glass response film 31 is joined to the tip portion.

また前記ガラス電極10Aの支持管34には、内部電極31が収容してあり、ガラス電極10Aの内部液32として例えばpH7のKCl溶液が充填してある。比較電極20Aは、液絡部23Aが比較電極24Aの支持管24の外周壁の底側に設けてある。比較電極20Aの内部電極14A及びガラス電極10Aの内部電極24Aには、それぞれリード線11A、21Aが接続してあり、それらのリード線はケーブル束としてこの支持管2の基端部から外部に延出し図示しないpH測定器本体5に接続されるようにしてある。   The support electrode 34 of the glass electrode 10A contains an internal electrode 31, and is filled with, for example, a KCl solution having a pH of 7 as the internal liquid 32 of the glass electrode 10A. In the comparison electrode 20A, the liquid junction 23A is provided on the bottom side of the outer peripheral wall of the support tube 24 of the comparison electrode 24A. Lead wires 11A and 21A are connected to the internal electrode 14A of the comparison electrode 20A and the internal electrode 24A of the glass electrode 10A, respectively, and these lead wires extend from the base end of the support tube 2 to the outside as a cable bundle. It is designed to be connected to a pH measuring device main body 5 (not shown).

しかし図1に示すような一体型の電極センサであっても、ガラス電極と比較電極は離れているので、油の場合は測定できない。
このため図1に示す測定器を用いて油の全酸価を測定するには、pH電極1のガラス電極10Aと比較電極20Aに発生する起電力の差(電圧)を電位差計で計測するものであるため、前記ガラス応答膜31と測定しようとする油に親和性(導電性)がなければならず、このため従来は、測定しようとする油を混合溶剤に溶かして用いている。
However, even an integrated electrode sensor as shown in FIG. 1 cannot measure in the case of oil because the glass electrode and the comparative electrode are separated.
For this reason, in order to measure the total acid value of oil using the measuring device shown in FIG. 1, the difference (voltage) of the electromotive force generated between the glass electrode 10A of the pH electrode 1 and the comparison electrode 20A is measured with a potentiometer. Therefore, the glass response film 31 and the oil to be measured must have an affinity (conductivity). For this reason, conventionally, the oil to be measured is dissolved in a mixed solvent and used.

即ち油に前記pH電極1を直接油に浸漬してもpH応答ガラス薄膜31と油との間に親和性(導電性)は得られないため、起電力の測定は出来ない。このため試料油を、所定時間間隔毎にオフラインにラボ等の研究所に持ち込んで前記試料油に前記混合溶剤を加えて水溶液状態にして電位差及びpH測定から油の全酸価を測定している。   That is, even if the pH electrode 1 is directly immersed in the oil, no affinity (conductivity) can be obtained between the pH-responsive glass thin film 31 and the oil, so that the electromotive force cannot be measured. For this reason, sample oil is brought offline into a laboratory such as a lab at predetermined time intervals, and the mixed solvent is added to the sample oil to form an aqueous solution to measure the total acid number of the oil from potential difference and pH measurement. .

しかしながら試料油に前記混合溶剤を加えて水溶液状態にして油の全酸価を測定する方法では、前記したように所定時間間隔毎にオフラインでしか測定できず、油劣化の連続的変化状況やオンラインでの計測が不可能である。   However, in the method of measuring the total acid number of the oil by adding the mixed solvent to the sample oil and measuring the total acid value of the oil, it can only be measured offline at a predetermined time interval as described above. Measurement with is impossible.

一方連続的にオンラインで油の劣化を判断する手法として特許文献2に示すように、油流路に互いに並行して設置された2枚の極板と、前記2枚の極板間に交流電圧を印加したときに流れる電流を計測する電流計と、前記2枚の極板に交流電圧を印加したときの該極板間の電圧を計測する電圧計と、前記電流計および前記電圧計による計測結果に基づいて前記油の導電率および誘電率を求め、該導電率および該誘電率に基づき該油の劣化を判断する手法が提案されている。   On the other hand, as shown in Patent Document 2 as a technique for continuously determining oil degradation online, an AC voltage is provided between two electrode plates installed in parallel to each other in the oil flow path and the two electrode plates. An ammeter that measures the current that flows when a voltage is applied, a voltmeter that measures a voltage between the two plates when an AC voltage is applied to the two plates, and a measurement by the ammeter and the voltmeter A method has been proposed in which the electrical conductivity and dielectric constant of the oil are obtained based on the results, and the deterioration of the oil is judged based on the electrical conductivity and the dielectric constant.

しかしかかる従来技術は、導電率および誘電率に基づき油の劣化を判断するので、より具体的には油のpHの変化を「直接」測定するのではなく油中のコンタミ混入に伴う電気特性の変化について、導電率および誘電率の観点から2次元的に捉えるもので、pHの変化に伴う油そのものの劣化を判断できない。   However, such prior art determines oil degradation based on conductivity and dielectric constant, and more specifically, it does not “directly” measure changes in the pH of the oil, but rather the electrical characteristics associated with contamination in the oil. The change is captured two-dimensionally from the viewpoint of conductivity and dielectric constant, and the deterioration of the oil itself accompanying the change in pH cannot be determined.

特許第4733588号公報(図5参照)Japanese Patent No. 4733588 (see FIG. 5) 特開2009−2693号公報(段落〔0006〕〔0007〕図1参照)Japanese Patent Laying-Open No. 2009-2893 (see paragraphs [0006] and [0007] FIG. 1)

JIS規格文献:JISK2501JIS standard document: JISK2501

本発明は係る技術的課題に鑑み、潤滑油等の試料油に前記pH電極1を直接浸漬してpHの変化に伴う油そのものの劣化を判断することが出来、結果としてオンラインで潤滑油等の油劣化状態を継続して検出できるpHセンサ及び該センサを用いた油劣化度検知方法、特にディーゼルエンジンの潤滑油やタービン油の劣化度を検知するのに好適なpHセンサ及び該センサを用いた油劣化度検知方法を提供することを目的とする。   In view of the technical problem of the present invention, the pH electrode 1 can be directly immersed in a sample oil such as a lubricating oil to determine the deterioration of the oil itself accompanying a change in pH. A pH sensor capable of continuously detecting an oil deterioration state and an oil deterioration degree detection method using the pH sensor, and particularly a pH sensor suitable for detecting the deterioration degree of lubricating oil or turbine oil of a diesel engine and the sensor An object is to provide a method for detecting the degree of oil deterioration.

本発明は、活性センサエリアの外表面に非油溶性で且つ導電性のイオン液体膜が被覆されているpHセンサであって、特に前記pHセンサが比較電極とガラス電極とを一体化した複合電極であって前記活性センサエリアが、比較電極側の液絡部とガラス電極側のpH応答ガラス薄膜からなり、前記イオン液体膜が、前記液絡部とpH応答ガラス薄膜間に被着されているpHセンサにある。   The present invention relates to a pH sensor in which an outer surface of an active sensor area is coated with a non-oil-soluble and conductive ionic liquid film, and in particular, the composite electrode in which the pH sensor is integrated with a reference electrode and a glass electrode The active sensor area is composed of a liquid junction on the comparison electrode side and a pH responsive glass thin film on the glass electrode side, and the ionic liquid film is deposited between the liquid junction and the pH responsive glass thin film. Located in the pH sensor.

具体的に説明するに本第1発明は、先端にpHに敏感に応答するpH応答ガラス薄膜が形成され、内部にガラス電極内部液が充填されているガラス電極と、内部に比較電極内部液が充填され、先端部に液絡部が形成された比較電極からなるpH電極センサであって、比較電極側の液絡部とガラス電極側のpH応答ガラス薄膜間のセンサ支持体外表面に非油溶性で且つ導電性のイオン液体膜が被着されていることを特徴とするpHセンサにある。   Specifically, according to the first aspect of the present invention, a glass electrode in which a pH-responsive glass thin film that responds sensitively to pH is formed at the tip and the glass electrode internal liquid is filled therein, and the internal liquid of the comparison electrode is contained therein. A pH electrode sensor comprising a reference electrode filled and formed with a liquid junction at the tip, which is insoluble on the outer surface of the sensor support between the liquid junction on the reference electrode side and the pH-responsive glass thin film on the glass electrode side And a conductive ionic liquid film is applied.

本発明によれば、潤滑油等の油に前記pH電極1を直接浸漬してpHの変化に伴う油そのものの劣化を判断することが出来、結果としてオンラインで潤滑油等の油劣化状態を継続して検出できる。   According to the present invention, the pH electrode 1 can be directly immersed in an oil such as lubricating oil to determine the deterioration of the oil itself accompanying a change in pH, and as a result, the oil deterioration state of the lubricating oil or the like can be continued online. Can be detected.

尚、前記イオン液体とは、常温で液体となる常温溶融塩で、イオン液体は様々なアニオン、カチオンの組み合わせから構成され、潤滑油等の油に前記pH電極1を直接浸漬させる為に、非油溶性で且つ導電性であることが条件となる。
又前記イオン液体は、pH応答ガラス薄膜と比較電極側の液絡部間に被着されていることが必要で、更に前記イオン液に増ちょう剤を加えてグリース状にすると被着効果が一層高まる。
The ionic liquid is a room temperature molten salt that becomes a liquid at room temperature, and the ionic liquid is composed of a combination of various anions and cations. In order to immerse the pH electrode 1 directly in oil such as lubricating oil, a non-ionic liquid is used. It must be oil-soluble and conductive.
The ionic liquid needs to be applied between the pH-responsive glass thin film and the liquid junction on the side of the reference electrode. Further, if a thickener is added to the ionic liquid to form a grease, the application effect is further increased. Rise.

本発明の第2の発明は、イオン感受形電界効果トランジスタ(ISFET)の構造を使用したpH半導体センサの活性センサエリアとなる半導体電極と液絡部を結ぶセンサ支持体外表面間に非油溶性で且つ導電性のイオン液体膜が被着されていることを特徴とする。   The second aspect of the present invention is an oil-insoluble material between the outer surface of the sensor support that connects the semiconductor electrode that forms the active sensor area of the pH semiconductor sensor using the structure of an ion-sensitive field effect transistor (ISFET) and the liquid junction. In addition, a conductive ionic liquid film is deposited.

例えば表面が水素終端された合成ダイヤモンド半導体は、真性、外因形に関わらず、電解質中にて導電性薄膜31となり、電解質のpHそしてイオン濃度に敏感になる。この導電性“Ion Sensitive Field Effect Transistor”(「ISFET」)の構造を使用してpH半導体センサを製造することができることは特開2007−78373号公報等で公知である。
そこで第2の発明は、イオン感受形電界効果トランジスタ(ISFET)の構造を使用したpH半導体センサの活性センサエリアとなる半導体電極と液絡部を結ぶセンサ支持体外表面に非油溶性で且つ導電性のイオン液体膜が被着されていることを特徴とする。
For example, a synthetic diamond semiconductor having a hydrogen-terminated surface becomes a conductive thin film 31 in the electrolyte regardless of its intrinsic or extrinsic shape, and becomes sensitive to the pH and ion concentration of the electrolyte. It is known in Japanese Patent Application Laid-Open No. 2007-78373 and the like that a pH semiconductor sensor can be manufactured using this conductive “Ion Sensitive Field Effect Transistor” (“ISFET”) structure.
Therefore, the second invention is an oil-insoluble and conductive material on the outer surface of the sensor support that connects the semiconductor electrode and the liquid junction, which is an active sensor area of a pH semiconductor sensor using an ion-sensitive field effect transistor (ISFET) structure. The ionic liquid film is deposited.

第2の発明によれば、第1発明と同様に、潤滑油等の試料油に前記pH電極1を直接浸漬してpHの変化に伴う油そのものの劣化を判断することが出来、結果としてオンラインで潤滑油等の油劣化状態を継続して検出することが可能である。   According to the second invention, as in the first invention, the pH electrode 1 can be directly immersed in a sample oil such as lubricating oil to determine the deterioration of the oil itself accompanying the change in pH, and as a result, online Thus, it is possible to continuously detect the oil deterioration state of the lubricating oil or the like.

第3の発明は、pH応答ガラス薄膜の外表面に前記非油溶性で且つ導電性のイオン液体膜が被覆されているガラス電極部、若しくはISFETの構造を使用して製造され活性センサエリアの外表面に前記非油溶性で且つ導電性のイオン液体膜が被覆されているpH半導体センサ部を直接油中に浸漬して油のPH値を測定することを特徴とする油の劣化度検出方法にある。   According to a third aspect of the present invention, the outside surface of the active sensor area is manufactured using the glass electrode portion or the ISFET structure in which the non-oil-soluble and conductive ionic liquid film is coated on the outer surface of the pH-responsive glass thin film. A method for detecting the degree of deterioration of oil, comprising measuring a pH value of oil by directly immersing a pH semiconductor sensor part, the surface of which is coated with the non-oil-soluble and conductive ionic liquid film, in the oil. is there.

本発明によれば、試料油に前記pH電極1を直接浸漬しpHの変化に伴う油そのものの劣化を判断することが出来、結果としてオンラインで潤滑油等の油劣化状態を継続して検出できる。   According to the present invention, the pH electrode 1 can be directly immersed in the sample oil to determine the deterioration of the oil itself as the pH changes, and as a result, the oil deterioration state of the lubricating oil or the like can be continuously detected online. .

本第1発明の前提技術に係るガラス電極を用いたpH電極センサの概要図である。It is a schematic diagram of the pH electrode sensor using the glass electrode which concerns on the premise technique of this 1st invention. 本発明の第1実施例に係るガラス電極を用いたpH電極センサの概要図である。It is a schematic diagram of the pH electrode sensor using the glass electrode which concerns on 1st Example of this invention. 本第2発明の前提技術に係る「ISFET」の構造のpH半導体センサの概要図である。It is a schematic diagram of the pH semiconductor sensor of the structure of "ISFET" concerning the premise technique of this 2nd invention. 本発明の第2実施例に係る「ISFET」電極を用いたpH半導体センサの概要図である。It is a schematic diagram of the pH semiconductor sensor using the “ISFET” electrode according to the second embodiment of the present invention. pH(全酸価)と起電力の関係を示す校正曲線である。It is a calibration curve which shows the relationship between pH (total acid value) and an electromotive force. 従来技術に係るガラス電極を用いたpH電極センサの原理図である。It is a principle figure of the pH electrode sensor using the glass electrode which concerns on a prior art.

先ず本発明に用いるイオン液体について説明する。
本発明に用いるイオン液体は、100℃以下、好ましくは潤滑油が作動している状態の−20〜+100℃の範囲で、液体となっている常温溶融塩とも呼ばれるもので非油溶性で且つ導電性であることが条件である。
又前記イオン液体は、比較電極側の液絡部とガラス電極側のpH応答ガラス薄膜からなり、前記イオン液体膜が、前記液絡部とpH応答ガラス薄膜間に被着されていることが必要で、このため前記イオン液に増ちょう剤を加えてグリース状にすることで見かけ上の粘度が増加し被着効果を一層高めている。
First, the ionic liquid used in the present invention will be described.
The ionic liquid used in the present invention is a non-oil-soluble and electrically conductive, which is also called a room temperature molten salt in a range of −20 to + 100 ° C., preferably in a state where the lubricating oil is operating, at 100 ° C. or less. It is a condition that it is sex.
The ionic liquid is composed of a liquid junction on the comparison electrode side and a pH-responsive glass thin film on the glass electrode side, and the ionic liquid film must be deposited between the liquid junction and the pH-responsive glass thin film. For this reason, by adding a thickener to the ionic liquid to make it grease, the apparent viscosity increases and the deposition effect is further enhanced.

このようなイオン液体は様々なアニオン、カチオンの組み合わせから構成され、本発明で用いるイオン液体を構成するアニオンとしては、フォスフィネート、イミド、カルボン酸、フォスフェート、ボレート、チオシアネート、チオサリシレートが好ましい。またカチオンとしてはイミダゾリウム、ピリジニウム、ピラゾリウム、ピペリジニウム、ピロリジニウム、モルホリン、ピロール、ホスホニウム、四級アンモニウム塩、スルホニウム、イソオキサゾリウムが好ましい。   Such an ionic liquid is composed of a combination of various anions and cations, and as the anion constituting the ionic liquid used in the present invention, phosphinate, imide, carboxylic acid, phosphate, borate, thiocyanate, and thiosalicylate are preferable. . The cation is preferably imidazolium, pyridinium, pyrazolium, piperidinium, pyrrolidinium, morpholine, pyrrole, phosphonium, quaternary ammonium salt, sulfonium or isoxazolium.

非水かつ非油溶性のイオン液体の具体例(カチオン/アニオン)としては
Trihexyl-tetradecyl-phosphonium/bis(2,4,4-trimethyl-pentyl)phosphinate
1-ethyl-3-methyl-imidazolium/bis(pentafluoroethylsulfonyl)imide
1-butyl-1-methyl-pyrrolidinium/bis(trifluoromethylsulfonyl)imide
Tetrabutyl-ammonium/bis(trifluoromethylsulfonyl)imide
Trihexyl-tetradecyl-phosphonium/decanoate
1-butyl-3-(3,3,・・・・・-tridecafluorooctyl)-imidazolium/hexafluorophosphate
1-methyl-3-(3,3,・・・・・-tridecafluorooctyl)-imidazolium/hexafluorophosphate
1-ethyl-3-methyl-imidazolium/hexafluorophosphate
1-butyl-3-methyl-imidazolium/hexafluorophosphate
1-hexyl-3-methyl-imidazolium/hexafluorophosphate
1-butyl-4-methyl-pyridinium/hexafluorophosphate
1-methyl-3-octyl-imidazolium/hexafluorophosphate
Trihexyl-tetradecyl-phosphonium/hexafluorophosphate
Tetrabutyl-ammonium/nonafluoro-butanesulfonate
Tetrabutyl-ammonium/heptadecafluoro-octanesulfonate
Tetrabutyl-phosphonium/tetrafluoroborate
Tetrahexyl-ammonium/tetrafluoroborate
Tetrapentyl-ammonium/thiocyanate
Trioctylmethylammonium/thiosalicylate
1-hexyl-3-methyl-imidazolium/trifluoromethansulfonate
が挙げられる。
Specific examples of non-aqueous and non-oil-soluble ionic liquids (cation / anion)
Trihexyl-tetradecyl-phosphonium / bis (2,4,4-trimethyl-pentyl) phosphinate
1-ethyl-3-methyl-imidazolium / bis (pentafluoroethylsulfonyl) imide
1-butyl-1-methyl-pyrrolidinium / bis (trifluoromethylsulfonyl) imide
Tetrabutyl-ammonium / bis (trifluoromethylsulfonyl) imide
Trihexyl-tetradecyl-phosphonium / decanoate
1-butyl-3- (3,3, ...- tridecafluorooctyl) -imidazolium / hexafluorophosphate
1-methyl-3- (3,3, ...- tridecafluorooctyl) -imidazolium / hexafluorophosphate
1-ethyl-3-methyl-imidazolium / hexafluorophosphate
1-butyl-3-methyl-imidazolium / hexafluorophosphate
1-hexyl-3-methyl-imidazolium / hexafluorophosphate
1-butyl-4-methyl-pyridinium / hexafluorophosphate
1-methyl-3-octyl-imidazolium / hexafluorophosphate
Trihexyl-tetradecyl-phosphonium / hexafluorophosphate
Tetrabutyl-ammonium / nonafluoro-butanesulfonate
Tetrabutyl-ammonium / heptadecafluoro-octanesulfonate
Tetrabutyl-phosphonium / tetrafluoroborate
Tetrahexyl-ammonium / tetrafluoroborate
Tetrapentyl-ammonium / thiocyanate
Trioctylmethylammonium / thiosalicylate
1-hexyl-3-methyl-imidazolium / trifluoromethansulfonate
Is mentioned.

〔増ちょう剤〕
本発明のイオン液に増ちょう剤を含ませることにより、見掛け粘度を大きくすることが出来る。
増ちょう剤には導電性で油溶性のものがよく、ウレア系増ちょう剤、ポリテトラフルオロエチレン(PTFE)、MCA、カーボンブラックに代表される有機系増ちょう剤、の他に、銅や銀などの金属や酸化亜鉛、酸化チタンなどの金属酸化物、窒化ホウ素など窒化物など無機の微粉末も増ちょう剤として使用可能である。
増ちょう剤の含有量はイオン液に対して、好ましくは1〜50質量%、さらに好ましくは3〜30質量%である。
[Thickener]
By adding a thickener to the ionic liquid of the present invention, the apparent viscosity can be increased.
Thickeners are preferably conductive and oil-soluble, and include urea-based thickeners, polytetrafluoroethylene (PTFE), MCA, organic thickeners typified by carbon black, and copper and silver. Metal oxides such as zinc oxide and titanium oxide, and inorganic fine powders such as nitrides such as boron nitride can also be used as thickeners.
The content of the thickener is preferably 1 to 50% by mass, more preferably 3 to 30% by mass with respect to the ionic liquid.

(実施例1)
本発明に適用されるガラス電極式のpH電極1センサについて説明する。
図2は図1を前提技術として、本発明の実施例に係るガラス電極10Aと比較電極20AからなるpH電極1からなるオイル劣化(PC)センサで、図1と同様に前記ガラス電極10A支持管34には、内部電極31が収容してあり、ガラス電極10A内部液32として例えばpH7のKCl溶液が充填してある。比較電極20Aは、液絡部23Aが比較電極24Aの支持管24の外周壁の底側に設けてある。比較電極20Aの内部電極14A及びガラス電極10Aの内部電極24Aには、それぞれリード線11A、21Aが接続してあり、それらのリード線はケーブル束としてこの支持管2の基端部から外部に延出し図示しないpH測定器本体5に接続されるようにしてある。
そして、前記球状のpH応答ガラス薄膜11の全表面と比較電極24Aの支持管24を挟んで液絡部23A外表面に至るまで非油溶性で且つ導電性のイオン液体膜15が被覆されている。
そして前記イオン液15は潤滑油が作動している状態の−20〜+100℃の範囲で、液体となっている常温溶融塩とも呼ばれるもので非油溶性で且つ導電性のイオン液で前記実施例で示すイオン液の単数若しくは複数の組合わせから構成した。
又イオン液15の40℃動粘度は、12mm/s未満では電極に対する付着性が低下するので12mm/s以上とするのがよい。
更に前記イオン液に前記増ちょう剤を加えてグリース状にすると被着効果が一層高まる。
Example 1
The glass electrode type pH electrode 1 sensor applied to the present invention will be described.
FIG. 2 is an oil deterioration (PC) sensor comprising a pH electrode 1 comprising a glass electrode 10A and a comparison electrode 20A according to an embodiment of the present invention, based on FIG. 1, and the glass electrode 10A support tube as in FIG. 34 contains an internal electrode 31 and is filled with, for example, a KCl solution of pH 7 as the internal solution 32 of the glass electrode 10A. In the comparison electrode 20A, the liquid junction 23A is provided on the bottom side of the outer peripheral wall of the support tube 24 of the comparison electrode 24A. Lead wires 11A and 21A are connected to the internal electrode 14A of the comparison electrode 20A and the internal electrode 24A of the glass electrode 10A, respectively, and these lead wires extend from the base end of the support tube 2 to the outside as a cable bundle. It is designed to be connected to a pH measuring device main body 5 (not shown).
Then, the non-oil-soluble and conductive ionic liquid film 15 is coated until the entire surface of the spherical pH-responsive glass thin film 11 and the outer surface of the liquid junction 23A are sandwiched between the support tube 24 of the comparison electrode 24A. .
The ionic liquid 15 is a non-oil-soluble and electrically conductive ionic liquid which is also called a room temperature molten salt in the range of -20 to + 100 ° C. in a state where the lubricating oil is operating. It comprised from the combination of the ionic liquid shown by or several.
The 40 ° C. kinematic viscosity of the ionic liquid 15 is preferably set to 12 mm 2 / s or more because it is less than 12 mm 2 / s adhesion to the electrode is reduced.
Furthermore, when the thickener is added to the ionic liquid to form a grease, the deposition effect is further enhanced.

図2において、前記したイオン液体15が、比較電極側の液絡部23Aとガラス電極側のpH応答ガラス薄膜31間に被着されている状態を表している。イオン液体の代表例については前述してあるが、図2の状態は概念図である。実際には、比較電極側の液絡部23Aとガラス電極側のpH応答ガラス薄膜31間にイオン液体15が保持される必要がある。そこで、イオン液体15を半固体状すなわちグリース状にしておけば塗布が楽になる。イオン液体15をベースにLiせっけんなどの増ちょう剤でグリース化する方法については、協同油脂の発明国際公開第2012/018137号などに記載されている。また、増ちょう剤を用いずに半固体状にする方法については、イオン液体を無機の微粉末と混ぜる方法が考えられる。
無機の微粉末には酸化亜鉛、酸化チタンなどの金属酸化物、アルミナ、窒化けい素などのセラミックス、窒化ほう素などの窒化物、PTFEなどのふっ素樹脂を用いるのが好ましい。
FIG. 2 shows a state in which the ionic liquid 15 is deposited between the liquid junction 23A on the comparison electrode side and the pH-responsive glass thin film 31 on the glass electrode side. Although the representative example of the ionic liquid has been described above, the state of FIG. 2 is a conceptual diagram. Actually, the ionic liquid 15 needs to be held between the liquid junction 23A on the comparison electrode side and the pH-responsive glass thin film 31 on the glass electrode side. Therefore, if the ionic liquid 15 is made semi-solid, that is, in the form of grease, the application becomes easy. A method of making a grease with a thickener such as Li soap based on the ionic liquid 15 is described in Kyodo Yushi Invention International Publication No. 2012/018137. In addition, as a method of making a semi-solid without using a thickener, a method of mixing an ionic liquid with an inorganic fine powder can be considered.
As the inorganic fine powder, it is preferable to use metal oxides such as zinc oxide and titanium oxide, ceramics such as alumina and silicon nitride, nitrides such as boron nitride, and fluorine resins such as PTFE.

そして前記pHセンサ1をカルボン酸(弱酸性成分)と硫酸(強酸性成分)を含むエンジン油に浸漬して、pHセンサの起電力を電位差計4で計測した結果を図5に示す。図5の縦軸は本発明で測定した起電力であり、横軸はJIS規格法で測定した全酸価である。
このpHセンサの起電力と従来の全酸価が対応付けられることを示している。
And the result of having measured the electromotive force of the pH sensor with the potentiometer 4 by immersing the said pH sensor 1 in the engine oil containing carboxylic acid (weakly acidic component) and sulfuric acid (strongly acidic component) is shown in FIG. The vertical axis in FIG. 5 is the electromotive force measured by the present invention, and the horizontal axis is the total acid value measured by the JIS standard method.
This shows that the electromotive force of this pH sensor is associated with the conventional total acid value.

本実施例によれば、油のpHを直接測定する場合、図2に示すpHセンサを直接油中に浸漬して、pH応答ガラス薄膜11の全表面と比較電極24Aの支持管24を挟んで液絡部23A外表面に至るまで前記イオン液体で被覆させた状態で、図5の校正図を用いて、あらかじめ全酸価と起電力の関係を校正しておけば、全酸価が未知のオイルの起電力から全酸価を求めることができるのでオンラインでのオイル劣化の検知が可能となる。   According to the present embodiment, when directly measuring the pH of the oil, the pH sensor shown in FIG. 2 is directly immersed in the oil, and the entire surface of the pH-responsive glass thin film 11 and the support tube 24 of the reference electrode 24A are sandwiched. If the relationship between the total acid value and the electromotive force is calibrated in advance using the calibration diagram of FIG. 5 with the ionic liquid covered up to the outer surface of the liquid junction 23A, the total acid value is unknown. Since the total acid value can be obtained from the electromotive force of the oil, it is possible to detect oil deterioration online.

(実施例2)
図3は本発明の前提条件となるイオン感受形電界効果トランジスタ(ISFET)を使用したpH半導体センサの従来例である。
図3において、内部電極であるAg/AgCl電極24Bが内包された支持管34には、内部電極24Bとともに、内部液32として例えばpH7のKCl飽和溶液が充填してある。支持管24の外周壁の底側には液絡部23Bが設けてあるとともに、底側の液絡部23Bの近くの支持管24外周にはISFET半導体電極10Bが設けてある。そしてISFET半導体電極10B及びAg/AgCl電極24Bには、それぞれリード線11B、21Bが接続してあり、それらのリード線はケーブル束としてこの支持管24の基端部から外部に延出し図示しないpH測定器本体5に接続されるようにしてある。
(Example 2)
FIG. 3 shows a conventional example of a pH semiconductor sensor using an ion-sensitive field effect transistor (ISFET) which is a precondition for the present invention.
In FIG. 3, a support tube 34 enclosing an Ag / AgCl electrode 24 </ b> B that is an internal electrode is filled with, for example, a KCl saturated solution having a pH of 7 as the internal liquid 32 together with the internal electrode 24 </ b> B. A liquid junction 23B is provided on the bottom side of the outer peripheral wall of the support tube 24, and an ISFET semiconductor electrode 10B is provided on the outer periphery of the support tube 24 near the bottom liquid junction 23B. Lead wires 11B and 21B are connected to the ISFET semiconductor electrode 10B and the Ag / AgCl electrode 24B, respectively, and these lead wires extend to the outside from the base end portion of the support tube 24 as a cable bundle and have a pH not shown. It is designed to be connected to the measuring instrument body 5.

図4は図3の前提技術を用いた本発明の実施例2で、前記したイオン液体が比較電極側の液絡部とISFET半導体電極10B間の支持管上に被着されているのは実施例1と同様である。   FIG. 4 shows a second embodiment of the present invention using the base technology of FIG. 3, in which the ionic liquid is deposited on the support tube between the liquid junction on the comparison electrode side and the ISFET semiconductor electrode 10B. Similar to Example 1.

本実施例によれば、油のpHを直接測定する場合、図4に示すpHセンサを直接油中に浸漬して、pH応答ガラス薄膜11の全表面と比較電極24Aの支持管24を挟んで液絡部23A外表面に至るまで前記イオン液体で被覆させた状態で、図5の校正図を用いて、あらかじめ全酸価と起電力の関係を校正しておけば、全酸価が未知のオイルの起電力から全酸価を求めることができるのでオンラインでのオイル劣化の検知が可能となる。   According to the present embodiment, when directly measuring the pH of the oil, the pH sensor shown in FIG. 4 is directly immersed in the oil, and the entire surface of the pH-responsive glass thin film 11 and the support tube 24 of the comparison electrode 24A are sandwiched. If the relationship between the total acid value and the electromotive force is calibrated in advance using the calibration diagram of FIG. 5 with the ionic liquid covered up to the outer surface of the liquid junction 23A, the total acid value is unknown. Since the total acid value can be obtained from the electromotive force of the oil, it is possible to detect oil deterioration online.

以上記載の如く本発明の油の劣化度を検知するpHセンサ若しくはPH半導体センサによれば潤滑油等の試料油に前記pH電極を直接浸漬して全酸価の変化(pHの変化)に伴う油そのものの劣化を判断することが出来、結果としてオンラインで潤滑油等の油劣化状態を継続して検出できる。   As described above, according to the pH sensor or the PH semiconductor sensor for detecting the degree of deterioration of the oil according to the present invention, the pH electrode is directly immersed in sample oil such as lubricating oil, which is accompanied by a change in total acid value (change in pH). It is possible to determine the deterioration of the oil itself, and as a result, it is possible to continuously detect the oil deterioration state of the lubricating oil or the like online.

1 pH電極センサ
3 演算部
4 電位差計
10,10A ガラス電極
20,20A 比較電極
15 非油溶性で且つ導電性のイオン液体膜
1B pH半導体センサ
23A,23B 液絡部
DESCRIPTION OF SYMBOLS 1 pH electrode sensor 3 Calculation part 4 Potentiometer 10, 10A Glass electrode 20, 20A Comparison electrode 15 Non-oil-soluble and electroconductive ionic liquid film 1B pH semiconductor sensor 23A, 23B Liquid junction part

本発明は、エンジン油、タービン油、油圧作動油、ギヤ油などの、一般に潤滑油として用いられる油の劣化度を検知するpHセンサに係り、特に常温(−20℃〜100℃)で、ディーゼルエンジンの潤滑油等の油の経年的な劣化度を検知するpHセンサに関する。   The present invention relates to a pH sensor for detecting the deterioration level of oils generally used as lubricating oils such as engine oil, turbine oil, hydraulic hydraulic oil, and gear oil, and more particularly at normal temperature (−20 ° C. to 100 ° C.), diesel The present invention relates to a pH sensor that detects the deterioration of oil such as engine lubricating oil over time.

従来潤滑油等の油は、混合溶剤に溶かした液のpHを測定する方法により全酸価や全塩基価を求めている。
全酸価は油の中の酸性成分の全量、すなわち添加剤中の酸性物質、使用中に生成した有機酸などすべてを合せた量を示す。全酸価をもって潤滑油の精製度の目安としたり、製造工程の管理指標、使用潤滑油の管理あるいは潤滑油の酸化試験や実用試験後の劣化状態を知るための目安として広く用いられている。一般に潤滑油が劣化するにしたがって、全酸価は増加するのが通常である。
Conventionally, oils such as lubricating oils have been determined for total acid number and total base number by a method of measuring the pH of a solution dissolved in a mixed solvent.
The total acid value indicates the total amount of acidic components in the oil, that is, the total amount of acidic substances in the additives, organic acids generated during use, and the like. It is widely used as a guideline for the refinement degree of lubricating oil with the total acid number, as a guideline for manufacturing process control index, management of used lubricant oil, or for knowing deterioration state after oxidation test and practical test of lubricant oil. In general, as the lubricating oil degrades, the total acid number usually increases.

このような油の全酸価は、油の劣化指標として従来から用いられているが、油は非水系の液体であるため、油のpHは直接測定することが出来ず、そこで、JISK2501「石油製品及び潤滑油−中和価試験方法−」に示されるように、油をトルエン、2−プロパノールおよび少量の水の混合溶剤に溶かし、pHをモニターしながら塩酸標準2−プロパノール液または水酸化カリウム標準2−プロパノール液で滴定する方法が採用されている。   The total acid value of such an oil has been conventionally used as an index of deterioration of the oil. However, since the oil is a non-aqueous liquid, the pH of the oil cannot be directly measured. As shown in "Products and Lubricating Oils-Neutralization Test Method", dissolve the oil in a mixed solvent of toluene, 2-propanol and a small amount of water, and monitor hydrochloric acid standard 2-propanol solution or potassium hydroxide while monitoring the pH. A method of titration with a standard 2-propanol solution is employed.

そしてこのようなpHの測定は、図6(原理図)に示すように、ガラス電極10と比較電極20からなる構成のpH電極センサ1を用いて測定される。
即ち、ガラス電極10は、先端部にpHに敏感に応答するpH応答ガラス薄膜11が形成され(前記ガラス電極10の先端に用いるpH応答ガラスは、ケイ素とリチウムを主成分とし、その他pH測定用ガラスとしての性能向上を目的としていくつかの元素を副成分とし、係るpH応答ガラス薄膜11は周知であるのでその詳細な説明は省略する。)、内部に塩化カリウム(KCl)と中性のpH緩衝液からなるガラス電極内部液12が満たされている。比較電極20は、内部に塩化カリウム溶液からなる比較電極内部液22が充填され、先端部に液絡部23と呼ぶ、いわば繊細な穴(アルミナやジルコニアなどの多孔性セラミックスが多用される)が形成され、溶液サンプルと電気的に連通する。図中26は内部液補充口である。14,24は夫々AgCl電極である。
Such pH is measured using a pH electrode sensor 1 having a configuration including a glass electrode 10 and a comparative electrode 20 as shown in FIG. 6 (principle diagram).
That is, the glass electrode 10 is formed with a pH-responsive glass thin film 11 that responds sensitively to pH at the tip (the pH-responsive glass used at the tip of the glass electrode 10 is mainly composed of silicon and lithium, and is used for other pH measurements. For the purpose of improving the performance as glass, several elements are used as subcomponents, and the pH-responsive glass thin film 11 is well known and will not be described in detail.) Inside, potassium chloride (KCl) and neutral pH glass electric in-electrode portion liquid 12 is filled consisting buffer. The reference electrode 20 is filled with a reference electrode internal solution 22 made of a potassium chloride solution, and has a so-called delicate junction (a porous ceramic such as alumina or zirconia is often used) called a liquid junction 23 at the tip. Formed and in electrical communication with the solution sample. In the figure, 26 is an internal liquid replenishment port. 14 and 24 are AgCl electrodes, respectively.

そして該ガラス電極10と比較電極20からなるpH電極センサ1を溶液サンプルに浸すと、ガラス電極10はpH応答ガラス薄膜11の表面で溶液サンプルのpHに応じた起電力を発生し、比較電極20は液絡部23でイオンを介してサンプルと電気的に接触しつつ常に一定の起電力を発生する。そして演算部3を有するpH測定器本体5は、pH電極1のガラス電極10と比較電極20に発生する起電力の差(電圧)を電位差計4で計測し、演算部3で演算処理してサンプルのpHを表示する。このようなpH測定方法はガラス電極A法と呼ばれる(非特許文献1:JISK2501参照)。   When the pH electrode sensor 1 comprising the glass electrode 10 and the comparison electrode 20 is immersed in the solution sample, the glass electrode 10 generates an electromotive force according to the pH of the solution sample on the surface of the pH responsive glass thin film 11, and the comparison electrode 20. Always generates a constant electromotive force while being in electrical contact with the sample via ions at the liquid junction 23. The pH measuring device main body 5 having the calculation unit 3 measures the difference (voltage) of the electromotive force generated between the glass electrode 10 of the pH electrode 1 and the comparison electrode 20 with the potentiometer 4, and performs calculation processing with the calculation unit 3. Display the pH of the sample. Such a pH measurement method is called a glass electrode A method (see Non-Patent Document 1: JISK2501).

また、比較電極とガラス電極とを一体化した技術が特許第4733588号(特許文献1)に開示されている。しかし図1や図6に示すように、ガラス電極と比較電極が離れていると、この間が油である場合に両電極間が電気的に連通しないので測定できない。   Moreover, the technique which integrated the comparison electrode and the glass electrode is disclosed by patent 4733588 (patent document 1). However, as shown in FIG. 1 and FIG. 6, if the glass electrode and the comparative electrode are separated from each other, when the gap is oil, the electrodes are not electrically communicated with each other, so that measurement cannot be performed.

かかる技術を図1(本発明の前提技術)に基づいて説明するに、図1に示す前提技術において、一体型の電極センサは、比較電極20Aがガラス電極10Aの支持管34を取り囲むように一体に形成されており、ガラス電極10Aは、円筒状のガラス製の支持管34と、その支持管34の先端部に接合したガラス応答膜(以下において、pH応答ガラス薄膜ともいう。)31とを備えている。即ち詳細にはこのガラス電極10Aの支持管34は前記比較電極の支持管25よりも若干先端部を突出させてあり、その先端部に前記ガラス応答膜31が接合されている。 This technique will be described with reference to FIG. 1 (a prerequisite technique of the present invention). In the prerequisite technique shown in FIG. 1, the integrated electrode sensor is integrated so that the comparison electrode 20A surrounds the support tube 34 of the glass electrode 10A. The glass electrode 10A includes a cylindrical glass support tube 34 and a glass responsive film (hereinafter also referred to as a pH responsive glass thin film) 31 bonded to the tip of the support tube 34 . I have. Specifically, the support tube 34 of the glass electrode 10A has a slightly protruding tip portion than the support tube 25 of the comparative electrode, and the glass response film 31 is bonded to the tip portion.

また前記ガラス電極10Aの支持管34には、内部電極14Aが収容してあり、ガラス電極10Aの内部液12Aとして例えばpH7のKCl溶液が充填してある。比較電極20Aは、液絡部23Aが比較電極20Aの支持管25の外周壁の底側に設けてある。比較電極20Aの内部電極24A及びガラス電極10Aの内部電極14Aには、それぞれリード線11A、21Aが接続してあり、それらのリード線はケーブル束としてこの支持管25,34の基端部から外部に延出し図示しないpH測定器本体5に接続されるようにしてある。 Further, the support tube 34 of the glass electrode 10A accommodates an internal electrode 14A and is filled with, for example, a KCl solution having a pH of 7 as the internal liquid 12A of the glass electrode 10A. In the comparison electrode 20A, the liquid junction 23A is provided on the bottom side of the outer peripheral wall of the support tube 25 of the comparison electrode 20A . Lead wires 11A and 21A are connected to the internal electrode 24A of the comparison electrode 20A and the internal electrode 14A of the glass electrode 10A, respectively, and these lead wires are connected to the outside from the base ends of the support tubes 25 and 34 as cable bundles. And is connected to a pH measuring device body 5 (not shown).

しかし図1に示すような一体型の電極センサであっても、ガラス電極と比較電極は離れているので、油の場合は測定できない。
このため図1に示す測定器を用いて油の全酸価を測定するには、pH電極1Aのガラス電極10Aと比較電極20Aに発生する起電力の差(電圧)を電位差計で計測するものであるため、前記ガラス応答膜31と測定しようとする油に親和性(導電性)がなければならず、このため従来は、測定しようとする油を混合溶剤に溶かして用いている。
However, even an integrated electrode sensor as shown in FIG. 1 cannot measure in the case of oil because the glass electrode and the comparative electrode are separated.
Therefore, in order to measure the total acid value of oil using the measuring device shown in FIG. 1, the difference (voltage) of the electromotive force generated between the glass electrode 10A of the pH electrode 1A and the comparison electrode 20A is measured with a potentiometer. Therefore, the glass response film 31 and the oil to be measured must have an affinity (conductivity). For this reason, conventionally, the oil to be measured is dissolved in a mixed solvent and used.

即ち油に前記pH電極1Aを直接油に浸漬してもpH応答ガラス薄膜31と油との間に親和性(導電性)は得られないため、起電力の測定は出来ない。このため試料油を、所定時間間隔毎にオフラインにラボ等の研究所に持ち込んで前記試料油に前記混合溶剤を加えて水溶液状態にして電位差及びpH測定から油の全酸価を測定している。 That is, even if the pH electrode 1A is directly immersed in the oil, the affinity (conductivity) cannot be obtained between the pH-responsive glass thin film 31 and the oil, so that the electromotive force cannot be measured. For this reason, sample oil is brought offline into a laboratory such as a lab at predetermined time intervals, and the mixed solvent is added to the sample oil to form an aqueous solution to measure the total acid number of the oil from potential difference and pH measurement. .

しかしながら試料油に前記混合溶剤を加えて水溶液状態にして油の全酸価を測定する方法では、前記したように所定時間間隔毎にオフラインでしか測定できず、油劣化の連続的変化状況やオンラインでの計測が不可能である。   However, in the method of measuring the total acid number of the oil by adding the mixed solvent to the sample oil and measuring the total acid value of the oil, it can only be measured offline at a predetermined time interval as described above. Measurement with is impossible.

一方連続的にオンラインで油の劣化を判断する手法として特許文献2に示すように、油流路に互いに並行して設置された2枚の極板と、前記2枚の極板間に交流電圧を印加したときに流れる電流を計測する電流計と、前記2枚の極板に交流電圧を印加したときの該極板間の電圧を計測する電圧計と、前記電流計および前記電圧計による計測結果に基づいて前記油の導電率および誘電率を求め、該導電率および該誘電率に基づき該油の劣化を判断する手法が提案されている。   On the other hand, as shown in Patent Document 2 as a technique for continuously determining oil degradation online, an AC voltage is provided between two electrode plates installed in parallel to each other in the oil flow path and the two electrode plates. An ammeter that measures the current that flows when a voltage is applied, a voltmeter that measures a voltage between the two plates when an AC voltage is applied to the two plates, and a measurement by the ammeter and the voltmeter A method has been proposed in which the electrical conductivity and dielectric constant of the oil are obtained based on the results, and the deterioration of the oil is judged based on the electrical conductivity and the dielectric constant.

しかしかかる従来技術は、導電率および誘電率に基づき油の劣化を判断するので、より具体的には油のpHの変化を「直接」測定するのではなく油中のコンタミ混入に伴う電気特性の変化について、導電率および誘電率の観点から2次元的に捉えるもので、pHの変化に伴う油そのものの劣化を判断できない。   However, such prior art determines oil degradation based on conductivity and dielectric constant, and more specifically, it does not “directly” measure changes in the pH of the oil, but rather the electrical characteristics associated with contamination in the oil. The change is captured two-dimensionally from the viewpoint of conductivity and dielectric constant, and the deterioration of the oil itself accompanying the change in pH cannot be determined.

特許第4733588号公報(図5参照)Japanese Patent No. 4733588 (see FIG. 5) 特開2009−2693号公報(段落〔0006〕〔0007〕図1参照)Japanese Patent Laying-Open No. 2009-2893 (see paragraphs [0006] and [0007] FIG. 1)

JIS規格文献:JISK2501JIS standard document: JISK2501

本発明は係る技術的課題に鑑み、潤滑油等の試料油に前記pH電極1Aを直接浸漬してpHの変化に伴う油そのものの劣化を判断することが出来、結果としてオンラインで潤滑油等の油劣化状態を継続して検出できるpHセンサ及び該センサを用いた油劣化度検知方法、特にディーゼルエンジンの潤滑油やタービン油の劣化度を検知するのに好適なpHセンサ及び該センサを用いた油劣化度検知方法を提供することを目的とする。 In view of the technical problem of the present invention, the pH electrode 1A can be directly immersed in a sample oil such as a lubricating oil to determine the deterioration of the oil itself accompanying a change in pH. A pH sensor capable of continuously detecting an oil deterioration state and an oil deterioration degree detection method using the pH sensor, and particularly a pH sensor suitable for detecting the deterioration degree of lubricating oil or turbine oil of a diesel engine and the sensor An object is to provide a method for detecting the degree of oil deterioration.

本発明は、活性センサエリアの外表面に非油溶性で且つ導電性のイオン液体膜が被覆されているpHセンサであって、特に前記pHセンサが比較電極とガラス電極とを一体化した複合電極であって前記活性センサエリアが、比較電極側の液絡部とガラス電極側のpH応答ガラス薄膜からなり、前記イオン液体膜が、前記液絡部とpH応答ガラス薄膜間に被着されているpHセンサにある。   The present invention relates to a pH sensor in which an outer surface of an active sensor area is coated with a non-oil-soluble and conductive ionic liquid film, and in particular, the composite electrode in which the pH sensor is integrated with a reference electrode and a glass electrode The active sensor area is composed of a liquid junction on the comparison electrode side and a pH responsive glass thin film on the glass electrode side, and the ionic liquid film is deposited between the liquid junction and the pH responsive glass thin film. Located in the pH sensor.

具体的に説明するに本第1発明は、先端にpHに敏感に応答するpH応答ガラス薄膜が形成され、内部にガラス電極内部液が充填されているガラス電極と、内部に比較電極内部液が充填され、先端部に液絡部が形成された比較電極からなるpH電極センサであって、比較電極側の液絡部とガラス電極側のpH応答ガラス薄膜間のセンサ支持体外表面に非油溶性で且つ導電性のイオン液体膜が被着されていることを特徴とするpHセンサにある。   Specifically, according to the first aspect of the present invention, a glass electrode in which a pH-responsive glass thin film that responds sensitively to pH is formed at the tip and the glass electrode internal liquid is filled therein, and the internal liquid of the comparison electrode is contained therein. A pH electrode sensor comprising a reference electrode filled and formed with a liquid junction at the tip, which is insoluble on the outer surface of the sensor support between the liquid junction on the reference electrode side and the pH-responsive glass thin film on the glass electrode side And a conductive ionic liquid film is applied.

本発明によれば、潤滑油等の油に前記pH電極1Aを直接浸漬してpHの変化に伴う油そのものの劣化を判断することが出来、結果としてオンラインで潤滑油等の油劣化状態を継続して検出できる。 According to the present invention, the pH electrode 1A can be directly immersed in an oil such as lubricating oil to determine the deterioration of the oil itself accompanying a change in pH, and as a result, the oil deterioration state of the lubricating oil or the like can be continued online. Can be detected.

尚、前記イオン液体(以下において、イオン液ともいう。)とは、常温で液体となる常温溶融塩で、イオン液体は様々なアニオン、カチオンの組み合わせから構成され、潤滑油等の油に前記pH電極1Aを直接浸漬させる為に、非油溶性で且つ導電性であることが条件となる。
又前記イオン液体は、pH応答ガラス薄膜と比較電極側の液絡部間に被着されていることが必要で、更に前記イオン液に増ちょう剤を加えてグリース状にすると被着効果が一層高まる。
The ionic liquid (hereinafter also referred to as ionic liquid) is a room temperature molten salt that becomes liquid at room temperature, and the ionic liquid is composed of a combination of various anions and cations. In order to directly immerse the electrode 1A , it is necessary to be non-oil-soluble and conductive.
The ionic liquid needs to be applied between the pH-responsive glass thin film and the liquid junction on the side of the reference electrode. Further, if a thickener is added to the ionic liquid to form a grease, the application effect is further increased. Rise.

本発明の第2の発明は、イオン感受形電界効果トランジスタ(ISFET)の構造を使用したpH半導体センサの活性センサエリアとなる半導体電極と液絡部を結ぶセンサ支持体外表面間に非油溶性で且つ導電性のイオン液体膜が被着されていることを特徴とする。   The second aspect of the present invention is an oil-insoluble material between the outer surface of the sensor support that connects the semiconductor electrode that forms the active sensor area of the pH semiconductor sensor using the structure of an ion-sensitive field effect transistor (ISFET) and the liquid junction. In addition, a conductive ionic liquid film is deposited.

例えば表面が水素終端された合成ダイヤモンド半導体は、真性、外因形に関わらず、電解質中にて導電性薄膜となり、電解質のpHそしてイオン濃度に敏感になる。この導電性“Ion Sensitive Field Effect Transistor”(「ISFET」)の構造を使用してpH半導体センサを製造することができることは特開2007−78373号公報等で公知である。
そこで第2の発明は、イオン感受形電界効果トランジスタ(ISFET)の構造を使用したpH半導体センサの活性センサエリアとなる半導体電極と液絡部を結ぶセンサ支持体外表面に非油溶性で且つ導電性のイオン液体膜が被着されていることを特徴とする。
For example surface synthetic diamond semiconductor, which is hydrogen-terminated, the intrinsic, regardless of exogenous form, becomes conductive thin film by the electrolyte, be sensitive to pH and ion concentration of the electrolyte. It is known in Japanese Patent Application Laid-Open No. 2007-78373 and the like that a pH semiconductor sensor can be manufactured using this conductive “Ion Sensitive Field Effect Transistor” (“ISFET”) structure.
Therefore, the second invention is an oil-insoluble and conductive material on the outer surface of the sensor support that connects the semiconductor electrode and the liquid junction, which is an active sensor area of a pH semiconductor sensor using an ion-sensitive field effect transistor (ISFET) structure. The ionic liquid film is deposited.

第2の発明によれば、第1発明と同様に、潤滑油等の試料油に前記pH電極1Aを直接浸漬してpHの変化に伴う油そのものの劣化を判断することが出来、結果としてオンラインで潤滑油等の油劣化状態を継続して検出することが可能である。 According to the second invention, as in the first invention, the pH electrode 1A can be directly immersed in a sample oil such as a lubricating oil to determine the deterioration of the oil itself accompanying a change in pH. Thus, it is possible to continuously detect the oil deterioration state of the lubricating oil or the like.

第3の発明は、pH応答ガラス薄膜の外表面に前記非油溶性で且つ導電性のイオン液体膜が被覆されているガラス電極部、若しくはISFETの構造を使用して製造され活性センサエリアの外表面に前記非油溶性で且つ導電性のイオン液体膜が被覆されているpH半導体センサ部を直接油中に浸漬して油のPH値を測定することを特徴とする油の劣化度検出方法にある。   According to a third aspect of the present invention, the outside surface of the active sensor area is manufactured using the glass electrode portion or the ISFET structure in which the non-oil-soluble and conductive ionic liquid film is coated on the outer surface of the pH-responsive glass thin film. A method for detecting the degree of deterioration of oil, comprising measuring a pH value of oil by directly immersing a pH semiconductor sensor part, the surface of which is coated with the non-oil-soluble and conductive ionic liquid film, in the oil. is there.

本発明によれば、試料油に前記pH電極1Aを直接浸漬しpHの変化に伴う油そのものの劣化を判断することが出来、結果としてオンラインで潤滑油等の油劣化状態を継続して検出できる。 According to the present invention, the pH electrode 1A can be directly immersed in the sample oil to determine the deterioration of the oil itself accompanying the change in pH. As a result, the oil deterioration state of the lubricating oil or the like can be continuously detected online. .

本第1発明の前提技術に係るガラス電極を用いたpH電極センサの概要図である。It is a schematic diagram of the pH electrode sensor using the glass electrode which concerns on the premise technique of this 1st invention. 本発明の第1実施例に係るガラス電極を用いたpH電極センサの概要図である。It is a schematic diagram of the pH electrode sensor using the glass electrode which concerns on 1st Example of this invention. 本第2発明の前提技術に係る「ISFET」の構造のpH半導体センサの概要図である。It is a schematic diagram of the pH semiconductor sensor of the structure of "ISFET" concerning the premise technique of this 2nd invention. 本発明の第2実施例に係る「ISFET」電極を用いたpH半導体センサの概要図である。It is a schematic diagram of the pH semiconductor sensor using the “ISFET” electrode according to the second embodiment of the present invention. pH(全酸価)と起電力の関係を示す校正曲線である。It is a calibration curve which shows the relationship between pH (total acid value) and an electromotive force. 従来技術に係るガラス電極を用いたpH電極センサの原理図である。It is a principle figure of the pH electrode sensor using the glass electrode which concerns on a prior art.

先ず本発明に用いるイオン液体について説明する。
本発明に用いるイオン液体は、100℃以下、好ましくは潤滑油が作動している状態の−20〜+100℃の範囲で、液体となっている常温溶融塩とも呼ばれるもので非油溶性で且つ導電性であることが条件である。
又前記イオン液体は、比較電極側の液絡部とガラス電極側のpH応答ガラス薄膜からなり、前記イオン液体膜が、前記液絡部とpH応答ガラス薄膜間に被着されていることが必要で、このため前記イオン液に増ちょう剤を加えてグリース状にすることで見かけ上の粘度が増加し被着効果を一層高めている。
First, the ionic liquid used in the present invention will be described.
The ionic liquid used in the present invention is a non-oil-soluble and electrically conductive, which is also called a room temperature molten salt in a range of −20 to + 100 ° C., preferably in a state where the lubricating oil is operating, at 100 ° C. or less. It is a condition that it is sex.
The ionic liquid is composed of a liquid junction on the comparison electrode side and a pH-responsive glass thin film on the glass electrode side, and the ionic liquid film must be deposited between the liquid junction and the pH-responsive glass thin film. For this reason, by adding a thickener to the ionic liquid to make it grease, the apparent viscosity increases and the deposition effect is further enhanced.

このようなイオン液体は様々なアニオン、カチオンの組み合わせから構成され、本発明で用いるイオン液体を構成するアニオンとしては、フォスフィネート、イミド、カルボン酸、フォスフェート、ボレート、チオシアネート、チオサリシレートが好ましい。またカチオンとしてはイミダゾリウム、ピリジニウム、ピラゾリウム、ピペリジニウム、ピロリジニウム、モルホリン、ピロール、ホスホニウム、四級アンモニウム塩、スルホニウム、イソオキサゾリウムが好ましい。   Such an ionic liquid is composed of a combination of various anions and cations, and as the anion constituting the ionic liquid used in the present invention, phosphinate, imide, carboxylic acid, phosphate, borate, thiocyanate, and thiosalicylate are preferable. . The cation is preferably imidazolium, pyridinium, pyrazolium, piperidinium, pyrrolidinium, morpholine, pyrrole, phosphonium, quaternary ammonium salt, sulfonium or isoxazolium.

油溶性のイオン液体の具体例(カチオン/アニオン)としては
Trihexyl-tetradecyl-phosphonium/bis(2,4,4-trimethyl-pentyl)phosphinate
1-ethyl-3-methyl-imidazolium/bis(pentafluoroethylsulfonyl)imide
1-butyl-1-methyl-pyrrolidinium/bis(trifluoromethylsulfonyl)imide
Tetrabutyl-ammonium/bis(trifluoromethylsulfonyl)imide
Trihexyl-tetradecyl-phosphonium/decanoate
1-butyl-3-(3,3,・・・・・-tridecafluorooctyl)-imidazolium/hexafluorophosphate
1-methyl-3-(3,3,・・・・・-tridecafluorooctyl)-imidazolium/hexafluorophosphate
1-ethyl-3-methyl-imidazolium/hexafluorophosphate
1-butyl-3-methyl-imidazolium/hexafluorophosphate
1-hexyl-3-methyl-imidazolium/hexafluorophosphate
1-butyl-4-methyl-pyridinium/hexafluorophosphate
1-methyl-3-octyl-imidazolium/hexafluorophosphate
Trihexyl-tetradecyl-phosphonium/hexafluorophosphate
Tetrabutyl-ammonium/nonafluoro-butanesulfonate
Tetrabutyl-ammonium/heptadecafluoro-octanesulfonate
Tetrabutyl-phosphonium/tetrafluoroborate
Tetrahexyl-ammonium/tetrafluoroborate
Tetrapentyl-ammonium/thiocyanate
Trioctylmethylammonium/thiosalicylate
1-hexyl-3-methyl-imidazolium/trifluoromethansulfonate
が挙げられる。
Specific examples of non- oil-soluble ionic liquids (cations / anions)
Trihexyl-tetradecyl-phosphonium / bis (2,4,4-trimethyl-pentyl) phosphinate
1-ethyl-3-methyl-imidazolium / bis (pentafluoroethylsulfonyl) imide
1-butyl-1-methyl-pyrrolidinium / bis (trifluoromethylsulfonyl) imide
Tetrabutyl-ammonium / bis (trifluoromethylsulfonyl) imide
Trihexyl-tetradecyl-phosphonium / decanoate
1-butyl-3- (3,3, ...- tridecafluorooctyl) -imidazolium / hexafluorophosphate
1-methyl-3- (3,3, ...- tridecafluorooctyl) -imidazolium / hexafluorophosphate
1-ethyl-3-methyl-imidazolium / hexafluorophosphate
1-butyl-3-methyl-imidazolium / hexafluorophosphate
1-hexyl-3-methyl-imidazolium / hexafluorophosphate
1-butyl-4-methyl-pyridinium / hexafluorophosphate
1-methyl-3-octyl-imidazolium / hexafluorophosphate
Trihexyl-tetradecyl-phosphonium / hexafluorophosphate
Tetrabutyl-ammonium / nonafluoro-butanesulfonate
Tetrabutyl-ammonium / heptadecafluoro-octanesulfonate
Tetrabutyl-phosphonium / tetrafluoroborate
Tetrahexyl-ammonium / tetrafluoroborate
Tetrapentyl-ammonium / thiocyanate
Trioctylmethylammonium / thiosalicylate
1-hexyl-3-methyl-imidazolium / trifluoromethansulfonate
Is mentioned.

〔増ちょう剤〕
本発明のイオン液に増ちょう剤を含ませることにより、見掛け粘度を大きくすることが出来る。
増ちょう剤には導電性で油溶性のものがよく、ウレア系増ちょう剤、ポリテトラフルオロエチレン(PTFE)、MCA、カーボンブラックに代表される有機系増ちょう剤、の他に、銅や銀などの金属や酸化亜鉛、酸化チタンなどの金属酸化物、窒化ホウ素など窒化物など無機の微粉末も増ちょう剤として使用可能である。
増ちょう剤の含有量はイオン液に対して、好ましくは1〜50質量%、さらに好ましくは3〜30質量%である。
[Thickener]
By adding a thickener to the ionic liquid of the present invention, the apparent viscosity can be increased.
Thickeners are preferably conductive and oil-soluble, and include urea-based thickeners, polytetrafluoroethylene (PTFE), MCA, organic thickeners typified by carbon black, and copper and silver. Metal oxides such as zinc oxide and titanium oxide, and inorganic fine powders such as nitrides such as boron nitride can also be used as thickeners.
The content of the thickener is preferably 1 to 50% by mass, more preferably 3 to 30% by mass with respect to the ionic liquid.

(実施例1)
本発明に適用されるガラス電極式のpH電極センサについて説明する。なお、以下において「イオン液体膜」と「イオン液体」には同一の符号を付す。
図2は図1を前提技術として、本発明の実施例に係るガラス電極10Aと比較電極20AからなるpH電極1Aからなるオイル劣化(pH)センサ100で、図1と同様に前記ガラス電極10A支持管34には、内部電極14Aが収容してあり、ガラス電極10A内部液12Aとして例えばpH7のKCl溶液が充填してある。比較電極20Aは、液絡部23Aが比較電極20Aの支持管25の外周壁の底側に設けてある。比較電極20Aの内部電極24A及びガラス電極10Aの内部電極14Aには、それぞれリード線111,201が接続してあり、それらのリード線はケーブル束としてこの支持管25,34の基端部から外部に延出しpH測定器本体5に接続されるようにしてある。
そして、前記球状のpH応答ガラス薄膜31の全表面と比較電極20Aの支持管25を挟んで液絡部23A外表面に至るまで非油溶性で且つ導電性のイオン液体膜15が被覆されている。
そして前記イオン液15は潤滑油が作動している状態の−20〜+100℃の範囲で、液体となっている常温溶融塩とも呼ばれるもので非油溶性で且つ導電性のイオン液で前記実施例で示すイオン液の単数若しくは複数の組合わせから構成した。
又イオン液15の40℃動粘度は、12mm/s未満では電極に対する付着性が低下するので12mm/s以上とするのがよい。
更に前記イオン液に前記増ちょう剤を加えてグリース状にすると被着効果が一層高まる。
Example 1
It explained pH electrostatic Gokuse capacitors glass electrode type to be applied to the present invention. In the following, “ionic liquid film” and “ionic liquid” are denoted by the same reference numerals.
Figure 2 is a base technology to Figure 1, an oil degradation (pH) sensor 100 consisting of pH electrodes 1A made of glass electrode 10A and the reference electrode 20A according to the embodiment of the present invention, the glass electrode 10A as in FIG The support tube 34 accommodates an internal electrode 14A and is filled with, for example, a KCl solution having a pH of 7 as the internal liquid 12A of the glass electrode 10A. In the comparison electrode 20A, the liquid junction 23A is provided on the bottom side of the outer peripheral wall of the support tube 25 of the comparison electrode 20A . Lead wires 111 and 201 are connected to the internal electrode 24A of the comparison electrode 20A and the internal electrode 14A of the glass electrode 10A, respectively, and these lead wires are connected to the outside from the base ends of the support tubes 25 and 34 as cable bundles. It is to be connected to the extending and p H meter body 5.
Then, the non-oil-soluble and conductive ionic liquid film 15 is covered until the entire surface of the spherical pH-responsive glass thin film 31 and the outer surface of the liquid junction part 23A are sandwiched between the support tube 25 of the comparison electrode 20A . .
The ionic liquid 15 is a non-oil-soluble and electrically conductive ionic liquid which is also called a room temperature molten salt in the range of -20 to + 100 ° C. in a state where the lubricating oil is operating. It comprised from the combination of the ionic liquid shown by or several.
The 40 ° C. kinematic viscosity of the ionic liquid 15 is preferably set to 12 mm 2 / s or more because it is less than 12 mm 2 / s adhesion to the electrode is reduced.
Furthermore, when the thickener is added to the ionic liquid to form a grease, the deposition effect is further enhanced.

図2において、前記したイオン液体15が、比較電極側の液絡部23Aとガラス電極側のpH応答ガラス薄膜31間に被着されている状態を表している。イオン液体の代表例については前述してあるが、図2の状態は概念図である。実際には、比較電極側の液絡部23Aとガラス電極側のpH応答ガラス薄膜31間にイオン液体15が保持される必要がある。そこで、イオン液体15を半固体状すなわちグリース状にしておけば塗布が楽になる。イオン液体15をベースにLiせっけんなどの増ちょう剤でグリース化する方法については、協同油脂の発明国際公開第2012/018137号などに記載されている。また、増ちょう剤を用いずに半固体状にする方法については、イオン液体を無機の微粉末と混ぜる方法が考えられる。
無機の微粉末には酸化亜鉛、酸化チタンなどの金属酸化物、アルミナ、窒化けい素などのセラミックス、窒化ほう素などの窒化物、PTFEなどのふっ素樹脂を用いるのが好ましい。
FIG. 2 shows a state in which the ionic liquid 15 is deposited between the liquid junction 23A on the comparison electrode side and the pH-responsive glass thin film 31 on the glass electrode side. Although the representative example of the ionic liquid has been described above, the state of FIG. 2 is a conceptual diagram. Actually, the ionic liquid 15 needs to be held between the liquid junction 23A on the comparison electrode side and the pH-responsive glass thin film 31 on the glass electrode side. Therefore, if the ionic liquid 15 is made semi-solid, that is, in the form of grease, the application becomes easy. A method of making a grease with a thickener such as Li soap based on the ionic liquid 15 is described in Kyodo Yushi Invention International Publication No. 2012/018137. In addition, as a method of making a semi-solid without using a thickener, a method of mixing an ionic liquid with an inorganic fine powder can be considered.
As the inorganic fine powder, it is preferable to use metal oxides such as zinc oxide and titanium oxide, ceramics such as alumina and silicon nitride, nitrides such as boron nitride, and fluorine resins such as PTFE.

そして前記pHセンサ1Aをカルボン酸(弱酸性成分)と硫酸(強酸性成分)を含むエンジン油に浸漬して、pHセンサの起電力を電位差計4で計測した結果を図5に示す。図5の縦軸は本発明で測定した起電力であり、横軸はJIS規格法で測定した全酸価である。
このpHセンサの起電力と従来の全酸価が対応付けられることを示している。
FIG. 5 shows the results of measuring the electromotive force of the pH sensor with the potentiometer 4 by immersing the pH sensor 1A in an engine oil containing carboxylic acid (weakly acidic component) and sulfuric acid (strongly acidic component). The vertical axis in FIG. 5 is the electromotive force measured by the present invention, and the horizontal axis is the total acid value measured by the JIS standard method.
This shows that the electromotive force of this pH sensor is associated with the conventional total acid value.

本実施例によれば、油のpHを直接測定する場合、図2に示すpHセンサを直接油中に浸漬して、pH応答ガラス薄膜31の全表面と比較電極20Aの支持管25を挟んで液絡部23A外表面に至るまで前記イオン液体で被覆させた状態で、図5の校正図を用いて、あらかじめ全酸価と起電力の関係を校正しておけば、全酸価が未知のオイルの起電力から全酸価を求めることができるのでオンラインでのオイル劣化の検知が可能となる。 According to the present embodiment, when directly measuring the pH of the oil, the pH sensor shown in FIG. 2 is directly immersed in the oil, and the entire surface of the pH-responsive glass thin film 31 and the support tube 25 of the comparison electrode 20A are sandwiched. If the relationship between the total acid value and the electromotive force is calibrated in advance using the calibration diagram of FIG. 5 with the ionic liquid covered up to the outer surface of the liquid junction 23A, the total acid value is unknown. Since the total acid value can be obtained from the electromotive force of the oil, it is possible to detect oil deterioration online.

(実施例2)
図3は本発明の前提条件となるイオン感受形電界効果トランジスタ(ISFET)を使用したpH半導体センサの従来例である。
図3において、内部電極であるAg/AgCl電極24Bが内包された支持管25には、内部電極24Bとともに、内部液22Bとして例えばpH7のKCl飽和溶液が充填してある。支持管25の外周壁の底側には液絡部23Bが設けてあるとともに、底側の液絡部23Bの近くの支持管25外周にはISFET半導体電極10Bが設けてある。そしてISFET半導体電極10B及びAg/AgCl電極24Bには、それぞれリード線11B、21Bが接続してあり、それらのリード線はケーブル束としてこの支持管25の基端部から外部に延出し図示しないpH測定器本体5に接続されるようにしてある。
(Example 2)
FIG. 3 shows a conventional example of a pH semiconductor sensor using an ion-sensitive field effect transistor (ISFET) which is a precondition for the present invention.
In FIG. 3, a support tube 25 containing an Ag / AgCl electrode 24B as an internal electrode is filled with, for example, a KCl saturated solution having a pH of 7 as the internal liquid 22B together with the internal electrode 24B. With the bottom side there is provided the liquid junction 23B of the outer peripheral wall of the support tube 25, it is close to the support tube 25 the outer circumference of the bottom side of the liquid junction 23B is provided with a ISFET semiconductor electrode 10B. The lead wires 11B and 21B are connected to the ISFET semiconductor electrode 10B and the Ag / AgCl electrode 24B, respectively, and these lead wires extend to the outside from the base end portion of the support tube 25 as a cable bundle and have a pH not shown. It is designed to be connected to the measuring instrument body 5.

図4は図3の前提技術を用いた本発明の実施例2で、前記したイオン液体15が比較電極側の液絡部とISFET半導体電極10B間の支持管上に被着されているのは実施例1と同様である。 FIG. 4 shows a second embodiment of the present invention using the base technology of FIG. 3, in which the ionic liquid 15 is deposited on the support tube between the liquid junction on the comparison electrode side and the ISFET semiconductor electrode 10B. The same as in the first embodiment.

本実施例によれば、油のpHを直接測定する場合、図4に示すpHセンサを直接油中に浸漬して、ISFET半導体電極10Bの全表面と比較電極24Bの液絡部23B外表面に至るまで前記イオン液体15で被覆させた状態で、図5の校正図を用いて、あらかじめ全酸価と起電力の関係を校正しておけば、全酸価が未知のオイルの起電力から全酸価を求めることができるのでオンラインでのオイル劣化の検知が可能となる。 According to the present embodiment, when directly measuring the pH of the oil, the pH sensor shown in FIG. 4 is directly immersed in the oil so that the entire surface of the ISFET semiconductor electrode 10B and the outer surface of the liquid junction 23B of the comparison electrode 24B while being coated with the ionic liquid 15 until, using a calibration diagram of FIG. 5, if calibrated in advance total acid number and the electromotive force of the relationships, the total acid number from the electromotive force of an unknown oil all Since the acid value can be obtained, it is possible to detect oil deterioration online.

以上記載の如く本発明の油の劣化度を検知するpHセンサ若しくはPH半導体センサによれば潤滑油等の試料油に前記pH電極を直接浸漬して全酸価の変化(pHの変化)に伴う油そのものの劣化を判断することが出来、結果としてオンラインで潤滑油等の油劣化状態を継続して検出できる。   As described above, according to the pH sensor or the PH semiconductor sensor for detecting the degree of deterioration of the oil according to the present invention, the pH electrode is directly immersed in sample oil such as lubricating oil, which is accompanied by a change in total acid value (change in pH). It is possible to determine the deterioration of the oil itself, and as a result, it is possible to continuously detect the oil deterioration state of the lubricating oil or the like online.

1 pH電極センサ
3 演算部
4 電位差計
10,10A ガラス電極
20,20A 比較電極
15 非油溶性で且つ導電性のイオン液体膜
1B pH半導体センサ
23A,23B 液絡部
DESCRIPTION OF SYMBOLS 1 pH electrode sensor 3 Calculation part 4 Potentiometer 10, 10A Glass electrode 20, 20A Comparison electrode 15 Non-oil-soluble and electroconductive ionic liquid film 1B pH semiconductor sensor 23A, 23B Liquid junction part

Claims (5)

pHセンサが比較電極とガラス電極とを一体化した複合電極であって活性センサエリアとして機能する前記比較電極側の液絡部とガラス電極側のpH応答ガラス薄膜間の外表面に非油溶性で且つ導電性のイオン液体膜が被覆されていることを特徴とするpHセンサ。   The pH sensor is a composite electrode in which the reference electrode and the glass electrode are integrated, and is non-oil soluble on the outer surface between the liquid junction on the side of the comparative electrode functioning as an active sensor area and the pH-responsive glass thin film on the side of the glass electrode. And a pH sensor which is coated with a conductive ionic liquid film. 前記イオン液に対して、質量比で1〜50質量%の増ちょう剤が含有されていることを特徴とするpHセンサ。   A pH sensor comprising a thickener in an amount of 1 to 50% by mass with respect to the ionic liquid. 先端にpHに敏感に応答するpH応答ガラス薄膜が形成され、内部にガラス電極内部液が充填されているガラス電極と、内部に比較電極内部液が充填され、先端部に液絡部が形成された比較電極からなるpH電極センサであって、比較電極側の液絡部とガラス電極側のpH応答ガラス薄膜間のセンサ支持体外表面に非油溶性で且つ導電性のイオン液体膜が被着されていることを特徴とする請求項1記載のpHセンサ。   A pH-responsive glass thin film that responds sensitively to pH is formed at the tip, a glass electrode filled with glass electrode internal liquid, and a liquid inside the comparison electrode is filled inside, and a liquid junction is formed at the tip A non-oil-soluble and conductive ionic liquid film is deposited on the outer surface of the sensor support between the liquid junction on the comparison electrode side and the pH-responsive glass thin film on the glass electrode side. The pH sensor according to claim 1, wherein イオン感受形電界効果トランジスタ(ISFET)の構造を使用したpH半導体センサの活性センサエリアとなる半導体電極と液絡部を結ぶセンサ支持体外表面に、非油溶性で且つ導電性のイオン液体膜が被着されていることを特徴とする請求項1記載のpHセンサ。   A non-oil-soluble and conductive ionic liquid film is coated on the outer surface of the sensor support that connects the semiconductor electrode that is the active sensor area of the pH semiconductor sensor using the structure of an ion-sensitive field effect transistor (ISFET) and the liquid junction. The pH sensor according to claim 1, wherein the pH sensor is worn. pH応答ガラス薄膜の外表面に前記非油溶性で且つ導電性のイオン液体膜が被覆されているガラス電極部、若しくはISFETの構造を使用して製造され活性センサエリアの外表面に前記非油溶性で且つ導電性のイオン液体膜が被覆されているpHセンサを直接油中に浸漬して油のpH値を測定することを特徴とする油の劣化度検出方法。

The non-oil soluble and non-oil soluble on the outer surface of the active sensor area manufactured using the glass electrode part or the structure of ISFET whose outer surface of the pH responsive glass thin film is coated with the non-oil soluble and conductive ionic liquid film. A method for detecting the degree of deterioration of an oil, wherein the pH value of the oil is measured by directly immersing the pH sensor coated with a conductive ionic liquid film in the oil.

JP2013032682A 2013-02-22 2013-02-22 pH sensor and method for detecting oil deterioration using the sensor Active JP5946782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013032682A JP5946782B2 (en) 2013-02-22 2013-02-22 pH sensor and method for detecting oil deterioration using the sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013032682A JP5946782B2 (en) 2013-02-22 2013-02-22 pH sensor and method for detecting oil deterioration using the sensor

Publications (2)

Publication Number Publication Date
JP2014163709A true JP2014163709A (en) 2014-09-08
JP5946782B2 JP5946782B2 (en) 2016-07-06

Family

ID=51614463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013032682A Active JP5946782B2 (en) 2013-02-22 2013-02-22 pH sensor and method for detecting oil deterioration using the sensor

Country Status (1)

Country Link
JP (1) JP5946782B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105229456A (en) * 2013-06-21 2016-01-06 三菱重工业株式会社 The deteriorated sensor of oil and oily degradation detection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018128895A1 (en) 2017-12-19 2019-06-19 Endress+Hauser Conducta Gmbh+Co. Kg Reference electrode and method of making a reference electrode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004271388A (en) * 2003-03-10 2004-09-30 Denso Corp Ph sensor for oil
JP2007064971A (en) * 2005-08-03 2007-03-15 Kyoto Univ Reference electrode, salt bridge, and ion concentration measuring device using them
WO2008032790A1 (en) * 2006-09-13 2008-03-20 Kyoto University Reference electrode coated with ionic liquid, and electrochemical measurement system using the reference electrode
WO2012093727A1 (en) * 2011-01-07 2012-07-12 国立大学法人三重大学 Reference electrode
JP2012163506A (en) * 2011-02-09 2012-08-30 Gunze Ltd In-oil hydrogen detection sensor
JP2012237615A (en) * 2011-05-11 2012-12-06 Misuzu Kogyo:Kk Ion sensor device and ion concentration measuring device equipped with ion sensor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004271388A (en) * 2003-03-10 2004-09-30 Denso Corp Ph sensor for oil
JP2007064971A (en) * 2005-08-03 2007-03-15 Kyoto Univ Reference electrode, salt bridge, and ion concentration measuring device using them
WO2008032790A1 (en) * 2006-09-13 2008-03-20 Kyoto University Reference electrode coated with ionic liquid, and electrochemical measurement system using the reference electrode
WO2012093727A1 (en) * 2011-01-07 2012-07-12 国立大学法人三重大学 Reference electrode
JP2012163506A (en) * 2011-02-09 2012-08-30 Gunze Ltd In-oil hydrogen detection sensor
JP2012237615A (en) * 2011-05-11 2012-12-06 Misuzu Kogyo:Kk Ion sensor device and ion concentration measuring device equipped with ion sensor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105229456A (en) * 2013-06-21 2016-01-06 三菱重工业株式会社 The deteriorated sensor of oil and oily degradation detection

Also Published As

Publication number Publication date
JP5946782B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
CN103119431B (en) Measurement arrangement and method for ascertaining an analyte concentration in a measurement medium
US11125714B2 (en) Potentiometric sensor
CA2856005C (en) Device and method for determining fluid streaming potential
CN103076376B (en) Metal and applying coating metal erosion state verification array electrode
Lamaka et al. Novel Solid‐Contact Ion‐Selective Microelectrodes for Localized Potentiometric Measurements
KR101764050B1 (en) Oil degradation sensor and oil degradation detection method
Lill et al. A combined μ-mercury reference electrode/Au counter-electrode system for microelectrochemical applications
JP5946782B2 (en) pH sensor and method for detecting oil deterioration using the sensor
US4360415A (en) Noise suppressing bypass for reference electrode
CN104965013A (en) Self-compensation and pollution-resistant reference electrode
CN111788478B (en) Corrosion measuring device
JP6236449B2 (en) Use of a reference system for electrochemical analysis and electrochemical deposition.
CN109828008B (en) Electrode for an electrochemical measuring system
Rustomji et al. Thin-film electrochemical sensor electrode for rapid evaluation of electrolytic conductivity, cyclic voltammetry, and temperature measurements
RU2480734C2 (en) Measuring device of polarisation potential of pipelines
Kitade et al. Needle-type ultra micro silver/silver chloride reference electrode for use in micro-electrochemistry
CN103063723B (en) Solid hydrogen ion concentration electrode based on conductive polyaniline and preparing method thereof
RU2471171C1 (en) Evaluation device of protection against corrosion as to value of deflection from natural potential
CN100383517C (en) Process for making puncture composite sensor for measuring pH and sensor therefor
CN204758524U (en) Use pH glass electrode and metal telluric electricity field compound pH electrode as reference
CN103063725A (en) Solid ammonium ion electrode based on conductive polyaniline and preparing method thereof
CN103123333B (en) Based on the method for three electrode sensors and Differential Pulse Voltammetry Fast Measurement lead
CN110702748A (en) Potentiometric sensor assembly and method for monitoring sensor function of potentiometric sensor
Deng et al. AC impedance model of array electrodes in multisensor fusion system for two-phase flow measurement
CN112567237A (en) Potentiometric measuring chain and method for determining pH value

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160601

R151 Written notification of patent or utility model registration

Ref document number: 5946782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250