JP2014163707A - Road deformation detection device, road deformation detection method and program - Google Patents

Road deformation detection device, road deformation detection method and program Download PDF

Info

Publication number
JP2014163707A
JP2014163707A JP2013032596A JP2013032596A JP2014163707A JP 2014163707 A JP2014163707 A JP 2014163707A JP 2013032596 A JP2013032596 A JP 2013032596A JP 2013032596 A JP2013032596 A JP 2013032596A JP 2014163707 A JP2014163707 A JP 2014163707A
Authority
JP
Japan
Prior art keywords
point
road
reference line
along
unevenness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013032596A
Other languages
Japanese (ja)
Other versions
JP5991489B2 (en
Inventor
Hideki Shimamura
秀樹 島村
Kohei Yamamoto
耕平 山本
Kazuya Aoki
一也 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pasco Corp
Original Assignee
Pasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pasco Corp filed Critical Pasco Corp
Priority to JP2013032596A priority Critical patent/JP5991489B2/en
Publication of JP2014163707A publication Critical patent/JP2014163707A/en
Application granted granted Critical
Publication of JP5991489B2 publication Critical patent/JP5991489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize automated work of detecting unevenness on the basis of three-dimensional coordinate data for a point group extracted from a structure surface along a road.SOLUTION: Point group extraction means 20 sets a reference line passing through an unevenness inspection position on an even reference surface assuming a structure surface along a road, and extracts first and second attention point groups in a point group that are located along the reference line within a preset nearby range, from each of one side and the other side of the reference line divided at the unevenness inspection position. Unevenness determination means 22 uses a prescribed significant level to apply an F-test to a hypothesis that regression coefficients of both attention point groups coincide with each other, with respect to a regression analysis with setting a coordinate along the reference line at each point constituting the attention point groups and a coordinate along a normal direction to the reference surface as an explanatory variable and a dependent variable respectively, and when the hypothesis is rejected, determines the presence of unevenness corresponding to the unevenness inspection position.

Description

本発明は、道路の路面及び道路に沿って設けられる構造物の表面の変状として凹凸状況(不陸)を検出する技術に関する。   The present invention relates to a technique for detecting an uneven state (non-landscape) as a deformation of a road surface and a surface of a structure provided along a road.

道路利用者の安全を確保する上で道路の維持管理は重要であり、当該管理の一環として路面の不陸を検出する路面性状調査が行われている。従来の路面性状調査は、路面のひびわれ、わだち掘れ、縦断凹凸のデータを計測し、それらに基づいて維持管理指数を算出し道路の供用性を評価している。   Maintenance of roads is important for ensuring the safety of road users, and road surface property surveys that detect road surface irregularities are being conducted as part of the management. In the conventional road surface property survey, road surface cracks, rutting, and longitudinal unevenness data are measured, and maintenance indexes are calculated based on these data to evaluate road serviceability.

従来、路面の不陸を検出する測定装置として、レーザスキャナを用いて路面に光を照射し、路面からの反射光を測定することにより装置と路面との距離を求め、路面の凹凸を測定するものがあった(特許文献1,2)。当該測定装置は車両に載置され、当該車両を走行させながら当該装置と路面との距離を測定して道路表面プロファイルを得ることができる。   Conventionally, as a measuring device for detecting the unevenness of the road surface, a laser scanner is used to irradiate the road surface with light, and the reflected light from the road surface is measured to determine the distance between the device and the road surface, thereby measuring the unevenness of the road surface. There was a thing (patent documents 1, 2). The measuring device is mounted on a vehicle, and a road surface profile can be obtained by measuring the distance between the device and the road surface while the vehicle is running.

一方、車両に搭載したレーザスキャナを用い道路に沿って地物の形状を表す3次元点群データを取得する技術としてモービルマッピングシステムが近年開発された(特許文献3)。当該システムでは、自動車に搭載されたレーザスキャナは車体の上部から斜め下方向や斜め上方向にレーザを照射する。レーザの光軸は横方向に走査され、走査角度範囲内にて微小角度ごとにレーザパルスが発射される。レーザの発射から反射光の受信までの時間に基づいて距離が計測され、またその際、レーザの発射方向、時刻、及び車体の位置・姿勢などが計測される。それら計測データから、レーザパルスを反射した点の3次元座標を表す点群データが求められる。また、当該システムは点群データの取得と同時に、デジタルカメラを用いて映像を撮影する。その画像はデータ解析にてユーザが計測対象部分を指定する際に利用することができる。   On the other hand, a mobile mapping system has recently been developed as a technique for acquiring three-dimensional point cloud data representing the shape of a feature along a road using a laser scanner mounted on a vehicle (Patent Document 3). In this system, a laser scanner mounted on an automobile irradiates a laser obliquely downward or obliquely upward from the top of the vehicle body. The optical axis of the laser is scanned in the horizontal direction, and laser pulses are emitted at every minute angle within the scanning angle range. The distance is measured based on the time from the laser emission to the reception of the reflected light, and at that time, the laser emission direction, time, and the position / posture of the vehicle body are measured. From these measurement data, point group data representing the three-dimensional coordinates of the point reflecting the laser pulse is obtained. In addition, the system captures video using a digital camera simultaneously with the acquisition of point cloud data. The image can be used when the user designates a measurement target part in data analysis.

特開平8−86645号公報JP-A-8-86645 特開平9−287933号公報JP-A-9-287933 特開2009−204615号公報JP 2009-204615 A

従来の測定装置のレーザスキャナは搭載された自動測定車の幅方向に沿ってレーザ光による走査を行い、その走査幅が車幅程度となる構造であった。そのため、測定される路面は専ら車線の中央付近に限定され、車線の端の部分は測定しにくく、また複数車線の道路では車線ごとに測定車を走行させなければならないという問題があった。   The laser scanner of the conventional measuring apparatus has a structure in which scanning with a laser beam is performed along the width direction of the automatic measuring vehicle mounted, and the scanning width is about the vehicle width. Therefore, the road surface to be measured is limited to the vicinity of the center of the lane, the end portion of the lane is difficult to measure, and there is a problem that the measuring vehicle must be run for each lane on a road with multiple lanes.

この点、モービルマッピングシステムは、道路だけでなく道路脇の領域も含む広い範囲を一度に高密度な点群を取得できる。一方、当該システムで得られる点群データをもとに地物を判読するなどの分析は、3次元CADで編集ツール等を利用して手作業で行われており、自動化は開発途上である。道路の不陸の検出も同様に手作業で行うとすると作業者の負担が大きいという問題がある。特に、路面の不陸は、道路上・道路脇に設置される地物ほどには形状が必ずしも明確ではなく、点群が形成する表面形状から人が目視で不陸を高精度に判読するのは容易ではない。   In this regard, the mobile mapping system can acquire a high-density point group in a wide range including not only the road but also the roadside area at a time. On the other hand, analysis such as interpretation of features based on point cloud data obtained by the system is performed manually using an editing tool or the like in 3D CAD, and automation is under development. Similarly, if the road unevenness is detected manually, there is a problem that the burden on the operator is heavy. In particular, the unevenness of the road surface is not necessarily as clear as the features installed on the road or on the side of the road, and people can visually interpret the unevenness with high accuracy from the surface shape formed by the point cloud. Is not easy.

本発明は、道路に沿う構造物表面から抽出された点群の3次元座標データに基づいて不陸を検出する作業の自動化を可能とする道路変状検出装置、道路変状検出方法及びプログラムを提供することを目的とする。   The present invention relates to a road deformation detection device, a road deformation detection method, and a program capable of automating work for detecting unevenness based on three-dimensional coordinate data of a point cloud extracted from a structure surface along a road. The purpose is to provide.

本発明に係る道路変状検出装置は、道路に沿う構造物表面から抽出された点群の3次元座標データに基づき、目的構造物の表面における不陸を検出する装置であって、前記表面を想定した平らな基準面上に不陸検査位置を通る基準線を設定し、前記不陸検査位置で分割した前記基準線の一方側と他方側とからそれぞれ、前記点群のうち予め設定した近傍範囲内で前記基準線に沿って位置する第1及び第2の注目点群を抽出する点群抽出手段と、前記注目点群を構成する各点の前記基準線に沿った座標及び前記基準面に対する法線方向に沿った座標をそれぞれ説明変数、従属変数とする回帰分析に関し、前記両注目点群の回帰係数が一致するとの仮説を所定の有意水準でF検定して、前記仮説が棄却された場合に前記不陸検査位置に対応する不陸が存在すると判定する不陸判定手段と、を有する。   A road deformation detection device according to the present invention is a device for detecting unevenness on the surface of a target structure based on three-dimensional coordinate data of a point cloud extracted from the surface of the structure along the road, A reference line passing through the unevenness inspection position on an assumed flat reference surface is set, and one of the reference lines divided at the unevenness inspection position and the other side of each of the points set in advance Point group extraction means for extracting first and second attention point groups located along the reference line within a range, coordinates of the points constituting the attention point group, and the reference plane along the reference line With respect to regression analysis with coordinates along the normal direction to the explanatory variable and dependent variable, respectively, the hypothesis that the regression coefficients of the two points of interest match is F-tested at a predetermined significance level, and the hypothesis is rejected If the But having a uneven surface determining means for determining a present.

他の本発明に係る道路変状検出装置においては、前記不陸判定手段は、Chow検定により前記仮説を検定する。   In another road deformation detection device according to the present invention, the unevenness determination means tests the hypothesis by a Chow test.

さらに他の本発明に係る道路変状検出装置においては、前記点群抽出手段は、前記基準線上の複数個所に前記不陸検査位置を設定し、当該各不陸検査位置にて互いに同じ所定個数の点からなる前記第1の注目点群及び前記第2の注目点群を設定し、前記不陸判定手段は、前記不陸検査位置それぞれにて、互いに共通のF分布に従うことになるF値を算出し、前記基準線に沿った当該F値の変動を表す情報を生成する。   In still another road deformation detection device according to the present invention, the point cloud extraction means sets the non-land inspection positions at a plurality of locations on the reference line, and the same predetermined number at each non-land inspection position. The first attention point group and the second attention point group consisting of the points are set, and the non-land determination means follows an F value common to each other at the non-land inspection position. Is calculated, and information representing the variation of the F value along the reference line is generated.

上記道路変状検出装置においては、前記点群抽出手段は、道路の表面に対応した前記基準面を設定し、道路の横断方向に沿って前記基準線を設定する構成とすることができる。   In the road deformation detection device, the point cloud extraction unit may set the reference plane corresponding to the surface of the road and set the reference line along the crossing direction of the road.

また上記道路変状検出装置においては、前記点群抽出手段は、前記近傍範囲として前記基準面上にて前記基準線に沿って予め定められた幅を有する帯状領域を設定し、前記基準面に射影した位置が前記帯状領域内となる点で前記注目点群を構成することができる。   In the road deformation detection device, the point cloud extraction unit sets a band-like region having a predetermined width along the reference line on the reference plane as the vicinity range, and sets the reference plane on the reference plane. The point-of-interest group can be constituted by points where the projected positions are within the band-like region.

本発明に係る道路変状検出方法は、道路に沿う構造物表面から抽出された点群の3次元座標データに基づき、目的構造物の表面における不陸を検出する方法であって、前記表面を想定した平らな基準面上に不陸検査位置を通る基準線を設定し、前記不陸検査位置で分割した前記基準線の一方側と他方側とからそれぞれ、前記点群のうち予め設定した近傍範囲内で前記基準線に沿って位置する第1及び第2の注目点群を抽出する点群抽出ステップと、前記注目点群を構成する各点の前記基準線に沿った座標及び前記基準面に対する法線方向に沿った座標をそれぞれ説明変数、従属変数とする回帰分析に関し、前記両注目点群の回帰係数が一致するとの仮説を所定の有意水準でF検定して、前記仮説が棄却された場合に前記不陸検査位置に対応する不陸が存在すると判定する不陸判定ステップと、を有する。   A road deformation detection method according to the present invention is a method for detecting unevenness on the surface of a target structure based on three-dimensional coordinate data of a point cloud extracted from the surface of the structure along the road, A reference line passing through the unevenness inspection position on an assumed flat reference surface is set, and one of the reference lines divided at the unevenness inspection position and the other side of each of the points set in advance A point group extracting step for extracting first and second attention point groups positioned along the reference line within a range; coordinates of the points constituting the attention point group along the reference line; and the reference plane With respect to regression analysis with coordinates along the normal direction to the explanatory variable and dependent variable, respectively, the hypothesis that the regression coefficients of the two points of interest match is F-tested at a predetermined significance level, and the hypothesis is rejected Corresponding to the uneven inspection position. Having a uneven surface determining step determines that the uneven surface is present.

本発明に係るプログラムは、コンピュータに、道路に沿う構造物表面から抽出された点群の3次元座標データに基づき、目的構造物の表面における不陸を検出するデータ解析を行わせるためのプログラムであって、当該コンピュータを、前記表面を想定した平らな基準面上に不陸検査位置を通る基準線を設定し、前記不陸検査位置で分割した前記基準線の一方側と他方側とからそれぞれ、前記点群のうち予め設定した近傍範囲内で前記基準線に沿って位置する第1及び第2の注目点群を抽出する点群抽出手段、及び、前記注目点群を構成する各点の前記基準線に沿った座標及び前記基準面に対する法線方向に沿った座標をそれぞれ説明変数、従属変数とする回帰分析に関し、前記両注目点群の回帰係数が一致するとの仮説を所定の有意水準でF検定して、前記仮説が棄却された場合に前記不陸検査位置に対応する不陸が存在すると判定する不陸判定手段、として機能させる。   The program according to the present invention is a program for causing a computer to perform data analysis for detecting unevenness on the surface of the target structure based on the three-dimensional coordinate data of the point cloud extracted from the surface of the structure along the road. The computer sets a reference line passing through the non-land inspection position on a flat reference surface assuming the surface, and from each of the one side and the other side of the reference line divided at the non-land inspection position, respectively. , Point group extraction means for extracting first and second attention point groups located along the reference line within a preset vicinity range, and each point constituting the attention point group. With respect to regression analysis using coordinates along the reference line and coordinates along the normal direction to the reference plane as explanatory variables and dependent variables, respectively, a hypothesis that the regression coefficients of the two points of interest match is a predetermined significance level. so And test uneven surface determining means for determining the uneven surface is present that corresponds to the uneven surface inspection position when the hypothesis is rejected, to function as a.

本発明によれば、道路に沿う構造物表面から抽出された点群の3次元座標データに基づいて不陸を検出する作業の自動化が図られる。   ADVANTAGE OF THE INVENTION According to this invention, automation of the operation | work which detects unevenness based on the three-dimensional coordinate data of the point cloud extracted from the structure surface along a road is achieved.

本発明の実施形態に係る道路変状検出システムの概略の構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a road deformation detection system according to an embodiment of the present invention. 本発明の実施形態に係る道路変状検出システムによる不陸検出処理の概略のフロー図である。It is a schematic flowchart of the unevenness detection process by the road deformation detection system which concerns on embodiment of this invention. 不陸検出処理にて設定される基準面、基準線及び検査断面を示す模式的な斜視図である。It is a typical perspective view which shows the reference plane, reference line, and test | inspection cross section which are set in a non-land | grand | ground detection process. 不陸検出処理にて設定される部分空間を説明する模式的な平面図である。It is a typical top view explaining the partial space set by a non-land | grand | ground detection process. 不陸検出処理における不陸検査位置の設定及び注目点群の抽出を説明する検査断面の模式図である。It is a schematic diagram of the inspection cross section explaining the setting of the non-land inspection position and the extraction of the attention point group in the non-land detection processing. 不陸検査位置の両側の注目点群についての当該回帰分析を説明する検査断面の模式図である。It is a schematic diagram of the test | inspection cross section explaining the said regression analysis about the attention point group of the both sides of a non-land | gear inspection position. 基準線に沿った路面プロファイル及びF値の例を示す模式図である。It is a schematic diagram which shows the example of the road surface profile and F value along a reference line. 基準線に沿った路面プロファイル及びF値の他の例を示す模式図である。It is a schematic diagram which shows the other example of the road surface profile along a reference line, and F value. 基準線に沿った路面プロファイル及びF値のさらに他の例を示す模式図である。It is a schematic diagram which shows the further another example of the road surface profile and F value along a reference line.

以下、本発明の実施の形態(以下実施形態という)である道路変状検出システム2について、図面に基づいて説明する。本システムは、道路に沿う構造物の表面から抽出された点群の3次元座標データに基づき、目的とする構造物の表面における不陸を検出するデータ解析装置である。道路に沿う構造物は、路面の他、例えば、側壁やトンネルなど種々のものを含む。一方、本システムが目的とする構造物は、基本的には平滑であることが期待される表面を有するものであり、本システムは当該表面にて不陸を検出し、不陸が存在することに基づいて当該構造物の変状を検出する。   Hereinafter, a road deformation detection system 2 according to an embodiment of the present invention (hereinafter referred to as an embodiment) will be described with reference to the drawings. This system is a data analysis device that detects unevenness on the surface of the target structure based on the three-dimensional coordinate data of the point cloud extracted from the surface of the structure along the road. The structures along the road include various things such as side walls and tunnels in addition to the road surface. On the other hand, the target structure of this system basically has a surface that is expected to be smooth, and this system detects unevenness on the surface, and there is unevenness. Based on the above, the deformation of the structure is detected.

点群データは例えば、上述のモービルマッピングシステムのように地上を走行する車両に搭載されたレーザスキャナにより取得される。また、レーザスキャナを地上に設置して計測を行っても良い。ここで、点群を構成する複数の計測点は空間内に離散的に位置する。この点群が道路表面等の凹凸形状を捉えるには、当該凹凸のスケールに応じた密度でレーザスキャンが行われる必要がある。この点、車両や三脚等の高さから行うレーザスキャンは、航空機等の高所から行うレーザスキャンとは異なり十分な走査密度を得ることができる。   The point cloud data is acquired by, for example, a laser scanner mounted on a vehicle traveling on the ground like the above-described mobile mapping system. In addition, measurement may be performed by installing a laser scanner on the ground. Here, a plurality of measurement points constituting the point group are discretely located in the space. In order for this point group to capture uneven shapes such as the road surface, it is necessary to perform laser scanning at a density corresponding to the uneven scale. In this respect, a laser scan performed from the height of a vehicle, a tripod or the like can obtain a sufficient scanning density, unlike a laser scan performed from a height such as an aircraft.

図1は、道路変状検出システム2の概略の構成を示すブロック図である。本システムは、演算処理装置4、記憶装置6、入力装置8及び出力装置10を含んで構成される。演算処理装置4として、本システムの各種演算処理を行う専用のハードウェアを作ることも可能であるが、本実施形態では演算処理装置4は、コンピュータ及び、当該コンピュータ上で実行されるプログラムを用いて構築される。   FIG. 1 is a block diagram showing a schematic configuration of a road deformation detection system 2. The system includes an arithmetic processing device 4, a storage device 6, an input device 8, and an output device 10. As the arithmetic processing device 4, it is possible to make dedicated hardware for performing various arithmetic processing of this system, but in this embodiment, the arithmetic processing device 4 uses a computer and a program executed on the computer. Built.

当該コンピュータのCPU(Central Processing Unit)が演算処理装置4を構成し、後述する点群抽出手段20及び不陸判定手段22として機能する。   A CPU (Central Processing Unit) of the computer constitutes the arithmetic processing unit 4 and functions as a point group extraction unit 20 and a non-land determination unit 22 described later.

記憶装置6はコンピュータに内蔵されるハードディスクなどで構成される。記憶装置6は演算処理装置4を点群抽出手段20及び不陸判定手段22として機能させるためのプログラム及びその他のプログラムや、本システムの処理に必要な各種データを記憶する。例えば、記憶装置6は、処理対象データとして解析の対象空間の点群データを格納する。   The storage device 6 is composed of a hard disk or the like built in the computer. The storage device 6 stores a program for causing the arithmetic processing unit 4 to function as the point group extraction unit 20 and the unevenness determination unit 22 and other programs, and various data necessary for the processing of this system. For example, the storage device 6 stores point cloud data of the analysis target space as the processing target data.

入力装置8は、キーボード、マウスなどであり、ユーザが本システムへの操作を行うために用いる。   The input device 8 is a keyboard, a mouse, or the like, and is used for a user to operate the system.

出力装置10は、ディスプレイ、プリンタなどであり、本システムによる不陸の解析結果を画面表示、印刷等によりユーザに示す等に用いられる。   The output device 10 is a display, a printer, or the like, and is used for displaying the result of analysis of unevenness by this system to the user by screen display, printing, or the like.

以下、不陸検出の目的構造物が舗装路面であり、道路変状検出システム2が道路の横断方向に沿った道路表面プロファイルにて不陸を検出する場合を例に説明する。図2は、道路変状検出システム2による路面の不陸検出処理の概略のフロー図である。   Hereinafter, a case will be described as an example where the target structure for non-land detection is a paved road surface and the road deformation detection system 2 detects non-land using a road surface profile along the crossing direction of the road. FIG. 2 is a schematic flowchart of road surface unevenness detection processing by the road deformation detection system 2.

ここで、不陸が存在しない仮想的な路面を基準面として設定し、当該平らな基準面上に道路横断方向に延びる基準線を設定する。また、基準線をxyz直交座標系のx軸とし、道路の縦断方向(又は車両の進行方向)及び基準面の法線方向をそれぞれy軸、z軸とする。   Here, a virtual road surface having no unevenness is set as a reference plane, and a reference line extending in the road crossing direction is set on the flat reference plane. The reference line is the x-axis of the xyz orthogonal coordinate system, and the longitudinal direction of the road (or the traveling direction of the vehicle) and the normal direction of the reference plane are the y-axis and z-axis, respectively.

後述するように不陸の検査は基準線上にて行われ、道路のxz断面での不陸が評価される。すなわち、基準線に対応して不陸の検査断面となるxz断面が設定される(S10)。図3は基準面、基準線及び検査断面を示す模式的な斜視図である。基準面30は概ね路面に平行に設定され、当該基準面30はxy平面を規定する。当該基準面30の上に道路32の横断方向(x軸方向)に沿って基準線34が設定される。そして基準線34に沿って基準面30に直交する検査断面36が設定される。   As will be described later, the inspection of unevenness is performed on the reference line, and the unevenness in the xz section of the road is evaluated. That is, an xz cross section that is a non-land inspection cross section corresponding to the reference line is set (S10). FIG. 3 is a schematic perspective view showing a reference plane, a reference line, and an inspection section. The reference plane 30 is set substantially parallel to the road surface, and the reference plane 30 defines an xy plane. A reference line 34 is set on the reference plane 30 along the crossing direction (x-axis direction) of the road 32. Then, an inspection cross section 36 orthogonal to the reference plane 30 is set along the reference line 34.

点群抽出手段20は、記憶装置6に格納された点群データから、予め設定した近傍範囲内で基準線に沿って位置する点群を検査断面に対応する部分点群として抽出する(S20)。例えば、近傍範囲として基準面上にて基準線に沿って予め定められた幅を有する帯状領域を設定し、基準面に射影した位置が当該帯状領域内となる計測点が抽出される。   The point cloud extraction means 20 extracts from the point cloud data stored in the storage device 6 a point cloud located along a reference line within a preset neighborhood range as a partial point cloud corresponding to the examination section (S20). . For example, a band-like area having a predetermined width along the reference line is set on the reference plane as the vicinity range, and a measurement point where the position projected on the reference plane falls within the band-like area is extracted.

具体的には、点群抽出手段20は、x,y,z各軸に沿った辺を有する直方体形状であって不陸検出を行う個所の路面を内包する部分空間を設定する。図4は部分空間を説明する模式的な平面図である。例えば、部分空間のx方向のサイズηは道路幅員に対応して5m程度に設定され、y方向のサイズηは当該方向に複数の計測点が含まれる大きさに設定される。ここで、y方向に関するレーザのスキャン位置は車両の進行と共に移動する。部分空間のy方向のサイズηは例えば、3〜5周期程度のスキャン位置を含むように設定でき、本実施形態ではサイズηは50cmとする。z方向に関しては、路面の上方に物体、例えば、トンネルの天井や道路標識が存在すると、それらが路面形状の解析に対してノイズとなる。そこで、予めそれらに起因する点群が除外されるようにz方向に関する点群の抽出範囲(位置、サイズ)を設定する。或いは、斜め下向きのレーザスキャナと斜め上向きのレーザスキャナとで取得される点群のうち斜め下向きのレーザスキャナによって取得されたものだけを路面形状解析に用いる構成としてもよい。 Specifically, the point group extraction means 20 sets a partial space that includes a road surface of a rectangular parallelepiped shape having sides along the x, y, and z axes and that performs unevenness detection. FIG. 4 is a schematic plan view for explaining the partial space. For example, the size η x in the x direction of the partial space is set to about 5 m corresponding to the road width, and the size η y in the y direction is set to a size including a plurality of measurement points in the direction. Here, the scan position of the laser in the y direction moves as the vehicle travels. The size η y in the y direction of the partial space can be set so as to include, for example, scan positions of about 3 to 5 cycles. In the present embodiment, the size η y is 50 cm. Regarding the z direction, if objects such as tunnel ceilings and road signs exist above the road surface, they become noise for the analysis of the road surface shape. Therefore, the point cloud extraction range (position, size) in the z direction is set in advance so as to exclude the point cloud caused by them. Alternatively, only the points acquired by the obliquely downward laser scanner among the points obtained by the obliquely downward laser scanner and the obliquely upward laser scanner may be used for the road surface shape analysis.

なお、後述する不陸判定手段22の処理内容から、基準面と路面とは平行でなくても不陸検出にそれほど影響は与えず、基準面は路面に対して多少の角度を有して設定することは許容される。   In addition, from the processing contents of the unevenness determination means 22 described later, even if the reference surface and the road surface are not parallel, the unevenness detection is not so much affected, and the reference surface is set with a slight angle with respect to the road surface. It is permissible to do.

点群抽出手段20は基準線上に不陸検査位置を設定する(S30)。図5はステップS30での不陸検査位置Pの設定及び次のステップS40での注目点群の抽出を説明する検査断面の模式図である。図5には基準線34、及び部分空間に存在する部分点群の検査断面への投影像40の例が示されている。不陸検査位置Pのx座標をxとすると、点群抽出手段20は、ステップS20で抽出した部分点群のうちx<xなるx座標を有する計測点からなる第1の注目点群Gと、x≧xなるx座標を有する計測点からなる第2の注目点群Gとを抽出する(S40)。本実施形態では、注目点群G,Gを構成する計測点はそれぞれ不陸検査位置Pに近いものから順に所定個数n,nずつ選択される。本実施形態ではn,nは同数に設定され、例えばn=n=12とする。 The point cloud extraction means 20 sets the unevenness inspection position on the reference line (S30). Figure 5 is a schematic view of an inspection section for explaining the extraction of the attention point group in the configuration and the next step S40 the uneven surface inspection position P C in step S30. FIG. 5 shows an example of the reference line 34 and an image 40 projected onto the inspection cross section of the partial point group existing in the partial space. When the x-coordinate of the uneven surface inspection position P C and x C, point group extraction unit 20, the first point of interest comprising a measurement point having x <x C becomes x-coordinate of the extracted portion point group in step S20 a group G a, and a second target point group G B formed of the measurement points having x ≧ x C becomes x-coordinate is extracted (S40). In the present embodiment, attention point group G A, a predetermined number measurement points constituting the G B from close to uneven surface inspection position P C, respectively in the order n A, is selected by n B. In the present embodiment, n A and n B are set to the same number, for example, n A = n B = 12.

なお、n及びnは同数とするのが好適であるが、異なっていてもよい。また、例えば、基準線にて不陸検査位置Pから両側に同じ幅wの区間[x−w,x),[x,x+w]内に存在する計測点を注目点群G,Gとすることもできる。 Note that n A and n B are preferably the same number, but may be different. Further, for example, reference lines at uneven surface inspection position P C from the same width w on opposite sides interval [x C -w, x C) , [x C, attention point group measurement points existing x C + w] in the G a, may be a G B.

不陸判定手段22は点群抽出手段20により抽出された注目点群G,Gを用いて不陸検査位置Pにて路面に不連続性が生じているかについて、回帰分析を用いた検定を行う(S50)。不陸判定手段22は注目点群を構成する各計測点の基準線に沿った座標、すなわちx座標を説明変数とし、基準面に対する法線方向に沿った座標、すなわちz座標を従属変数とする回帰分析を行う。図6は当該回帰分析を説明する検査断面の模式図であり、不陸検査位置Pの両側の注目点群の検査断面への投影像が示されている。図6において、直線50は注目点群Gについての各計測点の座標(x,z)を用いた回帰分析で得られた回帰直線であり、同様に、直線52は注目点群Gについての回帰分析で得られた回帰直線である。不陸判定手段22は注目点群G,Gの回帰直線50,52を表す回帰係数が一致する、つまり不陸検査位置Pの両側に位置する注目点群Gが得られた路面と注目点群Gが得られた路面とで路面状態が同等であるとの仮説(帰無仮説)を所定の有意水準でF検定する。そして、当該帰無仮説が棄却された場合に不陸検査位置Pの両側で路面状態に変化が生じており、検査位置P又はその近傍位置に不陸が存在するとの対立仮説が正しいと判定する。 Uneven surface determining means 22 target point group extracted by the point cloud extracting section 20 G A, whether discontinuity in the road surface using a G B at uneven surface inspection position P C is generated, using a regression analysis An assay is performed (S50). The unevenness determination means 22 uses coordinates along the reference line of each measurement point constituting the target point group, that is, the x coordinate as explanatory variables, and coordinates along the normal direction with respect to the reference plane, that is, the z coordinate as a dependent variable. Perform regression analysis. Figure 6 is a schematic view of an inspection section illustrating the regression analysis, projected onto the test section on either side of the target point groups uneven surface inspection position P C is shown. 6, a straight line 50 the coordinates of each measurement point for the target point group G A (x, z) is a regression line obtained by regression analysis using, similarly, straight lines 52 for group target point G B It is the regression line obtained by regression analysis. Uneven surface determining means 22 the regression coefficient representing the regression line 50, 52 of the target point group G A, G B match, i.e. a road surface point of interest group G A located on both sides of the uneven surface inspection position P C was obtained road surface condition in the road surface obtained attention point group G B is F-test hypotheses (null hypothesis) at a predetermined significance level to be equivalent to. Then, the alternative hypothesis of the retrace has occurred a change in the road surface condition on both sides of Furiku inspection position P C if hypothesis is rejected, is Furiku the testing position P C or vicinity thereof there is correct judge.

本実施形態ではF検定モデルとしてChow検定(Chow test)を用いる。Chow検定は、次式によりF値を算出する。   In this embodiment, a Chow test is used as the F test model. The Chow test calculates the F value according to the following equation.

Figure 2014163707
Figure 2014163707

ここで、RSS,RSSはそれぞれ注目点群G,Gについての回帰分析の残差平方和である。また、Chow検定では、注目点群G,Gの両方を合わせた点群の座標(x,z)についても回帰分析を行い、RSSA,Bは当該回帰分析の残差平方和である。n,nは既に述べたようにそれぞれ注目点群G,Gを構成する計測点の個数である。kは説明変数の数であり、ここでは1である。 Here, RSS A, RSS B is the residual sum of squares regression analysis for each interest point group G A, G B. Further, in the Chow test target point group G A, perform regression analysis also coordinates of the point group combined both G B (x, z), RSS A, B is the residual sum of squares of the regression analysis . As described above, n A and n B are the number of measurement points constituting the attention point groups G A and G B , respectively. k is the number of explanatory variables, and is 1 here.

例えば、不陸判定手段22は確率95%、つまり有意水準α=0.05で帰無仮説が棄却される場合に、検査位置Pに対応する個所に路面の不陸が生じていると判定する(S60)。ちなみに、(1)式のF値は自由度(k+1,n+n−2k−2)のF分布に従う。F値の棄却域は有意水準αごとに当該自由度に応じて定まり、F値がα及び自由度に応じて定まる境界値Fより大きければ帰無仮説が棄却される。 For example, uneven surface determining means 22 is a 95% probability, if the null hypothesis is rejected That at significance level alpha = 0.05, the uneven surface of the road surface at a location corresponding to the inspection position P C is generated determination (S60). Incidentally, the F value in the equation (1) follows an F distribution with (k + 1, n A + n B −2k−2) degrees of freedom. The rejection range of the F value is determined according to the degree of freedom for each significance level α, and the null hypothesis is rejected if the F value is larger than the boundary value F 0 determined according to α and the degree of freedom.

点群抽出手段20及び不陸判定手段22は部分点群について道路の横断方向に複数設定される検査すべき位置全てについて不陸検査が完了したか否かを判定し(S70)、未検査位置が存在する場合には(S70にて「Yes」の場合)、検査位置を変えてステップS30〜S60の処理を繰り返す。例えば、点群抽出手段20は不陸検査位置Pをx軸に沿って所定距離ずつ順次移動させて注目点群G,Gを抽出したり、計測点単位で注目点群G,Gを移動させたりし、これにより基準線に沿って不陸が探索される。 The point group extraction means 20 and the unevenness determination means 22 determine whether or not the unevenness inspection has been completed for all the positions to be inspected that are set in the crossing direction of the road for the partial point group (S70). Is present (in the case of “Yes” in S70), the processing of steps S30 to S60 is repeated by changing the inspection position. For example, the point group extraction unit 20 Furiku inspection position P C of the x target point groups by sequentially moving by a predetermined distance along the axis G A, or to extract G B, interest point groups G A at the measurement point based, G B is moved to search for non-land along the reference line.

一方、未検査位置が残っていない場合には(S70にて「No」の場合)、不陸判定手段22は基準線の各点で得られたF値に基づいて路面性状の評価を行う(S80)。具体的には、F値の大小によって路面不陸の度合いを評価する、あるいは基準線に沿って設定した評価区間においてF値が棄却域となった検査位置の発生割合によって路面性状の損傷度合いを評価することができる。ここで、注目点群G,Gを構成する計測点の個数を各検査位置で同じにすることで自由度も同じとなり、各検査位置でのF値の境界値が共通となる。すなわち、基準線上の検査位置間にてそれぞれのF値を換算せずに単純に比較することができるので、上述の路面性状の評価を容易に行うことができる。例えば、不陸判定手段22はF値が或る閾値を超えた個所では不陸の度合いが大きいと判定したり、F値が棄却域となった検査位置の発生割合が或る閾値を超えた基準線の位置では損傷度合いが大きいと判定したりする。 On the other hand, when no uninspected position remains (in the case of “No” in S70), the unevenness determination means 22 evaluates the road surface property based on the F value obtained at each point of the reference line ( S80). Specifically, the degree of road surface unevenness is evaluated by the magnitude of the F value, or the degree of damage to the road surface property is determined by the occurrence ratio of the inspection position where the F value becomes a rejection area in the evaluation section set along the reference line. Can be evaluated. Here, by making the number of measurement points constituting the attention point groups G A and G B the same at each inspection position, the degree of freedom becomes the same, and the boundary value of the F value at each inspection position is common. That is, since the respective F values can be simply compared between the inspection positions on the reference line without conversion, the above-described road surface property can be easily evaluated. For example, the unevenness determination means 22 determines that the degree of unevenness is large at a location where the F value exceeds a certain threshold, or the occurrence rate of the inspection position where the F value becomes a rejection area exceeds a certain threshold. It is determined that the degree of damage is large at the position of the reference line.

上述したステップS10〜S80はx軸方向の1次元の路面プロファイルでの不陸評価である。図7〜図9は基準線に沿った路面プロファイル及びF値の例を示す模式図であり、計測点を◆印、F値を○印で示している。横軸はx座標(単位はメートルである)であり、左側の縦軸はレーザスキャナの高さを原点とした計測点のz座標(単位はメートルである)を表し、また右側の縦軸はF値を表す。太線の水平線は、αが0.05で自由度(2,20)である場合の境界値Fの値3.49を示している。図7の例では両勾配の路面にて窪みが1箇所存在しており、当該個所のF値が他の部分より高い値を示している。図8の例では路面の凹凸が全体的に広がっており、F値が高い個所が幅員内に分散して現れている。図9の例では片勾配の路面の左側にF値が極めて高い値を示す箇所が1個所現れており、例えば、当該個所は局所的な損傷箇所あるいは路肩や側溝などとして抽出される。 Steps S <b> 10 to S <b> 80 described above are evaluation of unevenness with a one-dimensional road surface profile in the x-axis direction. FIGS. 7 to 9 are schematic diagrams showing examples of road surface profiles and F values along the reference line, with measurement points indicated by ◆ and F values indicated by ◯. The horizontal axis is the x coordinate (unit is meter), the left vertical axis is the z coordinate (unit is meter) of the measurement point with the height of the laser scanner as the origin, and the right vertical axis is Represents the F value. A thick horizontal line indicates a value 3.49 of the boundary value F 0 when α is 0.05 and the degree of freedom is (2, 20). In the example of FIG. 7, there is one depression on the road surface with both slopes, and the F value at that location is higher than the other portions. In the example of FIG. 8, the unevenness of the road surface spreads as a whole, and places with high F values appear dispersed in the width. In the example of FIG. 9, one place where the F value is extremely high appears on the left side of the road surface with a single slope. For example, the place is extracted as a locally damaged place or a road shoulder or a side groove.

点群抽出手段20はステップS10にて設定された検査断面での不陸評価(S20〜S80)が完了するたびに、検査断面をy方向にずらした位置に新たに設定する。例えば、点群抽出手段20は図4に示すように道路の縦断方向に沿って等間隔λで検査断面を設定する。例えば、λは5m程度とすることができる。このように、道路の縦断方向の複数個所で検査断面を設定することで、xy面における2次元の路面プロファイルでの不陸評価が行われる。   The point cloud extraction means 20 newly sets the inspection cross section in a position shifted in the y direction every time the unevenness evaluation (S20 to S80) on the inspection cross section set in step S10 is completed. For example, the point cloud extraction means 20 sets the inspection cross section at equal intervals λ along the longitudinal direction of the road as shown in FIG. For example, λ can be about 5 m. In this way, by setting inspection sections at a plurality of locations in the longitudinal direction of the road, the evaluation of unevenness with a two-dimensional road surface profile in the xy plane is performed.

上述した道路変状検出システム2による不陸の検出は基準線に沿った各位置で実施され、路面性状を局所的に評価できる。一方、幅員全体に亘って不陸を検出でき、また、道路の縦断方向にて任意の間隔で検査断面を設定して不陸を検出できるので、路面を全体的に評価できる。すなわち、本発明に係る道路変状検出システム2によれば、ミクロ的な評価とマクロ的な評価との両方が可能である。   The above-mentioned detection of unevenness by the road deformation detection system 2 is performed at each position along the reference line, and the road surface property can be locally evaluated. On the other hand, unevenness can be detected over the entire width, and unevenness can be detected by setting inspection sections at arbitrary intervals in the longitudinal direction of the road, so that the road surface can be evaluated as a whole. That is, according to the road deformation detection system 2 according to the present invention, both micro evaluation and macro evaluation are possible.

上述の実施形態では平面形状がy方向に幅ηを有する帯状となる部分空間内の点群を用いている。このようにy方向に関して複数位置の計測点を用いることで、モービルマッピングシステムで得られる点群データの座標値に様々な要因で生じるばらつきの影響を小さくすることができる。 In the above-described embodiment, a point group in a partial space in which the planar shape is a band shape having a width η y in the y direction is used. By using measurement points at a plurality of positions in the y direction in this way, it is possible to reduce the influence of variations caused by various factors on the coordinate values of the point cloud data obtained by the mobile mapping system.

設定された部分空間において、注目点群として抽出する計測点の数n,nを変えると注目点群が分布するx方向の範囲が変わる。上述の実施形態の不陸検出方法では、例えば、n,nを増やしたり、注目点群を抽出するx方向の幅wを大きくすると、x方向に関するサイズが小さい不陸を検出しにくくなる。よって、n及びn、又はwを検出対象とする不陸のスケールに応じて設定することで、検出対象としないスケールが小さい不陸の影響を受けにくくして、目的とするスケールの不陸を好適に検出することができる。例えば、大型車両の通行量が多い道路のわだち掘れのx方向の幅は大型車両の通行量が少ない道路より大きくなり得る。そこで、道路変状検出システム2においてn及びn、又はwを変更可能に構成して、スケールの異なるわだち掘れを弁別して検出可能とすることができる。例えば、図2を用いて説明した処理にて、設定した各検査断面についての解析にて、複数種類のn及びn、又はwでステップS40〜S70の処理やS80の処理を行ってもよい。 In the set partial space, changing the number of measurement points n A and n B to be extracted as the point of interest group changes the range in the x direction in which the point of interest group is distributed. In the unevenness detection method of the above-described embodiment, for example, if n A and n B are increased or the width w in the x direction for extracting the point of interest is increased, it is difficult to detect unevenness with a small size in the x direction. . Therefore, by setting n A and n B , or w according to the scale of the unevenness that is the detection target, the scale that is not the detection target is less affected by the small unevenness, and the target scale is The land can be detected suitably. For example, the width in the x direction of rutting of a road with a large amount of traffic of a large vehicle can be larger than a road with a small amount of traffic of a large vehicle. Therefore, in the road deformation detection system 2, n A and n B , or w can be configured to be changed so that rutting with different scales can be discriminated and detected. For example, in the process described with reference to FIG. 2, even if the processes for steps S40 to S70 and the process of S80 are performed with a plurality of types of n A and n B , or w in the analysis for each set inspection section. Good.

なお、上述の実施形態では道路の横断方向に基準線を設定したが、縦断方向など任意の方向に設定して同様の不陸検査を行うことも可能である。   In the above-described embodiment, the reference line is set in the crossing direction of the road. However, the same unevenness inspection can be performed by setting the reference line in an arbitrary direction such as a longitudinal direction.

注目点群G,Gの回帰係数が一致するとの仮説を検定するF検定モデルはChow検定以外のものを用いることもできる。 A model other than the Chow test can be used as the F test model for testing the hypothesis that the regression coefficients of the attention point groups G A and G B match.

また、不陸を検出する構造物の表面は路面に限られず、例えば、側壁、法面、トンネルの平面天井板に対して同様に本発明を適用することができる。さらに、道路横断方向の断面が馬蹄型、卵型、円形であるトンネルの曲率を有した内表面についても、当該内表面を想定した、曲率を有するが平滑である基準面を設定し、当該基準面上に設定した基準線に沿って不陸検査を行うことが可能である。具体的には、まず道路縦断方向には直線の基準線を設定することができるので、基本的に上述の実施形態と同様に不陸検査を行うことができる。また、基準線が曲線になる場合でも、基準線を表す方程式は求められるので、上述の実施形態では直線の回帰分析であったところを曲線の回帰分析として不陸検査を行うことが可能である。   Moreover, the surface of the structure for detecting unevenness is not limited to the road surface, and the present invention can be similarly applied to, for example, side walls, slopes, and flat ceiling panels of tunnels. Furthermore, for the inner surface having the curvature of a tunnel whose cross-section in the road crossing direction is horseshoe-shaped, egg-shaped, or circular, a reference surface that has a curvature but is smooth is assumed, assuming the inner surface. It is possible to perform unevenness inspection along a reference line set on the surface. Specifically, since a straight reference line can first be set in the longitudinal direction of the road, the unevenness inspection can be basically performed as in the above-described embodiment. Further, even when the reference line is a curve, an equation representing the reference line is obtained. Therefore, in the above-described embodiment, it is possible to perform the unevenness inspection using the linear regression analysis as a regression analysis of the curve. .

2 道路変状検出システム、4 演算処理装置、6 記憶装置、8 入力装置、10 出力装置、20 点群抽出手段、22 不陸判定手段、30 基準面、34 基準線、36 検査断面。   2 Road deformation detection system, 4 arithmetic processing device, 6 storage device, 8 input device, 10 output device, 20 point group extraction means, 22 unevenness determination means, 30 reference plane, 34 reference line, 36 inspection section.

Claims (7)

道路に沿う構造物表面から抽出された点群の3次元座標データに基づき、目的構造物の表面における不陸を検出する道路変状検出装置であって、
前記表面を想定した平らな基準面上に不陸検査位置を通る基準線を設定し、前記不陸検査位置で分割した前記基準線の一方側と他方側とからそれぞれ、前記点群のうち予め設定した近傍範囲内で前記基準線に沿って位置する第1及び第2の注目点群を抽出する点群抽出手段と、
前記注目点群を構成する各点の前記基準線に沿った座標及び前記基準面に対する法線方向に沿った座標をそれぞれ説明変数、従属変数とする回帰分析に関し、前記両注目点群の回帰係数が一致するとの仮説を所定の有意水準でF検定して、前記仮説が棄却された場合に前記不陸検査位置に対応する不陸が存在すると判定する不陸判定手段と、
を有することを特徴とする道路変状検出装置。
A road deformation detection device that detects unevenness on the surface of a target structure based on three-dimensional coordinate data of a point cloud extracted from the surface of the structure along the road,
A reference line passing through the non-land inspection position is set on a flat reference surface assuming the surface, and each of the point groups in advance from one side and the other side of the reference line divided at the non-land inspection position. Point cloud extraction means for extracting first and second attention point clouds located along the reference line within a set neighborhood range;
With respect to regression analysis in which coordinates along the reference line of each point constituting the point of interest group and coordinates along the normal direction with respect to the reference plane are respectively an explanatory variable and a dependent variable, the regression coefficients of the two point of interest groups F-test the hypothesis that the two coincide with each other at a predetermined significance level, and when the hypothesis is rejected, a non-land determination means that determines that there is a non-land corresponding to the non-land inspection position;
A road deformation detection device comprising:
請求項1に記載の道路変状検出装置において、
前記不陸判定手段は、Chow検定により前記仮説を検定すること、を特徴とする道路変状検出装置。
In the road deformation detection device according to claim 1,
The road irregularity detecting means tests the hypothesis by a Chow test.
請求項1又は請求項2に記載の道路変状検出装置において、
前記点群抽出手段は、前記基準線上の複数個所に前記不陸検査位置を設定し、当該各不陸検査位置にて互いに同じ所定個数の点からなる前記第1の注目点群及び前記第2の注目点群を設定し、
前記不陸判定手段は、前記不陸検査位置それぞれにて、互いに共通のF分布に従うことになるF値を算出し、前記基準線に沿った当該F値の変動を表す情報を生成すること、
を特徴とする道路変状検出装置。
In the road deformation detection device according to claim 1 or 2,
The point group extraction means sets the non-land inspection positions at a plurality of locations on the reference line, and the first attention point group and the second group of points having the same predetermined number of points at each non-land inspection position. Set the point of interest for
The unevenness determination means calculates an F value that follows a common F distribution at each of the unevenness inspection positions, and generates information representing the variation of the F value along the reference line,
A road deformation detection device characterized by the above.
請求項3に記載の道路変状検出装置において、
前記点群抽出手段は、道路の表面に対応した前記基準面を設定し、道路の横断方向に沿って前記基準線を設定すること、を特徴とする道路変状検出装置。
In the road deformation detection device according to claim 3,
The road group detection unit, wherein the point group extraction unit sets the reference plane corresponding to a road surface, and sets the reference line along a crossing direction of the road.
請求項3に記載の道路変状検出装置において、
前記点群抽出手段は、前記近傍範囲として前記基準面上にて前記基準線に沿って予め定められた幅を有する帯状領域を設定し、前記基準面に射影した位置が前記帯状領域内となる点で前記注目点群を構成すること、を特徴とする道路変状検出装置。
In the road deformation detection device according to claim 3,
The point group extraction unit sets a band-like area having a predetermined width along the reference line on the reference plane as the neighborhood range, and a position projected on the reference plane is within the band-like area. A road deformation detection device characterized in that the point-of-interest group is constituted by points.
道路に沿う構造物表面から抽出された点群の3次元座標データに基づき、目的構造物の表面における不陸を検出する道路変状検出方法であって、
前記表面を想定した平らな基準面上に不陸検査位置を通る基準線を設定し、前記不陸検査位置で分割した前記基準線の一方側と他方側とからそれぞれ、前記点群のうち予め設定した近傍範囲内で前記基準線に沿って位置する第1及び第2の注目点群を抽出する点群抽出ステップと、
前記注目点群を構成する各点の前記基準線に沿った座標及び前記基準面に対する法線方向に沿った座標をそれぞれ説明変数、従属変数とする回帰分析に関し、前記両注目点群の回帰係数が一致するとの仮説を所定の有意水準でF検定して、前記仮説が棄却された場合に前記不陸検査位置に対応する不陸が存在すると判定する不陸判定ステップと、
を有することを特徴とする道路変状検出方法。
A road deformation detection method for detecting unevenness on the surface of a target structure based on three-dimensional coordinate data of a point cloud extracted from the surface of the structure along the road,
A reference line passing through the non-land inspection position is set on a flat reference surface assuming the surface, and each of the point groups in advance from one side and the other side of the reference line divided at the non-land inspection position. A point group extraction step of extracting first and second attention point groups located along the reference line within a set neighborhood range;
With respect to regression analysis in which coordinates along the reference line of each point constituting the point of interest group and coordinates along the normal direction with respect to the reference plane are respectively an explanatory variable and a dependent variable, the regression coefficients of the two point of interest groups A non-land determination step that F-tests the hypothesis that the two are coincident with each other at a predetermined significance level, and determines that there is a non-land corresponding to the non-land inspection position when the hypothesis is rejected;
A road deformation detection method characterized by comprising:
コンピュータに、道路に沿う構造物表面から抽出された点群の3次元座標データに基づき、目的構造物の表面における不陸を検出するデータ解析を行わせるためのプログラムであって、当該コンピュータを、
前記表面を想定した平らな基準面上に不陸検査位置を通る基準線を設定し、前記不陸検査位置で分割した前記基準線の一方側と他方側とからそれぞれ、前記点群のうち予め設定した近傍範囲内で前記基準線に沿って位置する第1及び第2の注目点群を抽出する点群抽出手段、及び、
前記注目点群を構成する各点の前記基準線に沿った座標及び前記基準面に対する法線方向に沿った座標をそれぞれ説明変数、従属変数とする回帰分析に関し、前記両注目点群の回帰係数が一致するとの仮説を所定の有意水準でF検定して、前記仮説が棄却された場合に前記不陸検査位置に対応する不陸が存在すると判定する不陸判定手段、として機能させることを特徴とするプログラム。
A program for causing a computer to perform data analysis for detecting unevenness on the surface of a target structure based on three-dimensional coordinate data of a point cloud extracted from the surface of the structure along a road, the computer comprising:
A reference line passing through the non-land inspection position is set on a flat reference surface assuming the surface, and each of the point groups in advance from one side and the other side of the reference line divided at the non-land inspection position. Point cloud extracting means for extracting first and second focused point clouds located along the reference line within a set neighborhood range; and
With respect to regression analysis in which coordinates along the reference line of each point constituting the point of interest group and coordinates along the normal direction with respect to the reference plane are respectively an explanatory variable and a dependent variable, the regression coefficients of the two point of interest groups F-test the hypothesis that the two coincide with each other at a predetermined significance level, and when the hypothesis is rejected, function as non-land judgment means for judging that the land corresponding to the non-land inspection position exists. Program.
JP2013032596A 2013-02-21 2013-02-21 Road deformation detection device, road deformation detection method and program Active JP5991489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013032596A JP5991489B2 (en) 2013-02-21 2013-02-21 Road deformation detection device, road deformation detection method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013032596A JP5991489B2 (en) 2013-02-21 2013-02-21 Road deformation detection device, road deformation detection method and program

Publications (2)

Publication Number Publication Date
JP2014163707A true JP2014163707A (en) 2014-09-08
JP5991489B2 JP5991489B2 (en) 2016-09-14

Family

ID=51614461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013032596A Active JP5991489B2 (en) 2013-02-21 2013-02-21 Road deformation detection device, road deformation detection method and program

Country Status (1)

Country Link
JP (1) JP5991489B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138236A (en) * 2016-02-04 2017-08-10 株式会社トプコン Evaluation method for road surface properties, and evaluation apparatus for road surface properties
JP2017138238A (en) * 2016-02-04 2017-08-10 株式会社トプコン Display method for road properties, and display apparatus for road properties
CN107340740A (en) * 2017-07-21 2017-11-10 山东大学 Unattended intelligent Roadbed Deformation parameter automated collection systems and signal processing method
JP2018132425A (en) * 2017-02-15 2018-08-23 鹿島建設株式会社 Smoothness detection method and system of rugged surface
WO2018159690A1 (en) * 2017-02-28 2018-09-07 国立研究開発法人理化学研究所 Point cloud data extraction method and point cloud data extraction device
US10514254B2 (en) 2016-02-04 2019-12-24 Topcon Corporation Road surface property acquiring method and road surface property acquiring device
WO2020080088A1 (en) * 2018-10-15 2020-04-23 三菱電機株式会社 Information processing device
JP2020064044A (en) * 2018-10-15 2020-04-23 株式会社エムアールサポート Profile creation method, profile creation system, profile, and profile creation program
CN111583244A (en) * 2020-05-11 2020-08-25 安徽建大交通科技有限公司 Bridge deformation detection method and system
CN111767874A (en) * 2020-07-06 2020-10-13 中兴飞流信息科技有限公司 Pavement disease detection method based on deep learning
WO2020255540A1 (en) * 2019-06-17 2020-12-24 株式会社エムアールサポート Ground information detection method, ground information detection system, ground information detection program, and profile
JP2020204601A (en) * 2018-11-20 2020-12-24 株式会社エムアールサポート Altitude difference detection method, altitude difference detection system, and altitude difference detection program
JP2021043858A (en) * 2019-09-13 2021-03-18 株式会社構造計画研究所 Information processing system, information processing method and program
CN112577450A (en) * 2020-10-29 2021-03-30 宁波大学 Engineering rock mass structural surface roughness coefficient determination method based on multiple regression analysis
CN112964191A (en) * 2021-03-25 2021-06-15 四川合众精准科技有限公司 Micro-deformation laser collimation measurement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200378A (en) * 2001-12-27 2003-07-15 Sharp Corp Robot, method of recognizing shape, shape recognition program and computer readable recording medium recording shape recognition program
JP2012037490A (en) * 2010-08-11 2012-02-23 Pasuko:Kk Data analysis device, data analysis method and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200378A (en) * 2001-12-27 2003-07-15 Sharp Corp Robot, method of recognizing shape, shape recognition program and computer readable recording medium recording shape recognition program
JP2012037490A (en) * 2010-08-11 2012-02-23 Pasuko:Kk Data analysis device, data analysis method and program

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10275916B2 (en) * 2016-02-04 2019-04-30 Topcon Corporation Display method of road property and display device of road property
JP2017138238A (en) * 2016-02-04 2017-08-10 株式会社トプコン Display method for road properties, and display apparatus for road properties
US20170309050A1 (en) * 2016-02-04 2017-10-26 Topcon Corporation Display method of road property and display device of road property
JP2017138236A (en) * 2016-02-04 2017-08-10 株式会社トプコン Evaluation method for road surface properties, and evaluation apparatus for road surface properties
US10578430B2 (en) 2016-02-04 2020-03-03 Topcon Corporation Evaluation method of road surface property, and evaluation device of road surface property
US10514254B2 (en) 2016-02-04 2019-12-24 Topcon Corporation Road surface property acquiring method and road surface property acquiring device
JP2018132425A (en) * 2017-02-15 2018-08-23 鹿島建設株式会社 Smoothness detection method and system of rugged surface
WO2018159690A1 (en) * 2017-02-28 2018-09-07 国立研究開発法人理化学研究所 Point cloud data extraction method and point cloud data extraction device
JP2018141757A (en) * 2017-02-28 2018-09-13 国立研究開発法人理化学研究所 Extraction method of point group data and extraction device of point group data
US11204243B2 (en) 2017-02-28 2021-12-21 Topcon Corporation Point cloud data extraction method and point cloud data extraction device
CN107340740B (en) * 2017-07-21 2019-05-17 山东大学 Unattended intelligent Roadbed Deformation parameter automated collection systems and signal processing method
CN107340740A (en) * 2017-07-21 2017-11-10 山东大学 Unattended intelligent Roadbed Deformation parameter automated collection systems and signal processing method
WO2020080088A1 (en) * 2018-10-15 2020-04-23 三菱電機株式会社 Information processing device
JP2020064044A (en) * 2018-10-15 2020-04-23 株式会社エムアールサポート Profile creation method, profile creation system, profile, and profile creation program
JP7471481B2 (en) 2018-10-15 2024-04-19 三菱電機株式会社 Information processing device, information processing method, and program
JP7373714B2 (en) 2018-10-15 2023-11-06 株式会社エムアールサポート Profile creation method, profile creation system, profile and profile creation program
JP7232946B2 (en) 2018-10-15 2023-03-03 三菱電機株式会社 Information processing device, information processing method and program
JP2022089828A (en) * 2018-10-15 2022-06-16 三菱電機株式会社 Information processing apparatus
JP7046218B2 (en) 2018-10-15 2022-04-01 三菱電機株式会社 Information processing equipment, information processing methods and programs
JPWO2020080088A1 (en) * 2018-10-15 2021-06-10 三菱電機株式会社 Information processing equipment, information processing methods and programs
JP2020204601A (en) * 2018-11-20 2020-12-24 株式会社エムアールサポート Altitude difference detection method, altitude difference detection system, and altitude difference detection program
JP7373715B2 (en) 2018-11-20 2023-11-06 株式会社エムアールサポート Altitude difference detection method, altitude difference detection system and altitude difference detection program
WO2020255540A1 (en) * 2019-06-17 2020-12-24 株式会社エムアールサポート Ground information detection method, ground information detection system, ground information detection program, and profile
US12018442B2 (en) 2019-06-17 2024-06-25 Mr Support Inc. Ground information detection method, ground information detection system, ground information detection program, and profile
JP2021043858A (en) * 2019-09-13 2021-03-18 株式会社構造計画研究所 Information processing system, information processing method and program
CN111583244B (en) * 2020-05-11 2023-05-09 安徽建大交通科技有限公司 Bridge deformation detection method and system
CN111583244A (en) * 2020-05-11 2020-08-25 安徽建大交通科技有限公司 Bridge deformation detection method and system
CN111767874A (en) * 2020-07-06 2020-10-13 中兴飞流信息科技有限公司 Pavement disease detection method based on deep learning
CN111767874B (en) * 2020-07-06 2024-02-13 中兴飞流信息科技有限公司 Pavement disease detection method based on deep learning
CN112577450A (en) * 2020-10-29 2021-03-30 宁波大学 Engineering rock mass structural surface roughness coefficient determination method based on multiple regression analysis
CN112577450B (en) * 2020-10-29 2022-06-28 宁波大学 Engineering rock mass structural surface roughness coefficient determination method based on multiple regression analysis
CN112964191A (en) * 2021-03-25 2021-06-15 四川合众精准科技有限公司 Micro-deformation laser collimation measurement method

Also Published As

Publication number Publication date
JP5991489B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP5991489B2 (en) Road deformation detection device, road deformation detection method and program
AU2016385541B2 (en) Object surface deformation feature extraction method based on line scanning three-dimensional point Cloud
Anil et al. Deviation analysis method for the assessment of the quality of the as-is Building Information Models generated from point cloud data
Tsai et al. Critical assessment of detecting asphalt pavement cracks under different lighting and low intensity contrast conditions using emerging 3D laser technology
Oskouie et al. Automated measurement of highway retaining wall displacements using terrestrial laser scanners
KR101604037B1 (en) method of making three dimension model and defect analysis using camera and laser scanning
Laefer et al. Crack detection limits in unit based masonry with terrestrial laser scanning
KR102030854B1 (en) Methods and systems for inspecting a workpiece
Zhu et al. Comparison of optical sensor-based spatial data collection techniques for civil infrastructure modeling
Puri et al. Assessment of compliance of dimensional tolerances in concrete slabs using TLS data and the 2D continuous wavelet transform
Bosché et al. Terrestrial laser scanning and continuous wavelet transform for controlling surface flatness in construction–A first investigation
JP6465421B1 (en) Structural deformation detector
CN103758017A (en) Detection method and detection system for three-dimensional pavement elevation grid numerical value
Kim et al. Improvement of photogrammetric JRC data distributions based on parabolic error models
CN103328957A (en) Method and device for inspecting an object for the detection of surface damage
JP6006179B2 (en) Data analysis apparatus, data analysis method, and program
CN105023270A (en) Proactive 3D stereoscopic panorama visual sensor for monitoring underground infrastructure structure
Ge et al. A low-cost approach for the estimation of rock joint roughness using photogrammetry
KR20100133072A (en) A method for assessing the possibility of joining structures using terrestrial laser scanner
Błaszczak-Bąk et al. Measurement methodology for surface defects inventory of building wall using smartphone with light detection and ranging sensor
JP6032678B2 (en) Data analysis apparatus, data analysis method, and program
UEHAN et al. Development of an aerial survey system and numerical analysis modeling software for unstable rock blocks
MacKinnon et al. Lateral resolution challenges for triangulation-based three-dimensional imaging systems
Zhou Virtual Americans with Disabilities Act Compliance Assessment of Curb Ramps Using Lidar Point Clouds: A Framework to Simulate Digital Inclinometers for Slope Measurements
US10578430B2 (en) Evaluation method of road surface property, and evaluation device of road surface property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R150 Certificate of patent or registration of utility model

Ref document number: 5991489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250