JP2014163637A - Thermal treatment device and manufacturing method thereof - Google Patents

Thermal treatment device and manufacturing method thereof Download PDF

Info

Publication number
JP2014163637A
JP2014163637A JP2013037329A JP2013037329A JP2014163637A JP 2014163637 A JP2014163637 A JP 2014163637A JP 2013037329 A JP2013037329 A JP 2013037329A JP 2013037329 A JP2013037329 A JP 2013037329A JP 2014163637 A JP2014163637 A JP 2014163637A
Authority
JP
Japan
Prior art keywords
furnace
heat treatment
shaft
hollow shaft
drive shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013037329A
Other languages
Japanese (ja)
Other versions
JP6177544B2 (en
Inventor
Tsunetaka Yamada
恒孝 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Thermotech Co Ltd
Original Assignee
Dowa Thermotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Thermotech Co Ltd filed Critical Dowa Thermotech Co Ltd
Priority to JP2013037329A priority Critical patent/JP6177544B2/en
Publication of JP2014163637A publication Critical patent/JP2014163637A/en
Application granted granted Critical
Publication of JP6177544B2 publication Critical patent/JP6177544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal treatment device capable of suppressing heat transfer from the inside of a thermal treatment furnace to the outside through a drive shaft without making a drive mechanism of an in-furnace agitation fan complicated.SOLUTION: A thermal treatment device 1 includes an in-furnace agitation fan 2 provided in a thermal treatment furnace 3, and a drive shaft 4 provided so as to penetrate a furnace body of the thermal treatment furnace 3 and connected to the in-furnace agitation fan 2. In the thermal treatment device, at least a part of the drive shaft 4 is used as a hollow shaft 8, the in-furnace agitation fan 2 is connected to the hollow shaft 8 in the thermal treatment furnace, and a heat insulation material 10 having higher heat insulation property than air is provided in a hollow part of the hollow shaft 8.

Description

本発明は、熱処理炉内の雰囲気を攪拌する炉内攪拌ファンを備えた熱処理装置およびその製造方法に関する。   The present invention relates to a heat treatment apparatus including an in-furnace agitation fan for agitating an atmosphere in a heat treatment furnace and a manufacturing method thereof.

浸炭処理等の熱処理は、雰囲気制御された高温の熱処理炉内で行われる。品質の良い熱処理を行うためには、熱処理炉内において、雰囲気バラつきを低減すると共に、炉内温度を可能な限り均一にすることが必要となる。このため、熱処理炉内には、炉内の雰囲気を攪拌する炉内攪拌ファンが設けられる。   Heat treatment such as carburizing treatment is performed in a high-temperature heat treatment furnace with controlled atmosphere. In order to perform high-quality heat treatment, it is necessary to reduce the variation in atmosphere in the heat treatment furnace and make the furnace temperature as uniform as possible. For this reason, an in-furnace stirring fan for stirring the atmosphere in the furnace is provided in the heat treatment furnace.

一般に、炉内攪拌ファンは、熱処理炉を貫通するようにして設けられた駆動軸に接続される。この駆動軸は、炉外に配置されたモーターに接続されると共に、熱処理炉の炉外において熱処理炉に隣接して設けられたベアリングにより支持される。   In general, the in-furnace stirring fan is connected to a drive shaft provided so as to penetrate the heat treatment furnace. The drive shaft is connected to a motor disposed outside the furnace, and is supported by a bearing provided adjacent to the heat treatment furnace outside the heat treatment furnace.

浸炭炉等の熱処理炉の炉内温度は、非常に高温(例えば900℃以上)となる。熱処理炉は、炉内の熱が炉外に伝達しないよう断熱構造とはなっているものの、炉内の熱は、熱処理炉を貫通するようにして設けられた炉内攪拌ファンの駆動軸を介して炉外まで伝達してしまう。この熱は、駆動軸を支持するベアリングや駆動軸に接続されたモーター等の駆動軸周辺部品にまで伝達してしまう。ベアリングやモーターには使用温度範囲が規定されているため、駆動軸を介して伝達された熱により、規定された温度範囲を超えた場合には、各部品の性能低下や故障を引き起こすおそれがある。   The temperature inside the heat treatment furnace such as a carburizing furnace is very high (for example, 900 ° C. or more). Although the heat treatment furnace has a heat insulating structure so that the heat in the furnace is not transmitted to the outside of the furnace, the heat in the furnace is passed through a drive shaft of an in-furnace stirring fan provided so as to penetrate the heat treatment furnace. Will be transmitted to the outside of the furnace. This heat is transmitted to peripheral components around the drive shaft such as a bearing supporting the drive shaft and a motor connected to the drive shaft. Since the operating temperature range is specified for bearings and motors, if the temperature range exceeds the specified temperature range due to the heat transferred through the drive shaft, the performance of each component may be degraded or malfunction may occur. .

そのような事態を避けるため、従来においては、セラミックベアリング等の耐熱性の高い部品を採用したり、特許文献1〜4に記載された伝熱対策を施してきた。   In order to avoid such a situation, conventionally, high heat-resistant parts such as ceramic bearings have been adopted, or heat transfer measures described in Patent Documents 1 to 4 have been taken.

特許文献1に記載された伝熱対策は、炉内攪拌ファンと連結する駆動軸を長くし、炉内攪拌ファンとファン側ベアリング間の長さを長くすることにより冷却空間を設け、さらに駆動軸を中空にしたものである。なお、この中空部内の雰囲気は、空気である。   The heat transfer countermeasure described in Patent Document 1 provides a cooling space by increasing the length of the drive shaft connected to the in-furnace agitation fan, and increasing the length between the in-furnace agitation fan and the fan-side bearing. Is made hollow. In addition, the atmosphere in this hollow part is air.

特許文献2,3に記載された伝熱対策は、炉内攪拌ファンと連結する回転用シャフトに水冷機構又はガス冷機構を設けたものである。特許文献4に記載された伝熱対策は、炉内攪拌ファンと連結する回転用シャフトの炉外側に、ベアリングを冷却するための冷却ファンを取り付けたものである。   The heat transfer measures described in Patent Documents 2 and 3 are provided with a water cooling mechanism or a gas cooling mechanism on a rotating shaft connected to an in-furnace stirring fan. The heat transfer countermeasure described in Patent Document 4 is provided with a cooling fan for cooling the bearing outside the rotating shaft connected to the in-furnace stirring fan.

特開昭62−268984号公報Japanese Patent Laid-Open No. 62-268984 特開平10−8148号公報Japanese Patent Laid-Open No. 10-8148 特開2003−21472号公報JP 2003-21472 A 特開2012−229878号公報JP 2012-229878 A

しかしながら、特許文献1の伝熱対策では、駆動軸が長くなりすぎることにより、設計自由度が低下するという問題がある。また、駆動軸やベアリングの温度は、150℃以下であることが好ましいが、特許文献1に記載された伝熱対策では、ベアリングの温度が200℃に達するおそれがある(特許文献1の実施例参照のこと)。   However, the heat transfer countermeasure of Patent Document 1 has a problem in that the degree of freedom in design is reduced due to the drive shaft becoming too long. Moreover, although it is preferable that the temperature of a drive shaft or a bearing is 150 degrees C or less, in the heat transfer countermeasure described in patent document 1, there exists a possibility that the temperature of a bearing may reach 200 degreeC (Example of patent document 1). See

また、特許文献2,3の伝熱対策における水冷機構又はガス冷機構は複雑であり、製造コストが高くなってしまう。また、メンテナンスにも手間がかかることに加え、冷却機構による冷却によって炉内の熱が奪われ、熱量の損失が大きくなってしまう。   Further, the water cooling mechanism or the gas cooling mechanism in the heat transfer countermeasures of Patent Documents 2 and 3 is complicated, and the manufacturing cost is increased. Moreover, in addition to the time and effort required for maintenance, the heat in the furnace is taken away by the cooling by the cooling mechanism, and the loss of heat becomes large.

また、特許文献4の伝熱対策のような冷却ファンを設けただけでは、浸炭処理のように熱処理炉内が極めて高温(例えば900℃以上)となる場合には、十分な冷却効果は得られない。   In addition, just by providing a cooling fan as a countermeasure for heat transfer in Patent Document 4, a sufficient cooling effect can be obtained when the inside of a heat treatment furnace becomes extremely high temperature (for example, 900 ° C. or more) as in carburizing. Absent.

本発明の目的は、上記問題点を解決するため、炉内攪拌ファンの駆動機構を複雑にすることなく、熱処理炉の炉内から炉外への駆動軸を介した熱伝達を抑えることができる熱処理装置およびその製造方法を提供することにある。   An object of the present invention is to solve the above-described problems, and can suppress heat transfer from the inside of the heat treatment furnace to the outside of the furnace via the drive shaft without complicating the drive mechanism of the in-furnace stirring fan. An object of the present invention is to provide a heat treatment apparatus and a manufacturing method thereof.

上記課題を解決するため、本発明によれば、熱処理炉の炉内に設けられた炉内攪拌ファンと、前記熱処理炉の炉体を貫通するようにして設けられ、前記炉内攪拌ファンに接続された駆動軸とを備えた熱処理装置であって、前記駆動軸の少なくとも一部が中空軸であり、前記熱処理炉内において、前記中空軸に前記炉内攪拌ファンが接続され、前記中空軸の中空部に、空気に比べて断熱性の高い断熱材が設けられていることを特徴とする熱処理装置が提供される。   In order to solve the above problems, according to the present invention, an in-furnace agitation fan provided in the furnace of the heat treatment furnace and a furnace body of the heat treatment furnace are provided so as to pass through and connected to the in-furnace agitation fan A drive shaft, wherein at least a part of the drive shaft is a hollow shaft, and in the heat treatment furnace, the in-furnace stirring fan is connected to the hollow shaft, A heat treatment apparatus is provided in which a heat insulating material having a higher heat insulating property than air is provided in the hollow portion.

また、前記中空軸は、該中空軸内と前記熱処理炉内とが連通するように形成されていることが好ましい。   The hollow shaft is preferably formed so that the hollow shaft and the heat treatment furnace communicate with each other.

前記駆動軸が、前記中空軸と該中空軸に直列に連結された中実軸で構成されていても良い。このとき、前記中実軸と前記中空軸の接合部が、前記熱処理炉の炉体表面より炉内側にあることが好ましい。また、前記熱処理炉と前記中実軸との間に形成された隙間をシールするシール部材が設けられていても良い。このとき、前記中実軸と前記中空軸の接合部が、前記熱処理炉の炉体表面より炉内側であって、且つ、前記シール部材より炉内側にあることが好ましい。また、前記中実軸が前記熱処理炉の炉外に設けられたベアリングで支持されていても良い。また、前記中空軸と前記中実軸とが、溶接により直列に連結されていても良い。   The drive shaft may include a hollow shaft and a solid shaft connected in series to the hollow shaft. At this time, it is preferable that the joint part of the said solid shaft and the said hollow shaft exists in the furnace inner side from the furnace body surface of the said heat processing furnace. Further, a sealing member for sealing a gap formed between the heat treatment furnace and the solid shaft may be provided. At this time, it is preferable that the joint between the solid shaft and the hollow shaft is inside the furnace from the furnace body surface of the heat treatment furnace and inside the furnace from the seal member. The solid shaft may be supported by a bearing provided outside the heat treatment furnace. The hollow shaft and the solid shaft may be connected in series by welding.

また、前記駆動軸を支持するベアリングを冷却する冷却ファンが、前記熱処理炉の炉外の前記駆動軸上に設けられていても良い。   In addition, a cooling fan for cooling a bearing that supports the drive shaft may be provided on the drive shaft outside the furnace of the heat treatment furnace.

また、本発明によれば、上記熱処理装置を製造する製造方法であって、前記中空軸と中実軸とを焼嵌めで互いに固定した後に、前記中空軸と前記中実軸とを溶接することにより直列に連結して前記駆動軸を形成することを特徴とする熱処理装置の製造方法も提供される。 According to the present invention, there is also provided a manufacturing method for manufacturing the heat treatment apparatus, wherein the hollow shaft and the solid shaft are welded to each other after the hollow shaft and the solid shaft are fixed to each other by shrinkage fitting. The heat treatment apparatus manufacturing method is also provided in which the drive shaft is formed by connecting in series.

本発明によれば、駆動軸の少なくとも一部を中空軸とし、炉内攪拌ファンに接続される中空軸の中空部に、空気に比べて断熱性の高い断熱材を設けることにより、駆動軸を介した炉内から炉外への熱伝達を抑えることができる。これにより、駆動軸周辺部品の温度上昇を防ぐことができる。   According to the present invention, at least a part of the drive shaft is a hollow shaft, and a heat insulating material having higher heat insulation than air is provided in the hollow portion of the hollow shaft connected to the in-furnace agitation fan. Heat transfer from the inside of the furnace to the outside of the furnace can be suppressed. Thereby, the temperature rise of components around the drive shaft can be prevented.

本発明の実施形態に係る熱処理装置の炉内攪拌ファンの周辺を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the periphery of the in-furnace stirring fan of the heat processing apparatus which concerns on embodiment of this invention. 図1中の中空軸周辺を拡大した図である。It is the figure which expanded the hollow shaft periphery in FIG. 本発明の他の実施形態に係る熱処理装置を示す図である。It is a figure which shows the heat processing apparatus which concerns on other embodiment of this invention. 本発明例と従来例における熱処理炉の炉外にある駆動軸温度及びベアリング温度を示す図である。It is a figure which shows the drive shaft temperature and bearing temperature which exist outside the furnace of the heat processing furnace in the example of this invention, and a prior art example. 本発明例と従来例における熱処理終了時からの経過時間とベアリング温度の変化を示す図である。It is a figure which shows the change of the elapsed time from the end of heat processing in the example of this invention, and a prior art example, and a bearing temperature.

以下、本発明の実施の形態を熱処理装置1に基づいて説明する。なお、本実施の形態では、熱処理装置1の各構成部のうち、炉内攪拌ファン2の周辺についてのみ説明する。また、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。   Hereinafter, an embodiment of the present invention will be described based on a heat treatment apparatus 1. In the present embodiment, only the vicinity of the in-furnace agitation fan 2 among the components of the heat treatment apparatus 1 will be described. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

まず、バッチ式或いは連続式の浸炭処理炉などの熱処理炉3の内部の雰囲気を攪拌する炉内攪拌ファン2は、熱処理炉3の炉体の上部に設けられる。図1に示す通り、炉内攪拌ファン2を回転させる駆動軸4は、熱処理炉3に隣接して設けられたハウジング5の中央部に収容され、熱処理炉3の炉体を貫通するようにして設けられている。この駆動軸4の一端は、炉内攪拌ファン2に接続され、駆動軸4の他端は、ハウジング5の外部に配置されたモーター6に接続されている。なお、駆動軸4の材質は、例えばカロライジング処理を施したステンレスである。また、熱処理炉3の炉体は、外気に接する炉殻9とその内側の熱処理炉断熱材16で構成されている。   First, the in-furnace stirring fan 2 that stirs the atmosphere inside the heat treatment furnace 3 such as a batch-type or continuous carburizing treatment furnace is provided at the top of the furnace body of the heat treatment furnace 3. As shown in FIG. 1, the drive shaft 4 for rotating the in-furnace agitation fan 2 is accommodated in the central part of the housing 5 provided adjacent to the heat treatment furnace 3 so as to penetrate the furnace body of the heat treatment furnace 3. Is provided. One end of the drive shaft 4 is connected to the in-furnace agitation fan 2, and the other end of the drive shaft 4 is connected to a motor 6 disposed outside the housing 5. The material of the drive shaft 4 is, for example, stainless steel subjected to calorizing treatment. The furnace body of the heat treatment furnace 3 includes a furnace shell 9 in contact with outside air and a heat treatment furnace heat insulating material 16 inside the furnace shell 9.

図1に示す通り、駆動軸4は、中実軸7と中空軸8で構成されており、中実軸7の下端は、熱処理炉3の炉体の炉殻9付近或いは炉殻9と熱処理炉断熱材16の境界面より炉内側まで延びていることが好ましい。すなわち中実軸7と中空軸8の接合部は、熱処理炉3の炉体(炉殻9)より炉内側にあることが駆動軸4の強度を向上させるために好ましい。   As shown in FIG. 1, the drive shaft 4 includes a solid shaft 7 and a hollow shaft 8, and the lower end of the solid shaft 7 is near the furnace shell 9 of the furnace body of the heat treatment furnace 3 or with the furnace shell 9 and heat treatment. It is preferable to extend from the boundary surface of the furnace heat insulating material 16 to the inside of the furnace. That is, the joint between the solid shaft 7 and the hollow shaft 8 is preferably located inside the furnace body (furnace shell 9) of the heat treatment furnace 3 in order to improve the strength of the drive shaft 4.

一方、中空軸8の中空部には、空気より断熱性の高い(熱伝導率の低い)断熱材10が設けられている。特に本発明において、「空気より断熱性の高い」断熱材10とは、800℃における熱伝導率が空気よりも低い断熱材を意味する。さらに具体的には、空気の800℃における熱伝導率が0.071W/(m・K)であるので、それより低い熱伝導率のものを意味する。例えば、断熱材10には、微細多孔構造を有するマイクロサーム(登録商標)等を用いることが好ましい。マイクロサームは、品種によって熱伝導率が異なるが、800℃における熱伝導率が0.03〜0.045W/(m・K)の範囲のものであることが好ましい。また、その他の断熱材として800℃の熱伝導率が0.044W/(m・K)のロスリム(登録商標)ボードなどがあり、本発明に好適である。なお、断熱材10の熱伝導率はISO8302に基づいて測定される。   On the other hand, a heat insulating material 10 having a higher heat insulating property (lower thermal conductivity) than air is provided in the hollow portion of the hollow shaft 8. In particular, in the present invention, the heat insulating material 10 “having higher heat insulation than air” means a heat insulating material having a thermal conductivity at 800 ° C. lower than that of air. More specifically, since the thermal conductivity of air at 800 ° C. is 0.071 W / (m · K), it means a thermal conductivity lower than that. For example, for the heat insulating material 10, it is preferable to use Microtherm (registered trademark) having a fine porous structure. Although the microtherm has different thermal conductivity depending on the type, the thermal conductivity at 800 ° C. is preferably in the range of 0.03 to 0.045 W / (m · K). Further, as other heat insulating materials, there is a Roslim (registered trademark) board having a thermal conductivity of 800 ° C. of 0.044 W / (m · K), which is suitable for the present invention. In addition, the heat conductivity of the heat insulating material 10 is measured based on ISO8302.

図1,図2に示す通り、中空軸8の底部には、中空軸内の雰囲気が熱処理炉内の雰囲気と通過可能な連通孔13が設けられており、さらに中空軸8内の雰囲気は熱処理炉3の炉外の雰囲気から遮断された構造となっている。この連通孔13を設けることにより、熱処理炉内の熱の影響によって中空軸内で膨張したガスを熱処理炉内に逃がすことができる。よって、中空軸内が高圧になることを防ぎ、中空軸8の変形や破損を防ぐことができる。   As shown in FIGS. 1 and 2, a communication hole 13 through which the atmosphere in the hollow shaft 8 can pass through the atmosphere in the heat treatment furnace is provided at the bottom of the hollow shaft 8. The structure is cut off from the atmosphere outside the furnace of the furnace 3. By providing the communication hole 13, the gas expanded in the hollow shaft due to the influence of heat in the heat treatment furnace can be released into the heat treatment furnace. Therefore, the inside of the hollow shaft can be prevented from becoming a high pressure, and the deformation and breakage of the hollow shaft 8 can be prevented.

図2に示す通り、駆動軸4を構成する中実軸7と中空軸8は、中空軸8の上部に中実軸7の下部が嵌め込まれ、中実軸7の外周面と中空軸8の内周面が当接され、中実軸7の外周面と中空軸8の円筒上部の円周上の面が溶接されることにより直列に連結されている。このとき、中実軸7を中空軸8の断熱材10に当接させて溶接してもよい。これにより、溶接時における中実軸7の位置決めを容易にすることができる。さらに、中実軸7と中空軸8とを焼嵌めで固定した後に溶接することも好ましい。これにより、位置精度良く中実軸7と中空軸8とを溶接することができ、炉内攪拌ファン2の回転時における駆動軸4の軸心のぶれを防ぐことができる。また、溶接中においても中実軸7の位置が規制されることから、溶接の品質バラつきを低減させることができる。   As shown in FIG. 2, the solid shaft 7 and the hollow shaft 8 constituting the drive shaft 4 are fitted with the lower portion of the solid shaft 7 in the upper portion of the hollow shaft 8, and the outer peripheral surface of the solid shaft 7 and the hollow shaft 8 are The inner peripheral surface is brought into contact, and the outer peripheral surface of the solid shaft 7 and the circumferential surface of the cylindrical upper portion of the hollow shaft 8 are connected in series by welding. At this time, the solid shaft 7 may be brought into contact with the heat insulating material 10 of the hollow shaft 8 and welded. Thereby, the solid shaft 7 can be easily positioned during welding. Further, it is also preferable to weld the solid shaft 7 and the hollow shaft 8 after fixing them by shrink fitting. As a result, the solid shaft 7 and the hollow shaft 8 can be welded with high positional accuracy, and the shaft center of the drive shaft 4 can be prevented from shaking during rotation of the in-furnace stirring fan 2. Further, since the position of the solid shaft 7 is regulated even during welding, it is possible to reduce the quality variation of the welding.

上述のとおり中実軸7と中空軸8の中心軸のずれが最小となるように、寸法精度良く接続することが重要である。すなわち、高温下において炉内攪拌ファン2は、高速回転して炉内雰囲気を攪拌するので、中実軸と中空軸の両者の軸ずれが大きいと振動が発生して故障の原因となる。よって、上記焼き嵌めなどで固定した後に、溶接することにより連結することが好ましい。   As described above, it is important to connect the solid shaft 7 and the hollow shaft 8 with high dimensional accuracy so that the deviation between the central axes of the solid shaft 7 and the hollow shaft 8 is minimized. That is, since the in-furnace agitation fan 2 rotates at high speed to agitate the in-furnace atmosphere at a high temperature, if the axial deviation between both the solid shaft and the hollow shaft is large, vibration occurs and causes a failure. Therefore, it is preferable to connect by welding after fixing by the shrink fitting.

中実軸7は、熱処理炉3に隣接して設けられたベアリング11に支持されている。図2に示す通り、中実軸7の外周面と熱処理炉3の炉体(炉殻9)の境界部分には、シール部材12が設けられている。このシール部材12が熱処理炉3と中実軸7との間に形成された境界(隙間)を埋めることにより、炉内の雰囲気ガスが炉外に漏れることを防止することができる。また、中空軸8が破損する等のトラブルが発生した場合であっても、炉外から炉内に空気が混入することを防ぐことができ、これに加えて、熱処理炉内の雰囲気ガス(浸炭ガス等)の炉外への流出も防ぐことができるため、火災等のトラブルの発生も防ぐことができる。なお、シール部材12とは、例えばOリングやオイルシールである。   The solid shaft 7 is supported by a bearing 11 provided adjacent to the heat treatment furnace 3. As shown in FIG. 2, a seal member 12 is provided at the boundary between the outer peripheral surface of the solid shaft 7 and the furnace body (furnace shell 9) of the heat treatment furnace 3. The sealing member 12 fills a boundary (gap) formed between the heat treatment furnace 3 and the solid shaft 7, thereby preventing atmospheric gas in the furnace from leaking outside the furnace. Further, even when trouble such as breakage of the hollow shaft 8 occurs, it is possible to prevent air from being mixed into the furnace from the outside of the furnace. The outflow of gas, etc.) outside the furnace can also be prevented, so that troubles such as fire can be prevented. The seal member 12 is, for example, an O-ring or an oil seal.

また、中実軸7と中空軸8の接合部は、熱処理炉3の炉体表面より炉内側であって、且つ、シール部材12より炉内側にあることが好ましい。これによりさらに、中空軸7が破損したとしても炉内の雰囲気ガスが炉外に漏れることを防ぐことができ、安全性を高めることができる。また、駆動軸4の強度を向上させるためにも好ましい。   Further, the joint portion between the solid shaft 7 and the hollow shaft 8 is preferably located inside the furnace from the surface of the furnace body of the heat treatment furnace 3 and inside the furnace from the seal member 12. Thereby, even if the hollow shaft 7 is damaged, it is possible to prevent the atmospheric gas in the furnace from leaking out of the furnace, and the safety can be improved. It is also preferable for improving the strength of the drive shaft 4.

炉内攪拌ファン2の上板14の上面には、補強板15が設けられている。図2に示す通り、補強板15は、炉内攪拌ファン2の上板14の上面において溶接され、中空軸8は、補強板15の上面及び炉内攪拌ファン2の上板14の下面において溶接されている。   A reinforcing plate 15 is provided on the upper surface of the upper plate 14 of the in-furnace agitation fan 2. As shown in FIG. 2, the reinforcing plate 15 is welded on the upper surface of the upper plate 14 of the in-furnace stirring fan 2, and the hollow shaft 8 is welded on the upper surface of the reinforcing plate 15 and the lower surface of the upper plate 14 of the in-furnace stirring fan 2. Has been.

本発明の実施の形態では、以上のように構成された熱処理装置で熱処理を行う。このように構成された熱処理装置によれば、駆動軸を中実軸と中空軸で構成し、炉内攪拌ファンに接続された中空軸の中空部に、空気に比べて断熱性の高い(熱伝導率の低い)断熱材を設けることにより、駆動軸を介した炉内から炉外への熱伝達を抑えることができる。これにより、駆動軸を支持するベアリングや駆動軸に接続されるモーター等の駆動軸周辺部品の温度上昇を抑制することができる。その結果、周辺部品それぞれに規定された使用温度範囲内で各部品を使用することができ、安定した性能を引き出せると共に耐久性の低下も抑制することができる。また、駆動軸からの熱伝達を抑えることに伴い、駆動軸周辺部品を耐熱性の高い材質の例えばセラミックスで作製されたものから、比較的耐熱性の低い材質の例えば金属製ものに切り換えることができるため、部品コストを削減することができる。また、断熱性が高いため、炉内を加熱、保温するエネルギーコストを低減することもできる。   In the embodiment of the present invention, the heat treatment is performed by the heat treatment apparatus configured as described above. According to the heat treatment apparatus configured as described above, the drive shaft is constituted by a solid shaft and a hollow shaft, and the hollow portion of the hollow shaft connected to the in-furnace agitation fan has higher heat insulation than the air (heat By providing a heat insulating material having a low conductivity, heat transfer from the inside of the furnace to the outside of the furnace via the drive shaft can be suppressed. Thereby, the temperature rise of components around the drive shaft such as a bearing supporting the drive shaft and a motor connected to the drive shaft can be suppressed. As a result, each component can be used within the operating temperature range defined for each peripheral component, and a stable performance can be brought out and a decrease in durability can be suppressed. In addition, along with the suppression of heat transfer from the drive shaft, the peripheral components of the drive shaft can be switched from those made of ceramics having a high heat resistance such as ceramics to those made of a relatively low heat resistant material such as metal. As a result, component costs can be reduced. Moreover, since the heat insulating property is high, the energy cost for heating and keeping the temperature inside the furnace can be reduced.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

例えば、上記実施形態では、駆動軸を中実軸と中空軸で構成することとしたが、駆動軸全体を中空軸としても良い。中空部に空気より断熱性の高い断熱材を設けることにより、炉内攪拌ファンの駆動機構を複雑にすることなく、熱処理炉の炉内から炉外への駆動軸を介した熱伝達を抑える作用効果を奏することができる。また、上記実施形態では、中実軸や中空軸、補強板、炉内攪拌ファン等を互いに溶接することとしたが、溶接箇所や溶接長は適宜変更されるものである。また、各部品の固定方法についても溶接に限定されるものではなく、その他の手法により固定しても良い。   For example, in the above embodiment, the drive shaft is constituted by a solid shaft and a hollow shaft, but the entire drive shaft may be a hollow shaft. By providing a heat insulating material with higher heat insulation than air in the hollow part, the heat transfer via the drive shaft from the inside of the heat treatment furnace to the outside of the furnace is suppressed without complicating the drive mechanism of the stirring fan in the furnace. There is an effect. Further, in the above embodiment, the solid shaft, the hollow shaft, the reinforcing plate, the in-furnace stirring fan, and the like are welded to each other, but the welding location and the welding length are appropriately changed. Further, the fixing method of each component is not limited to welding, and may be fixed by other methods.

また、前述の通り、中空軸は例えばその底部に中空軸内の雰囲気が熱処理炉内の雰囲気と通過可能な連通孔が設けられている構造となっている。このような構造とするために、中空軸は底面付きの円筒部材の底面に穴を開けて作製してもよく、或いは円筒部材にドーナツ状の円盤を底面部材として用意して両者を溶接などにより接合して作製しても良い。また、中空軸と中実軸で駆動軸を構成するときの中空軸内部への断熱材の挿入は、中実軸を接合する前でも後でも構わない。   As described above, the hollow shaft has a structure in which, for example, a communication hole through which the atmosphere in the hollow shaft can pass through the atmosphere in the heat treatment furnace is provided at the bottom. In order to obtain such a structure, the hollow shaft may be made by making a hole in the bottom surface of a cylindrical member with a bottom surface, or a donut-shaped disk is prepared as a bottom surface member on the cylindrical member and the two are welded together. It may be produced by bonding. Further, when the drive shaft is constituted by the hollow shaft and the solid shaft, the heat insulating material may be inserted into the hollow shaft before or after the solid shaft is joined.

また、図3に示すように、本発明の他の実施形態として、ハウジング5の内部(熱処理炉の炉外)の駆動軸上に、ベアリング11を冷却する冷却ファン17を設けても良い。この冷却ファン17は、駆動軸4の回転に合わせて回転する。これにより、上記実施形態で説明した熱伝達抑制効果、高い断熱効果に加えて、冷却ファン17の回転によって生じた風によるベアリングの冷却効果も得ることができる。   As shown in FIG. 3, as another embodiment of the present invention, a cooling fan 17 for cooling the bearing 11 may be provided on the drive shaft inside the housing 5 (outside of the heat treatment furnace). The cooling fan 17 rotates in accordance with the rotation of the drive shaft 4. Thereby, in addition to the heat transfer suppression effect and the high heat insulation effect described in the above embodiment, a bearing cooling effect by wind generated by the rotation of the cooling fan 17 can also be obtained.

本発明に係る熱処理装置と従来の熱処理装置を用いた場合の熱処理炉外への熱伝達について比較を行った。なお、本発明に係る熱処理装置とは、上記実施形態で説明した図1に示す構成を有する装置であり、従来の熱処理装置とは、駆動軸を全て中実軸としたものである。   The heat transfer to the outside of the heat treatment furnace when using the heat treatment apparatus according to the present invention and the conventional heat treatment apparatus was compared. The heat treatment apparatus according to the present invention is an apparatus having the configuration shown in FIG. 1 described in the above embodiment, and the conventional heat treatment apparatus has a solid drive axis as the drive shaft.

まず、熱処理炉の炉外にある駆動軸温度及びベアリング温度を測定した。結果を図4に示す。なお、温度の測定ポイントは、図2に示すP1、P2である。また、熱処理炉の炉内温度は950℃である。   First, the drive shaft temperature and the bearing temperature outside the heat treatment furnace were measured. The results are shown in FIG. The temperature measurement points are P1 and P2 shown in FIG. Moreover, the furnace temperature of the heat treatment furnace is 950 ° C.

温度測定の結果、熱処理中の軸温度P1は、従来例が285℃であったのに対して、実施例では135℃であった。また、熱処理中のベアリング温度P2は、比較例が165℃であったのに対して実施例では135℃であった。本実施例の結果によれば、駆動軸の一部を中空軸とし、その中空軸の中空部に空気より断熱性の高い断熱材を設けることにより、駆動軸を介した周辺部品の温度上昇を大きく抑えることができる。また、本発明例の場合、ベアリング温度が150℃以下となっている。このため、従来使用されてきたセラミックス製のベアリングに代えて、耐熱性のあまり高くない金属製のベアリングを採用することができ、コストを削減することができる。   As a result of the temperature measurement, the shaft temperature P1 during the heat treatment was 285 ° C. in the conventional example, whereas it was 135 ° C. in the example. Further, the bearing temperature P2 during the heat treatment was 135 ° C. in the example compared to 165 ° C. in the comparative example. According to the results of this example, a part of the drive shaft is a hollow shaft, and a heat insulating material having higher heat insulation than air is provided in the hollow portion of the hollow shaft, thereby increasing the temperature of peripheral components via the drive shaft. It can be greatly suppressed. In the case of the present invention example, the bearing temperature is 150 ° C. or lower. For this reason, it can replace with the ceramic bearing conventionally used, and can employ | adopt the metal bearing which is not so high in heat resistance, and can reduce cost.

次に、熱処理炉内にある駆動軸(本発明例:断熱材を設けた中空軸、従来例:中実軸)からの放熱量を測定した。その結果、従来例が67kcal/hであったのに対して、本発明例では31kcal/hであった。また、熱処理炉外にある駆動軸(本発明例:中実軸、従来例:中実軸)からの放熱量についても測定した。その結果、従来例が123kcal/hであったのに対して、本発明例では27kcal/hであった。これらの結果から、本発明例によれば、駆動軸からの放熱を大きく抑えることができ、駆動軸周辺部品への熱伝達を抑えられることが示される。特に、本発明例における熱処理炉の炉外にある駆動軸(中実軸)からの放熱量は、従来例に比べて極めて小さくなっている。すなわち、本発明は駆動軸周辺部品の温度の上昇を抑制するとともに、駆動軸周辺からの伝熱や放熱が小さいので高い断熱効果をも備える。   Next, the amount of heat released from the drive shaft in the heat treatment furnace (example of the present invention: hollow shaft provided with a heat insulating material, conventional example: solid shaft) was measured. As a result, the conventional example was 67 kcal / h, whereas the example of the present invention was 31 kcal / h. Further, the amount of heat released from the drive shaft outside the heat treatment furnace (example of the present invention: solid shaft, conventional example: solid shaft) was also measured. As a result, the conventional example was 123 kcal / h, whereas the example of the present invention was 27 kcal / h. From these results, it is shown that according to the example of the present invention, heat radiation from the drive shaft can be greatly suppressed, and heat transfer to the peripheral components of the drive shaft can be suppressed. In particular, the amount of heat released from the drive shaft (solid shaft) outside the furnace of the heat treatment furnace in the present invention is extremely small compared to the conventional example. That is, the present invention suppresses an increase in the temperature of the peripheral components around the drive shaft, and also has a high heat insulating effect because heat transfer and heat dissipation from the drive shaft periphery are small.

次に、炉内攪拌ファンの停止後(熱処理終了後)のベアリング温度を測定した。結果を図5に示す。なお、温度測定ポイントは、図2に示すP2である。図5によれば、従来例の場合には、熱処理炉内の余熱が駆動軸を介してベアリングに伝達し、経過時間と共にベアリング温度が上昇している。一方、本発明例によれば、経過時間と共にベアリングの温度が上昇することはなく、経過時間が30分となる頃にはベアリング温度が低下している。すなわち、本発明例によれば、熱処理終了後の熱処理炉内の余熱に起因した駆動軸周辺部品の温度上昇を防ぐことができる。   Next, the bearing temperature after the furnace stirring fan was stopped (after the heat treatment was completed) was measured. The results are shown in FIG. The temperature measurement point is P2 shown in FIG. According to FIG. 5, in the case of the conventional example, the residual heat in the heat treatment furnace is transmitted to the bearing through the drive shaft, and the bearing temperature increases with the elapsed time. On the other hand, according to the example of the present invention, the temperature of the bearing does not increase with the elapsed time, and the bearing temperature decreases when the elapsed time reaches 30 minutes. That is, according to the example of the present invention, it is possible to prevent the temperature rise of the peripheral components around the drive shaft due to the residual heat in the heat treatment furnace after the heat treatment is completed.

本発明は、熱処理炉内の雰囲気を攪拌する炉内攪拌ファンを備えた熱処理装置に適用することができる。   The present invention can be applied to a heat treatment apparatus including an in-furnace stirring fan that stirs the atmosphere in the heat treatment furnace.

1 熱処理装置
2 炉内攪拌ファン
3 熱処理炉
4 駆動軸
5 ハウジング
6 モーター
7 中実軸
8 中空軸
9 炉殻
10 断熱材
11 ベアリング
12 シール部材
13 連通孔
14 炉内攪拌ファン上板
15 補強板
16 熱処理炉断熱材
17 冷却ファン
WP 溶接部







DESCRIPTION OF SYMBOLS 1 Heat processing apparatus 2 Furnace stirring fan 3 Heat processing furnace 4 Drive shaft 5 Housing 6 Motor 7 Solid shaft 8 Hollow shaft 9 Furnace shell 10 Heat insulating material 11 Bearing 12 Seal member 13 Communication hole 14 Furnace stirring fan upper plate 15 Reinforcement plate 16 Heat treatment furnace insulation 17 Cooling fan WP weld







Claims (10)

熱処理炉の炉内に設けられた炉内攪拌ファンと、前記熱処理炉の炉体を貫通するようにして設けられ、前記炉内攪拌ファンに接続された駆動軸とを備えた熱処理装置であって、
前記駆動軸の少なくとも一部が中空軸であり、
前記熱処理炉内において、前記中空軸に前記炉内攪拌ファンが接続され、
前記中空軸の中空部に、空気に比べて断熱性の高い断熱材が設けられていることを特徴とする熱処理装置。
A heat treatment apparatus including an in-furnace agitation fan provided in a furnace of the heat treatment furnace and a drive shaft provided so as to penetrate the furnace body of the heat treatment furnace and connected to the in-furnace agitation fan. ,
At least a portion of the drive shaft is a hollow shaft;
In the heat treatment furnace, the furnace stirring fan is connected to the hollow shaft,
A heat treatment apparatus characterized in that a heat insulating material having a higher heat insulating property than air is provided in a hollow portion of the hollow shaft.
前記中空軸は、該中空軸内と前記熱処理炉内とが連通するように形成されていることを特徴とする請求項1に記載の熱処理装置。   The heat treatment apparatus according to claim 1, wherein the hollow shaft is formed so that the hollow shaft and the heat treatment furnace communicate with each other. 前記駆動軸が、前記中空軸と該中空軸に直列に連結された中実軸で構成されていることを特徴とする請求項1又は請求項2に記載の熱処理装置。   3. The heat treatment apparatus according to claim 1, wherein the drive shaft includes a hollow shaft and a solid shaft connected in series to the hollow shaft. 前記中実軸と前記中空軸の接合部が、前記熱処理炉の炉体表面より炉内側にあることを特徴とする請求項3に記載の熱処理装置。   The heat treatment apparatus according to claim 3, wherein a joint between the solid shaft and the hollow shaft is located inside a furnace body surface of the heat treatment furnace. 前記熱処理炉と前記中実軸との間に形成された隙間をシールするシール部材が設けられていることを特徴とする請求項3又は4に記載の熱処理装置。   5. The heat treatment apparatus according to claim 3, wherein a seal member that seals a gap formed between the heat treatment furnace and the solid shaft is provided. 前記中実軸と前記中空軸の接合部が、前記熱処理炉の炉体表面より炉内側であって、且つ、前記シール部材より炉内側にあることを特徴とする請求項5に記載の熱処理装置。   6. The heat treatment apparatus according to claim 5, wherein a joint between the solid shaft and the hollow shaft is located inside the furnace from the furnace body surface of the heat treatment furnace and inside the furnace from the seal member. . 前記中実軸が前記熱処理炉の炉外に設けられたベアリングで支持されていることを特徴とする請求項3〜6のいずれかに記載の熱処理装置。   The heat treatment apparatus according to any one of claims 3 to 6, wherein the solid shaft is supported by a bearing provided outside the heat treatment furnace. 前記中空軸と前記中実軸とが溶接により直列に連結されていることを特徴とする請求項3〜7のいずれかに記載の熱処理装置。   The heat treatment apparatus according to claim 3, wherein the hollow shaft and the solid shaft are connected in series by welding. 前記駆動軸を支持するベアリングを冷却する冷却ファンが、前記熱処理炉の炉外の前記駆動軸上に設けられていることを特徴とする請求項1〜8のいずれかに記載の熱処理装置。   The heat treatment apparatus according to claim 1, wherein a cooling fan that cools a bearing that supports the drive shaft is provided on the drive shaft outside the heat treatment furnace. 請求項1〜7のいずれかに記載の熱処理装置を製造する製造方法であって、
前記中空軸と中実軸とを焼嵌めで互いに固定した後に、前記中空軸と前記中実軸とを溶接することにより直列に連結して前記駆動軸を形成することを特徴とする熱処理装置の製造方法。
A manufacturing method for manufacturing the heat treatment apparatus according to claim 1,
After the hollow shaft and the solid shaft are fixed to each other by shrink fitting, the hollow shaft and the solid shaft are connected in series by welding to form the drive shaft. Production method.
JP2013037329A 2013-02-27 2013-02-27 Heat treatment apparatus and method of forming drive shaft of furnace stirring fan Active JP6177544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013037329A JP6177544B2 (en) 2013-02-27 2013-02-27 Heat treatment apparatus and method of forming drive shaft of furnace stirring fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013037329A JP6177544B2 (en) 2013-02-27 2013-02-27 Heat treatment apparatus and method of forming drive shaft of furnace stirring fan

Publications (2)

Publication Number Publication Date
JP2014163637A true JP2014163637A (en) 2014-09-08
JP6177544B2 JP6177544B2 (en) 2017-08-09

Family

ID=51614401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013037329A Active JP6177544B2 (en) 2013-02-27 2013-02-27 Heat treatment apparatus and method of forming drive shaft of furnace stirring fan

Country Status (1)

Country Link
JP (1) JP6177544B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185824A (en) * 2013-03-25 2014-10-02 Dowa Thermotech Kk Thermal treatment apparatus
CN106915051A (en) * 2017-04-20 2017-07-04 浙江东尼电子股份有限公司 A kind of efficient fluorine material extruder
JP2019002432A (en) * 2017-06-13 2019-01-10 トヨタ自動車株式会社 Heat insulation wall structure for heating furnace
JP2022153227A (en) * 2021-07-26 2022-10-12 中外炉工業株式会社 Cooling mechanism for fan shaft

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985452U (en) * 1972-11-16 1974-07-24
JPH0684299U (en) * 1993-04-28 1994-12-02 大同特殊鋼株式会社 Vacuum furnace
JPH07208876A (en) * 1994-01-13 1995-08-11 Daido Steel Co Ltd Vacuum furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985452U (en) * 1972-11-16 1974-07-24
JPH0684299U (en) * 1993-04-28 1994-12-02 大同特殊鋼株式会社 Vacuum furnace
JPH07208876A (en) * 1994-01-13 1995-08-11 Daido Steel Co Ltd Vacuum furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185824A (en) * 2013-03-25 2014-10-02 Dowa Thermotech Kk Thermal treatment apparatus
CN106915051A (en) * 2017-04-20 2017-07-04 浙江东尼电子股份有限公司 A kind of efficient fluorine material extruder
CN106915051B (en) * 2017-04-20 2023-01-13 浙江东尼电子股份有限公司 High-efficient fluorine material extruder
JP2019002432A (en) * 2017-06-13 2019-01-10 トヨタ自動車株式会社 Heat insulation wall structure for heating furnace
JP2022153227A (en) * 2021-07-26 2022-10-12 中外炉工業株式会社 Cooling mechanism for fan shaft
JP7174118B2 (en) 2021-07-26 2022-11-17 中外炉工業株式会社 Fan shaft cooling mechanism

Also Published As

Publication number Publication date
JP6177544B2 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
JP6177544B2 (en) Heat treatment apparatus and method of forming drive shaft of furnace stirring fan
CA2560003C (en) Seal for generators
JP2019178655A (en) Vacuum pump
KR20220084017A (en) vacuum pump and water cooling spacer
JP5863499B2 (en) Heat treatment method
JP2014135859A (en) Electric motor
JP6177558B2 (en) Heat treatment equipment
JP6407891B2 (en) Gas quenching equipment
JP6113961B2 (en) Heat treatment equipment
JP5227814B2 (en) Electric motor
JP5798368B2 (en) Heat treatment equipment
KR101223267B1 (en) A vacuum chamber for byte tip heat-treatment and the manufacturing method
JP2018204737A (en) Adiabatic wall structure
JP2019168139A (en) Rotary type heat treatment device
JP2011106775A (en) Rotary kiln
JP6753360B2 (en) Insulated wall structure for heating furnace
JP2018105394A (en) Rotating machine
JP5206439B2 (en) Gas chromatograph
JP5500802B2 (en) Hot isostatic press
TW202129153A (en) Vacuum pump apparatus
JPH08327264A (en) Rotary regeneration type heat exchanger for high-temperature exhaust gas
JP2006304526A (en) Rotor combination structure
CN104343828B (en) A kind of cooling jacket of vibrator driving shaft bearing set
JP2019205964A (en) Highly airtight type reactor and method for stirring object to be processed
JPH07117340B2 (en) High temperature furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170712

R150 Certificate of patent or registration of utility model

Ref document number: 6177544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250