JP2014163629A - Soar light concentrator - Google Patents

Soar light concentrator Download PDF

Info

Publication number
JP2014163629A
JP2014163629A JP2013037029A JP2013037029A JP2014163629A JP 2014163629 A JP2014163629 A JP 2014163629A JP 2013037029 A JP2013037029 A JP 2013037029A JP 2013037029 A JP2013037029 A JP 2013037029A JP 2014163629 A JP2014163629 A JP 2014163629A
Authority
JP
Japan
Prior art keywords
receiver
rotation
straight line
incident surface
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013037029A
Other languages
Japanese (ja)
Inventor
Soji Koikari
創司 小碇
Tetsuya Amano
哲也 天野
Mikoto Iemoto
勅 家本
Katsushige Nakamura
勝重 中村
Kazuo Yoshida
一雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INST OF APPLIED ENERGY
JFE Engineering Corp
Institute of Applied Energy
Mitaka Kohki Co Ltd
Original Assignee
INST OF APPLIED ENERGY
JFE Engineering Corp
Institute of Applied Energy
Mitaka Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INST OF APPLIED ENERGY, JFE Engineering Corp, Institute of Applied Energy, Mitaka Kohki Co Ltd filed Critical INST OF APPLIED ENERGY
Priority to JP2013037029A priority Critical patent/JP2014163629A/en
Publication of JP2014163629A publication Critical patent/JP2014163629A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar light concentrator in which the rotation of concentration spot on a receiver incident surface is properly suppressed.SOLUTION: The solar light concentrator follows the motion of sun on the celestial sphere by rotation around rotation shafts x, y which cross orthogonally each other and makes solar light reflected by a plane reflecting mirror 3 which is mounted incident to a receiver incident surface. Therein, when a straight line (a) which passes through a target point p, as one line of segment contained in a receiver incident surface is supposed and a flat surface Q containing the straight line (a) and an immobile point (e) are supposed, an inclination of the rotation shaft x with respect to a straight line which crosses orthogonally the flat surface Q is set to be 5° or less (containing 0°). Assembly of points at which light reflected on the position of the rotation shaft y of the plane reflecting mirror 3 intersects the receiver incident surface is always contained on the straight line (a) supposed on the receiver incident surface. Therein, the segment consisting of the assembly of points at which light rays reflected on the segments in parallel to the rotation shaft y on a mirror surface 30 of the plane reflecting mirror 3 intersect the receiver incident surface and the straight line (a) supposed on the receiver incident surface always get to parallel with each other and, therefore, the rotation of concentration spot is suppressed.

Description

本発明は、太陽エネルギーを利用するための集光設備において、太陽の動きを二本の直交する回転軸周りの回転によって追尾し、搭載した平面反射鏡に太陽光を反射させてレシーバーに集光する太陽光集光装置に関する。   The present invention is a condensing facility for utilizing solar energy, which tracks the movement of the sun by rotation around two orthogonal rotation axes, and reflects the sunlight to the mounted flat reflector to condense it on the receiver. The present invention relates to a solar light collecting device.

太陽光を多数の太陽光集光装置(ヘリオスタット)によりソーラータワー上部に設置されたレシーバーに集め、その太陽光エネルギーを用いる太陽熱発電や太陽光発電、太陽炉等の設備が知られている。ここで使用される太陽光集光装置は、搭載した反射鏡の鏡面を任意の方向に向ける機能を備えており、その反射鏡の鏡面の向きを見かけ上の太陽の方向に応じて適切に制御することにより、太陽から入射して鏡面で反射した光をレシーバーの入射面(受光面)に集光する。   There are known facilities such as solar thermal power generation, solar power generation, and solar furnace that collect sunlight on a receiver installed on the top of the solar tower by a large number of solar concentrators (heliostats) and use the solar energy. The solar concentrator used here has the function of directing the mirror surface of the mounted reflector in any direction, and the direction of the mirror surface of the reflector is controlled appropriately according to the apparent sun direction. By doing so, the light incident from the sun and reflected by the mirror surface is condensed on the incident surface (light receiving surface) of the receiver.

従来一般的に利用されている太陽光集光装置には、経緯台方式と赤道儀方式の二通りがある(例えば、特許文献1,2)。いずれも地面に対してその位置と方向が固定された第一の回転軸と、それと直交するように設けられた第二の回転軸を備え、後者に対して反射鏡が取り付けられている。第一の回転軸が地面に垂直である場合が経緯台式であり、地軸に平行である場合が赤道儀式である。反射鏡が長方形の場合、長方形の四辺のうち向かい合う二辺が第二の回転軸と直角になり、残り二辺が第二の回転軸と平行になるように取り付けられるのが普通である。   Conventionally, there are two types of solar light collecting devices that are generally used (for example, Patent Documents 1 and 2). Each includes a first rotating shaft whose position and direction are fixed with respect to the ground, and a second rotating shaft provided so as to be orthogonal thereto, and a reflecting mirror is attached to the latter. The case where the first axis of rotation is perpendicular to the ground is a graticule type, and the case where it is parallel to the axis is an equator ritual. When the reflecting mirror is rectangular, it is common that the two opposite sides of the rectangular side are perpendicular to the second rotation axis and the other two sides are parallel to the second rotation axis.

特開2012−251755号公報JP 2012-251755 A 特開2010−101591号公報JP 2010-101591 A

反射鏡が長方形などの平行四辺形である場合、ソーラータワー上部に設置されたレシーバーの入射面上の集光スポット(レシーバー入射面において反射光によって照らし出される部分)の形状も、基本的に平行四辺形となる。しかし、従来の経緯台式や赤道儀式の太陽光集光装置を用いた場合、レシーバー入射面上の集光スポットの形状が、時間の経過とともに、あたかも回転したように変化するという問題がある。このような集光スポットの回転が生じると、レシーバーに到達する太陽光エネルギーを全て活用したい場合には、集光スポットの回転範囲を含むような、十分に大きいレシーバーを用意しなければならない。一方、レシーバー入射面全体に、常にできるだけ一様に反射光が当たっていなければならない場合には、回転する集光スポットによって常に照らされている部分に含まれるように、レシーバーを十分に小さくしなければならない。前者の場合には、レシーバーが有効に活用できておらず、後者の場合には、集められた太陽光エネルギーが有効に活用できていないことになり、いずれも効率な発電システムとは言い難い。   When the reflector is a parallelogram such as a rectangle, the shape of the condensing spot on the incident surface of the receiver installed on the top of the solar tower (the portion illuminated by the reflected light on the receiver incident surface) is also basically parallel. It becomes a quadrilateral. However, in the case of using a conventional graduation-type or equator-type sunlight condensing device, there is a problem that the shape of the condensing spot on the receiver incident surface changes as if rotating. When such a rotation of the condensed spot occurs, in order to utilize all of the solar energy that reaches the receiver, a sufficiently large receiver including the rotation range of the condensed spot must be prepared. On the other hand, if the entire incident surface of the receiver must be reflected as uniformly as possible, the receiver must be small enough to be included in the part that is always illuminated by the rotating focused spot. I must. In the former case, the receiver cannot be used effectively, and in the latter case, the collected solar energy cannot be used effectively, and it is difficult to say that both are efficient power generation systems.

したがって本発明の目的は、以上のような従来技術の課題を解決し、レシーバー入射面上における集光スポットの回転(経時的に回転を生じているかのような形状変化)が適切に抑えられる太陽光集光装置を提供することにある。
また、本発明の他の目的は、集光スポットの回転(経時的に回転を生じているかのような形状変化)が抑えられる太陽光集光装置の設置方法を提供することにある。
Therefore, the object of the present invention is to solve the above-described problems of the prior art, and to suppress the rotation of the condensing spot on the receiver incident surface (change in shape as if rotating with time) appropriately. The object is to provide a light condensing device.
Another object of the present invention is to provide a method of installing a solar light collecting device in which the rotation of the condensing spot (the change in shape as if rotating with time) is suppressed.

本発明者らは、上記課題を解決するため検討を重ねた結果、レシーバー入射面においてターゲット点pを通過する任意の直線aを仮想し、この直線aと不動点e(太陽光集光装置の第一回転軸と第二回転軸の交点)を含む平面Qを仮想した場合、この仮想の平面Qとほぼ直交するように太陽光集光装置の第一回転軸を設定することにより、レシーバー入射面上における集光スポットの回転(経時的に回転を生じているかのような形状変化)が適切に抑えられることを見出した。   As a result of repeated studies to solve the above-described problems, the present inventors hypothesized an arbitrary straight line a passing through the target point p on the receiver incident surface, and this straight line a and a fixed point e (of the solar light collecting device). When the plane Q including the first rotation axis and the second rotation axis is hypothesized, by setting the first rotation axis of the solar light collecting device to be substantially orthogonal to the virtual plane Q, the receiver is incident. It has been found that the rotation of the condensing spot on the surface (the shape change as if rotating over time) can be appropriately suppressed.

本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]固定支持部(1)に回転可能に支持される第一回転部材(2x)と、該第一回転部材(2x)に回転可能に支持される第二回転部材(2y)と、該第二回転部材(2y)に固定される平面反射鏡(3)を備え、
第一回転部材(2x)の回転軸(x)と第二回転部材(2y)の回転軸(y)とが直交し、且つ、平面反射鏡(3)の鏡面(30)が回転軸(y)に対して平行であり、
天球上における太陽の動きを、回転軸(x),(y)回りの回転によって追尾し、平面反射鏡(3)で反射した太陽光をレシーバーの入射面に入射させる太陽光集光装置であって、
レシーバーの入射面に含まれる1本の線分であって、ターゲット点(p)を通る直線(a)を仮想し、該直線(a)と不動点(e)を含む平面(Q)を仮想した場合に、平面(Q)と直交する直線に対する回転軸(x)の傾きが5°以下(但し、0°の場合を含む)であることを特徴とする太陽光集光装置。
The present invention has been made on the basis of such findings and has the following gist.
[1] A first rotating member (2x) rotatably supported by the fixed support portion (1), a second rotating member (2y) rotatably supported by the first rotating member (2x), A plane reflecting mirror (3) fixed to the second rotating member (2y);
The rotation axis (x) of the first rotation member (2x) and the rotation axis (y) of the second rotation member (2y) are orthogonal to each other, and the mirror surface (30) of the plane reflecting mirror (3) is the rotation axis (y ) Parallel to
A solar concentrator that tracks the movement of the sun on the celestial sphere by rotation around the rotation axes (x) and (y), and makes the sunlight reflected by the plane reflector (3) incident on the incident surface of the receiver. And
A line segment included in the incident surface of the receiver, which is assumed to be a straight line (a) passing through the target point (p), and a plane (Q) including the straight line (a) and the fixed point (e) is assumed to be virtual. In this case, the solar light collecting device is characterized in that the inclination of the rotation axis (x) with respect to a straight line orthogonal to the plane (Q) is 5 ° or less (including the case of 0 °).

[2]上記[1]の太陽光集光装置において、平面反射鏡(3)の鏡面(30)が平行四辺形であることを特徴とする太陽光集光装置。
[3]上記[1]又は[2]の太陽光集光装置において、レシーバーの入射面の中心をターゲット点(p)とし、該ターゲット点(p)を通る直線(a)が水平であることを特徴とする太陽光集光装置。
[4]上記[1]〜[3]のいずれかの太陽光集光装置がレシーバーの周囲に複数配置され、該複数の太陽光集光装置により太陽光がレシーバーに集光されることを特徴とする集光型発電設備。
[2] The solar light collecting device according to [1], wherein the mirror surface (30) of the planar reflecting mirror (3) is a parallelogram.
[3] In the solar light collecting apparatus of [1] or [2] above, the center of the incident surface of the receiver is the target point (p), and the straight line (a) passing through the target point (p) is horizontal. A solar concentrator characterized by.
[4] A plurality of solar light collecting devices according to any one of the above [1] to [3] are arranged around a receiver, and sunlight is condensed on the receiver by the plurality of solar light collecting devices. Concentrating power generation equipment.

[5]固定支持部(1)に回転可能に支持される第一回転部材(2x)と、該第一回転部材(2x)に回転可能に支持される第二回転部材(2y)と、該第二回転部材(2y)に固定される平面反射鏡(3)を備え、
第一回転部材(2x)の回転軸(x)と第二回転部材(2y)の回転軸(y)とが直交し、且つ、平面反射鏡(3)の鏡面(30)が回転軸(y)に対して平行であり、
天球上における太陽の動きを、回転軸(x),(y)回りの回転によって追尾し、平面反射鏡(3)で反射した太陽光をレシーバーの入射面に入射させる太陽光集光装置の設置方法であって、
レシーバーの入射面に含まれる1本の線分であって、ターゲット点(p)を通る直線(a)を仮想し、該直線(a)と不動点(e)を含む平面(Q)を仮想した場合に、平面(Q)と直交する直線に対する回転軸(x)の傾きが5°以下(但し、0°の場合を含む)となるように太陽光集光装置を設置することを特徴とする太陽光集光装置の設置方法。
[5] A first rotating member (2x) rotatably supported by the fixed support portion (1), a second rotating member (2y) rotatably supported by the first rotating member (2x), A plane reflecting mirror (3) fixed to the second rotating member (2y);
The rotation axis (x) of the first rotation member (2x) and the rotation axis (y) of the second rotation member (2y) are orthogonal to each other, and the mirror surface (30) of the plane reflecting mirror (3) is the rotation axis (y ) Parallel to
Installation of a solar concentrator that tracks the movement of the sun on the celestial sphere by rotation around the rotation axes (x) and (y) and makes the sunlight reflected by the flat reflector (3) incident on the incident surface of the receiver A method,
A line segment included in the incident surface of the receiver, which is assumed to be a straight line (a) passing through the target point (p), and a plane (Q) including the straight line (a) and the fixed point (e) is assumed to be virtual. In this case, the solar light collecting device is installed so that the inclination of the rotation axis (x) with respect to the straight line orthogonal to the plane (Q) is 5 ° or less (including the case of 0 °). To install a solar concentrator.

[6]上記[5]の設置方法において、平面反射鏡(3)の鏡面(30)が平行四辺形であることを特徴とする太陽光集光装置の設置方法。
[7]上記[5]又は[6]の設置方法において、レシーバーの入射面の中心をターゲット点(p)とし、該ターゲット点(p)を通る直線(a)が水平であることを特徴とする太陽光集光装置の設置方法。
[6] The method of installing the solar light collecting device according to [5], wherein the mirror surface (30) of the planar reflecting mirror (3) is a parallelogram.
[7] The installation method of [5] or [6] above, wherein the center of the incident surface of the receiver is a target point (p), and the straight line (a) passing through the target point (p) is horizontal. To install a solar concentrator.

本発明の太陽光集光装置では、平面反射鏡(3)の回転軸(y)の位置で反射した光がレシーバー入射面と交差する点の集合は、レシーバー入射面上で仮想される直線(a)に常に含まれる。そして、平面反射鏡(3)の鏡面(30)上にあって、回転軸(y)と平行な線分上で反射した光線がレシーバー入射面と交差する点の集合からなる線分と、レシーバー入射面上で仮想される直線(a)とが常に平行になるので、集光スポットの回転(経時的に回転を生じているかのような形状変化)が抑えられることになる。以上のような本発明の作用効果は、平面(Q)と直交する直線に対する回転軸(x)の傾きが0°、すなわち、回転軸(x)が平面(Q)と直交している場合に端的に得られるものであるが、平面(Q)と直交する直線に対する回転軸(x)の傾きが5°以下であれば、回転軸(x)が平面(Q)とおおむね直交していると見なすことができるので、この場合にも、上記に準じた相応の作用効果が得られ、集光スポットの回転(経時的に回転を生じているかのような形状変化)が抑えられる。
また、本発明の太陽光集光装置の設置方法によれば、集光スポットの回転(経時的に回転を生じているかのような形状変化)が抑えられる太陽光集光装置を設置することができる。
In the solar light collecting device of the present invention, a set of points where the light reflected at the position of the rotation axis (y) of the plane reflecting mirror (3) intersects the receiver incident surface is a straight line ( Always included in a). A line segment composed of a set of points on the mirror surface (30) of the plane reflecting mirror (3) and reflected on a line segment parallel to the rotation axis (y), and the receiver incident surface; Since the imaginary straight line (a) is always parallel to the incident surface, the rotation of the condensing spot (change in shape as if rotating with time) is suppressed. The effects of the present invention as described above are obtained when the inclination of the rotation axis (x) with respect to a straight line orthogonal to the plane (Q) is 0 °, that is, when the rotation axis (x) is orthogonal to the plane (Q). It can be obtained simply, but if the inclination of the rotation axis (x) with respect to the straight line orthogonal to the plane (Q) is 5 ° or less, the rotation axis (x) is almost orthogonal to the plane (Q). Therefore, in this case as well, a corresponding effect similar to the above can be obtained, and the rotation of the condensing spot (the shape change as if rotation has occurred over time) can be suppressed.
Moreover, according to the installation method of the solar concentrator of the present invention, it is possible to install the solar concentrator capable of suppressing the rotation of the condensing spot (the shape change as if rotating with time). it can.

本発明の太陽光集光装置が適用される集光型発電設備の一例を模式的に示すもので、図1(ア)は平面図、図1(イ)は側面図BRIEF DESCRIPTION OF THE DRAWINGS It shows typically an example of the concentrating type power generation equipment with which the solar concentrating device of this invention is applied, FIG. 1 (a) is a top view, FIG. 1 (a) is a side view. 本発明の太陽光集光装置の一実施形態を模式的に示すもので、平面反射鏡を一部切り欠いた状態で示す背面図The back view which shows one Embodiment of the sunlight condensing device of this invention typically, and shows the state in which the plane reflective mirror was partly notched 図2に示す太陽光集光装置の側面図Side view of the solar light collecting device shown in FIG. レシーバー入射面上での集光スポットの経時的な形状変化を模式的に示すもので、図4(ア)は従来装置を使用した場合の集光スポットの形状変化を示す図面、図4(イ)は本発明装置を使用した場合の集光スポットの形状変化を示す図面FIG. 4A schematically shows a change in shape of the focused spot on the receiver incident surface over time. FIG. 4A is a drawing showing a change in the shape of the focused spot when a conventional apparatus is used. ) Is a drawing showing the shape change of the focused spot when the apparatus of the present invention is used. 従来の経緯台式装置を使用した場合について、数値計算により求めたレシーバー入射面上での集光スポットの経時的な形状変化を示す光の強度分布図Intensity distribution diagram of light showing the shape change of the condensing spot over time on the receiver incident surface obtained by numerical calculation when using a conventional graduation table type device 従来の赤道儀式装置を使用した場合について、数値計算により求めたレシーバー入射面上での集光スポットの経時的な形状変化を示す光の強度分布図Light intensity distribution diagram showing the shape change of the condensing spot over time on the receiver incident surface obtained by numerical calculation when using a conventional equator ritual device 本発明装置を使用した場合について、数値計算により求めたレシーバー入射面上での集光スポットの経時的な形状変化を示す光の強度分布図Intensity distribution diagram of light showing the shape change of the condensing spot over time on the receiver incident surface obtained by numerical calculation when using the apparatus of the present invention

本発明の太陽光集光装置は、太陽熱発電又は太陽光発電を行う集光型発電設備などにおいて、太陽の動きを二本の直交する回転軸周りの回転によって追尾し、搭載した平面反射鏡に太陽光を反射させてレシーバーに集光する装置であり、ヘリオスタットとも呼ばれる。
図1は、本発明の太陽光集光装置が適用される集光型発電設備(太陽熱発電又は太陽光発電を行う集光型発電設備)の一例を模式的に示すものであり、図1(ア)は平面図、図1(イ)は側面図である。敷地内には、上部にレシーバー6を備えたソーラータワー5と、複数の太陽光集光装置4が設置され、太陽光線を複数の太陽光集光装置4を用いてソーラータワー5の上部のレシーバー6に集光する。このレシーバー6は、平面状の入射面(受光面)を有する。
The solar light collecting device of the present invention tracks the movement of the sun by rotation around two orthogonal rotation axes in a solar power generation or condensing type power generation facility that performs solar power generation, etc. It is a device that reflects sunlight and focuses it on a receiver, also called a heliostat.
FIG. 1 schematically shows an example of a concentrating power generation facility (concentrating power generating facility that performs solar thermal power generation or solar power generation) to which the solar light concentrating device of the present invention is applied. A) is a plan view, and FIG. 1 (a) is a side view. In the site, a solar tower 5 having a receiver 6 on the upper part and a plurality of solar concentrators 4 are installed, and a receiver on the upper part of the solar tower 5 using a plurality of solar concentrators 4 6 is condensed. The receiver 6 has a flat incident surface (light receiving surface).

通常、太陽光集光装置4は、ソーラータワー5(レシーバー6)の周囲に数百台〜数万台設置される。ソーラータワー5の高さは任意であるが、通常は50〜100m程度である。ソーラータワー5の上部に設置されるレシーバー6は、集光型太陽熱発電設備の場合には、太陽熱レシーバーで構成される。一般に、太陽熱レシーバーは、その入射面(受光面)に伝熱管が密に並べられ、この伝熱管内を熱媒体が流れる。また、集光型太陽光発電設備の場合には、レシーバー6は太陽光レシーバーで構成される。この太陽光レシーバーは、その入射面(受光面)に太陽電池セル(例えば、多接合型太陽電池セル)が配置される。
北半球に集光型発電設備を設置する場合、通常、敷地の南端にソーラータワー5を設置し、その上部にレシーバー6を北へ向けて取り付ける。この場合、レシーバー6の入射面が北側に前傾していてもよい。そして、ソーラータワー5の北側の地面に、平面反射鏡(通常、長方形の平面反射鏡)を搭載した多数の太陽光集光装置4を設置する。
Usually, hundreds to tens of thousands of solar concentrators 4 are installed around the solar tower 5 (receiver 6). Although the height of the solar tower 5 is arbitrary, it is usually about 50 to 100 m. In the case of a concentrating solar thermal power generation facility, the receiver 6 installed at the upper part of the solar tower 5 is constituted by a solar thermal receiver. Generally, in a solar receiver, heat transfer tubes are closely arranged on an incident surface (light receiving surface), and a heat medium flows through the heat transfer tubes. In the case of a concentrating solar power generation facility, the receiver 6 is a solar receiver. In this sunlight receiver, solar cells (for example, multi-junction solar cells) are arranged on the incident surface (light receiving surface).
When installing a concentrating power generation facility in the northern hemisphere, a solar tower 5 is usually installed at the south end of the site, and a receiver 6 is attached to the top of the solar tower 5 toward the north. In this case, the incident surface of the receiver 6 may be inclined forward to the north side. Then, a large number of solar light collectors 4 each equipped with a plane reflecting mirror (usually a rectangular plane reflecting mirror) are installed on the ground on the north side of the solar tower 5.

図2及び図3は、本発明の太陽光集光装置の一実施形態を模式的に示すもので、図2は平面反射鏡を一部切り欠いた状態で示す背面図、図3は側面図であり、いずれの図面にもソーラータワー上部に設置されるレシーバー6を図示してある。
この太陽光集光装置は、地面などの設置基盤に立設された支柱などからなる固定支持部1と、この固定支持部1に回転可能に支持される第一回転部材2xと、この第一回転部材2xに回転可能に支持される第二回転部材2yと、この第二回転部材2yに固定される平面反射鏡3を備えている。そして、第一回転部材2xの回転軸x(以下、「第一の回転軸x」という場合がある)と第二回転部材2yの回転軸y(以下、「第二の回転軸y」という場合がある)とが直交し、且つ、平面反射鏡3の鏡面30が回転軸yに対して平行になるように構成されている。第一回転部材2xと第二回転部材2yは、制御装置で制御される駆動装置(いずれも図示せず)により、それぞれ回転軸x,y回りに回転駆動する。
2 and 3 schematically show an embodiment of the solar light collecting device of the present invention. FIG. 2 is a rear view showing a state in which a plane reflecting mirror is partially cut away, and FIG. 3 is a side view. In any of the drawings, the receiver 6 installed on the top of the solar tower is shown.
This solar condensing device includes a fixed support portion 1 made up of a column or the like standing on an installation base such as the ground, a first rotating member 2x rotatably supported by the fixed support portion 1, and the first A second rotating member 2y that is rotatably supported by the rotating member 2x and a planar reflecting mirror 3 that is fixed to the second rotating member 2y are provided. Then, the rotation axis x of the first rotation member 2x (hereinafter sometimes referred to as “first rotation axis x”) and the rotation axis y of the second rotation member 2y (hereinafter referred to as “second rotation axis y”) And the mirror surface 30 of the planar reflecting mirror 3 is configured to be parallel to the rotation axis y. The first rotating member 2x and the second rotating member 2y are driven to rotate about the rotation axes x and y, respectively, by a driving device (both not shown) controlled by a control device.

このような太陽光集光装置は、天球上における太陽の動きを、回転軸x,y回りの回転によって追尾し、平面反射鏡3で反射した太陽光をレシーバー6の入射面60(受光面)に入射させる。
平面反射鏡3の鏡面30の形状は任意であるが、通常は、長方形、正方形などの平行四辺形である。集光スポットの回転は、鏡面30の形状が平行四辺形である場合に特に問題となる。この場合、平行四辺形(以下、「長方形」を例に説明する)の平面反射鏡3は、切れ目のない一枚の鏡であってもよいし、複数枚の平面鏡の貼り合わせで、一枚の長方形反射鏡を近似的に構成するものであってもよい。長方形の平面反射鏡3を第二回転部材2yに取り付け固定する形態は、通常、長方形の四辺のうち、向かい合う二辺が第二の回転軸yと平行に、残り二辺が第二の回転軸yと直角になるようにする。
Such a solar concentrator tracks the movement of the sun on the celestial sphere by rotation about the rotation axes x and y, and reflects the sunlight reflected by the planar reflecting mirror 3 on the incident surface 60 (light receiving surface) of the receiver 6. To enter.
The shape of the mirror surface 30 of the plane reflecting mirror 3 is arbitrary, but is usually a parallelogram such as a rectangle or a square. The rotation of the focused spot is particularly problematic when the shape of the mirror surface 30 is a parallelogram. In this case, the parallelogram (hereinafter referred to as “rectangular” as an example) plane reflecting mirror 3 may be a single unbroken mirror, or a single piece by bonding a plurality of plane mirrors. The rectangular reflector may be configured approximately. The rectangular plane reflecting mirror 3 is fixedly attached to the second rotating member 2y. Usually, of the four sides of the rectangle, two opposite sides are parallel to the second rotation axis y, and the remaining two sides are the second rotation axis. Make a right angle to y.

本発明の太陽光集光装置は、以上のような基本的な構成において、レシーバー6の入射面60に含まれる1本の線分であって、ターゲット点pを通る直線aを仮想し、この直線aと不動点eを含む平面Qを仮想した場合に、平面Qと直交する直線に対する第一の回転軸xの傾きを5°以下(但し、0°の場合を含む)とする。すなわち、平面Qと直交する直線に対する傾きが5°以下(但し、0°の場合を含む)となるように第一の回転軸xを設定する。
ここで、不動点eとは、第一の回転軸xと第二の回転軸yとの交点のことであり、ターゲット点pとは、不動点eの位置で反射した光が常に入射するように制御されるレシーバー入射面上のポイントのことである。太陽光集光装置は、レシーバー6の入射面60上にターゲット点pを定め、不動点eの位置で反射した光が常にそのターゲット点pに入射するように制御される。
The solar light concentrator of the present invention is a line segment included in the incident surface 60 of the receiver 6 in the basic configuration as described above, and imaginary a straight line a passing through the target point p. When the plane Q including the straight line a and the fixed point e is assumed, the inclination of the first rotation axis x with respect to the straight line orthogonal to the plane Q is set to 5 ° or less (including the case of 0 °). That is, the first rotation axis x is set so that the inclination with respect to the straight line orthogonal to the plane Q is 5 ° or less (including the case of 0 °).
Here, the fixed point e is an intersection of the first rotation axis x and the second rotation axis y, and the target point p is such that light reflected at the position of the fixed point e is always incident. It is a point on the receiver entrance surface that is controlled by. The sunlight condensing device is controlled so that the target point p is defined on the incident surface 60 of the receiver 6 and the light reflected at the position of the fixed point e is always incident on the target point p.

第一の回転軸xは、平面Qと直交する直線に対する傾きが0°であること、すなわち第一の回転軸xが平面Qと直交していることが最も好ましいが、平面Qと直交する直線に対する第一の回転軸xの傾きが5°以下であれば、回転軸xが平面Qとおおむね直交していると見なすことができる。また、平面Qと直交する直線に対する第一の回転軸xの傾きは小さいほど好ましいので、この理由から、2°以下(但し、0°の場合を含む)が好ましく、1°以下(但し、0°の場合を含む)がより好ましい。   Most preferably, the first rotation axis x has an inclination of 0 ° with respect to a straight line orthogonal to the plane Q, that is, the first rotation axis x is orthogonal to the plane Q. If the inclination of the first rotation axis x with respect to is less than 5 °, it can be considered that the rotation axis x is substantially orthogonal to the plane Q. Further, the smaller the inclination of the first rotation axis x with respect to the straight line orthogonal to the plane Q, the better. For this reason, it is preferably 2 ° or less (including the case of 0 °), and preferably 1 ° or less (however, 0 (Including the case of °).

レシーバー6の入射面60上に設定されるターゲット点pの位置は任意であるが、通常はレシーバー6の入射面60の中心に設定される。また、レシーバー6の入射面60上に仮想される直線a(ターゲット点pを通る直線a)も任意に設定可能であり、水平に対して傾斜した直線でもよいが、通常は水平の直線で構成される。
なお、第二の回転軸y、両回転軸x,yの交点である不動点eは、実際の装置においては、厳密な意味では鏡面30上にはなく、鏡面30から若干離れている場合が多いが、レシーバー6と太陽光集光装置との距離を考えると無視できるようなごくわずかな距離であり、したがって、それらが鏡面30上にあるものとして考えても、本発明を構成する上で何ら問題はない。
The position of the target point p set on the incident surface 60 of the receiver 6 is arbitrary, but is usually set at the center of the incident surface 60 of the receiver 6. In addition, a straight line a (straight line passing through the target point p) imaginary on the incident surface 60 of the receiver 6 can be arbitrarily set, and may be a straight line inclined with respect to the horizontal, but is usually composed of a horizontal straight line. Is done.
In the actual device, the fixed point e, which is the intersection of the second rotation axis y and the two rotation axes x, y, is not on the mirror surface 30 in a strict sense, but may be slightly away from the mirror surface 30. In many cases, the distance between the receiver 6 and the solar light collecting device is negligible so that it can be ignored. Therefore, even if the distance is considered to be on the mirror surface 30, the present invention is constituted. There is no problem.

本発明の太陽光集光装置では、太陽を追尾する際の第一の回転軸x周りの回転によって、第二の回転軸y自体が回転するが、第二の回転軸yは第一の回転軸xと直交しているため、不動点eを通って第一の回転軸xに垂直な平面に常に含まれることになる。つまり、レシーバー入射面60上で仮想される直線aと不動点eを含む平面Qに、第二の回転軸yが常に含まれることになる。このため、平面反射鏡3の第二の回転軸yの位置で反射した光線がレシーバー入射面60と交差する点の集合は、レシーバー入射面60上で仮想される直線aに常に含まれることになる。そして、平面反射鏡3の鏡面30上にあって、第二の回転軸yと平行な線分上で反射した光線がレシーバー入射60面と交差する点の集合からなる線分は、レシーバー入射面60上で仮想される直線aと常に平行になる。したがって、長方形の平面反射鏡3の鏡面30の四辺のうち、第二の回転軸yと平行な二辺の位置で反射した光線がレシーバー入射面60に交差する点の集合は、常にレシーバー入射面60上の直線a(本実施形態ではレシーバー6の水平中心線)と平行な線分となるので、レシーバー入射面60における集光スポットの回転(経時的に回転を生じているかのような形状変化)が抑えられることになる。   In the solar light collecting device of the present invention, the second rotation axis y itself is rotated by the rotation around the first rotation axis x when tracking the sun, but the second rotation axis y is the first rotation. Since it is orthogonal to the axis x, it is always included in a plane that passes through the fixed point e and is perpendicular to the first rotation axis x. That is, the second rotation axis y is always included in the plane Q including the straight line a and the fixed point e imaginary on the receiver incident surface 60. For this reason, the set of points where the light beam reflected at the position of the second rotation axis y of the plane reflecting mirror 3 intersects the receiver incident surface 60 is always included in the straight line a imaginary on the receiver incident surface 60. Become. And the line segment which consists of a set of points on the mirror surface 30 of the plane reflecting mirror 3 and reflected on the line segment parallel to the second rotation axis y intersects the receiver incident surface 60 is the receiver incident surface. 60 is always parallel to the imaginary straight line a. Therefore, a set of points where light beams reflected at two positions parallel to the second rotation axis y among the four sides of the mirror surface 30 of the rectangular plane reflecting mirror 3 intersect the receiver incident surface 60 is always the receiver incident surface. 60 is a line segment parallel to the straight line a on the line 60 (in this embodiment, the horizontal center line of the receiver 6). ) Will be suppressed.

以上のような本発明の作用効果は、平面Qと直交する直線に対する第一の回転軸xの傾きが0°、すなわち、第一の回転軸xが平面Qと直交している場合に端的に得られるものであるが、平面Qと直交する直線に対する第一の回転軸xの傾きが5°以下(好ましくは、2°以下、より好ましくは1°以下)であれば、第一の回転軸xが平面Qとおおむね直交していると見なすことができるので、この場合にも、上記に準じた相応の作用効果が得られ、集光スポットの回転(経時的に回転を生じているかのような形状変化)が抑えられる。   The operational effects of the present invention as described above are simply obtained when the inclination of the first rotation axis x with respect to the straight line orthogonal to the plane Q is 0 °, that is, when the first rotation axis x is orthogonal to the plane Q. If the inclination of the first rotation axis x with respect to the straight line orthogonal to the plane Q is 5 ° or less (preferably 2 ° or less, more preferably 1 ° or less), the first rotation axis is obtained. Since x can be considered to be substantially orthogonal to the plane Q, in this case as well, a corresponding effect similar to the above can be obtained, and the rotation of the focused spot (as if rotation has occurred over time) Change in shape).

図4は、レシーバー入射面上での集光スポットの経時的な形状変化を模式的に示すものであり、図4(ア)は従来装置を使用した場合のものを、図4(イ)は本発明装置を使用した場合のものを、それぞれ示している。ここで、集光スポットとは、レシーバー入射面60において反射光によって照らし出される部分のことであり、より厳密には、「ターゲット点pと不動点eを結ぶ直線をLとした場合、平面反射鏡3の鏡面30の輪郭を直線Lに沿ってレシーバー入射面60へと射影したもの」と定義することができる。図4(ア)に示す従来装置の場合には、1日のなかで集光スポットの形状があたかも回転したように変化している。これに対して、図4(イ)に示す本発明装置の場合には、1日のなかで集光スポットの平行四辺形の形状は変化する(平行四辺形の上下の辺が左右にずれる)ものの、図4(ア)に示すような回転は生じていない。   FIG. 4 schematically shows a change in shape of the focused spot on the receiver incident surface over time. FIG. 4A shows a case where a conventional apparatus is used, and FIG. The case where the device of the present invention is used is shown. Here, the condensing spot is a portion illuminated by the reflected light on the receiver incident surface 60, and more strictly, “when a straight line connecting the target point p and the fixed point e is L, plane reflection The contour of the mirror surface 30 of the mirror 3 is projected onto the receiver incident surface 60 along the straight line L ”. In the case of the conventional apparatus shown in FIG. 4A, the shape of the focused spot changes as if it has been rotated in one day. On the other hand, in the case of the device of the present invention shown in FIG. 4 (a), the shape of the parallelogram of the focused spot changes during one day (the upper and lower sides of the parallelogram shift to the left and right). However, the rotation as shown in FIG.

図5〜図7は、数値計算により求めたレシーバー入射面上での集光スポットの経時的な形状変化を示した光の強度分布図である。このうち、図5は従来の経緯台式装置を使用した場合の集光スポットの経時的な形状変化を示すもの、図6は従来の赤道儀式装置を使用した場合の集光スポットの経時的な形状変化を示すもの、図7は本発明装置(第一の回転軸xが平面Qと直交している本発明装置)を使用した場合の集光スポットの経時的な形状変化を示すものである。計算の前提とした設備構成は、太陽光集光装置の設置数:80基、ソーラータワーの高さ:22m、集光スポット中心までの高さ:20m、ソーラータワーと各太陽集光装置間の水平距離:15〜60m、第一の回転軸xと鉛直線とのなす角度は、ソーラータワーに一番近いものが約51度、一番遠いものが約18度とした。
図5〜図7によれば、従来装置を使用した場合には、いずれも集光スポットの回転が生じているのに対し、本発明装置を使用した場合には、集光スポットの回転は全く生じていない。
5 to 7 are light intensity distribution diagrams showing the shape change of the focused spot with time on the receiver incident surface obtained by numerical calculation. Among these, FIG. 5 shows the change in shape of the focused spot over time when the conventional pedestal device is used, and FIG. 6 shows the shape of the focused spot over time when the conventional equator apparatus is used. FIG. 7 shows changes in the shape of the focused spot over time when the apparatus of the present invention (the apparatus of the present invention in which the first rotation axis x is orthogonal to the plane Q) is used. The equipment configuration assumed for the calculation is the number of solar concentrators installed: 80, the height of the solar tower: 22 m, the height to the center of the condensing spot: 20 m, between the solar tower and each solar concentrator The horizontal distance was 15-60 m, and the angle between the first rotation axis x and the vertical line was about 51 degrees closest to the solar tower and about 18 degrees farthest from the solar tower.
According to FIGS. 5 to 7, when the conventional apparatus is used, the rotation of the focused spot is generated, whereas when the apparatus of the present invention is used, the rotation of the focused spot is not at all. It has not occurred.

本発明の太陽光集光装置の設置方法では、上述したような基本的な構成を有する太陽光集光装置を設置するに際し、レシーバー6の入射面60に含まれる1本の線分であって、ターゲット点pを通る直線aを仮想し、この直線aと不動点eを含む平面Qを仮想した場合に、平面Qと直交する直線に対する第一の回転軸xの傾きが5°以下(但し、0°の場合を含む)となるように太陽光集光装置を設置する。その詳細はさきに述べたとおりである。
本発明の太陽光集光装置が適用される集光型発電設備(太陽熱発電又は太陽光発電を行う集光型発電設備)では、図1に示すようにレシーバー6(ソーラータワーの上部に備えられるレシーバー)の周囲に太陽光集光装置4が複数配置され、これら複数の太陽光集光装置4により太陽光がレシーバー6に集光され、太陽熱発電又は太陽光発電がなされる。
In the installation method of the solar light collecting device of the present invention, when installing the solar light collecting device having the basic configuration as described above, it is one line segment included in the incident surface 60 of the receiver 6. When the straight line a passing through the target point p is hypothesized and the plane Q including the straight line a and the fixed point e is hypothesized, the inclination of the first rotation axis x with respect to the straight line orthogonal to the plane Q is 5 ° or less (however, , Including the case of 0 °). The details are as described above.
In a concentrating power generation facility (a concentrating power generating facility that performs solar thermal power generation or solar power generation) to which the solar light concentrating device of the present invention is applied, as shown in FIG. A plurality of solar light collecting devices 4 are arranged around the receiver), and the sunlight is condensed on the receiver 6 by the plurality of solar light collecting devices 4, and solar thermal power generation or solar power generation is performed.

1 固定支持部
2x 第一回転部材
2y 第二回転部材
3 平面反射鏡
4 太陽光集光装置
5 ソーラータワー
6 レシーバー
30 鏡面
60 入射面
x,y 回転軸
p ターゲット点
a 直線
e 不動点
Q 平面
DESCRIPTION OF SYMBOLS 1 Fixed support part 2x 1st rotation member 2y 2nd rotation member 3 Planar reflecting mirror 4 Sunlight condensing device 5 Solar tower 6 Receiver 30 Mirror surface 60 Incident surface x, y Rotation axis p Target point a Straight line
e Fixed point Q plane

Claims (7)

固定支持部(1)に回転可能に支持される第一回転部材(2x)と、該第一回転部材(2x)に回転可能に支持される第二回転部材(2y)と、該第二回転部材(2y)に固定される平面反射鏡(3)を備え、
第一回転部材(2x)の回転軸(x)と第二回転部材(2y)の回転軸(y)とが直交し、且つ、平面反射鏡(3)の鏡面(30)が回転軸(y)に対して平行であり、
天球上における太陽の動きを、回転軸(x),(y)回りの回転によって追尾し、平面反射鏡(3)で反射した太陽光をレシーバーの入射面に入射させる太陽光集光装置であって、
レシーバーの入射面に含まれる1本の線分であって、ターゲット点(p)を通る直線(a)を仮想し、該直線(a)と不動点(e)を含む平面(Q)を仮想した場合に、平面(Q)と直交する直線に対する回転軸(x)の傾きが5°以下(但し、0°の場合を含む)であることを特徴とする太陽光集光装置。
A first rotating member (2x) rotatably supported by the fixed support portion (1), a second rotating member (2y) rotatably supported by the first rotating member (2x), and the second rotation A plane reflector (3) fixed to the member (2y),
The rotation axis (x) of the first rotation member (2x) and the rotation axis (y) of the second rotation member (2y) are orthogonal to each other, and the mirror surface (30) of the plane reflecting mirror (3) is the rotation axis (y ) Parallel to
A solar concentrator that tracks the movement of the sun on the celestial sphere by rotation around the rotation axes (x) and (y), and makes the sunlight reflected by the plane reflector (3) incident on the incident surface of the receiver. And
A line segment included in the incident surface of the receiver, which is assumed to be a straight line (a) passing through the target point (p), and a plane (Q) including the straight line (a) and the fixed point (e) is assumed to be virtual. In this case, the solar light collecting device is characterized in that the inclination of the rotation axis (x) with respect to a straight line orthogonal to the plane (Q) is 5 ° or less (including the case of 0 °).
平面反射鏡(3)の鏡面(30)が平行四辺形であることを特徴とする請求項1に記載の太陽光集光装置。   The solar light collecting device according to claim 1, wherein the mirror surface (30) of the plane reflecting mirror (3) is a parallelogram. レシーバーの入射面の中心をターゲット点(p)とし、該ターゲット点(p)を通る直線(a)が水平であることを特徴とする請求項1又は2に記載の太陽光集光装置。   The solar light collecting apparatus according to claim 1, wherein a center of the incident surface of the receiver is a target point (p), and a straight line (a) passing through the target point (p) is horizontal. 請求項1〜3のいずれかに記載の太陽光集光装置がレシーバーの周囲に複数配置され、該複数の太陽光集光装置により太陽光がレシーバーに集光されることを特徴とする集光型発電設備。   A plurality of solar light collecting devices according to any one of claims 1 to 3 are arranged around a receiver, and the sunlight is condensed on the receiver by the plurality of solar light collecting devices. Type power generation equipment. 固定支持部(1)に回転可能に支持される第一回転部材(2x)と、該第一回転部材(2x)に回転可能に支持される第二回転部材(2y)と、該第二回転部材(2y)に固定される平面反射鏡(3)を備え、
第一回転部材(2x)の回転軸(x)と第二回転部材(2y)の回転軸(y)とが直交し、且つ、平面反射鏡(3)の鏡面(30)が回転軸(y)に対して平行であり、
天球上における太陽の動きを、回転軸(x),(y)回りの回転によって追尾し、平面反射鏡(3)で反射した太陽光をレシーバーの入射面に入射させる太陽光集光装置の設置方法であって、
レシーバーの入射面に含まれる1本の線分であって、ターゲット点(p)を通る直線(a)を仮想し、該直線(a)と不動点(e)を含む平面(Q)を仮想した場合に、平面(Q)と直交する直線に対する回転軸(x)の傾きが5°以下(但し、0°の場合を含む)となるように太陽光集光装置を設置することを特徴とする太陽光集光装置の設置方法。
A first rotating member (2x) rotatably supported by the fixed support portion (1), a second rotating member (2y) rotatably supported by the first rotating member (2x), and the second rotation A plane reflector (3) fixed to the member (2y),
The rotation axis (x) of the first rotation member (2x) and the rotation axis (y) of the second rotation member (2y) are orthogonal to each other, and the mirror surface (30) of the plane reflecting mirror (3) is the rotation axis (y ) Parallel to
Installation of a solar concentrator that tracks the movement of the sun on the celestial sphere by rotation around the rotation axes (x) and (y) and makes the sunlight reflected by the flat reflector (3) incident on the incident surface of the receiver A method,
A line segment included in the incident surface of the receiver, which is assumed to be a straight line (a) passing through the target point (p), and a plane (Q) including the straight line (a) and the fixed point (e) is assumed to be virtual. In this case, the solar light collecting device is installed so that the inclination of the rotation axis (x) with respect to the straight line orthogonal to the plane (Q) is 5 ° or less (including the case of 0 °). To install a solar concentrator.
平面反射鏡(3)の鏡面(30)が平行四辺形であることを特徴とする請求項5に記載の太陽光集光装置の設置方法。   The method of installing a solar light collecting device according to claim 5, wherein the mirror surface (30) of the plane reflecting mirror (3) is a parallelogram. レシーバーの入射面の中心をターゲット点(p)とし、該ターゲット点(p)を通る直線(a)が水平であることを特徴とする請求項5又は6に記載の太陽光集光装置の設置方法。   The center of the incident surface of the receiver is a target point (p), and the straight line (a) passing through the target point (p) is horizontal. Method.
JP2013037029A 2013-02-27 2013-02-27 Soar light concentrator Pending JP2014163629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013037029A JP2014163629A (en) 2013-02-27 2013-02-27 Soar light concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013037029A JP2014163629A (en) 2013-02-27 2013-02-27 Soar light concentrator

Publications (1)

Publication Number Publication Date
JP2014163629A true JP2014163629A (en) 2014-09-08

Family

ID=51614394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013037029A Pending JP2014163629A (en) 2013-02-27 2013-02-27 Soar light concentrator

Country Status (1)

Country Link
JP (1) JP2014163629A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024169196A1 (en) * 2023-09-30 2024-08-22 于善广 Quadruple reflection solar concentrator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024169196A1 (en) * 2023-09-30 2024-08-22 于善广 Quadruple reflection solar concentrator

Similar Documents

Publication Publication Date Title
US8365719B2 (en) Multi-receiver heliostat system architecture
Chong et al. Design and construction of non-imaging planar concentrator for concentrator photovoltaic system
JP5797737B2 (en) Solar heat collection system
Zhu et al. Optical design of compact linear fresnel reflector systems
JP2010038370A (en) Method of collecting sunlight in multi-tower beam down type light collecting system
US20160079461A1 (en) Solar generator with focusing optics including toroidal arc lenses
CN103238033A (en) A solar energy collector system
JP2013513817A (en) A heliostat that controls the direction of reflection with a sensor
CN102789046A (en) Multi-plane reflecting mirror solar energy condensation device
JP2011155115A (en) Solar power generation device
KR101370066B1 (en) Sun tracker type concentrator device
León et al. Rotating prism array for solar tracking
US9273672B2 (en) Solar energy collector with XY or XYZ sun tracking table
CN102590983B (en) Reflector adjusting device
WO2017133516A1 (en) Layout and structure of light condensing reflectors of tower-mounted light condensing system and tracking method therefor
JP2012023108A (en) Tower type condensing type photovoltaic power generation system and light condensing method thereof
JP2014163629A (en) Soar light concentrator
JP3128040U (en) Light source tracking device
CN101345496A (en) Spherical mirror combination type concentration power generation apparatus
CN206133100U (en) A spotlight heliostat for heat utilization of solar towers formula
CN104639025A (en) Dense array type concentration photovoltaic system
CN202548423U (en) Novel reflector adjusting apparatus
JP2012169570A (en) Photovoltaic generation device
CN102520734A (en) Rocker type condensed solar power station capable of synchronously tracking
KR101202382B1 (en) Apparatus for condensing sunlight