JP2014163201A - Square steel pipe column with column head part column-beam joining part core and manufacturing method thereof - Google Patents
Square steel pipe column with column head part column-beam joining part core and manufacturing method thereof Download PDFInfo
- Publication number
- JP2014163201A JP2014163201A JP2013037744A JP2013037744A JP2014163201A JP 2014163201 A JP2014163201 A JP 2014163201A JP 2013037744 A JP2013037744 A JP 2013037744A JP 2013037744 A JP2013037744 A JP 2013037744A JP 2014163201 A JP2014163201 A JP 2014163201A
- Authority
- JP
- Japan
- Prior art keywords
- column
- steel pipe
- square steel
- reinforcing plate
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Joining Of Building Structures In Genera (AREA)
Abstract
Description
この発明は、角形鋼管柱の柱頭部にノンダイアフラム形式の柱梁接合部コアが設けられた柱頭部柱梁接合部コア付き角形鋼管柱、及びその製造方法に関する。 The present invention relates to a square steel pipe column with a column head column beam joint core in which a non-diaphragm type column beam joint core is provided at a column head of a square steel tube column, and a method of manufacturing the same.
柱に角形鋼管を用い梁にH形鋼を用いる建築構造物における柱梁接合部構造として、上下階の角形鋼管柱を別部材の柱梁接合部コアを介して溶接接合し、この柱梁接合部コアにH形鋼梁を溶接接合する構造がある。
この種の柱梁接合部コアは、梁に作用する曲げモーメント等の応力を柱に十分に伝達できる剛接合とするために、短尺の角形鋼管に補強としてダイアフラムを溶接固定した構造のものが一般に用いられる。
ダイアフラムを持つ柱梁接合部コアとして、短尺角形鋼管の両端面にダイアフラムを溶接固定した通しダイアフラム形式の柱梁接合部コアが広く採用されているが、剛性を確保できるように厚肉にしたダイアフラムなしの短尺厚肉角形鋼管、いわゆるノンダイアフラム形式の柱梁接合部コアを用いる場合もある。柱梁接合部コアの短尺の角形鋼管自体をコア材と呼ぶ。
ノンダイアフラム形式の柱梁接合部コアの場合、柱梁接合部に要求される剛性として、梁端モーメントに対する柱の鋼管壁の面外変形耐力が考慮される。
As a column beam joint structure in a building structure that uses a square steel pipe for the column and an H-shaped steel for the beam, the square steel pipe columns on the upper and lower floors are welded and joined via a separate column beam joint core. There is a structure in which an H-shaped steel beam is welded to the part core.
This type of column-beam joint core generally has a structure in which a diaphragm is welded and fixed to a short square steel pipe as a reinforcement in order to make a rigid joint that can sufficiently transmit stress such as bending moment acting on the beam to the column. Used.
As a beam-column joint core with a diaphragm, a through-diaphragm column beam-joint core with a diaphragm welded and fixed to both end faces of a short rectangular steel pipe is widely used, but the diaphragm is made thick to ensure rigidity In some cases, a short thick-walled square steel pipe without a so-called non-diaphragm column beam joint core may be used. The short square steel pipe itself of the column beam joint core is called a core material.
In the case of a non-diaphragm type column beam joint core, the out-of-plane deformation strength of the steel pipe wall of the column with respect to the beam end moment is considered as the rigidity required for the beam-column joint.
図1に柱頭部に用いる柱梁接合部コアを示す。図1(イ)は通しダイアフラム形式の柱梁接合部コア1であり、短尺角形鋼管であるコア材1aの上下両端面にダイアフラム1b、1cを溶接固定している。図1(ロ)はノンダイアフラム形式の柱梁接合部コア2であり、短尺厚肉角形鋼管であるコア材2aのみからなり、ダイアフラムを持たない。3は角形鋼管柱、4はH形鋼の梁である。H形鋼梁4の上側フランジを4a、下側フランジを4bで示す。
角形鋼管柱の柱頭部に柱梁接合部コアを設ける場合、通しダイアフラム形式の柱梁接合部コア1の場合とノンダイアフラム形式の柱梁接合部コア2の場合とで、設計方法が異なる。すなわち、通しダイアフラム形式の場合は、梁4の上下のフランジ4a、4bから作用する水平力をそれぞれ上下のダイアフラム1b、1cが直接負担する(応力の伝達がダイアフラムを介して行なわれる)ので、通常の設計方法(柱頭部でない柱中間部の柱梁接合部コアの場合と同じ設計方法)で設計することができる。
しかし、ノンダイアフラム形式の柱梁接合部コア2の場合、柱中間部の柱梁接合部コアでは、図2(イ)、(ロ)に示すように、梁の上下のフランジ4a、4bからそれぞれ作用する水平力に対する荷重負担は、柱梁接合部コアのみでなく下階柱3及び上階柱3’も利用した荷重負担となる場合が多く、上階柱3’のない図2(ハ)、(ニ)のような柱頭部の柱梁接合部コアでは、面外変形耐力が低下する。そこで、柱梁接合部コア2の上端面に、コア材外径より若干小径の補強板5を隅肉溶接で固定して、この補強板5が上階柱がない分の面外変形耐力低下を負担する方法が一般に採用されている。なお、補強板5は、柱梁接合部コア2に溶融亜鉛めっきを施さない場合には、孔をあけない単なる正方形の板材である。
図2(ロ)、(ニ)において、白抜き矢印は梁の上フランジ4a又は下フランジ4bからコア材2aの管壁面に作用する荷重を示し、(イ)、(ハ)における破線は管壁面の正面から見た面外変形を模式的に示し、(ロ)、(ニ)における破線は管壁断面で見た面外変形状態を模式的に示す。
FIG. 1 shows a column beam joint core used for a column head. FIG. 1A shows a through-diaphragm-type column
When the column beam joint core is provided at the column head of the square steel pipe column, the design method differs between the case of the through-diaphragm type column
However, in the case of the non-diaphragm type column
2 (b) and 2 (d), the white arrow indicates the load acting on the tube wall surface of the
『建築工事標準仕様書JASS6 鉄骨工事:日本建築学会』、『鉄骨工事技術指針−工場製作編:日本建築学会』では、閉鎖形断面の鋼管、角形鋼管、溶接組立箱形断面材の内部にダイアフラムやエンドプレートを取り付けて溶融亜鉛めっきする場合には、亜鉛流出入および空気抜き用の開口部を設けることが必要と記載されている。この際の開口部面積の合計は閉鎖形断面の断面積に対して1/3以上を確保することが望ましいとしている。具体例として通しダイアフラム形式の場合について記載された説明によれば、図3に示すように、ダイアフラム1b、1cに設ける開口部として、ダイアフラムの中央に大きな円孔1d、コア材(柱梁接合部コアの短尺角形鋼管)1aの4箇所の内周角部の近傍に小さな円孔1eをあけたパターンが推奨されている。すなわち、1つの大きな円孔1dと4つの小さな円孔1eの合計面積を閉鎖形断面の断面積(コア材内空水平断面積)に対して1/3以上とする。図4は図3の通しダイアフラム形式の柱梁接合部コア1のみを簡潔に図示したもので、(イ)は平面図、(ロ)は断面図、(ハ)は底面図である。
上記鉄骨工事技術指針で具体例として記載された柱梁接合部コアは通しダイアフラム形式のものであるが、ノンダイアフラム形式の柱梁接合部コアに前述の補強板5を設ける場合も同様と考えると、図5(イ)に示すように、補強板5には、中央に大きな円孔5d、コア材2aの4箇所の内周角部の近傍にそれぞれ小さな円孔5eをあけることになる。図5の(ロ)、(ハ)は、図自体はそれぞれ図2の(ハ)、(ニ)と同じである。
In "Building Construction Standard Specification JASS6 Steel Construction: Architectural Institute of Japan", "Technical Guidelines for Steel Construction-Factory Construction: Architectural Institute of Japan", diaphragms inside closed-section steel pipes, square steel pipes and welded assembly box-shaped sections In addition, when hot-dip galvanizing is performed with an end plate attached, it is described that it is necessary to provide openings for zinc inflow and outflow and air venting. In this case, it is desirable that the total area of the openings is at least 1/3 of the cross-sectional area of the closed cross section. According to the description described in the case of the through diaphragm type as a specific example, as shown in FIG. 3, as an opening provided in the
The column beam joint core described as a specific example in the steel frame construction technical guideline is a through diaphragm type, but it is considered to be the same when the above-described
ノンダイアフラム形式の柱頭部柱梁接合部コアに溶融亜鉛めっきを施す技術についての特許文献は特にないが、柱梁接合部コアとしての要求剛性に関する技術に関する特許文献として特開2010−236206がある。 Although there is no patent document regarding a technique for hot dip galvanizing a non-diaphragm column head column beam joint core, there is JP 2010-236206 as a patent document regarding a required rigidity as a column beam joint core.
補強板を両端面に持つ通しダイアフラム形式の柱梁接合部コアを溶融亜鉛めっきする場合に、上下ダイアフラムに亜鉛流出入および空気抜き用の開口部を前述した図3(図4)のようなパターンで設けたものでは、開口部面積が閉鎖形断面の断面積の1/3以上設けられていても、めっき槽から部材を引き上げる際に、四角形の補強板の隅角部に亜鉛が溜まり易く、完全に亜鉛を鋼管内部から抜き切ることが難しいという問題がある。 When hot-dip galvanized through-diaphragm-type column beam joint cores with reinforcing plates at both end faces, the upper and lower diaphragms have openings for zinc inflow and outflow in the pattern shown in FIG. 3 (FIG. 4). Even when the opening area is 1/3 or more of the cross-sectional area of the closed cross section, when the member is pulled up from the plating tank, zinc easily accumulates in the corners of the rectangular reinforcing plate, and is completely However, there is a problem that it is difficult to extract zinc from the inside of the steel pipe.
ノンダイアフラム形式の柱頭部用の柱梁接合部コア2の補強板5に図5(イ)のパターンで開口部5d、5eを設けた場合には、次の問題もある。
すなわち、通しダイアフラム形式の柱梁接合部コア1のダイアフラム1b、1cは、図1(イ)で説明したように、梁フランジ接合位置で梁フランジ4a、4bに直接接合されて、応力の伝達をなめらかにし柱梁接合部コア1の面外変形を拘束する部材であるのに対して、ノンダイアフラム形式の柱頭部柱梁接合部コア2の補強板5は、図1(ロ)、図2(ハ)、(ニ)で説明したように、梁フランジ接合位置より若干上に位置するコア材上端面に接合されて、上側に上階柱が接合されない耐力減少分を負担する部材であるから、補強板5に閉鎖断面の1/3以上有する面積の開口部を図5(イ)のようなパターンで設けてしまうと、柱梁接合部の耐力が著しく低下することが考えられる。
When the
That is, the
本発明は上記背景のもとになされたもので、ノンダイアフラム形式で補強板を有する柱頭部用の柱梁接合部コアを角形鋼管柱に溶接固定した柱頭部柱梁接合部コア付き角形鋼管柱を溶融亜鉛めっきする際に、作業性が良好であり、かつ亜鉛が内部に溜まらずに良好な溶融亜鉛めっきを施すことが可能であり、また、補強板に所定広さの開口部を設けても柱梁接合部コアに要求される耐力を確保できる柱頭部柱梁接合部コア付き角形鋼管柱、及びその製造方法を提供することを目的とする。 The present invention has been made based on the above background, and a rectangular steel pipe column with a column head column beam joint core in which a column beam joint core for a column head having a reinforcing plate in a non-diaphragm type is welded and fixed to a square steel pipe column. When the hot dip galvanizing is performed, the workability is good and the hot dip galvanizing can be performed without accumulating zinc inside, and the reinforcing plate is provided with an opening of a predetermined width. It is another object of the present invention to provide a square steel pipe column with a column head column beam joint core that can ensure the proof stress required for the column beam joint core, and a method of manufacturing the same.
上記課題を解決する請求項1の発明は、正方形の角形鋼管柱の柱頭部にノンダイアフラム形式の柱梁接合部コアが設けられた柱頭部柱梁接合部コア付き角形鋼管柱であって、
前記柱梁接合部コアは、平面視の縦横比が1:1の短尺厚肉角形鋼管であるコア材の上端面に正方形の補強板が溶接接合された構造であり、前記補強板には、前記コア材の内周角部近傍の付置にのみ円孔からなる開口部が設けられており、
前記柱梁接合部コアの下端面に前記角形鋼管柱の上端面を溶接接合した状態で溶融亜鉛めっき槽に浸漬して溶融亜鉛めっきを施したことを特徴とする。
Invention of
The column beam joint core has a structure in which a square reinforcing plate is welded to the upper end surface of a core material that is a short thick square steel pipe having an aspect ratio of 1: 1 in a plan view. An opening consisting of a circular hole is provided only in the vicinity of the inner peripheral corner of the core material,
The hot-dip galvanization is performed by dipping in a hot-dip galvanizing bath in a state where the upper end surface of the rectangular steel pipe column is welded to the lower end surface of the column-beam joint core.
請求項2は、請求項1の柱頭部柱梁接合部コア付き角形鋼管柱において、 前記補強板に設けられる円孔は、前記コア材の4ヶ所の内周角部の近傍にそれぞれ設けられ、各円孔の面積の合計が前記コア材内空水平断面積の1/3以上であることを特徴とする。
請求項3は、請求項1又は2の柱頭部柱梁接合部コア付き角形鋼管柱において、角形鋼管柱の左右両側の管壁面に接合される2つの梁を少なくとも有する場合に、前記補強板に設けられる円孔は、補強板の中心を通り補強板の辺と平行な互いに直交する2つの中心線に関していずれも、大きさ及び位置が対称であることを特徴とする。
請求項4は、請求項1の柱頭部柱梁接合部コア付き角形鋼管柱において、角形鋼管柱の互いに直角な管壁面にそれぞれ接合される2つの梁のみを有する場合に、前記補強板に設けられる円孔は、2つの梁がなす角度の二等分線方向の補強板対角線に関して、大きさ及び位置が対称であることを特徴とする。
A fourth aspect of the present invention provides a square steel pipe column with a column head column beam joint core according to
請求項5は、請求項1〜3のいずれか1項の柱頭部柱梁接合部コア付き角形鋼管柱において、
前記補強板は、板厚が前記コア材外径の8%以上であることを特徴とする。
The reinforcing plate has a thickness of 8% or more of the outer diameter of the core material.
請求項6は、請求項1〜4のいずれか1項の柱頭部柱梁接合部コア付き角形鋼管柱において、
前記コア材は、板厚が下端面に接合される前記下側角形鋼管柱の板厚より4mm以上厚いことを特徴とする。
The core material is characterized in that the plate thickness is 4 mm or more thicker than the plate thickness of the lower rectangular steel pipe column joined to the lower end surface.
請求項7の発明は、正方形の角形鋼管柱の柱頭部にノンダイアフラム形式の柱梁接合部コアが設けられ、亜鉛めっきを施された柱頭部柱梁接合部コア付き角形鋼管柱を製造する柱頭部柱梁接合部コア付き角形鋼管柱の製造方法であって、
正方形の鋼板に、前記コア材の内周角部近傍の付置となるように円孔をあけて複数の円孔を有する補強板を形成し、
平面視の縦横比が1:1の短尺厚肉角形鋼管であるコア材の上端面に、前記補強板を溶接接合して前記柱梁接合部コアを構成し、
前記柱梁接合部コアの下端面に前記角形鋼管柱の上端面を溶接接合し、
一体の前記柱梁接合部コアと角形鋼管柱とを、補強板側を上側、角形鋼管柱下端を下側にした傾斜状態で溶融亜鉛めっき槽に浸漬し同じ傾斜状態で溶融亜鉛めっき槽から引き上げて溶融亜鉛めっきを施すことを特徴とする。
The invention according to claim 7 is a column head for manufacturing a square steel pipe column with a column head column beam joint core provided with a non-diaphragm type column beam joint core at a column head of a square steel tube column having a square shape. A method of manufacturing a square steel pipe column with a core-column joint core,
In the square steel plate, a reinforcing plate having a plurality of circular holes is formed by opening a circular hole so as to be attached near the inner peripheral corner of the core material,
The reinforcing plate is welded to the upper end surface of the core material which is a short thick-walled square steel pipe having an aspect ratio of 1: 1 in plan view to constitute the column beam joint core,
Welding the upper end surface of the rectangular steel pipe column to the lower end surface of the column beam joint core;
The integral beam-column joint core and rectangular steel pipe column are immersed in a hot dip galvanizing bath in an inclined state with the reinforcing plate side on the upper side and the lower end of the rectangular steel tube column on the lower side, and are pulled up from the hot dip galvanizing bath in the same inclined state. And hot dip galvanizing.
請求項1あるいは請求項7の発明によれば、開口部を持つ補強板を上端面に溶接固定した柱梁接合部コアの下端面に角形鋼管柱を溶接固定した状態で、すなわち柱頭部柱梁接合部コア付き角形鋼管柱の状態で溶融亜鉛めっきを施すので、作業性よくかつ良好な溶融亜鉛めっきを施すことができる。
すなわち、補強板側(柱梁接合部コア側)を上側、角形鋼管柱下端を下側にした傾斜状態で溶融亜鉛めっき槽に入れた時、下側は長い角形鋼管柱ではあるが閉鎖はされておらず、一方、上側は補強板の開口部が空気抜き作用をするので、亜鉛が管内部に円滑に浸入して満たされる。また、同様な傾斜状態でめっき槽から引き上げた時は、補強板の開口部が管内への空気供給作用をして管内の亜鉛が勢いよく鋼管下端開口から抜け出るので、作業能率が向上するとともに、単なる筒である角形鋼管柱の下端部に亜鉛が溜まることがない。さらに、補強板の開口部から空気の流出入が円滑におこなわれるので、角形鋼管柱のめっき割れの発生を防ぐことができる。
According to the invention of
That is, when placed in a hot dip galvanizing tank in an inclined state with the reinforcing plate side (column beam joint core side) on the upper side and the lower end of the square steel pipe column on the lower side, the lower side is a long square steel pipe column but is closed. On the other hand, on the upper side, the opening of the reinforcing plate performs the air venting action, so that zinc penetrates smoothly into the pipe and is filled. Also, when pulled up from the plating tank in a similar inclined state, the opening of the reinforcing plate acts as an air supply into the pipe and the zinc in the pipe vigorously escapes from the lower end opening of the steel pipe, improving work efficiency, Zinc does not collect at the lower end of a square steel pipe column that is a simple cylinder. Furthermore, since air flows in and out smoothly from the opening of the reinforcing plate, it is possible to prevent the occurrence of plating cracks in the square steel pipe column.
また、補強板には、コア材の内周角部近傍の付置にのみ円孔からなる開口部が設けられており、補強板中央部には孔がないので、補強板周囲の隅肉溶接部から伝わる応力を補強板中央部を経て伝達させることができる。したがって、補強板が梁フランジから作用する水平力に対して負担可能な荷重は、補強板中央部に大きな円孔を設けた場合と比べてあまり低下せず、したがって、板厚を極端に厚くしなくても、補強板に柱中間部における上階柱の負担荷重と同程度の荷重を負担させることが可能となる。
これにより、請求項2のように、コア材の4ヶ所の内周角部の近傍にそれぞれ設けた円孔の面積の合計がコア材内空水平断面積の1/3以上という合計面積の極めて広い開口部を設けても、ノンダイアフラム形式の柱頭部柱梁接合部に要求される耐力を確保することが可能となる。
In addition, the reinforcing plate is provided with an opening made of a circular hole only in the vicinity of the inner peripheral corner portion of the core material, and since there is no hole in the central portion of the reinforcing plate, the fillet welded portion around the reinforcing plate is provided. Can be transmitted through the central part of the reinforcing plate. Therefore, the load that the reinforcing plate can bear against the horizontal force acting from the beam flange does not decrease much compared to the case where a large circular hole is provided in the central portion of the reinforcing plate, and therefore the plate thickness is extremely increased. Even if it does not exist, it becomes possible to make the reinforcing plate bear the same load as the load of the upper floor pillar in the middle part of the pillar.
As a result, as in
請求項3によれば、角形鋼管柱の左右両側の管壁面に接合される2つの梁を少なくとも有する場合に、前記補強板に設けられる円孔が、補強板の中心を通り補強板の辺と平行な互いに直交する2つの中心線に関していずれも、大きさ及び位置が対称なので、梁からの荷重によって補強板に偏った応力が生じることは少なく、耐力を確保する上で良好である。また、めっき槽に浸漬して溶融亜鉛めっきする際に、亜鉛を均一に付着させるためにも好ましいと言える。
請求項4によれば、角形鋼管柱の互いに直角な管壁面にそれぞれ接合される2つの梁のみを有する場合に、前記補強板に設けられる円孔が、2つの梁がなす角度の二等分線方向の補強板対角線に関して、大きさ及び位置が対称なので、前記と同様、梁からの荷重によって補強板に偏った応力が生じることは少なく、耐力を確保する上で良好である。また、めっき槽に浸漬して溶融亜鉛めっきする際に、亜鉛を均一に付着させるためにも好ましいと言える。
According to
According to
請求項5のように、補強板の板厚t’をコア材外径の8%以上とすると、詳細は後述するが、開口部を設けた補強板を持つ柱梁接合部コアに対して、開口部を設けない所定板厚(標準板厚t)の補強板を持つ柱梁接合部コアの耐力と同等の耐力を持たせることが可能となる。
As in
コア材の板厚を請求項6のようにすれば、ノンダイアフラム形式の柱梁接合部コアとしての性能を確保できる。
If the thickness of the core material is as described in
以下、本発明の柱頭部柱梁接合部コア付き角形鋼管柱、及びその製造方法を実施するための形態について、図面を参照して説明する。 Hereinafter, a square steel pipe column with a column head column beam joint part core of the present invention and a form for carrying out the manufacturing method will be described with reference to the drawings.
図7、図8に本発明の一実施例の柱頭部柱梁接合部コア付き角形鋼管柱16の一実施例を示す。図7は柱頭部柱梁接合部コア付き角形鋼管柱16の平面図、(ロ)は(イ)の正面図、(ハ)は(イ)のB−B断面図、図8は柱頭部柱梁接合部コア付き角形鋼管柱16斜視図である。
この柱頭部柱梁接合部コア付き角形鋼管柱16は、中柱の場合であり、正方形の角形鋼管柱3の上端にノンダイアフラム形式の柱頭部用の柱梁接合部コア12を溶接固定し、その4面にH形鋼梁と同一サイズのH形鋼からなる短尺の梁ブラケット4を溶接固定してなる。
前記柱梁接合部コア12は、平面視の縦横比が1:1の短尺厚肉角形鋼管であるコア材12aの上端面に正方形の補強板15が溶接接合された構造であり、前記補強板15には、溶融亜鉛めっきを施す際の空気抜き用又は空気供給用として、前記コア材12aの各内周角部近傍の付置にそれぞれ円孔15bを設けている。4つの円孔15bの面積の合計面積は、日本建築学会・鉄骨工事技術指針の推奨に対応させて、コア材12aの内空水平断面積(コア材断面の内側輪郭が囲む面積)の1/3以上としている。
なお、前記4つの円孔15bは、図7(イ)で補強板15の中心を通り補強板15の辺と平行な互いに直交する2つの中心線S1、S2に関していずれも、大きさ及び位置が対称に配置されている。したがって、図で左右の梁4の接合位置間の中間線(S1)に関しても、図で上下の梁4の接合位置間の中間線(S2)に関しても対称である。
7 and 8 show an embodiment of a square
This column head column beam joint core-attached square
The column beam
It should be noted that the four
実施例の角形鋼管柱3のサイズは、縦幅300×横幅300×板厚19mmである。コア材12aの板厚は29mm、すなわちサイズは縦幅300×横幅300×板厚29mmである。なお、ノンダイアフラム形式の柱梁接合部コアの場合、一般的には板厚が角形鋼管柱の板厚より4mm以上厚い厚肉角形鋼管が用いられるが、この実施例ではさらに板厚を厚くしている。補強板15の板厚は22mmである。したがって、コア材12aの内径(内法寸法)は300−29×2=242mmで、コア材内空水平断面積は242mm×242mm=58564mm2である。
補強板15に設ける円孔15bの直径は例えば80mmとする。この場合、円孔15bの面積は5024mm2、4つの円孔15bの合計面積は20096mm2である。したがって、開口部の全面積のコア材内空水平断面積に対する割合は、20096/58564=0.34となり、1/3より大となっている。
また、短尺のH形鋼梁である梁ブラケット4のサイズは、例えば400×200である。なお、図6、図8では、直交する二方向の内の一方向の2つの梁は成の低い梁として図示している。
The size of the rectangular
The diameter of the
Moreover, the size of the
この柱頭部柱梁接合部コア付き角形鋼管柱16は、例えば次のようにして製作する。
コア材の断面積(外輪郭断面積)より若干小サイズの正方形の補強板材に図7(イ)のように4つの円孔15bをあける。そのあける位置は、前記コア材12aの内周角部近傍の付置である。コア材12aの内周を図7(イ)に破線12a’で示す。
コア材12aの上側となる端面(上端面)に、前記4つの円孔15bをあけた補強板15を溶接固定して柱梁接合部コア12を構成する。また、コア材12aの四方の管壁面に短尺のH形鋼である梁ブラケット4を溶接固定する。また、コア材12aの下側となる端面(下端面)に角形鋼管柱3の上端面を溶接固定する。なお、各図において、梁ブラケット4には、梁本体と継手プレートを介してボルト接合するための複数のボルト孔をあけているが、各図では省略した。
次いで、溶融亜鉛めっきを施す。その場合、柱頭部柱梁接合部コア付き角形鋼管柱16を、柱梁接合部コア12の上端側すなわち補強板15側が上側、角形鋼管柱3の下端が下側となる傾斜で、めっき槽に浸漬する。
The square
As shown in FIG. 7 (a), four
The column beam
Next, hot dip galvanization is performed. In that case, the square
この場合、開口部15bを持つ補強板15を上端面に溶接固定した柱梁接合部コア12の下端面に角形鋼管柱3を溶接固定した状態で、すなわち柱頭部柱梁接合部コア付き角形鋼管柱16の状態で溶融亜鉛めっきを施すので、作業性よくかつ良好な溶融亜鉛めっきを施すことができる。
すなわち、補強板15側(柱梁接合部コア12側)を上側、角形鋼管柱3の下端を下側にした傾斜状態で溶融亜鉛めっき槽に入れた時、下側は長い角形鋼管柱ではあるが閉鎖はされておらず、一方、上側は補強板15の開口部15bが空気抜き作用をするので、亜鉛が管内部に円滑に浸入して満たされる。また、同様な傾斜状態でめっき槽から引き上げた時は、補強板15の開口部15bが管内への空気供給作用をして管内の亜鉛が勢いよく鋼管下端開口から抜け出るので、作業能率が向上するとともに、単なる筒である角形鋼管柱3の下端部に亜鉛が溜まることがない。
さらに、補強板の開口部から空気の流出入が円滑におこなわれるので、角形鋼管柱のめっき割れの発生を防ぐことができる。
また、補強板15に設けられた4つの円孔15bは、補強板15の中心を通り補強板の辺と平行な互いに直交する2つの中心線S1、S2に関していずれも(中心線S1に関しても、中心線S2に関しても)、大きさ及び位置が対称であり、したがって、図7(イ)で左右の梁4の接合位置間の中間線(S1)に関しても、図7(イ)で上下の梁4の接合位置間の中間線(S2)に関しても対称なので、梁4からの荷重によって補強板15に偏った応力が生じることは少なく、耐力を確保する上で良好である。また、めっき槽に浸漬して溶融亜鉛めっきする際に、亜鉛を均一に付着させるためにも好ましいと言える。
In this case, in a state where the square
That is, when placed in a hot dip galvanizing tank in an inclined state with the reinforcing
Furthermore, since air flows in and out smoothly from the opening of the reinforcing plate, it is possible to prevent the occurrence of plating cracks in the square steel pipe column.
The four
また、補強板15に設けられる開口部が、コア材12aの4ヶ所の内周角部の近傍の円孔15bとして形成されて中央部には孔がないので、補強板周囲の隅肉溶接部から伝わる応力を補強板中央部を経て伝達させることができる。
図10は梁フランジから作用する水平力が補強板を介して伝達される状況を知るために、補強板及び梁フランジを図のような形状の1枚板に簡略化してFEM解析をして得られた力の流れを示すもので、(イ)は孔なしの補強板5’の場合、(ロ)は中央の大きな孔と角部近傍の4つの小さな孔のある5つ孔の補強板5、(ハ)は本発明の実施例であり中央部に孔はなく角部に4つの孔のある補強板15の場合である。
図示の通り、(イ)の孔のない補強板5’は、梁から作用する水平力で生じた応力をそのまま伝達できる、(ロ)の中央部の大きな孔のある補強板5は、その中央部の大きな孔の存在で梁から作用する水平力で生じた応力を十分に伝達できない、(ハ)の中央部に孔のない補強板15は、補強板中央部で応力を伝達できるので、梁から作用する水平力で生じた応力を良好に伝達できる、という様子が分かる。
Moreover, since the opening provided in the reinforcing
FIG. 10 is obtained by performing FEM analysis by simplifying the reinforcing plate and the beam flange into a single plate as shown in the figure in order to know the situation where the horizontal force acting from the beam flange is transmitted through the reinforcing plate. (B) is a five-
As shown in the figure, the reinforcing
前記の通り、中央部に孔のない補強板15では、補強板周囲の隅肉溶接部から伝わる応力を補強板中央部を経て伝達させることができるので、コア材内空水平断面積の1/3以上という合計面積の広い開口部としても、補強板15が梁フランジから作用する水平力に対して負担可能な荷重は、補強板中央部に大きな円孔を設けた場合と比べてあまり低下せず、したがって、板厚を極端に厚くしなくても、補強板15に柱中間部における上階柱の負担荷重と同程度の荷重を負担させることが可能である。これにより、補強板にコア材内空水平断面積の1/3以上という合計面積の極めて広い開口部を設けても、ノンダイアフラム形式の柱頭部柱梁接合部に要求される耐力を確保することが可能となる。
このことについて、FEM(有限要素法)による詳細な解析を行なって確認した結果を以下に述べる。
実験に基づいた学術論文によれば、柱頭部用の柱梁接合部コアとして、□300×300×29の厚肉角形鋼管(コア材)に対して補強板の板厚を12mmとすれば、上階に柱が接合されている場合と同等の耐力を有するとされている(『聲高他:厚肉角形鋼管部材を用いたノンダイアフラム形式の柱梁接合部の力学性能に関する実験研究その1〜2,本建築学会大会学術講演梗概集,P1089−1091,2011.8』参照)。
この実験研究を参考にして、図7(イ)のような開口部(円孔15b)を持つ補強板を溶接固定した□300×300×29の厚肉角形鋼管を対象にしたFEMによる解析を行った。ただし、実際のFEM解析は、厚肉角形鋼管に接合する梁がH形鋼梁自体ではなく、図11(イ)に示すように左右に平板状梁(H形鋼梁の上フランジ相当)を厚肉角形鋼管に接合した構造として行なった。
その解析結果は図11(ロ)のグラフに示す通りであり、板厚12mmの補強板の場合、開口部を設けない場合(太い実線:PL−12孔なし)の耐力Py=1484kNに対して、図7(イ)のパターンで鋼管内空水平断面積の1/3の開口部を設けた場合(細い破線:PL−12孔あり)の耐力Pyは1276kNであり、14%程度低下している。
一方、補強板の板厚を22mmとし前記と同じ図7(イ)のパターンで開口部を設けた場合(太い破線:PL−22孔あり)の耐力Pyは1423kNであり、板厚12mmの補強板について開口部を設けない場合の耐力(1484kN)とほぼ同等であった。
前記と同様なFEM解析により、厚肉角形鋼管の複数のサイズについて、開口部を設けない補強板を持つ柱梁接合部コアが上階に柱が接合されている場合と同等の耐力を確保できる補強板の板厚t(このtを標準板厚と呼ぶ)に対して、開口部を設けた補強板を持つ柱梁接合部コアが上階に柱が接合されている場合と同等の耐力を確保するために必要な補強板の板厚t’を求めた。解析結果を表1に示す。
As described above, in the reinforcing
The result confirmed by conducting detailed analysis by FEM (finite element method) will be described below.
According to an academic paper based on experiments, if the plate thickness of the reinforcing plate is 12 mm for a thick square steel pipe (core material) of □ 300 × 300 × 29 as a column beam joint core for a column head, It is said that it has the same proof strength as the case where the column is joined to the upper floor ("Takataka et al .: Experimental study on the mechanical performance of the non-diaphragm type column beam joint using thick square steel pipe part 1 -2, Summary of Academic Lectures of the Architectural Institute of Japan, P1089-1091, 2011.8 ").
With reference to this experimental study, FEM analysis was performed on a □ 300 × 300 × 29 thick square steel pipe to which a reinforcing plate having an opening (
The analysis result is as shown in the graph of FIG. 11 (b). In the case of a reinforcing plate having a thickness of 12 mm, the proof stress Py = 1484 kN when no opening is provided (thick solid line: no PL-12 hole). When the opening of 1/3 of the horizontal horizontal sectional area in the steel pipe is provided in the pattern of FIG. 7 (a) (thin broken line: with PL-12 hole), the proof stress Py is 1276 kN, which is reduced by about 14%. Yes.
On the other hand, when the plate thickness of the reinforcing plate is 22 mm and the openings are provided in the same pattern as in FIG. 7 (a) (thick broken line: with PL-22 hole), the proof stress Py is 1423 kN, and the reinforcing plate has a thickness of 12 mm. It was almost equivalent to the yield strength (1484 kN) when no opening was provided for the plate.
By the same FEM analysis as described above, for a plurality of sizes of thick-walled square steel pipes, it is possible to ensure the same proof stress as when the column beam joint core having the reinforcing plate not provided with the opening is joined to the upper floor. With respect to the thickness t of the reinforcing plate (this t is referred to as the standard plate thickness), the column beam joint core having the reinforcing plate provided with the opening has a proof strength equivalent to the case where the column is joined to the upper floor. The thickness t ′ of the reinforcing plate necessary for ensuring was obtained. The analysis results are shown in Table 1.
表1に示す通り、FEM解析をした厚肉角形鋼管(コア材)の管径Dmmと板厚Tmmとの組合せは「D150、T16.5」、「D175、T17」、「D200、T22」、「D250、T24」、「D300、T29」の5種のサイズである。
それらの各サイズについて、開口部を設けない補強板の場合は、その板厚t(標準板厚t)がそれぞれ6mm、6mm、9mm、9mm、12mmであれば、上階に柱が接合されている場合と同等の耐力を有し、開口部を設けた補強板の場合は、板厚t’がそれぞれ12mm、12mm、16mm、16mm、22mmであれば、上階に柱が接合されている場合と同等の耐力を有するという解析結果が得られた。
したがって、補強板に開口部を設けた場合に最低限必要とする板厚t’と厚肉角形鋼管径Dとの比t’/Dは、それぞれ12/150(=8.0%)、12/175(=6.9%)、16/200(=8.0%)、16/250(=6.4%)、22/300(=7.3%)である。
この結果から、補強板に閉鎖形断面の断面積(コア材内空水平断面積)の1/3という広い開口部を設けても、補強板の板厚t’と厚肉角形鋼管径Dとの比t’/Dを8%以上(t’/D≧8%)とすれば、その補強板を持つ柱頭部用の柱梁接合部コアは、上階に柱が接合されている場合と同等の耐力を有すると言うことができる。
なお、上記のFEM解析結果は、前記の通り左右に梁が接合されている側柱の場合について解析したものであるが、補強板が孔なし標準板厚tの場合と孔あり板厚t’の場合との対比結果であるから、四方に梁が接合された中柱の場合でも、補強板が孔なし標準板厚tの場合と孔あり板厚t’の場合との対比は同様であると言える。詳細は省略するが、三方に梁が接合された隅柱の場合も同様である。
As shown in Table 1, the combinations of the tube diameter Dmm and the plate thickness Tmm of the thick square steel pipe (core material) subjected to FEM analysis are “D150, T16.5”, “D175, T17”, “D200, T22”, There are five sizes, “D250, T24” and “D300, T29”.
For each of these sizes, in the case of a reinforcing plate that does not have an opening, if the plate thickness t (standard plate thickness t) is 6 mm, 6 mm, 9 mm, 9 mm, and 12 mm, respectively, the pillar is joined to the upper floor. In the case of a reinforcing plate having an proof strength equivalent to that of the case where an opening is provided, if the plate thickness t ′ is 12 mm, 12 mm, 16 mm, 16 mm, and 22 mm, respectively, the column is joined to the upper floor The analysis results show that it has the same proof stress.
Therefore, the ratio t ′ / D between the minimum required plate thickness t ′ and the thick square steel pipe diameter D when the reinforcing plate is provided with openings is 12/150 (= 8.0%), 12 / 175 (= 6.9%), 16/200 (= 8.0%), 16/250 (= 6.4%), 22/300 (= 7.3%).
From this result, even if the reinforcing plate is provided with a wide opening of 1/3 of the cross-sectional area of the closed cross section (empty horizontal cross-sectional area in the core material), the thickness t ′ of the reinforcing plate and the thick square steel pipe diameter D If the ratio t ′ / D is 8% or more (t ′ / D ≧ 8%), the column beam joint core for the column head having the reinforcing plate is the case where the column is joined to the upper floor. It can be said that it has equivalent proof stress.
The above FEM analysis results were analyzed for the case of the side column where the beams are joined to the left and right as described above, but the reinforcing plate has the standard plate thickness t without holes and the plate thickness t ′ with holes. Therefore, even in the case of the middle column in which the beams are joined in four directions, the comparison between the case where the reinforcing plate is the standard plate thickness t without holes and the plate thickness t ′ with holes is the same. It can be said. Although the details are omitted, the same applies to a corner column in which beams are joined in three directions.
図12は柱頭部を模擬した平板として、孔なしの場合、4つ孔の場合(本願発明の補強板に対応する)、5つ孔の場合(従来の補強板に対応する)の3種類のパターンについて、FEM解析により変位δmmと荷重とP(kN)の関係を調べた結果を示す。
図示の通りであり、孔なしの場合(実線)が大きな荷重に耐えられことは当然であるが、4つ孔の場合(破線)は、5つ孔の場合(1点鎖線)と比較してより大きな荷重に耐えることが分かる。
FIG. 12 shows three types of flat plates simulating the column heads: no holes, four holes (corresponding to the reinforcing plate of the present invention), and five holes (corresponding to the conventional reinforcing plate). The result of investigating the relationship between displacement δmm, load and P (kN) by FEM analysis for the pattern is shown.
As shown in the figure, it is natural that the case without holes (solid line) can withstand a large load, but the case with four holes (dashed line) is compared with the case with five holes (one-dot chain line). It can be seen that it can withstand larger loads.
図9に開口部として補強板15に設ける円孔15bの配置の種々のパターンを示す。
(イ)は角形鋼管柱3の四方の面に梁(梁ブラケット)4が接合された中柱の場合であり、前述した図7、図8のものである。
(ロ)は角形鋼管柱3の左右両側の面とこれと直角な面との三方の面に梁4が接合されたた側柱の場合であり、補強板15に設けられる4つの円孔15bは、補強板15の中心を通り補強板15の辺と平行な互いに直交する2つの中心線S1、S2に関していずれも(中心線S1に関しても、中心線S2に関しても)、大きさ及び位置が対称である。
(ハ)、(ニ)、(ホ)は角形鋼管柱3の互いに直角な2つの面に梁4が接合された隅柱の場合であり、2つの梁4がなす角度の二等分線方向の補強板対角線Sに関して、大きさ及び位置が対称である。
前記(ハ)は前記補強板対角線Sと直交する方向の内周角部近傍の2つの円孔15bと、前記補強板対角線S上の内周角部近傍の2つの円孔15bとを有するが、前記補強板対角線Sに関して対称である。
前記(ニ)は前記補強板対角線Sと直交する方向の内周角部近傍の2つの円孔15bと、前記補強板対角線S上で外側の内周角部近傍の1つの大きな円孔15bとを有するが、前記補強板対角線Sに関して対称である。なお、前記3つの円孔のサイズを等しくし、その合計面積が前記と同等になるようにしてもよい。
前記(ホ)は前記補強板対角線Sと直交する方向の内周角部近傍の2つの円孔15bと、前記補強板対角線S上で内側の内周角部近傍の1つの大きな円孔15bとを有するが、前記補強板対角線Sに関して対称である。
(ヘ)は角形鋼管柱3の左右両側の面にのみ梁4が接合されている場合であり、補強板15に設けられている4つの円孔15bは、補強板15の中心を通り補強板15の辺と平行な互いに直交する2つの中心線S1、S2に関していずれも、大きさ及び位置が対称である。
なお、複数の円孔を対称軸Sに関して対称に配置させるパターンは上記以外にも種々のパターンを採用することができる。
FIG. 9 shows various patterns of arrangement of the
(A) is the case of the middle column in which the beams (beam brackets) 4 are joined to the four sides of the square
(B) is a case of a side column in which a
(C), (d), (e) are corner columns in which the
The (c) has two
The (d) includes two
The (e) includes two
(F) is a case where the
In addition to the above, various patterns can be adopted as the pattern in which the plurality of circular holes are arranged symmetrically with respect to the symmetry axis S.
3 角形鋼管柱(下階柱)、
3’上階柱
4 梁ブラケット(H形鋼梁)
4a 上側フランジ
4b 下側フランジ
12 (ノンダイアフラム形式の)柱梁接合部コア
12a コア材
12a’ コア材の内周
15 補強板
15b 円孔(開口部)
16 柱頭部柱梁接合部コア付き角形鋼管柱
S1、S2 補強板の中心を通り補強板の辺と平行な互いに直交する2つの中心線
S 2つの梁がなす角度の二等分線方向の補強板対角線
3 Square steel pipe pillar (lower floor pillar),
16 Column head column beam jointed square steel pipe column with core S 1 , S 2 Two centerlines that pass through the center of the reinforcing plate and are parallel to the side of the reinforcing plate S Two bisectors of the angle formed by the two beams Reinforcement plate diagonal
Claims (7)
前記柱梁接合部コアは、平面視の縦横比が1:1の短尺厚肉角形鋼管であるコア材の上端面に正方形の補強板が溶接接合された構造であり、前記補強板には、前記コア材の内周角部近傍の付置にのみ円孔からなる開口部が設けられており、
前記柱梁接合部コアの下端面に前記角形鋼管柱の上端面を溶接接合した状態で溶融亜鉛めっき槽に浸漬して溶融亜鉛めっきを施したことを特徴とする柱頭部柱梁接合部コア付き角形鋼管柱。 A square steel pipe column with a column head column beam joint core provided with a non-diaphragm type column beam joint core at the column head of the square steel tube column,
The column beam joint core has a structure in which a square reinforcing plate is welded to the upper end surface of a core material that is a short thick square steel pipe having an aspect ratio of 1: 1 in a plan view. An opening consisting of a circular hole is provided only in the vicinity of the inner peripheral corner of the core material,
With a column head column beam joint core characterized in that it is immersed in a hot dip galvanizing bath in a state where the upper end surface of the rectangular steel pipe column is welded to the lower end surface of the column beam joint core. Square steel pipe column.
正方形の鋼板に、前記コア材の内周角部近傍の付置となるように円孔をあけて複数の円孔を有する補強板を形成し、
平面視の縦横比が1:1の短尺厚肉角形鋼管であるコア材の上端面に、前記補強板を溶接接合して前記柱梁接合部コアを構成し、
前記柱梁接合部コアの下端面に前記角形鋼管柱の上端面を溶接接合し、
一体の前記柱梁接合部コアと角形鋼管柱とを、補強板側を上側、角形鋼管柱下端を下側にした傾斜状態で溶融亜鉛めっき槽に浸漬し同じ傾斜状態で溶融亜鉛めっき槽から引き上げて溶融亜鉛めっきを施すことを特徴とする柱頭部柱梁接合部コア付き角形鋼管柱の製造方法。 A square steel pipe with a column head column beam joint core for producing a square steel pipe column with a non-diaphragm type column beam joint core at the column head of a square steel pipe column and galvanized column head column beam joint core. A method of manufacturing a pillar,
In the square steel plate, a reinforcing plate having a plurality of circular holes is formed by opening a circular hole so as to be attached near the inner peripheral corner of the core material,
The reinforcing plate is welded to the upper end surface of the core material which is a short thick-walled square steel pipe having an aspect ratio of 1: 1 in plan view to constitute the column beam joint core,
Welding the upper end surface of the rectangular steel pipe column to the lower end surface of the column beam joint core;
The integral beam-column joint core and rectangular steel pipe column are immersed in a hot dip galvanizing bath in an inclined state with the reinforcing plate side on the upper side and the lower end of the rectangular steel tube column on the lower side, and are pulled up from the hot dip galvanizing bath in the same inclined state. A method of manufacturing a square steel pipe column with a column head column beam joint core characterized by subjecting to hot dip galvanizing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013037744A JP6186624B2 (en) | 2013-02-27 | 2013-02-27 | Pillar head column beam jointed square steel pipe column with core and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013037744A JP6186624B2 (en) | 2013-02-27 | 2013-02-27 | Pillar head column beam jointed square steel pipe column with core and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014163201A true JP2014163201A (en) | 2014-09-08 |
JP6186624B2 JP6186624B2 (en) | 2017-08-30 |
Family
ID=51614067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013037744A Active JP6186624B2 (en) | 2013-02-27 | 2013-02-27 | Pillar head column beam jointed square steel pipe column with core and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6186624B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016210573A (en) * | 2015-05-11 | 2016-12-15 | 村田機械株式会社 | Rack for automatic warehouse |
CN108951858A (en) * | 2018-08-15 | 2018-12-07 | 中建钢构武汉有限公司 | A kind of spacial special-shaped round tube node and its processing technology |
CN109736436A (en) * | 2019-01-03 | 2019-05-10 | 台州航权机械科技有限公司 | A kind of beam-to-column joint structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61223173A (en) * | 1985-03-29 | 1986-10-03 | Nippon Steel Corp | Electromagnetic wiping method of metal hot dipped steel pipe |
JP2003286744A (en) * | 2002-03-28 | 2003-10-10 | Daiwa House Ind Co Ltd | Capital and beam joint structure of square steel pipe column |
JP2005264474A (en) * | 2004-03-17 | 2005-09-29 | Daiwa House Ind Co Ltd | Joint structure of beam and column |
JP2011127426A (en) * | 2005-05-24 | 2011-06-30 | Arcreate:Kk | Weld-connecting method of h-section steel |
-
2013
- 2013-02-27 JP JP2013037744A patent/JP6186624B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61223173A (en) * | 1985-03-29 | 1986-10-03 | Nippon Steel Corp | Electromagnetic wiping method of metal hot dipped steel pipe |
JP2003286744A (en) * | 2002-03-28 | 2003-10-10 | Daiwa House Ind Co Ltd | Capital and beam joint structure of square steel pipe column |
JP2005264474A (en) * | 2004-03-17 | 2005-09-29 | Daiwa House Ind Co Ltd | Joint structure of beam and column |
JP2011127426A (en) * | 2005-05-24 | 2011-06-30 | Arcreate:Kk | Weld-connecting method of h-section steel |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016210573A (en) * | 2015-05-11 | 2016-12-15 | 村田機械株式会社 | Rack for automatic warehouse |
CN108951858A (en) * | 2018-08-15 | 2018-12-07 | 中建钢构武汉有限公司 | A kind of spacial special-shaped round tube node and its processing technology |
CN109736436A (en) * | 2019-01-03 | 2019-05-10 | 台州航权机械科技有限公司 | A kind of beam-to-column joint structure |
CN109736436B (en) * | 2019-01-03 | 2020-12-04 | 台州航权机械科技有限公司 | Beam column connecting structure |
Also Published As
Publication number | Publication date |
---|---|
JP6186624B2 (en) | 2017-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6186624B2 (en) | Pillar head column beam jointed square steel pipe column with core and manufacturing method thereof | |
JP6807657B2 (en) | Beam-column joint structure and beam connection structure | |
JP2017066624A (en) | Unit Building | |
JP2019214899A (en) | Beam-column joint structure | |
JP6994450B2 (en) | Reinforcement structure of column beam frame | |
JP2018204184A (en) | Column-beam joint structure | |
JP2019007172A (en) | Column beam joining structure | |
JP6152809B2 (en) | Beam-column joint structure | |
JP6873720B2 (en) | Reinforced concrete column / steel beam joint structure | |
JP2017075485A (en) | Structure for reinforcing steel-pipe column | |
JP2012144863A (en) | Structure | |
JP5946613B2 (en) | Strength prediction method for steel column beam joint with different diameters of upper and lower columns | |
JP2015117486A (en) | Beam with nonuniform cross-section | |
JP5759317B2 (en) | Beam-column connection structure and member | |
JP6179757B2 (en) | Column-to-column connection structure for different diameter column connections in buildings | |
JP6979283B2 (en) | Steel column beam frame of steel pipe column and H-shaped steel beam | |
JP5280769B2 (en) | Beam-column joint structure | |
JP6133256B2 (en) | Reinforcement structure of reinforcing member and steel perforated beam | |
JP2011106108A (en) | Column-beam joint structure of rcs construction | |
JP4966673B2 (en) | Column and beam joint structure | |
JP6783045B2 (en) | How to design column-beam joint structure and column-beam joint structure | |
JP6324765B2 (en) | Load-bearing wall-type installation structure in steel-framed buildings | |
JP2016191300A (en) | Reinforced concrete column/steel beam joint structure | |
JP6060809B2 (en) | Method for setting shape of joining member for joining main member and sub member | |
JP3222488U (en) | Handrail support fixing structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170711 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170711 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6186624 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |