JP2014162709A - Dielectric porcelain composition, electronic component using the same, and method for manufacturing the same - Google Patents

Dielectric porcelain composition, electronic component using the same, and method for manufacturing the same Download PDF

Info

Publication number
JP2014162709A
JP2014162709A JP2013037791A JP2013037791A JP2014162709A JP 2014162709 A JP2014162709 A JP 2014162709A JP 2013037791 A JP2013037791 A JP 2013037791A JP 2013037791 A JP2013037791 A JP 2013037791A JP 2014162709 A JP2014162709 A JP 2014162709A
Authority
JP
Japan
Prior art keywords
ceramic composition
dielectric
dielectric ceramic
substrate particles
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013037791A
Other languages
Japanese (ja)
Other versions
JP6194559B2 (en
Inventor
Tomoshi Wada
智志 和田
Hideto Kawashima
秀人 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2013037791A priority Critical patent/JP6194559B2/en
Publication of JP2014162709A publication Critical patent/JP2014162709A/en
Application granted granted Critical
Publication of JP6194559B2 publication Critical patent/JP6194559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric porcelain composition having a high specific permittivity and to provide an electronic component using the dielectric porcelain composition.SOLUTION: The provided dielectric porcelain composition includes: a three-dimensional network wherein multiple substrate particles BT are joined; and a surface layer KN covering the surface of the three-dimensional network wherein the interface MPB thereof with the substrate particles is a heteroepitaxial interface comprising continuous crystal lattices, whereas the heteroepitaxial interface embodies a matrix. A dielectric porcelain composition having improved dielectric characteristics for obtaining a high-capacity electricity storage appliance is especially favored.

Description

本発明は、誘電体磁器組成物に関するものであり、特に大容量の蓄電器などを得るために誘電特性を向上させた誘電体磁器組成物に関する。また、その誘電体磁器組成物を用いた電子部品に関する。およびそれらの製造方法に関する。   The present invention relates to a dielectric ceramic composition, and more particularly to a dielectric ceramic composition having improved dielectric characteristics in order to obtain a large-capacity capacitor or the like. The present invention also relates to an electronic component using the dielectric ceramic composition. And a manufacturing method thereof.

従来、誘電体磁器組成物としてチタン酸ジルコン酸鉛が用いられていたが、鉛を含むため、環境汚染を引き起こすという問題がある。   Conventionally, lead zirconate titanate has been used as a dielectric ceramic composition. However, since it contains lead, there is a problem of causing environmental pollution.

鉛を含まない誘電体磁器組成物としてはチタン酸バリウムが主に用いられ、誘電素子、コンデンサ、積層コンデンサなどに応用されている。   Barium titanate is mainly used as a dielectric porcelain composition not containing lead, and is applied to dielectric elements, capacitors, multilayer capacitors and the like.

一方、特許文献1には、(K1−xNa)NbOで表されるニオブ酸化合物とBaTiOで表されるチタン酸バリウムのコンポジット構造を有する誘電体磁器組成物が、温度変化に対する比誘電率の変動が少ないことが開示されている。 On the other hand, Patent Document 1 discloses a dielectric ceramic composition having a composite structure of a niobic acid compound represented by (K 1-x Na x ) NbO 3 and a barium titanate represented by BaTiO 3 . It is disclosed that there is little variation in the dielectric constant.

特開2013−28478JP 2013-28478 A

しかしながら、上述した(K1−xNa)NbOで表されるニオブ酸化合物とBaTiOで表されるチタン酸バリウムのコンポジット構造を有する誘電体磁器組成物であっても十分な比誘電率を有するとは言えないという問題があった。 However, even a dielectric ceramic composition having a composite structure of the niobic acid compound represented by (K 1-x Na x ) NbO 3 and the barium titanate represented by BaTiO 3 is sufficient in relative dielectric constant. There was a problem that it cannot be said that it has.

本発明はこのような課題を解決するためのものであり、高い比誘電率を有する誘電体磁器組成物を提供すること、またその誘電体磁器組成物を用いた電子部品を提供する。   The present invention is for solving such problems, and provides a dielectric ceramic composition having a high relative dielectric constant, and an electronic component using the dielectric ceramic composition.

本発明の誘電体磁器組成物は、複数の基板粒子が接合した3次元ネットワークと、前記3次元ネットワークの表面を被覆し、前記基板粒子との界面は結晶格子が連続しているヘテロエピタキシャル界面である表面層とを備え、前記へテロエピタキシャル界面がマトリクス状であることを特徴とする。   The dielectric ceramic composition of the present invention covers a three-dimensional network in which a plurality of substrate particles are joined and the surface of the three-dimensional network, and the interface with the substrate particles is a heteroepitaxial interface in which a crystal lattice is continuous. The heteroepitaxial interface is in a matrix form.

本発明の誘電体磁器組成物は、複数の基板粒子が接合した3次元ネットワークと、前記3次元ネットワークの表面を被覆し、前記基板粒子との界面が結晶格子が連続しているヘテロエピタキシャル界面である表面層とを備え、前記3次元ネットワークが、その周辺において前記複数の基板粒子の表面のなす角度の平均が鈍角となるような接合を備えたことを特徴とする。   The dielectric ceramic composition of the present invention is a heteroepitaxial interface in which a plurality of substrate particles are joined and a surface of the three-dimensional network is coated, and the interface with the substrate particles is a continuous crystal lattice. A surface layer, and the three-dimensional network is provided with a junction such that an average angle formed by the surfaces of the plurality of substrate particles is an obtuse angle around the three-dimensional network.

また、本発明による電子部品は、上述の前記誘電体磁器組成物を備え、前記誘電材料に印加された電界により前記誘電材料の表面に電荷が誘起されることを特徴とする。   According to another aspect of the present invention, there is provided an electronic component comprising the above-described dielectric ceramic composition, wherein a charge is induced on a surface of the dielectric material by an electric field applied to the dielectric material.

また、本発明による誘電体磁器組成物の製造方法は、基板粒子である圧粉体を作製する工程と、前記圧粉体を接合するネッキング処理を行う工程と、外部からNb源を添加する工程と、ソルボサーマル法により表面層をエピタキシャルに形成する工程とを備えたことを特徴とする。   The method for producing a dielectric ceramic composition according to the present invention includes a step of producing a green compact as substrate particles, a step of performing a necking process for joining the green compact, and a step of adding an Nb source from the outside And a step of epitaxially forming the surface layer by a solvothermal method.

本発明によれば、高い比誘電率を有した誘電体磁器組成物を提供することができる。またその誘電材料を用いることにより、多量の電荷を誘起できる電子部品を提供することができる。   According to the present invention, a dielectric ceramic composition having a high dielectric constant can be provided. Further, by using the dielectric material, an electronic component capable of inducing a large amount of charge can be provided.

は、MPBを示す模式図である。FIG. 3 is a schematic diagram showing MPB. は、分極回転機構の模式図である。These are schematic diagrams of a polarization rotation mechanism. は、リートベルト解析から構造傾斜領域(SGR)の変化を解析した結果である。These are the results of analyzing changes in the structural gradient region (SGR) from Rietveld analysis. は、本発明の実施例1による誘電体磁器組成物のKN/BTと比誘電率、構造傾斜領域(SGR)の厚さの関係を示す図である。These are figures which show the relationship between KN / BT of a dielectric ceramic composition by Example 1 of this invention, a dielectric constant, and the thickness of a structure inclination area | region (SGR). は、セラミックスの体積密度と比誘電率の関係を示すグラフである。These are graphs showing the relationship between the volume density of ceramics and the relative dielectric constant. は、本発明の実施例1による誘電体磁器組成物のパラレル構造を説明する模式図である。These are the schematic diagrams explaining the parallel structure of the dielectric material ceramic composition by Example 1 of this invention. は、本発明の実施例1による誘電体磁器組成物の、パラレル構造の導入による誘電特性の結果を示すグラフである。These are the graphs which show the result of the dielectric property by introduction | transduction of a parallel structure of the dielectric material ceramic composition by Example 1 of this invention. は、本発明の実施例2による誘電体磁器組成物の製法のフローの模式図である。These are the schematic diagrams of the flow of the manufacturing method of the dielectric material ceramic composition by Example 2 of this invention. は、ソルボサーマル法を用いたKN/BTナノ複合セラミックスのKN積層量と比誘電率の結果を示すグラフである。These are graphs showing the results of KN lamination amount and relative dielectric constant of KN / BT nanocomposite ceramics using the solvothermal method. は、本発明の実施例2による誘電体磁器組成物の製法の、秤量からネッキングまでのフローチャートである。These are the flowcharts from the weighing to necking of the manufacturing method of the dielectric ceramic composition by Example 2 of this invention. は、本発明の実施例2による誘電体磁器組成物の、ネッキング後の試料の走査型電子顕微鏡(SEM)の測定結果である。These are the measurement results of the scanning electron microscope (SEM) of the sample after necking of the dielectric ceramic composition according to Example 2 of the present invention. 本発明の実施例2による誘電体磁器組成物の製法の、Nb添加から加熱処理までのフローの模式図である。It is a schematic diagram of the flow from Nb addition to heat processing of the manufacturing method of the dielectric ceramic composition by Example 2 of this invention. は、本発明の実施例2による誘電体磁器組成物の加水分解から加熱処理まで行ったもののXRD測定結果である。These are the XRD measurement results of what was performed from the hydrolysis to the heat treatment of the dielectric ceramic composition according to Example 2 of the present invention. 本発明の実施例2による誘電体磁器組成物の製法の、ソルボサーマル合成から乾燥までのフローチャートである。It is a flowchart from the solvothermal synthesis to drying of the manufacturing method of the dielectric material ceramic composition by Example 2 of this invention. は、本発明の実施例2による誘電体磁器組成物の、Nb添加5回の試料のネッキング処理後、Nb添加後、ソルボサーマル合成後の粉末のX線解析(XRD)による定性分析結果である。These are the qualitative analysis results by X-ray analysis (XRD) of the powder after the necking treatment of the Nb-added sample 5 times, the Nb addition, and the solvothermal synthesis of the dielectric ceramic composition according to Example 2 of the present invention. . は、本発明の実施例2による誘電体磁器組成物の、電気特性を図るための加工の模式図である。These are the schematic diagrams of the process for aiming at the electrical property of the dielectric material ceramic composition by Example 2 of this invention. は、本発明の実施例2による誘電体磁器組成物の、比誘電率の周波数依存性と温度依存性の測定結果である。These are the measurement results of the frequency dependence and temperature dependence of the relative permittivity of the dielectric ceramic composition according to Example 2 of the present invention. は、本発明の実施例2による誘電体磁器組成物の、KN/BT比から求めたKN積層量と1MHz、RTの比誘電率の結果を、図9に重ねた結果である。FIG. 9 shows the results obtained by superimposing the results of the KN lamination amount obtained from the KN / BT ratio and the relative permittivity of 1 MHz and RT on the dielectric ceramic composition according to Example 2 of the present invention in FIG. は、本発明の実施例2と実施例3によるによる誘電体磁器組成物の模式図である。These are schematic diagrams of dielectric ceramic compositions according to Example 2 and Example 3 of the present invention. は、本発明の実施例3による誘電体磁器組成物の製法の、フローチャートである。These are the flowcharts of the manufacturing method of the dielectric material ceramic composition by Example 3 of this invention. は、本発明の実施例3による誘電体磁器組成物の、ネッキング後のBTのSEMの画像である。These are the SEM images of BT after necking of the dielectric ceramic composition according to Example 3 of the present invention. は、本発明の実施例3による誘電体磁器組成物の、ネッキング処理後、ソルボサーマル合成前、ソルボサーマル合成後の粉末XRD測定結果である。These are the powder XRD measurement results of the dielectric ceramic composition according to Example 3 of the present invention after necking treatment, before solvothermal synthesis, and after solvothermal synthesis. は、本発明の実施例3による誘電体磁器組成物の、周波数依存性と温度依存性を示すグラフである。These are graphs showing the frequency dependence and temperature dependence of the dielectric ceramic composition according to Example 3 of the present invention. は、本発明の実施例3による誘電体磁器組成物の、ヒステリシス測定により得られた歪測定結果と歪の傾きから求めた見かけのd33*定数と、P-Eヒステリシス曲線を示すグラフである。Is the dielectric ceramic composition according to Example 3 of the present invention, the d 33 * constants The apparent obtained from the slope of the resulting strain measurements and strain by hysteresis measurement, it is a graph showing a PE hysteresis curve. は、本発明の実施例4による誘電体磁器組成物の構造を示す図である。These are figures which show the structure of the dielectric material ceramic composition by Example 4 of this invention. は、本発明の実施例5による、実施例1から4による誘電体磁器組成物を用いたキャパシタの構造を示す図である。These are figures which show the structure of the capacitor using the dielectric material ceramic composition by Example 1 to 4 by Example 5 of this invention. は、本発明の実施例5による、実施例1から4による誘電体磁器組成物を用いた積層コンデンサの構造を示す図である。These are figures which show the structure of the multilayer capacitor using the dielectric ceramic composition by Example 1 to 4 by Example 5 of this invention.

以下に、本発明の実施例について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の実施例として、基板粒子にチタン酸バリウム(BaTiO3、以下BTという)、表面層にニオブ酸カリウム(KNbO3、以下KNという)を用いた例について説明する。 As an example of the present invention, an example in which barium titanate (BaTiO 3 , hereinafter referred to as BT) is used for substrate particles and potassium niobate (KNbO 3 , hereinafter referred to as KN) is used as a surface layer will be described.

従来誘電体磁器組成物として用いられてきた材料の多くは、組成相境界(Morphotropic phase boundary、以下MPBという)を持つ。MPBとは一つのグレインの中に異なる2つの結晶相が共存している状態である。この異なる結晶相の界面では自発分極方向が歪んでいる構造傾斜領域(Structure-gradient region、以下SGRともいう)と呼ばれている部分が存在している。MPBの模式図を図1に示す。   Many materials conventionally used as dielectric ceramic compositions have a composition phase boundary (hereinafter referred to as MPB). MPB is a state in which two different crystal phases coexist in one grain. At the interface between the different crystal phases, there is a portion called a structure-gradient region (hereinafter also referred to as SGR) in which the spontaneous polarization direction is distorted. A schematic diagram of MPB is shown in FIG.

界面において、2相は共存し、エピタキシャルな界面を持っている。エピタキシャルとは、2つの相の格子が連続して成長している状態である。MPBにおいて高い誘電特性が発現される要因として、SGR内での分極回転機構と呼ばれる現象と考えられている。分極回転機構の模式図を図2に示す。本来、相により自発分極方向は決まった方向を向いているが、SGRでは自発分極方向が外場によってある範囲内で自由に外場に沿った向きに揃うことが可能になるため、高い特性を持つ。   At the interface, the two phases coexist and have an epitaxial interface. Epitaxial is a state in which two phase lattices are continuously grown. The cause of high dielectric properties in MPB is considered to be a phenomenon called polarization rotation mechanism in SGR. A schematic diagram of the polarization rotation mechanism is shown in FIG. Originally, the direction of spontaneous polarization depends on the phase, but in SGR it is possible to align the direction of spontaneous polarization freely along the external field within a certain range due to the external field. Have.

KNは常温において斜方晶で存在し、高いキュリー温度を持つ。BTは常温において正方晶で存在し、高い誘電特性を持つ。さらにKNとBTの格子定数は立方晶時に近い数値であり、エピタキシャルな界面ができやすい。KN/BTナノ複合セラミックスはKNをソルボサーマル法などの方法で、エピタキシャル成長させることで得られる。BTとKNの界面付近の結晶格子が歪み、エピタキシャルな界面ができる。   KN exists in orthorhombic crystals at room temperature and has a high Curie temperature. BT exists in tetragonal form at room temperature and has high dielectric properties. Furthermore, the lattice constants of KN and BT are values close to those of cubic crystals, and an epitaxial interface is easily formed. KN / BT nanocomposite ceramics can be obtained by epitaxially growing KN by a method such as solvothermal method. The crystal lattice near the interface between BT and KN is distorted, creating an epitaxial interface.

ソルボサーマル法とは、有機溶媒を用いて高圧下で反応させる合成法である。ソルボサーマル法を用いることで、300℃以下という低温で合成を行うことが可能である。また、ソルボサーマル法ではヘテロエピタキシャル成長という結晶成長が起こる。ヘテロエピタキシャル成長とは、一つの相の周りに格子が連続して別種の相が結晶成長することである。   The solvothermal method is a synthesis method in which an organic solvent is used for reaction under high pressure. By using the solvothermal method, synthesis can be performed at a low temperature of 300 ° C. or lower. In the solvothermal method, crystal growth called heteroepitaxial growth occurs. The heteroepitaxial growth is a crystal growth of another kind of phase with a continuous lattice around one phase.

KNとBTの比率を変えて比誘電率を測定し、リートベルト解析からSGRの変化を解析した結果を図3に示す。またKN/BTと比誘電率、SGRの厚さの関係を図4に示す。図4からはSGRの増加に伴い比誘電率が向上していることがわかる。   Figure 3 shows the result of analyzing the change in SGR from Rietveld analysis by measuring the relative permittivity by changing the ratio of KN and BT. FIG. 4 shows the relationship between KN / BT, relative permittivity, and SGR thickness. FIG. 4 shows that the relative dielectric constant is improved with an increase in SGR.

セラミックスは体積密度が最密充填構造を超えるとき粒子が点接触から面接触に変わることで比誘電率が大幅に向上する。また、粒子をネッキングさせることで粒子を面接触させ、低密度でも比誘電率を向上させることができる。セラミックスの体積密度と比誘電率のグラフを図5に示す。   In ceramics, when the volume density exceeds the close-packed structure, the relative permittivity is greatly improved by changing the particles from point contact to surface contact. In addition, the particles can be brought into surface contact by necking the particles, and the relative dielectric constant can be improved even at a low density. A graph of the volume density and relative dielectric constant of the ceramic is shown in FIG.

本実施例では、ネッキングしたBTにKNをエピタキシャル成長させることでSGRを連続した状態にしたパラレル構造とした。パラレル構造とは、粒子にネッキング構造を持たせて界面がマトリックス構造を持たせることである。パラレル構造の模式図を図6に示す。   In this example, a parallel structure was adopted in which SGR was made continuous by epitaxially growing KN on the necked BT. The parallel structure means that the particles have a necking structure and the interface has a matrix structure. A schematic diagram of the parallel structure is shown in FIG.

BTと酸化ニオブ(Nb2O5)でペレットを作製し、加熱によるネッキング処理後ソルボサーマル法によりKNの合成を行った場合、ネッキングをすることで比誘電率を約1.5倍に増加させることができた。パラレル構造の導入による誘電特性の結果を図7に示す。 When pellets are made of BT and niobium oxide (Nb 2 O 5 ), and KN is synthesized by the solvothermal method after heating necking, the relative permittivity can be increased about 1.5 times by necking. did it. FIG. 7 shows the result of the dielectric characteristics by introducing the parallel structure.

前述の実施例1では、BTと酸化ニオブ(Nb2O5)でペレットを作製し、加熱によるネッキング処理後ソルボサーマル法によりKNの合成を行ったが、不純物が生じる可能性があり、本実施例2では、BTのみで圧粉体を作製しネッキング処理を行った後、外部からNb源を添加、Nb2O5を導入しソルボサーマル法によりKNを合成することで不純物を生成させずにパラレル構造を持ったKN/BT複合セラミックスの合成を行う例を説明する。 In Example 1 described above, pellets were prepared from BT and niobium oxide (Nb 2 O 5 ), and KN was synthesized by solvothermal method after heating necking treatment. In Example 2, after making green compact with only BT and performing necking treatment, Nb source is added from outside, Nb 2 O 5 is introduced, and KN is synthesized by solvothermal method without generating impurities. An example of synthesizing KN / BT composite ceramics with a parallel structure will be described.

本実施例の誘電体磁器組成物の製法のフローの模式図を図8に示す。   FIG. 8 shows a schematic diagram of the flow of the method for producing the dielectric ceramic composition of the present example.

ソルボサーマル法を用いたKN/BTナノ複合セラミックスのBTに対するKNの積層量には最適な量があり、最適なKN/BT比は0.5で積層量は22nmである。KN積層量と比誘電率の結果を図9に示す。   KN / BT nanocomposite ceramics using the solvothermal method have an optimum amount of KN laminated on BT, with an optimum KN / BT ratio of 0.5 and a laminated amount of 22 nm. FIG. 9 shows the results of KN stacking amount and relative dielectric constant.

KN/BT=0.5となるようにNbを後で添加するためには、BTのみの圧粉体では密度が高いので、本実施例では圧粉体作製時にBTと共にカーボンブラック(以下CBという)を混ぜ、脱バインダー処理でCBを一緒にとばすことで、多孔体のBTペレットを作製し、Nbを多量に添加できる。   In order to add Nb later so that KN / BT = 0.5, the density of the green compact with only BT is high, so in this example, carbon black (hereinafter referred to as CB) is used together with BT in the production of the green compact. By mixing and removing CB together by debinding, porous BT pellets can be made and a large amount of Nb can be added.

出発原料としてBT(堺化学、300nm)に対しCBを体積比で30%(30vol%)加えこの原料とジルコニアボール200g、エタノールを樹脂容器に入れ300rpmで17時間混合させる。   As a starting material, 30% (30 vol%) of CB is added to BT (Sakai Chemical, 300 nm) by volume, and this material, 200 g of zirconia balls, and ethanol are placed in a resin container and mixed at 300 rpm for 17 hours.

混合させた原料と溶液をフッ素樹脂シートに移し80℃の乾燥機で3時間乾燥させてエタノールを蒸発させる。   The mixed raw material and solution are transferred to a fluororesin sheet and dried in a dryer at 80 ° C. for 3 hours to evaporate ethanol.

乾燥後、乳鉢と乳棒を用いて粉砕し、バインダーを質量の2%(2wt%)加える。バインダーにはポリビニルブチラール(PVB)を用いる。原料とバインダーをエタノール加えて乳鉢で混合し、ふるい(250μm)にかけ粉末の粒子のサイズを揃える。   After drying, pulverize using a mortar and pestle and add 2% (2 wt%) of the binder. Polyvinyl butyral (PVB) is used as the binder. Add raw materials and binder in ethanol and mix in a mortar and sift through (250μm) to make the powder particles the same size.

粉末を約0.15gずつ秤量し金型に詰め込み、油圧プレスを用いて約2tの圧力をかけ、直径10mmのディスク状に成形した。この試料をアルミナ板に乗せ、電気炉で600℃10時間熱処理によってバインダーの除去を行った。脱バインダー処理終了後、電気炉で1000℃2時間のネッキング処理を行い、BT多孔体ペレットを作製した。秤量からネッキングまでの手順のフローチャートを図10に示す。ネッキング後の試料の走査型電子顕微鏡(SEM)の測定結果を図11に示す。   About 0.15 g of the powder was weighed and packed into a mold, and a pressure of about 2 t was applied using a hydraulic press to form a disk with a diameter of 10 mm. This sample was placed on an alumina plate, and the binder was removed by heat treatment at 600 ° C. for 10 hours in an electric furnace. After the binder removal treatment, necking treatment at 1000 ° C. for 2 hours was performed in an electric furnace to produce BT porous pellets. A flowchart of the procedure from weighing to necking is shown in FIG. FIG. 11 shows the results of scanning electron microscope (SEM) measurement of the sample after necking.

次にアルコキシドを添加する。アルコキシドは空気中の水分と反応して加水分解を起こすので作業はグローブボックス内で行う。金属アルコキシドのペンタエトキシニオブ(Nb(OC2H5)5)をエタノールに3:10のモル比で溶解させ、溶液内にBT多孔体ペレットを入れて真空脱気させることでペレット内部にアルコキシドを含浸させる。 The alkoxide is then added. Since the alkoxide reacts with moisture in the air to cause hydrolysis, the work is performed in the glove box. Metallic alkoxide pentaethoxyniobium (Nb (OC 2 H 5 ) 5 ) is dissolved in ethanol at a molar ratio of 3:10, and BT porous pellets are placed in the solution and vacuum degassed to alkoxide inside the pellets. Impregnate.

アルコキシドが含浸したペレットを水中に放置させてペレット内のアルコキシドを加水分解させることでペレット内に水酸化ニオブ(Nb(OH)5)を生成させる。これにより、Nb源をペレット内に留まらせる。 The pellet impregnated with the alkoxide is allowed to stand in water to hydrolyze the alkoxide in the pellet, thereby producing niobium hydroxide (Nb (OH) 5 ) in the pellet. This keeps the Nb source in the pellet.

このペレットを電気炉によって600℃で5時間加熱することで酸化ニオブ(Nb2O5)を生成させる。Nb添加から加熱処理までの模式図を図12に示す。 This pellet is heated in an electric furnace at 600 ° C. for 5 hours to produce niobium oxide (Nb 2 O 5 ). A schematic diagram from Nb addition to heat treatment is shown in FIG.

加水分解から加熱処理までした試料のXRD測定結果を図13に示す。この手法を用いることでペレット内部にNbを添加させることに成功した。この含浸から加熱処理までの操作を1回から5回まで行うことでNb2O5添加量を制御する。 FIG. 13 shows the XRD measurement results of the sample from hydrolysis to heat treatment. By using this method, we succeeded in adding Nb inside the pellet. The amount of Nb 2 O 5 added is controlled by performing the operation from the impregnation to the heat treatment from 1 to 5 times.

次にソルボサーマル合成を行う。ソルボサーマル合成の原料には水酸化カリウム(KOH)、炭酸カリウム(K2CO3)、溶媒にはエタノールを用いた。容器には25mLフッ素樹脂容器とオートクレーブを用いた。フッ素樹脂製の容器を用いたのはK源となるKOHが溶媒に溶解することで高いアルカリ性を示すため、アルカリに強いフッ素樹脂容器を用いる。 Next, solvothermal synthesis is performed. Potassium hydroxide (KOH) and potassium carbonate (K 2 CO 3 ) were used as raw materials for solvothermal synthesis, and ethanol was used as a solvent. As the container, a 25 mL fluororesin container and an autoclave were used. A fluororesin container is used because KOH, which is a K source, dissolves in a solvent and exhibits high alkalinity. Therefore, a fluororesin container that is resistant to alkali is used.

まずNb2O5/BT圧粉体の質量からNb濃度0.1Mとなるようエタノールをフッ素樹脂容器内に入れ、K/Nb=10(KOH/K2CO3=0.22)となるようし秤量し添加した後、10分間スターラーで撹拌する。10分後、Nb2O5/BT圧粉体を台座の上に載せ、フッ素樹脂容器の中に入れ、フッ素樹脂容器をオートクレーブ内に入れ、230℃、20時間保持で反応させKN/BTセラミックスを合成した。このとき台座の上で反応させるのは過飽和状態の原料と圧粉体が接触し、圧粉体の表と裏で反応濃度に差が出てしまうのを防ぐためである。 First, ethanol is placed in a fluororesin container so that the Nb concentration is 0.1 M based on the mass of the Nb 2 O 5 / BT compact, and weighed so that K / Nb = 10 (KOH / K 2 CO 3 = 0.22). After the addition, stir with a stirrer for 10 minutes. After 10 minutes, place the Nb 2 O 5 / BT green compact on the pedestal, place it in a fluororesin container, place the fluororesin container in an autoclave, and react by holding at 230 ° C for 20 hours. KN / BT ceramics Was synthesized. At this time, the reaction is performed on the pedestal in order to prevent the supersaturated raw material and the green compact from coming into contact with each other and a difference in reaction concentration between the front and back of the green compact.

反応後、室温まで冷却し、取り出した試料はエタノールによる洗浄を行い、200℃で5時間乾燥させた。ソルボサーマル合成から乾燥までのフローチャートを図14に示す。以上説明したフローにより、誘電体磁器組成物を製造することができる。   After the reaction, it was cooled to room temperature, and the sample taken out was washed with ethanol and dried at 200 ° C. for 5 hours. A flowchart from solvothermal synthesis to drying is shown in FIG. The dielectric ceramic composition can be manufactured by the flow described above.

作製した誘電体磁器組成物の、ネッキング処理後、Nb添加後、合成後のアルキメデス法による密度測定結果を表1に示す。また、Nb添加5回の試料のネッキング処理後、Nb添加後、ソルボサーマル合成後の粉末のX線解析(XRD)による定性分析結果を図16示す。表1、図15 の結果からNb添加によりNb2O5の生成が確認され、合成後にはNb2O5のピークがなくなっているため、KNの合成も確認できる。また合成後のBTの格子の200面と002面の間にブリッジ構造というピ−クのふくらみが確認できる。これは常温において正方晶で存在するBTにKNがエピタキシャルに成長することで界面付近の格子が歪んでいるからである。KNの積層量が増すことでブリッジ構造が増大していることがわかる。 Table 1 shows the density measurement results by the Archimedes method after the necking treatment, the addition of Nb, and the synthesis of the produced dielectric ceramic composition. In addition, FIG. 16 shows the qualitative analysis results by X-ray analysis (XRD) of the powder after necking of the Nb-added sample 5 times, after Nb addition, and after solvothermal synthesis. From the results shown in Table 1 and FIG. 15, the formation of Nb 2 O 5 was confirmed by adding Nb, and the peak of Nb 2 O 5 disappeared after the synthesis, so the synthesis of KN can also be confirmed. In addition, a peak swelling called a bridge structure can be confirmed between the 200 and 002 faces of the BT lattice after synthesis. This is because the lattice near the interface is distorted by the epitaxial growth of KN on BT present in tetragonal form at room temperature. It can be seen that the bridge structure is increased by increasing the amount of KN laminated.

得られた誘電体磁器組成物を0.4mmの厚さまで研磨し、金電極をスパッタし300℃で熱処理後、2mm×2mmに切断後、200℃で24時間真空乾燥してから電気特性を測定した。加工の模式図を図16に示す。   The obtained dielectric ceramic composition was polished to a thickness of 0.4 mm, a gold electrode was sputtered, heat-treated at 300 ° C., cut to 2 mm × 2 mm, and vacuum-dried at 200 ° C. for 24 hours, and then the electrical characteristics were measured. . A schematic diagram of the processing is shown in FIG.

比誘電率の周波数依存性と温度依存性の測定結果を図17に示す。ネッキング処理を行ったBTでは常温、1MHzにおいて比誘電率が約200でNbを5回添加させたKN/BT=0.42の誘電体磁器組成物では約350まで向上している。KN/BT比から求めたKN積層量と1MHz、RTの比誘電率の結果を、図9に重ねた結果を図18に示す。この結果からパラレル構造のないKN/BTナノ複合セラミックスと同様な挙動を示している。   The measurement results of the frequency dependence and temperature dependence of the relative permittivity are shown in FIG. In the case of BT that has been necked, the dielectric ceramic composition of KN / BT = 0.42 with a relative permittivity of about 200 at room temperature and 1 MHz and Nb added 5 times is improved to about 350. FIG. 18 shows the result of superimposing the results of the KN stacking amount obtained from the KN / BT ratio and the relative permittivity of 1 MHz and RT on FIG. This result shows the same behavior as KN / BT nanocomposite ceramics without parallel structure.

上述の実施例2では、CBを用いて多孔体BTペレットを作製したため、ネッキングが弱く、SGRが連続せず、点在していると思われる。ネッキングをしないKN/BTナノ複合セラミックスと構造的に大きな変化がないと考えられる。   In Example 2 described above, since porous BT pellets were prepared using CB, necking was weak, and SGR was not continuous and seems to be scattered. It is thought that there is no significant structural change from KN / BT nanocomposite ceramics without necking.

本実施例3では、CBを使わない製造方法を説明する。実施例2と、実施例3による誘電体磁器組成物の模式図を図19に示す。   In the third embodiment, a manufacturing method that does not use CB will be described. A schematic diagram of the dielectric ceramic composition according to Example 2 and Example 3 is shown in FIG.

本実施例のフローチャートを図20に示す。実施例2と異なり、CBを用いていない。Nb添加は5回まで行い、加水分解、加熱処理をした後、ソルボサーマル合成を行った。   A flowchart of this embodiment is shown in FIG. Unlike Example 2, CB is not used. Nb was added up to 5 times, and after hydrolysis and heat treatment, solvothermal synthesis was performed.

ネッキング後のBTのSEMの画像を図21に、アルキメデス法による密度測定の結果を表2に、ネッキング処理後、ソルボサーマル合成前、ソルボサーマル合成後の粉末XRD測定結果を図24に示す。   The SEM image of BT after necking is shown in FIG. 21, the results of density measurement by Archimedes method are shown in Table 2, and the powder XRD measurement results after necking, before solvothermal synthesis, and after solvothermal synthesis are shown in FIG.

図21からCBを用いないBTペレットではCBを30vol%添加したペレットに比べネッキングが非常に強いことがわかる。表2、図22の結果から、KN/BT比が0.25であり、KNの積層量は11nmである。BTの200面のピークからブリッジ構造も確認できる。   From FIG. 21, it can be seen that BT pellets that do not use CB have much stronger necking than pellets to which 30 vol% of CB has been added. From the results shown in Table 2 and FIG. 22, the KN / BT ratio is 0.25, and the stacking amount of KN is 11 nm. The bridge structure can also be confirmed from the BT 200 peak.

比誘電率の周波数依存性と温度特性について測定した。周波数依存性と温度依存性を図23に示す。図23から1MHz、RTでの比誘電率はネッキング処理を行ったBTの約800に対し、KN/BTナノ複合セラミックスでは約1600と2倍も増大させることができた。温度依存性についてもKNを積層させることで非常に高い比誘電率を出すことができる。   The frequency dependence and temperature characteristics of relative permittivity were measured. FIG. 23 shows frequency dependency and temperature dependency. From FIG. 23, the relative dielectric constant at 1 MHz and RT was increased by about 1600 for KN / BT nanocomposite ceramics compared to about 800 for BT subjected to necking treatment. Regarding the temperature dependence, a very high dielectric constant can be obtained by laminating KN.

ヒステリシス測定により得られた歪測定結果と歪の傾きから求めた見かけのd33*定数と、P-Eヒステリシス曲線を図24に示す。図24からネッキング処理を行ったBTのd33*が161.9pC/Nに対しKN/BTナノ複合セラミックスは318.4pC/Nであり約2倍のd33*を持つことがわかる。圧電特性においてもKNをエピタキシャル成長させることで大きく向上することがわかる。 FIG. 24 shows the apparent d 33 * constant obtained from the strain measurement result obtained by the hysteresis measurement, the slope of the strain, and the PE hysteresis curve. KN / BT nanocomposite ceramic d 33 * Whereas 161.9pC / N of BT subjected to necking process from Figure 24 it can be seen that with a is approximately twice the d 33 * 318.4pC / N. It can be seen that the piezoelectric characteristics are greatly improved by epitaxially growing KN.

図25に実施例4として、基板粒子を格子状に配置し、隣りあう基板粒子の間をSGRで連結し、隙間に表面層を形成した誘電体磁器組成物を示す。本実施例4では、均一な組成を得ることができ、基板粒子の間隔や表面層を形成する隙間の大きさを制御することにより、誘電特性の制御が可能となる。   FIG. 25 shows a dielectric ceramic composition as Example 4 in which substrate particles are arranged in a lattice pattern, adjacent substrate particles are connected by SGR, and a surface layer is formed in a gap. In Example 4, a uniform composition can be obtained, and the dielectric properties can be controlled by controlling the interval between the substrate particles and the size of the gap forming the surface layer.

図26に、上述した本発明による実施例1〜3に記載の誘電体磁器組成物を用いた電子部品としてのキャパシタの例を示す。本発明による誘電体磁器組成物1を平板状に成形し、両面に第1の電極2、第2の電極3を設けたものである。ここでは、銀電極を用いている。誘電体磁器組成物の形状は問わないが、蓄えうる電荷量を考慮すれば平板状であることがのぞましい。また電極の材料も導電性を示す材料であればよく、金属であるかドープされた半導体であるかなどは問わないため、電子部品としては、DRAM(Dynamic Random Access Memory)のキャパシタセルのようなものでもよい。さらに、キャパシタ構造や印加バイアスを変化させることにより容量を変えることができる可変容量素子のようなものでもよい。   FIG. 26 shows an example of a capacitor as an electronic component using the dielectric ceramic composition described in Examples 1 to 3 according to the present invention. A dielectric ceramic composition 1 according to the present invention is formed into a flat plate shape, and a first electrode 2 and a second electrode 3 are provided on both sides. Here, a silver electrode is used. The shape of the dielectric porcelain composition is not limited, but it is preferably a flat plate shape in consideration of the amount of charge that can be stored. In addition, the electrode material may be any material as long as it is conductive, and it does not matter whether it is a metal or a doped semiconductor. Therefore, an electronic component such as a capacitor cell of a DRAM (Dynamic Random Access Memory) is used. It may be a thing. Further, it may be a variable capacitance element that can change the capacitance by changing the capacitor structure or the applied bias.

電極2,3間に電圧を印加すると、誘電材料中に生じる電界に応じて誘電体磁器組成物のSGRの分極が変化し、電極との界面における誘電体磁器組成物の表面にそれぞれ正負の電荷が誘起される。本発明による誘電体磁器組成物は前述したように高い誘電特性を示すため、容量が大きいコンデンサが得られる。   When a voltage is applied between the electrodes 2 and 3, the SGR polarization of the dielectric ceramic composition changes according to the electric field generated in the dielectric material, and positive and negative charges are respectively applied to the surface of the dielectric ceramic composition at the interface with the electrode. Is induced. Since the dielectric ceramic composition according to the present invention exhibits high dielectric properties as described above, a capacitor having a large capacity can be obtained.

図27に本発明による誘電体磁器組成物を用いた積層コンデンサの断面図を示す。本発明による誘電体磁器組成物1を多層シート状に形成し、それぞれの層間に第1の電極2と第2の電極3を交互に設けている。第1の電極と第2の電極はそれぞれ、外部の回路と接続が可能なように、外部電極4、5を備えている。電極間に印加された電圧に応じて電荷が蓄えられるが、高い比誘電率を持つ誘電体磁器組成物であるため、面積の削減、積層数の削減が可能となり、装置の小型化に寄与する。   FIG. 27 is a sectional view of a multilayer capacitor using the dielectric ceramic composition according to the present invention. The dielectric ceramic composition 1 according to the present invention is formed in a multilayer sheet shape, and the first electrode 2 and the second electrode 3 are alternately provided between the respective layers. Each of the first electrode and the second electrode includes external electrodes 4 and 5 so as to be connected to an external circuit. Electric charge is stored according to the voltage applied between the electrodes, but because it is a dielectric ceramic composition with a high relative dielectric constant, the area can be reduced and the number of layers can be reduced, contributing to the downsizing of the device. .

本発明によれば、高い比誘電率を有する誘電体磁器組成物を提供すること、またその誘電体磁器組成物を用いた電子部品を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the dielectric ceramic composition which has a high dielectric constant can be provided, and the electronic component using the dielectric ceramic composition can be provided.

1・・・誘電体磁器組成物
2・・・第1の電極
3・・・第2の電極
4・・・外部電極
5・・・外部電極
DESCRIPTION OF SYMBOLS 1 ... Dielectric ceramic composition 2 ... 1st electrode 3 ... 2nd electrode 4 ... External electrode 5 ... External electrode

Claims (4)

複数の基板粒子が接合した3次元ネットワークと、前記3次元ネットワークの表面を被覆し、前記基板粒子との界面は結晶格子が連続しているヘテロエピタキシャル界面である表面層とを備え、前記へテロエピタキシャル界面がマトリクス状であることを特徴とする誘電体磁器組成物。   A heterogeneous interface including a three-dimensional network in which a plurality of substrate particles are joined and a surface of the three-dimensional network covering the surface of the three-dimensional network, and the interface with the substrate particles being a heteroepitaxial interface having a continuous crystal lattice; A dielectric ceramic composition characterized in that an epitaxial interface is in a matrix form. 複数の基板粒子が接合した3次元ネットワークと、前記3次元ネットワークの表面を被覆し、前記基板粒子との界面が結晶格子が連続しているヘテロエピタキシャル界面である表面層とを備え、前記3次元ネットワークが、その周辺において前記複数の基板粒子の表面のなす角度の平均が鈍角となるような接合を備えたことを特徴とする誘電体磁器組成物。   A three-dimensional network in which a plurality of substrate particles are joined, and a surface layer that covers the surface of the three-dimensional network and that is a heteroepitaxial interface in which a crystal lattice is continuous with the substrate particles. A dielectric ceramic composition, characterized in that the network has a junction such that an average angle formed by the surfaces of the plurality of substrate particles is an obtuse angle in the periphery. 請求項1または2に記載の、前記誘電体磁器組成物を備え、前記誘電材料に印加された電界により前記誘電材料の表面に電荷が誘起されることを特徴とする電子部品。   3. An electronic component comprising the dielectric ceramic composition according to claim 1 or 2, wherein a charge is induced on a surface of the dielectric material by an electric field applied to the dielectric material. 基板粒子である圧粉体を作製する工程と、前記圧粉体を接合するネッキング処理を行う工程と、Nb源を添加する工程と、ソルボサーマル法により表面層をエピタキシャルに形成する工程とを備えたことを特徴とする誘電体磁器組成物の製造方法。

A step of producing a green compact as substrate particles, a step of performing a necking process for joining the green compact, a step of adding an Nb source, and a step of forming a surface layer epitaxially by a solvothermal method. A method for producing a dielectric ceramic composition, comprising:

JP2013037791A 2013-02-27 2013-02-27 Dielectric porcelain composition, electronic component using the same, and manufacturing method thereof Active JP6194559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013037791A JP6194559B2 (en) 2013-02-27 2013-02-27 Dielectric porcelain composition, electronic component using the same, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013037791A JP6194559B2 (en) 2013-02-27 2013-02-27 Dielectric porcelain composition, electronic component using the same, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014162709A true JP2014162709A (en) 2014-09-08
JP6194559B2 JP6194559B2 (en) 2017-09-13

Family

ID=51613647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013037791A Active JP6194559B2 (en) 2013-02-27 2013-02-27 Dielectric porcelain composition, electronic component using the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6194559B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029708A (en) * 2014-07-23 2016-03-03 Tdk株式会社 Thin-film dielectric and thin-film capacitor element
JP2016117599A (en) * 2014-12-18 2016-06-30 株式会社サムスン日本研究所 Method for production of dielectric ceramic particle, and dielectric ceramic particle
JP2018035041A (en) * 2016-08-31 2018-03-08 味の素株式会社 Method for producing dielectric composition
JP2019089705A (en) * 2019-01-28 2019-06-13 サムソン エレクトロ−メカニックス カンパニーリミテッド. Manufacturing method for dielectric ceramic particle and dielectric ceramic
EP3629387A1 (en) 2018-08-29 2020-04-01 Seiko Epson Corporation Piezoelectric device, liquid ejection head, and printer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210811A (en) * 2006-02-07 2007-08-23 Tdk Corp Dielectric particle, method for producing the same, and circuit board
JP2010208923A (en) * 2009-03-12 2010-09-24 Univ Of Yamanashi Artificial superlattice dielectric nanoparticle and method of manufacturing the same
JP2012240860A (en) * 2011-05-16 2012-12-10 Univ Of Yamanashi Substrate particle or agglomerate and methods for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210811A (en) * 2006-02-07 2007-08-23 Tdk Corp Dielectric particle, method for producing the same, and circuit board
JP2010208923A (en) * 2009-03-12 2010-09-24 Univ Of Yamanashi Artificial superlattice dielectric nanoparticle and method of manufacturing the same
JP2012240860A (en) * 2011-05-16 2012-12-10 Univ Of Yamanashi Substrate particle or agglomerate and methods for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
馬込栄輔 ほか: "KNbO3/BaTiO3ナノ複合粒子におけるヘテロエピタキシャル界面の構造 Crystal Structure of", 日本物理学会講演集, vol. 第67巻第2号第4分冊, JPN6016047041, 24 August 2012 (2012-08-24), pages 880, ISSN: 0003456070 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029708A (en) * 2014-07-23 2016-03-03 Tdk株式会社 Thin-film dielectric and thin-film capacitor element
JP2016117599A (en) * 2014-12-18 2016-06-30 株式会社サムスン日本研究所 Method for production of dielectric ceramic particle, and dielectric ceramic particle
JP2018035041A (en) * 2016-08-31 2018-03-08 味の素株式会社 Method for producing dielectric composition
EP3629387A1 (en) 2018-08-29 2020-04-01 Seiko Epson Corporation Piezoelectric device, liquid ejection head, and printer
US11171280B2 (en) 2018-08-29 2021-11-09 Seiko Epson Corporation Piezoelectric device, liquid ejection head, and printer
JP2019089705A (en) * 2019-01-28 2019-06-13 サムソン エレクトロ−メカニックス カンパニーリミテッド. Manufacturing method for dielectric ceramic particle and dielectric ceramic

Also Published As

Publication number Publication date
JP6194559B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
Liu et al. Enhanced energy storage properties of BaTiO3-Bi0. 5Na0. 5TiO3 lead-free ceramics modified by SrY0. 5Nb0. 5O3
Zhang et al. Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2) TiO3-based lead-free incipient piezoceramics
Samanta et al. Band gap, piezoelectricity and temperature dependence of differential permittivity and energy storage density of PZT with different Zr/Ti ratios
Chandrakala et al. Effect of sintering temperature on structural, dielectric, piezoelectric and ferroelectric properties of sol–gel derived BZT-BCT ceramics
Yang et al. Structure and piezoelectric properties of Fe‐doped potassium sodium niobate tantalate lead‐free ceramics
Chang et al. Effects of AETiO3 additions on phase structure, microstructure and electrical properties of (K0. 5Na0. 5) NbO3 ceramics
JP6194559B2 (en) Dielectric porcelain composition, electronic component using the same, and manufacturing method thereof
JP6531394B2 (en) Composite piezoelectric ceramic and piezoelectric element
Gio Enhancement in dielectric, ferroelectric, and piezoelectric properties of BaTiO3-modified Bi0. 5 (Na0. 4K0. 1) TiO3 lead-free ceramics
JP5929640B2 (en) Piezoelectric ceramic and piezoelectric element
Shi et al. Piezoelectric properties of Fe2O3 doped BiYbO3-Pb (Zr, Ti) O3 high curie temperature ceramics
CN103650186A (en) Piezoelectric material
CN103636018A (en) Piezoelectric material
ZHANG et al. Dielectric properties and phase transitions of La2O3-and Sb2O3-doped barium strontium titanate ceramics
Xie et al. Comprehensive investigation of structural and electrical properties of (Bi, Na) CoZrO3-doped KNN ceramics
Lee et al. Review of sintering technologies, structural characteristics, and piezoelectric properties of NKN-based lead-free ceramics
Yang et al. Investigation of CuO‐Doped NKN Ceramics with High Mechanical Quality Factor Synthesized by a B‐Site Oxide Precursor Method
Sharma et al. Impedance and modulus spectroscopy characterization of sodium-bismuth titanate-based lead-free ferroelectric materials
Manotham et al. Improvements of depolarization temperature, piezoelectric and energy harvesting properties of BNT-based ceramics by doping an interstitial dopant
Won Ahn et al. Effect of Ta content on the phase transition and piezoelectric properties of lead-free (K0. 48Na0. 48Li0. 04)(Nb0. 995-xMn0. 005Tax) O3 thin film
Zhao et al. The Effects of Na/K Ratio on the Electrical Properties of Sodium‐Potassium Bismuth Titanate Na 0.5 Bi 4.5 Ti 4 O 15–K 0.5 Bi 4.5 Ti 4 O 15
Hao et al. Enhanced piezoelectric properties of< 001> textured lead‐free (KxNa1− x) 0.946 Li0. 054NbO3 ceramics with large strain
Chang et al. The effects of sintering temperature on the properties of lead-free (Na0. 5K0. 5) NbO3–SrTiO3 ceramics
Pang et al. A lead-reduced ferrolectric solid solution with high curie temperature: BiScO3–Pb (Zn1/3Nb2/3) O3–PbTiO3
Kim et al. Effect of various sintering aids on the piezoelectric and dielectric properties of 0.98 (Na0. 5K0. 5) NbO3–0.02 Li0. 04 (Sb0. 06Ta0. 1) O3 ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170728

R150 Certificate of patent or registration of utility model

Ref document number: 6194559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250