JP2014160043A - Magnetic photonic crystal and magnetooptic imaging device, opto-magnetic recording medium, arithmetic element - Google Patents

Magnetic photonic crystal and magnetooptic imaging device, opto-magnetic recording medium, arithmetic element Download PDF

Info

Publication number
JP2014160043A
JP2014160043A JP2013031586A JP2013031586A JP2014160043A JP 2014160043 A JP2014160043 A JP 2014160043A JP 2013031586 A JP2013031586 A JP 2013031586A JP 2013031586 A JP2013031586 A JP 2013031586A JP 2014160043 A JP2014160043 A JP 2014160043A
Authority
JP
Japan
Prior art keywords
magnetic
cavity
photonic crystal
light
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013031586A
Other languages
Japanese (ja)
Other versions
JP6172652B2 (en
Inventor
Mitsuteru Inoue
光輝 井上
Hiroyuki Takagi
宏幸 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2013031586A priority Critical patent/JP6172652B2/en
Publication of JP2014160043A publication Critical patent/JP2014160043A/en
Application granted granted Critical
Publication of JP6172652B2 publication Critical patent/JP6172652B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multi-cavity magnetic photonic crystal and a magnetooptic imaging device which measure three-dimensional information of a magnetic field.SOLUTION: Attention is focused on the generation of different leakage magnetic field distributions, and a leakage magnetic field distribution generated from a target portion is obtained in positions each having a liftoff from an analyte different in some μm scale. A multi-cavity magnetic photonic crystal to be used comprises: a plurality of magnetic material layers laminated with appropriate intervals in an optical axis direction of irradiation light; and a plurality of dielectric layers laminated with the magnetic material layers interposed therebetween. The appropriate intervals are maintained by the dielectric layers laminated between the adjacent magnetic material layers. The use of matrix approach method allows light localization of design wavelength within the crystal and an increase of Faraday rotation angle, thus detecting a state in a depth direction by only shifting the wavelength.

Description

本発明は、磁化された対象物における磁界の3次元情報を計測するための磁性フォトニック結晶に関するものである。とくに、微小な傷の深さおよび亀裂形状を計測する磁気光学イメージング装置に用いる。 The present invention relates to a magnetophotonic crystal for measuring three-dimensional information of a magnetic field in a magnetized object. In particular, it is used in a magneto-optical imaging apparatus that measures the depth and crack shape of minute scratches.

現在、我々の生活の安全性向上のために多くの非破壊検査が行われている。構造物の疲労破壊は一般に微小な傷(以下、マイクロクラックと呼ぶ。)が起点となるため、マイクロクラックを早期に発見することが重要となっている。マイクロクラックの探傷には、10μm オーダーの高い空間分解能が必要である。 Currently, many non-destructive tests are being conducted to improve the safety of our lives. Since fatigue fracture of a structure generally starts from a minute scratch (hereinafter referred to as a microcrack), it is important to detect the microcrack at an early stage. For microcrack flaw detection, a high spatial resolution of the order of 10 μm is required.

一般に、疲労破壊の検査には、渦電流探傷試験が多く用いられる。渦電流探傷試験の空間分解能は検出コイルの物理的な大きさに依存するため、mm オーダであり、前述したマイクロクラックの探傷には空間分解能が不十分である。さらに、表面積が大きい対象物を試験する場合には、探針を掃引する時間が必要であり、さらに対象物を傷つけないように工夫する必要があった。   In general, an eddy current test is often used for fatigue fracture inspection. Since the spatial resolution of the eddy current test depends on the physical size of the detection coil, it is on the order of mm, and the spatial resolution is insufficient for the microcrack test described above. Furthermore, when testing an object having a large surface area, it takes time to sweep the probe, and it is necessary to devise so as not to damage the object.

また、疲労破壊の検査には、磁化状態で欠陥を検査できる磁気光学(Magneto−optic:MO)効果を用いたイメージング技術(以下、MOイメージングという。)がある(例えば,特許文献1、非特許文献1を参照)。前記MOイメージングは、磁気光学材料を磁化することで生じるファラデー回転を光強度に変換し、欠陥から生じる漏洩磁界により検査する手法である。該漏洩磁界で磁性ガーネット膜を磁化し、磁化に応じた偏光面の回転角を検光子およびCCDカメラで光強度に変換し、欠陥形状に応じた磁気像を取得することで探傷できる。一般的にMO イメージングに用いられる単結晶磁性ガーネットの空間分解能は、その磁区構造から100μm 程度である。 In addition, the fatigue fracture inspection includes an imaging technique (hereinafter referred to as MO imaging) using a magneto-optic (MO) effect that can inspect defects in a magnetized state (for example, Patent Document 1, Non-Patent Document). Reference 1). The MO imaging is a technique in which Faraday rotation generated by magnetizing a magneto-optical material is converted into light intensity and inspected by a leakage magnetic field generated from a defect. Flaw detection can be performed by magnetizing the magnetic garnet film with the leakage magnetic field, converting the rotation angle of the polarization plane according to the magnetization into light intensity with an analyzer and a CCD camera, and acquiring a magnetic image according to the defect shape. Generally, the spatial resolution of a single crystal magnetic garnet used for MO imaging is about 100 μm due to its magnetic domain structure.

特開2012−47645公報JP 2012-47645 A

Z.Zeng,X.Liu,Y.Deng,L.Udpa,L.Xuan,W.C.L.Shih,G.L.Fitzpatrick,IEEE Trans.Magn,42,p.3737 (2006)Z. Zeng, X. Liu, Y. Deng, L. Udpa, L.C. Xuan, W. C. L. Shih, G. L. Fitzpatrick, IEEE Trans. Magn, 42, p. 3737 (2006)

しかしながら、MOイメージングは傷などの欠陥の開口状況を高い空間分解能で評価できる反面、2次元イメージからの評価となるため、欠陥深さなどの構造物内部の評価は難しい。構造物の安全保障を行うためには、その開口状況だけではなく欠陥深さ方向の寸法や、亀裂先端の形状などの欠陥内部情報も必要である。 However, while MO imaging can evaluate the opening state of defects such as scratches with high spatial resolution, it is difficult to evaluate the inside of the structure such as defect depth because it is based on a two-dimensional image. In order to ensure the security of the structure, not only the opening state but also the defect internal information such as the dimension in the defect depth direction and the shape of the crack tip are required.

したがって、本発明の目的は、従来のMOイメージング技術では困難であった、マイクロクラックの3次元の寸法や形状を検出する、マルチキャビティ磁性フォトニック結晶(Magnetophotonic crystal:MPC)および該MPCを用いたMOイメージング装置を提供することである。 Therefore, an object of the present invention is to use a multi-cavity magnetic photonic crystal (MPC) that detects the three-dimensional size and shape of a microcrack, which has been difficult with the conventional MO imaging technique, and the MPC. It is to provide an MO imaging apparatus.

本発明に係る第一のマルチキャビティ磁性フォトニック結晶は、照射される光の光軸方向に適宜間隔を有しつつ積層された複数の磁性体層と、それぞれの前記磁性体層を挟んで積層された複数の誘電体層とを備え、隣接する前記磁性体層の間に積層される誘電体層によって前記適宜間隔が維持されていることを特徴としている。 A first multi-cavity magnetophotonic crystal according to the present invention is formed by laminating a plurality of magnetic layers laminated with appropriate intervals in the optical axis direction of irradiated light, and sandwiching each of the magnetic layers. A plurality of dielectric layers, and the appropriate distance is maintained by a dielectric layer laminated between the adjacent magnetic layers.

また、本発明に係る第二のマルチキャビティ磁性フォトニック結晶は、前記本発明に係る第一のマルチキャビティ磁性フォトニック結晶の前記磁性体層、誘電体層の膜厚が、マトリックス・アプローチ法により算出され、各磁性体層は、前記算出された膜厚により任意の異なる局在波長を有しているものである。 The second multi-cavity magnetic photonic crystal according to the present invention has a thickness of the magnetic layer and dielectric layer of the first multi-cavity magnetic photonic crystal according to the present invention determined by a matrix approach method. The calculated magnetic layers have arbitrarily different localized wavelengths depending on the calculated film thickness.

また、本発明に係る第三のマルチキャビティ磁性フォトニック結晶は、前記本発明に係る第一および第二のマルチキャビティ磁性フォトニック結晶の前記磁性体層が、多結晶磁性ガーネット薄膜からなるものである。 The third multi-cavity magnetic photonic crystal according to the present invention is such that the magnetic layer of the first and second multi-cavity magnetic photonic crystals according to the present invention comprises a polycrystalline magnetic garnet thin film. is there.

さらに、本発明に係る第四のマルチキャビティ磁性フォトニック結晶は、前記本発明に係る第一ないし第三のマルチキャビティ磁性フォトニック結晶の前記誘電体層のうちの少なくとも最外層に積層されるものは、酸化シリコン膜および五酸化タンタル膜が各2層以上積層されてなる誘電体多層膜からなるものである。 Furthermore, a fourth multi-cavity magnetic photonic crystal according to the present invention is laminated on at least the outermost layer of the dielectric layers of the first to third multi-cavity magnetic photonic crystals according to the present invention. Is a dielectric multilayer film in which two or more layers of silicon oxide film and tantalum pentoxide film are laminated.

一方、本発明に係る磁気光学イメージング装置は、前記前記本発明に係る第一ないし第四のマルチキャビティ磁性フォトニック結晶を使用する磁気光学イメージング装置であって、前記マルチキャビティ磁気フォトニック結晶と、該マルチキャビティ磁気フォトニック結晶の積層方向に平行な光軸を有する光を照射する光源と、該光源による光の光軸方向に垂直な磁界を前記検査対象物に与える励磁部と、マルチキャビティ磁性フォトニック結晶により変調された特定波長の光を検出する検出部とを備え、前記検出部により検出された特定波長の光によって前記マルチキャビティ磁気フォトニック結晶近傍の物理的事象による磁化方位の変化を三次元的に表示することを特徴とする。 On the other hand, a magneto-optical imaging apparatus according to the present invention is a magneto-optical imaging apparatus using the first to fourth multi-cavity magnetic photonic crystals according to the present invention, wherein the multi-cavity magneto-photonic crystal, A light source that irradiates light having an optical axis parallel to the stacking direction of the multi-cavity magnetophotonic crystal, an excitation unit that applies a magnetic field perpendicular to the optical axis direction of the light by the light source to the inspection object, and multi-cavity magnetism A detection unit that detects light of a specific wavelength modulated by the photonic crystal, and changes in magnetization orientation due to a physical event in the vicinity of the multi-cavity magnetophotonic crystal by the light of the specific wavelength detected by the detection unit. It is characterized by three-dimensional display.

また、前記本発明に係る磁気光学イメージングは、前記励磁部の印加によって前記物理的事象から生ずる漏洩磁界が有限要素法により予め算出され、該漏洩磁界に応じて前記マルチキャビティ磁性フォトニック結晶の複数の磁性体層の間隔が決定されていることを特徴としている。ここで、前記物理的事象を電流から発生する磁界とする場合には、電流計として機能させることができ、また、県債対象物に存在する欠陥とする場合には、探傷装置として機能させることができる。 Further, in the magneto-optical imaging according to the present invention, a leakage magnetic field generated from the physical event by the application of the excitation unit is calculated in advance by a finite element method, and a plurality of the multi-cavity magnetic photonic crystals are selected according to the leakage magnetic field. The distance between the magnetic layers is determined. Here, when the physical event is a magnetic field generated from an electric current, it can function as an ammeter, and when it is a defect present in a prefectural bond object, it can function as a flaw detector. Can do.

さらに、本発明に係る光磁気記録媒体は、前記本発明に係る第一ないし第四のいずれかのマルチキャビティ磁性フォトニック結晶を使用する光磁気記録媒体であって、前記複数の磁性体層を磁気的記録層として使用し、複数層に分かれて記録される磁化方向によって多階調に再生される変調光により多値化してなることを特徴とする。 Furthermore, the magneto-optical recording medium according to the present invention is a magneto-optical recording medium using any one of the first to fourth multi-cavity magnetic photonic crystals according to the present invention, wherein the plurality of magnetic layers are formed. It is used as a magnetic recording layer, and is characterized by being multi-valued by modulated light reproduced in multiple gradations according to the magnetization direction recorded in a plurality of layers.

最後に、本発明に係る演算素子は、前記本発に係る第一ないし第四のいずれかのマルチキャビティ磁性フォトニック結晶を使用する演算素子であって、前記複数の磁性体層に二次元的に磁気ピクセルを配列し、各磁性体層の磁気ピクセルを透過する光によって多階調の演算を処理させることを特徴とする。 Finally, an arithmetic element according to the present invention is an arithmetic element using any one of the first to fourth multi-cavity magnetic photonic crystals according to the present invention, and is two-dimensionally arranged on the plurality of magnetic layers. The magnetic pixels are arranged in a plurality of layers, and multi-gradation operations are processed by the light transmitted through the magnetic pixels of each magnetic layer.

前記特徴を備えた、複数の多結晶磁性ガーネット薄膜からなる欠陥層(または磁性層)を有したマルチキャビティ磁性フォトニック結晶を開発した。前記欠陥層は、検査対象となる欠陥からそれぞれ異なるリフトオフ位置に設置されており、再生光の波長によって光の局在を選択できるように光学的に設計されている。前記各欠陥層は3次元の磁界分布に応じて磁化方位を変調することができる。 A multi-cavity magnetic photonic crystal having a defect layer (or magnetic layer) composed of a plurality of polycrystalline magnetic garnet thin films having the above-described characteristics has been developed. The defect layers are installed at different lift-off positions from the defects to be inspected, and are optically designed so that the localization of light can be selected according to the wavelength of the reproduction light. Each of the defect layers can modulate the magnetization direction according to a three-dimensional magnetic field distribution.

さらに、再生光の波長を変える事により前記各欠陥層の磁化方位をコントラストの高いMOイメージ像として取得することができる。よって、得られたMOイメージ像から3次元磁界分布を導出することができ、欠陥深さに応じて漏洩磁界の広がりが異なる事から、本発明に係るマルチキャビティMPCを用いて欠陥深さ等の内部情報を検出することができる。
Furthermore, by changing the wavelength of the reproduction light, the magnetization direction of each defect layer can be obtained as a high-contrast MO image. Therefore, since the three-dimensional magnetic field distribution can be derived from the obtained MO image image and the spread of the leakage magnetic field varies depending on the defect depth, the defect depth, etc. can be determined using the multi-cavity MPC according to the present invention. Internal information can be detected.

本発明の実施例1に係るシミュレーションモデルの説明図Explanatory drawing of the simulation model which concerns on Example 1 of this invention 本発明の実施例1に係る漏洩磁界の垂直成分の分布図、(a)深さ10μmの欠陥から生じる磁界の垂直成分、(b)深さ20μmの欠陥から生じる磁界の垂直成分FIG. 3 is a distribution diagram of a vertical component of a leakage magnetic field according to Embodiment 1 of the present invention, (a) a vertical component of a magnetic field generated from a defect having a depth of 10 μm, and (b) a vertical component of a magnetic field generated from a defect having a depth of 20 μm 本発明の実施例1に係るマルチキャビティ磁性フォトニック結晶の構造図Structure diagram of multi-cavity magnetic photonic crystal according to Example 1 of the present invention 本発明の実施例1に係るマルチキャビティ磁性フォトニック結晶の反射率およびファラデー回転角を示したグラフThe graph which showed the reflectance and Faraday rotation angle of the multicavity magnetic photonic crystal which concern on Example 1 of this invention 本発明の実施例1に係るマルチキャビティ磁性フォトニック結晶による漏洩磁界の空間的分布図、(a)リフトオフ3.7μm、欠陥深さ10μmの時の漏洩磁界、(b)リフトオフ3.7μm、欠陥深さ20μmの時の漏洩磁界、(c)リフトオフ9.5μm、欠陥深さ10μmの時の漏洩磁界、(d)リフトオフ9.5μm、欠陥深さ20μmの時の漏洩磁界Spatial distribution diagram of leakage magnetic field by multi-cavity magnetic photonic crystal according to Example 1 of the present invention, (a) leakage magnetic field when lift-off is 3.7 μm, defect depth is 10 μm, (b) lift-off is 3.7 μm, defect Leakage magnetic field at a depth of 20 μm, (c) Leakage magnetic field at a lift-off of 9.5 μm, defect depth of 10 μm, (d) Leakage magnetic field at a lift-off of 9.5 μm, defect depth of 20 μm 本発明の実施例2に係る多層化磁性フォトニック結晶による2次元光変調の説明図Explanatory drawing of two-dimensional light modulation by multilayered magnetic photonic crystal according to Example 2 of the present invention 本発明の実施例3に係る光磁気記録の原理図Principle diagram of magneto-optical recording according to Embodiment 3 of the present invention 本発明の実施例3に係る再生信号の多値化のためのマルチキャビティ磁性フォトニック結晶の構造図Structure diagram of multi-cavity magnetic photonic crystal for multilevel reproduction of reproduction signal according to Embodiment 3 of the present invention 本発明の実施例3に係る波長選択性による記憶容量の増大のためのマルチキャビティ磁性フォトニック結晶の構造図FIG. 6 is a structural diagram of a multi-cavity magnetic photonic crystal for increasing storage capacity by wavelength selectivity according to a third embodiment of the present invention.

まず、10μmオーダーの3次元MOイメージングのための磁性フォトニック結晶について説明する。該磁性フォトニック結晶は、複数の磁気光学層からなり、該磁気光学層は、設計波長を持つ光を個々に局在させることができるキャビティ構造を有している。該磁気光学層および多層誘電体膜の厚みを設計することで、読み出し光のファラデー回転角および反射率を制御することができる。 First, a magnetic photonic crystal for three-dimensional MO imaging on the order of 10 μm will be described. The magneto-photonic crystal is composed of a plurality of magneto-optic layers, and the magneto-optic layer has a cavity structure that can individually localize light having a design wavelength. By designing the thickness of the magneto-optical layer and the multilayer dielectric film, the Faraday rotation angle and reflectance of the readout light can be controlled.

<シミュレーション方法およびシミュレーションモデル>
シミュレーションは有限要素解析プログラム(COMSOL Ver.4.3)を用いて行った。被検体には純鉄を想定し、その透磁率を4000とした。また、被検体を磁化するために、同じ純鉄の磁化器を想定し、磁界を印加した。磁化器には132Tの磁束密度を想定し、空気中に発生する磁界が450Oeとなるように与えた。この値は実測によるMOイメージの取得に用いた磁化器に、最大である4Aの電流を流した場合に生じる磁界に相当する。欠陥は、開口幅が1μm の三角形状の亀裂を被検体中央に配置し、その深さを変数とした。対象物境界面より上部および欠陥内部は空気として透磁率1を与えた。シミュレーションに用いたモデルとして、深さが10μmおよび20μmの場合を図1に示す。
<Simulation method and simulation model>
The simulation was performed using a finite element analysis program (COMSOL Ver. 4.3). The subject was assumed to be pure iron, and its permeability was set to 4000. In order to magnetize the subject, the same pure iron magnetizer was assumed and a magnetic field was applied. The magnetizer was assumed to have a magnetic flux density of 132 T and a magnetic field generated in the air was 450 Oe. This value corresponds to a magnetic field generated when a maximum current of 4 A is passed through the magnetizer used for acquiring the MO image by actual measurement. For the defect, a triangular crack with an opening width of 1 μm was placed in the center of the subject, and the depth was used as a variable. The upper part of the object boundary and the inside of the defect were given a permeability of 1 as air. As a model used for the simulation, FIG. 1 shows the case where the depth is 10 μm and 20 μm.

<シミュレーション結果および深さ評価方法に関する検討>
図2(a)に深さ10μmの欠陥から生じる漏洩磁界の垂直成分を、また図2(b)に深さ20μmの欠陥から生じる漏洩磁界の垂直成分を示す。ファラデー効果は光の進行方向に平行方向な磁界に比例して大きくなる。漏洩磁界の垂直成分を示したのは、漏洩磁界の垂直成分が磁気光学材料のファラデー回転に起因すると考えられるためである。
<Study on simulation results and depth evaluation method>
FIG. 2A shows a vertical component of a leakage magnetic field generated from a defect having a depth of 10 μm, and FIG. 2B shows a vertical component of a leakage magnetic field generated from a defect having a depth of 20 μm. The Faraday effect increases in proportion to a magnetic field parallel to the traveling direction of light. The reason why the vertical component of the leakage magnetic field is shown is that the vertical component of the leakage magnetic field is considered to be caused by the Faraday rotation of the magneto-optical material.

シミュレーション結果から、欠陥の周囲で漏洩磁界が生じ、また対象物表面から距離が離れるに従って磁界が広がり、空間的に分布していることがわかる。一方、図2(a)と図2(b)を比較すると欠陥深さに応じて漏洩磁界の広がりに変化があることが示された。従って、対象物からの距離が異なる複数の位置で2次元的な漏洩磁界分布を取得することで、その分布の違いから欠陥深さが予測できる。そこで、対象物と磁気光学材料の間の距離であるリフトオフを変化させ、複数の位置でMOイメージを取得することで、そのイメージから、逆に欠陥深さを評価できるのではないかと考えた。しかしながら、そのためには、数μmから数十μmのオーダでリフトオフを制御する必要があることが図2からもわかる。ピエゾステージなどを用いればμmのオーダの制御も可能であるが、非破壊検査に応用するためには、より高速かつ容易な制御が望まれる。   From the simulation results, it can be seen that a leakage magnetic field is generated around the defect, and the magnetic field spreads and is spatially distributed as the distance from the object surface increases. On the other hand, comparing FIG. 2 (a) and FIG. 2 (b), it has been shown that the spread of the leakage magnetic field varies depending on the defect depth. Therefore, by acquiring a two-dimensional leakage magnetic field distribution at a plurality of positions at different distances from the object, the defect depth can be predicted from the difference in the distribution. Therefore, it was thought that the defect depth could be evaluated from the image by changing the lift-off, which is the distance between the object and the magneto-optical material, and acquiring MO images at a plurality of positions. However, it can be seen from FIG. 2 that for that purpose, it is necessary to control the lift-off on the order of several μm to several tens of μm. If a piezo stage or the like is used, it is possible to control the order of μm. However, in order to apply to nondestructive inspection, faster and easier control is desired.

<マルチキャビティ磁性フォトニック結晶の設計>
有限要素法を用いて欠陥周りの漏洩磁界分布を計算した結果、被検体表面から距離が離れると磁界分布が広がり、磁性膜の膜厚が薄い方が望ましいことが示された。また、前記漏洩磁界分布は、欠陥深さに応じて変化することから、漏洩磁界の空間的分布を複数取得することで欠陥深さが評価できると考えられる。そこで,数μm程度異なる高さの磁界をイメージングするため、MPCを応用し、高さ方向に数μmの周期で、光学膜厚の異なる磁性層を5層配置したMPCを設計する。以下、磁気光学層を複数有するMPCを、マルチキャビティMPCと記述する。
<Design of multi-cavity magnetic photonic crystal>
As a result of calculating the leakage magnetic field distribution around the defect by using the finite element method, it was shown that the magnetic field distribution is widened as the distance from the object surface increases, and that the magnetic film is preferably thin. Further, since the leakage magnetic field distribution changes according to the defect depth, it is considered that the defect depth can be evaluated by obtaining a plurality of spatial distributions of the leakage magnetic field. Therefore, in order to image magnetic fields with different heights of about several μm, MPC is applied to design an MPC in which five magnetic layers having different optical film thicknesses are arranged at a period of several μm in the height direction. Hereinafter, an MPC having a plurality of magneto-optical layers is referred to as a multi-cavity MPC.

さらに、設計するマルチキャビティMPCの光学特性を、マトリックス・アプローチ法を用いて計算する。磁性ガーネットは光波長500nm程度の可視光域では、比較的大きな吸収係数を有している。従って、マルチキャビティMPCを可視光域で設計した場合、複数の磁性ガーネット層によって光吸収が大きくなり、光利用効率が低下する。そこで、磁性ガーネットの吸収係数が小さい波長1000nmより長波長側でマルチキャビティMPCを設計した。該マルチキャビティMPCの磁性ガーネット層の光学膜厚dは、d=λ/(2n)で与えられる。このとき、λは設計する光波長で、nは屈折率である。上式より磁性ガーネット層の光学膜厚は、設計する光波長に比例して厚くなることに注意する。   In addition, the optical properties of the multi-cavity MPC to be designed are calculated using a matrix approach. Magnetic garnet has a relatively large absorption coefficient in the visible light region with a light wavelength of about 500 nm. Therefore, when the multi-cavity MPC is designed in the visible light region, light absorption is increased by the plurality of magnetic garnet layers, and the light utilization efficiency is lowered. Therefore, a multicavity MPC was designed on the longer wavelength side than the wavelength of 1000 nm where the absorption coefficient of the magnetic garnet is small. The optical film thickness d of the magnetic garnet layer of the multi-cavity MPC is given by d = λ / (2n). In this case, λ is a light wavelength to be designed, and n is a refractive index. Note that the optical film thickness of the magnetic garnet layer increases from the above equation in proportion to the designed light wavelength.

設計したマルチキャビティMPCの構造および該マルチキャビティMPCを対象表面に配置した場合のリフトオフの値を図3に示す。基板はSGGGとし、基板側の誘電体多層膜を(SiO/Ta)4ペア、反射側の誘電体多層膜を(SiO/Ta)8ペアとした。磁性ガーネットはBiDyAl:YIG(以下、Bi:YIG)とし、設計波長1350nmから1550nmまで50nmずつ光学膜厚をずらして5層挿入した。Bi:YIG間の誘電体多層膜は(SiO/Ta)2.5ペアとした。設計したマルチキャビティMPCの設計波長および物理膜厚を表1に示す。 FIG. 3 shows the structure of the designed multi-cavity MPC and the lift-off value when the multi-cavity MPC is arranged on the target surface. The substrate was SGGG, the substrate-side dielectric multilayer film was (SiO 2 / Ta 2 O 5 ) 4 pairs, and the reflection-side dielectric multilayer film was (SiO 2 / Ta 2 O 5 ) 8 pairs. The magnetic garnet was BiDyAl: YIG (hereinafter referred to as Bi: YIG), and five layers were inserted while shifting the optical film thickness by 50 nm from the design wavelength of 1350 nm to 1550 nm. The dielectric multilayer film between Bi: YIG was (SiO 2 / Ta 2 O 5 ) 2.5 pairs. Table 1 shows the design wavelength and physical film thickness of the designed multicavity MPC.

<マルチキャビティ磁性フォトニック結晶の特性>
マトリックス・アプローチ法を用いて計算したマルチキャビティMPCの反射率およびファラデー回転角を図4に示す。図4は、横軸が波長、左縦軸は反射率、右縦軸はファラデー回転角である。同図より設計波長の1350nmから1550nm付近において、各Bi:YIG層の設計波長に対応したMPCの光局在ピークおよびファラデー回転角の増大が得られていることがわかる。これは、MPCに入射する光の波長をシフトするだけで数μmのオーダで、異なる高さの磁界分布のイメージが得られることを意味している。
<Characteristics of multi-cavity magnetic photonic crystal>
FIG. 4 shows the reflectivity and Faraday rotation angle of the multicavity MPC calculated using the matrix approach method. In FIG. 4, the horizontal axis represents wavelength, the left vertical axis represents reflectance, and the right vertical axis represents Faraday rotation angle. From the figure, it can be seen that in the vicinity of the design wavelength of 1350 nm to 1550 nm, an increase in the optical localization peak of the MPC and the Faraday rotation angle corresponding to the design wavelength of each Bi: YIG layer is obtained. This means that by shifting the wavelength of light incident on the MPC, images of magnetic field distributions having different heights can be obtained on the order of several μm.

例えば、波長1350nmでリフトオフが3.7μmの漏洩磁界の垂直成分を上面から見た分布を図5(a)、(b)に、1550nmでリフトオフが9.5μmの漏洩磁界の垂直成分を図5(c)、(d)に示す。このように欠陥深さが異なると、それに応じて漏洩磁界の分布も異なることから欠陥深さが評価できる。 For example, the distribution of the vertical component of the leakage magnetic field with a wavelength of 1350 nm and a lift-off of 3.7 μm as viewed from above is shown in FIGS. (C) and (d). Thus, if the defect depth is different, the distribution of the leakage magnetic field is also different accordingly, so that the defect depth can be evaluated.

従って、該マルチキャビティMPCは波長をシフトすることで、被検体からのリフトオフが異なる位置での漏洩磁界に応じたMOイメージが取得でき、その漏洩磁界の空間的分布の違いから欠陥深さ等の評価ができる。 Therefore, the multi-cavity MPC can acquire the MO image corresponding to the leakage magnetic field at the position where the lift-off from the subject is different by shifting the wavelength, and the defect depth and the like can be obtained from the difference in the spatial distribution of the leakage magnetic field. Can be evaluated.

一方、前記マルチキャビティMPCを用いて漏洩磁界を検出できるということから、該マルチキャビティMPCにより電流周辺に発生する磁界を検出することができるといえる。一般に、電流の大きさと位置は、磁界の大きさと分布により検出できる。本発明によれば、MPCを多層化することにより、電流が流れる位置を正確にとらえる事ができるようになり電流値の精度を上げる事ができる。また、多結晶磁性ガーネット膜の磁気光学効果は温度に強い依存性があるため、各欠陥層の組成を変える事で物性を変化させ、前記各欠陥層、すなわち磁性体の物性を、温度と磁気光学効果の関係を示すようにできる。前記各欠陥層から温度変化および磁界に応じた磁気光学効果を検出し、温度補正を行うことで精度の高い電流計が実現できる。
On the other hand, since the leakage magnetic field can be detected using the multicavity MPC, it can be said that the magnetic field generated around the current can be detected by the multicavity MPC. In general, the magnitude and position of the current can be detected by the magnitude and distribution of the magnetic field. According to the present invention, by making the MPC multi-layered, it is possible to accurately grasp the position where the current flows, and to increase the accuracy of the current value. In addition, since the magneto-optical effect of the polycrystalline magnetic garnet film has a strong dependence on temperature, the physical properties are changed by changing the composition of each defect layer, and the physical properties of each defect layer, that is, the magnetic material, are changed between temperature and The relationship between optical effects can be shown. A highly accurate ammeter can be realized by detecting a magneto-optical effect corresponding to a temperature change and a magnetic field from each defective layer and performing temperature correction.

<光パターンによる論理演算>
ここでは、マルチキャビティMPCを用いた並列光演算への応用について説明する。しきい値処理などを行う事で、光でデジタル演算を行うことができる。
<Logical operations using light patterns>
Here, application to parallel optical computation using a multi-cavity MPC will be described. By performing threshold processing or the like, digital calculation can be performed with light.

2次元的に配列されたピクセル群を用いて、光のON/OFFを切り替え、デジタル的な処理を行うことで、2次元イメージを用いた光情報処理を行うことができる。 Optical information processing using a two-dimensional image can be performed by switching light ON / OFF using a two-dimensionally arranged pixel group and performing digital processing.

<多層化MPCの光コンピューティングの応用>
光コンピューティング用の空間光変調器として、光アドレス方式の多層化MPCが期待される。図6に多層化MPCの構造図を示す。欠陥層となる透明磁性材料に光を用いて、熱磁気書き込みを行い、ピクセルを2次元的に配列する。形成された磁気ピクセル群に光が入射すると、磁気光学効果によってピクセル駆動部のみ、偏光面回転が起こる。MPCを透過した光を偏光子を通して検出することで、2次元的な情報を取得できる。
<Application of optical computing for multi-layered MPC>
As a spatial light modulator for optical computing, an optical addressed multi-layer MPC is expected. FIG. 6 shows a structure diagram of the multilayer MPC. Thermomagnetic writing is performed using light on the transparent magnetic material to be the defect layer, and the pixels are two-dimensionally arranged. When light is incident on the formed magnetic pixel group, only the pixel driving unit rotates the plane of polarization due to the magneto-optic effect. Two-dimensional information can be obtained by detecting light transmitted through the MPC through a polarizer.

また、磁性材料を複数層に表示し、同様の検出を行うと多諧調の情報処理も可能となる。多層化MPC構造を利用するメリットとしては、
・駆動が磁化反転のため非常に高速であること
・書き込みおよび信号検出を光を入射するだけでできること
・空間光変調器を複数配置しなくても良いため、光学系の縮小化および簡易化が可能となること
・機械構造を持たず、光検出時にノイズとなりうる回折光が生じないこと
等が挙げられる。
In addition, when the magnetic material is displayed in a plurality of layers and the same detection is performed, multi-tone information processing can be performed. As a merit of using the multilayer MPC structure,
-Drive is very fast due to magnetization reversal-Writing and signal detection can be performed only by incident light-Multiple spatial light modulators do not need to be arranged, so the optical system can be reduced and simplified For example, there is no mechanical structure, and no diffracted light that can be a noise when detecting light is generated.

<光磁気記録ディスク>
光磁気記録ディスクは、集光した光による熱磁気書き込みで高密度磁気記録を行う方法である。
光磁気記録材料は高密度に磁気記録ビットを形成するために,垂直磁化を有する磁性薄膜を用いている。最初に磁化の方位を一方方向に揃える(図7(a))。パルスレーザーを用いて磁性薄膜をキュリー温度まで加熱させ,磁化を局所的に消失させる(図7(b))。磁性膜の反転磁界および外部磁界印加により磁化反転させる(図7(c))。光照射が終わり温度が十分に低減し記録が終了する(図7(d))。実用化されている光磁気ディスクとしてはMD(Mini Disc)がある。
<Magnetic recording disk>
The magneto-optical recording disk is a method for performing high-density magnetic recording by thermomagnetic writing using condensed light.
The magneto-optical recording material uses a magnetic thin film having perpendicular magnetization in order to form magnetic recording bits at high density. First, the magnetization direction is aligned in one direction (FIG. 7A). The magnetic thin film is heated to the Curie temperature using a pulse laser, and the magnetization is locally lost (FIG. 7B). Magnetization is reversed by applying a reversal magnetic field and an external magnetic field of the magnetic film (FIG. 7C). Light irradiation ends and the temperature is sufficiently reduced to complete recording (FIG. 7D). As a magneto-optical disk in practical use, there is MD (Mini Disc).

再生には書き込み時よりも低出力のレーザ光を記録膜に照射する。レーザ光は直線偏光であり、記録膜で反射もしくは透過する際に磁気光学効果で、記録された磁化方位に応じて偏光面が回転する。この光を検光子を通して強度情報として検出する。 For reproduction, the recording film is irradiated with laser light having a lower output than that at the time of writing. The laser beam is linearly polarized light, and the plane of polarization rotates according to the recorded magnetization orientation by the magneto-optical effect when reflected or transmitted by the recording film. This light is detected as intensity information through an analyzer.

<多層構造MPCを用いた光磁気ディスク>
MPC構造中の磁性体を記録層として使用することで光磁気ディスクとして使用することができる。多層構造化することで記録再生信号の多値化や、波長選択性を利用した記録容量の増大を行うことができる。
<Magnetic optical disk using multi-layer MPC>
By using a magnetic material in the MPC structure as a recording layer, it can be used as a magneto-optical disk. With the multilayer structure, it is possible to increase the recording capacity by utilizing multi-valued recording / reproducing signals and utilizing wavelength selectivity.

<再生信号の多値化>
図8に多層構造MPCを用いた再生信号の多値化の概略図を示す。MPC中の各層ごとに熱磁気記録により信号を書き込む。再生は通常の磁気ディスクと同様に直線偏光を入射する。その際、フォトニックバンドギャップの波長外の光を用いる。磁気光学効果による偏光面回転は、磁化の方向によって決定される。ここで、左方向の磁化は−1、右方向の磁化は+1とすると、図8に示す3層構造では4諧調の回転角の再生が可能となる。
<Multi-level playback signal>
FIG. 8 shows a schematic diagram of multi-level reproduction of a reproduction signal using a multi-layer MPC. A signal is written by thermomagnetic recording for each layer in the MPC. For reproduction, linearly polarized light is incident in the same manner as a normal magnetic disk. At that time, light outside the wavelength of the photonic band gap is used. Polarization plane rotation due to the magneto-optic effect is determined by the direction of magnetization. Here, assuming that the magnetization in the left direction is −1 and the magnetization in the right direction is +1, the three-layer structure shown in FIG. 8 can reproduce a rotation angle of 4 gradations.

<記憶容量の増大>
多層構造中の磁性体を、図9に示すようにそれぞれ別の光波長で局在するように設計する。MPC構造による磁気光学効果の増大は磁性体中で光が局在するためである。図9に示す構造では赤、緑、青の3波長に局在する構造とした。再生に使用する光を選択することで、特定の記録層に記録された情報のみおよび合成された情報が再生される。
<Increase in storage capacity>
The magnetic materials in the multilayer structure are designed to be localized at different light wavelengths as shown in FIG. The increase in magneto-optical effect due to the MPC structure is because light is localized in the magnetic material. In the structure shown in FIG. 9, the structure is localized at three wavelengths of red, green, and blue. By selecting the light to be used for reproduction, only the information recorded on the specific recording layer and the synthesized information are reproduced.

Claims (9)

照射される光の光軸方向に適宜間隔を有しつつ積層された複数の磁性体層と、それぞれの前記磁性体層を挟んで積層された複数の誘電体層とを備え、隣接する前記磁性体層の間に積層される誘電体層によって前記適宜間隔が維持されていることを特徴とするマルチキャビティ磁性フォトニック結晶。 A plurality of magnetic layers stacked with appropriate intervals in the direction of the optical axis of the irradiated light, and a plurality of dielectric layers stacked with the magnetic layers sandwiched therebetween, the adjacent magnetic layers The multi-cavity magnetic photonic crystal characterized in that the appropriate distance is maintained by a dielectric layer laminated between the body layers. 前記磁性体層および前記誘電体層の膜厚は、マトリックス・アプローチ法により算出され、各磁性体層は、前記算出された膜厚により任意の異なる局在波長を有している請求項1に記載のマルチキャビティ磁性フォトニック結晶。 The film thicknesses of the magnetic material layer and the dielectric material layer are calculated by a matrix approach method, and each magnetic material layer has arbitrarily different localized wavelengths depending on the calculated film thickness. The described multi-cavity magnetic photonic crystal. 前記磁性体層は、多結晶磁性ガーネット薄膜である請求項1または2に記載のマルチキャビティ磁性フォトニック結晶。 The multi-cavity magnetic photonic crystal according to claim 1, wherein the magnetic layer is a polycrystalline magnetic garnet thin film. 前記誘電体層のうちの少なくとも最外層に積層されるものは、酸化シリコン膜および五酸化タンタル膜が各2層以上積層されてなる誘電体多層膜である請求項1ないし3のいずれかに記載のマルチキャビティ磁性フォトニック結晶。 4. The dielectric multilayer film in which at least the outermost layer of the dielectric layers is a dielectric multilayer film in which two or more silicon oxide films and tantalum pentoxide films are laminated. Multi-cavity magnetic photonic crystal. 請求項1ないし4のいずれかに記載のマルチキャビティ磁性フォトニック結晶を使用する磁気光学イメージング装置であって、前記マルチキャビティ磁気フォトニック結晶と、該マルチキャビティ磁気フォトニック結晶の積層方向に平行な光軸を有する光を照射する光源と、該光源による光の光軸方向に垂直な磁界を前記検査対象物に与える励磁部と、マルチキャビティ磁性フォトニック結晶により変調された特定波長の光を検出する検出部とを備え、前記検出部により検出された特定波長の光によって前記マルチキャビティ磁気フォトニック結晶近傍の物理的事象による磁化方位の変化を三次元的に表示することを特徴とする磁気光学イメージング装置。 5. A magneto-optical imaging apparatus using the multi-cavity magneto-photonic crystal according to claim 1, wherein the multi-cavity magneto-photonic crystal is parallel to a stacking direction of the multi-cavity magneto-photonic crystal. A light source that emits light having an optical axis, an excitation unit that applies a magnetic field perpendicular to the optical axis direction of the light from the light source to the inspection object, and light of a specific wavelength modulated by a multicavity magnetic photonic crystal is detected. And a three-dimensional display of a change in magnetization orientation due to a physical event in the vicinity of the multi-cavity magnetophotonic crystal by light of a specific wavelength detected by the detection unit. Imaging device. 前記励磁部の印加によって前記物理的事象から生ずる漏洩磁界が有限要素法により予め算出され、該漏洩磁界に応じて前記マルチキャビティ磁性フォトニック結晶の複数の磁性体層の間隔が決定されている請求項5に記載の磁気光学イメージング装置。 A leakage magnetic field generated from the physical event by application of the excitation unit is calculated in advance by a finite element method, and intervals between the plurality of magnetic layers of the multi-cavity magnetic photonic crystal are determined according to the leakage magnetic field. Item 6. The magneto-optical imaging apparatus according to Item 5. 請求項5または6に記載の磁気光学イメージング装置を使用する探傷装置であって、前記マルチキャビティ磁性フォトニック結晶は、検査対象物の表面に最外層の誘電体層を対向して配置され、前記光源は、積層検査対象物に対して光を照射されるものであり、前記物理的事象は、検査対象物に存在する欠陥であり、前記検出部により検出された特定波長の光によって検査対象物に存在する欠陥の形状および深さを三次元的に表示することを特徴とする探傷装置。 The flaw detection apparatus using the magneto-optical imaging apparatus according to claim 5 or 6, wherein the multi-cavity magnetic photonic crystal is disposed with an outermost dielectric layer facing a surface of an inspection object, The light source is irradiated with light on the stacked inspection object, and the physical event is a defect existing in the inspection object, and the inspection object is detected by light of a specific wavelength detected by the detection unit. A flaw detection apparatus characterized by three-dimensionally displaying the shape and depth of a defect existing in a wafer. 請求項1ないし4のいずれかに記載のマルチキャビティ磁性フォトニック結晶を使用する光磁気記録媒体であって、前記複数の磁性体層を磁気的記録層として使用し、複数層に分かれて記録される磁化方向によって多階調に再生される変調光により多値化してなることを特徴とする光磁気記録媒体。 5. A magneto-optical recording medium using the multi-cavity magneto-photonic crystal according to claim 1, wherein the plurality of magnetic layers are used as magnetic recording layers and are recorded in a plurality of layers. A magneto-optical recording medium which is multi-valued by modulated light reproduced in multiple gradations depending on the magnetization direction. 請求項1ないし4のいずれかに記載のマルチキャビティ磁性フォトニック結晶を使用する演算素子であって、前記複数の磁性体層に二次元的に磁気ピクセルを配列し、各磁性体層の磁気ピクセルを透過する光によって多階調の演算を処理させることを特徴とする演算素子。 5. An arithmetic element using the multi-cavity magnetophotonic crystal according to claim 1, wherein magnetic pixels are two-dimensionally arranged in the plurality of magnetic layers, and each of the magnetic layers has a magnetic pixel. An arithmetic element characterized in that multi-gradation arithmetic is processed by light that passes through.
JP2013031586A 2013-02-20 2013-02-20 Magnetophotonic crystal, magneto-optical imaging apparatus, magneto-optical recording medium, arithmetic element Expired - Fee Related JP6172652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013031586A JP6172652B2 (en) 2013-02-20 2013-02-20 Magnetophotonic crystal, magneto-optical imaging apparatus, magneto-optical recording medium, arithmetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013031586A JP6172652B2 (en) 2013-02-20 2013-02-20 Magnetophotonic crystal, magneto-optical imaging apparatus, magneto-optical recording medium, arithmetic element

Publications (2)

Publication Number Publication Date
JP2014160043A true JP2014160043A (en) 2014-09-04
JP6172652B2 JP6172652B2 (en) 2017-08-02

Family

ID=51611818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013031586A Expired - Fee Related JP6172652B2 (en) 2013-02-20 2013-02-20 Magnetophotonic crystal, magneto-optical imaging apparatus, magneto-optical recording medium, arithmetic element

Country Status (1)

Country Link
JP (1) JP6172652B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107422401A (en) * 2017-09-19 2017-12-01 北京航空航天大学 A kind of broad-band gap plasma photon crystal such as not

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214539A (en) * 1986-03-14 1987-09-21 Fujitsu Ltd Method and device for photomagnetic recording
JPH05264510A (en) * 1992-03-17 1993-10-12 Nippon Steel Corp Distribution measuring apparatus of magneto-optical field
JP2001283486A (en) * 2000-03-30 2001-10-12 Nihon University Reproducing device and method
JP2002090525A (en) * 2000-09-11 2002-03-27 Minebea Co Ltd Magneto-optical body and optical isolator using the magneto-optical body
JP2002122835A (en) * 2000-10-12 2002-04-26 Minebea Co Ltd Faraday rotator
JP2009530656A (en) * 2006-03-17 2009-08-27 エスティー シナジー リミテッド Magneto-optic photonic crystal multilayer structure with improved Faraday rotation in visible light
WO2012176807A1 (en) * 2011-06-20 2012-12-27 国立大学法人豊橋技術科学大学 Method for controlling optical modulation system, optical modulation system and optical body used therein

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214539A (en) * 1986-03-14 1987-09-21 Fujitsu Ltd Method and device for photomagnetic recording
JPH05264510A (en) * 1992-03-17 1993-10-12 Nippon Steel Corp Distribution measuring apparatus of magneto-optical field
JP2001283486A (en) * 2000-03-30 2001-10-12 Nihon University Reproducing device and method
JP2002090525A (en) * 2000-09-11 2002-03-27 Minebea Co Ltd Magneto-optical body and optical isolator using the magneto-optical body
JP2002122835A (en) * 2000-10-12 2002-04-26 Minebea Co Ltd Faraday rotator
JP2009530656A (en) * 2006-03-17 2009-08-27 エスティー シナジー リミテッド Magneto-optic photonic crystal multilayer structure with improved Faraday rotation in visible light
WO2012176807A1 (en) * 2011-06-20 2012-12-27 国立大学法人豊橋技術科学大学 Method for controlling optical modulation system, optical modulation system and optical body used therein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107422401A (en) * 2017-09-19 2017-12-01 北京航空航天大学 A kind of broad-band gap plasma photon crystal such as not

Also Published As

Publication number Publication date
JP6172652B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP5701392B2 (en) System and method for imaging sample characteristics and identifying areas of damage within a sample
JP4878063B2 (en) Apparatus and method for acquiring a field by measurement
Pham et al. Highly sensitive planar Hall magnetoresistive sensor for magnetic flux leakage pipeline inspection
US20120092972A1 (en) Magneto-optic write-head characterization using the recording medium as a transducer layer
Li et al. A new micro magnetic bridge probe in magnetic flux leakage for detecting micro-cracks
US20100170017A1 (en) Magneto-Optical Detection of a Field Produced by a Sub-Resolution Magnetic Structure
Tehranchi et al. The inspection of magnetic flux leakage from metal surface cracks by magneto-optical sensors
US20120195176A1 (en) Method And Apparatus For Evaluating A Magnetic Recording Medium
Arakelyan et al. Direct current imaging using a magneto-optical sensor
JP6172652B2 (en) Magnetophotonic crystal, magneto-optical imaging apparatus, magneto-optical recording medium, arithmetic element
US10134446B1 (en) Heat-assisted rotating disk magnetometer for ultra-high anisotropy magnetic measurements
Uehara et al. Advances in magneto‐optical imaging applied to rock magnetism and paleomagnetism
JP2007122823A (en) Measuring method of recorded magnetic field intensity distribution of magnetic head, its measuring device, and manufacturing method of magnetic head
US20060146328A1 (en) Magneto-optical imaging method and device
JP2008090905A (en) Method and device for measuring recording magnetic field intensity distribution of magnetic head, and method for manufacturing magnetic head
Huang et al. Weak-value-amplification enhancement of the magneto-optical Kerr effect in nanoscale layered structures
Kida et al. Optical magnetoelectric effect in a submicron patterned magnet
Eftekhari et al. Miniaturized magneto-optical imaging sensor for crack and micro-crack detection
US9589588B2 (en) Heat-assisted rotating disk magnetometer for ultra-high anisotropy magnetic measurements
JP5550141B2 (en) Magneto-optical defect detection method
Valderrama et al. Experimental verification of the reflection matrix description in linear magneto-optics
Chotzoglou et al. Visualization of the Rolling Contact Fatigue Cracks in Rail Tracks with a Magnetooptical Sensor
TWI335429B (en) Detection device for detecting magnetic bead array on biochips
CN111257802A (en) Method for realizing ferromagnetic magnetic domain morphology construction by utilizing magneto-optical effect
JP3194838B2 (en) Magnetic field measuring method and magnetic field measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170627

R150 Certificate of patent or registration of utility model

Ref document number: 6172652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees