JP2014157797A - Test piece for evaluation, evaluation method of power generation layer, and management method of manufacture facility for dye-sensitized solar cell - Google Patents

Test piece for evaluation, evaluation method of power generation layer, and management method of manufacture facility for dye-sensitized solar cell Download PDF

Info

Publication number
JP2014157797A
JP2014157797A JP2013029503A JP2013029503A JP2014157797A JP 2014157797 A JP2014157797 A JP 2014157797A JP 2013029503 A JP2013029503 A JP 2013029503A JP 2013029503 A JP2013029503 A JP 2013029503A JP 2014157797 A JP2014157797 A JP 2014157797A
Authority
JP
Japan
Prior art keywords
evaluation
power generation
substrate
layer
generation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013029503A
Other languages
Japanese (ja)
Other versions
JP6118981B2 (en
Inventor
Tomoe Yoshida
知恵 吉田
Setsuo Nakajima
節男 中嶋
Fumihiko Hirose
文彦 廣瀬
Yuki Shoji
優樹 庄子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Sekisui Chemical Co Ltd
Original Assignee
Yamagata University NUC
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC, Sekisui Chemical Co Ltd filed Critical Yamagata University NUC
Priority to JP2013029503A priority Critical patent/JP6118981B2/en
Publication of JP2014157797A publication Critical patent/JP2014157797A/en
Application granted granted Critical
Publication of JP6118981B2 publication Critical patent/JP6118981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a test piece for evaluation capable of simultaneously or sequentially evaluating an adsorption amount or an adsorption state of a sensitization dye to a metal oxide film of a power generation layer and electric characteristics of the power generation layer.SOLUTION: A test piece for evaluation comprises, a substrate for evaluation in which infrared light can be propagated; a counter substrate which is disposed while being spaced apart from the substrate for evaluation and through which the light is transmitted; and an electrolyte containing a redox couple interposed between the substrate for evaluation and the counter substrate. Each of the substrate for evaluation and the counter substrate is partitioned into a first region and a second region. On a board surface in the first region of the substrate for evaluation, an electron extraction layer is provided for extracting electrons from the power generation layer. In the second region and the electron extraction layer of the substrate for evaluation, the power generation layer is provided. On a board surface in the first region of the counter substrate, a reduction layer is provided through which the light is transmitted and which has a reduction capability of the electrolyte. A portion where the first region of the substrate for evaluation and the reduction layer are mutually overlapped is used as a power generation performance evaluation part and a portion where the second region of the substrate for evaluation and the reduction layer are mutually overlapped is used as a dye evaluation part.

Description

本発明は、評価用試験体、発電層の評価方法、色素増感太陽電池の製造設備の管理方法に関する。   The present invention relates to a test specimen for evaluation, a method for evaluating a power generation layer, and a method for managing a production facility for a dye-sensitized solar cell.

近年、光エネルギーを直接かつ即時に電力に変換することができ、二酸化炭素等の汚染物質を排出しないクリーンな発電源として太陽電池が注目されている。太陽電池の中でも、色素増感型太陽電池は、高い変換効率を有し、比較的簡易な方法により製造され、かつ原材料単価が安価であるため、次世代太陽電池として期待されている。   In recent years, solar cells have attracted attention as a clean power source that can directly and immediately convert light energy into electric power and does not discharge pollutants such as carbon dioxide. Among solar cells, dye-sensitized solar cells are expected as next-generation solar cells because they have high conversion efficiency, are manufactured by a relatively simple method, and have a low raw material unit price.

色素増感太陽電池は、一般に、透明基板と、透明基板に対向して配置された対向基板と、透明基板と対向基板との間に挟まれて封止されたヨウ化物イオン等を含む電解質と、透明基板の電解質側の板面に形成された透明電極と、対向基板の電解質側の板面に形成された対向電極と、透明電極の電解質側に形成された発電層により構成されている。発電層は、酸化チタン等からなる金属酸化膜と、金属酸化膜に担持されたルテニウム錯体等からなる増感色素により構成されている。例えば、特許文献1には、上記構成を備え、金属酸化膜としてルチル型酸化チタンやチタン酸バリウム等の半導体が用いられてなる色素増感太陽電池が開示されている。   A dye-sensitized solar cell generally includes a transparent substrate, a counter substrate disposed opposite to the transparent substrate, an electrolyte including iodide ions sandwiched between the transparent substrate and the counter substrate, and the like. And a transparent electrode formed on the electrolyte-side plate surface of the transparent substrate, a counter electrode formed on the electrolyte-side plate surface of the counter substrate, and a power generation layer formed on the electrolyte side of the transparent electrode. The power generation layer is composed of a metal oxide film made of titanium oxide or the like and a sensitizing dye made of a ruthenium complex or the like supported on the metal oxide film. For example, Patent Document 1 discloses a dye-sensitized solar cell having the above-described configuration and using a semiconductor such as rutile-type titanium oxide or barium titanate as a metal oxide film.

上記構成を備えた色素増感太陽電池に太陽光が照射されると、増感色素が太陽光を吸収し、電子を放出する。電子は、金属酸化膜に素早く移動して透明電極に至り、配線を通って対向電極に達し、電解質中の三イオン化物イオンを還元してヨウ化物イオンにする。還元されたヨウ化物イオンは、電解質中で酸化されて再び電子を放出する。このような酸化還元反応が繰り返し継続されることにより、色素増感太陽電池に電気が流れる。従って、色素増感太陽電池の発電性能は、金属酸化膜に担持された増感色素の吸着量や、金属酸化膜に対する増感色素の吸着状態に大きく影響を受ける。   When sunlight is irradiated to the dye-sensitized solar cell having the above configuration, the sensitizing dye absorbs sunlight and emits electrons. The electrons quickly move to the metal oxide film, reach the transparent electrode, reach the counter electrode through the wiring, and reduce the triionized ions in the electrolyte to iodide ions. The reduced iodide ion is oxidized in the electrolyte and emits electrons again. By repeating such a redox reaction repeatedly, electricity flows through the dye-sensitized solar cell. Therefore, the power generation performance of the dye-sensitized solar cell is greatly affected by the amount of the sensitizing dye supported on the metal oxide film and the adsorption state of the sensitizing dye on the metal oxide film.

発電層における金属酸化膜に対する増感色素の吸着量及び吸着状態や、増感色素溶液の濃度及び増感色素の構造を調べる方法として、例えば、酸化チタン膜に増感色素であるN719色素を担持させてなる発電層に赤外光を照射し、多重内部反射フーリエ変換赤外分光法(以下、多重内部反射FT−IR法と記載する)を用いて赤外光での吸収特性を測定して解析する方法が知られている(非特許文献1参照)。   As a method for examining the amount and state of adsorption of the sensitizing dye to the metal oxide film in the power generation layer, the concentration of the sensitizing dye solution, and the structure of the sensitizing dye, for example, a N719 dye as a sensitizing dye is supported on the titanium oxide film. The power generation layer is irradiated with infrared light, and absorption characteristics in infrared light are measured using multiple internal reflection Fourier transform infrared spectroscopy (hereinafter referred to as multiple internal reflection FT-IR method). An analysis method is known (see Non-Patent Document 1).

特開2010−140811号公報JP 2010-140811 A

Electrochemical and Solid−States Letters,2008,11(7),A109Electrochemical and Solid-States Letters, 2008, 11 (7), A109

上記の色素増感太陽電池を製造する際に金属酸化膜の表面に増感色素を担持させる方法としては、金属酸化膜を増感色素溶液に一定時間浸漬する方法が用いられている。金属酸化膜を増感色素溶液に一定時間浸漬して金属酸化膜の表面に増感色素を担持させる場合、金属酸化膜に担持された増感色素の吸着量や、金属酸化膜と増感色素との化学結合の状況など金属酸化物膜に対する増感色素の吸着状態は、増感色素溶液中の増感色素濃度や増感色素の種類、金属酸化膜の表面状態、金属酸化膜を増感色素溶液に浸漬させた後の温湿度等の条件などによって、大きく変化する。また、金属酸化膜の表面状態は、例えば、金属酸化膜を焼成する際の焼成温度や焼成時間などの条件を変化させるなど、金属酸化膜の前処理条件を変化させることによって、変化する。このように金属酸化膜に対する増感色素の吸着量や吸着状態は、担持させる際の条件及び周辺環境による影響を受けやすい。   As a method of supporting the sensitizing dye on the surface of the metal oxide film when manufacturing the above dye-sensitized solar cell, a method of immersing the metal oxide film in the sensitizing dye solution for a predetermined time is used. When the metal oxide film is immersed in a sensitizing dye solution for a certain period of time and the sensitizing dye is supported on the surface of the metal oxide film, the adsorption amount of the sensitizing dye supported on the metal oxide film, the metal oxide film and the sensitizing dye The sensitizing dye adsorption state to the metal oxide film, such as the state of chemical bonding with the sensitizing dye, the sensitizing dye concentration in the sensitizing dye solution, the type of sensitizing dye, the surface state of the metal oxide film, and the metal oxide film are sensitized. It varies greatly depending on conditions such as temperature and humidity after being immersed in the dye solution. Further, the surface state of the metal oxide film is changed by changing the pretreatment conditions of the metal oxide film, for example, changing conditions such as the baking temperature and baking time when baking the metal oxide film. As described above, the amount and state of adsorption of the sensitizing dye to the metal oxide film are easily affected by the conditions for carrying and the surrounding environment.

また、色素増感太陽電池の発電性能は、電流−電圧特性(以下、I−V特性と記載する)等の電気特性によって評価される。I−V特性は、太陽光等の発電層の励起光を色素増感太陽電池に照射し、透明電極に接続した配線及び対向電極に接続した配線から付加電源を通して電流を測定することにより取得できる。色素増感太陽電池の最大出力は、前記測定により得られた光起電力曲線上において電流と電圧との積が最大値になる条件に設定することで得られる。このような色素増感太陽電池の電気特性と発電層における金属酸化膜に対する増感色素の吸着量や吸着状態には相関がある。   The power generation performance of the dye-sensitized solar cell is evaluated by electrical characteristics such as current-voltage characteristics (hereinafter referred to as IV characteristics). The IV characteristic can be obtained by irradiating a dye-sensitized solar cell with excitation light of a power generation layer such as sunlight and measuring the current through an additional power source from the wiring connected to the transparent electrode and the wiring connected to the counter electrode. . The maximum output of the dye-sensitized solar cell can be obtained by setting the condition that the product of the current and the voltage becomes the maximum value on the photovoltaic curve obtained by the measurement. There is a correlation between the electrical characteristics of such a dye-sensitized solar cell and the amount and state of adsorption of the sensitizing dye to the metal oxide film in the power generation layer.

従って、優れた発電性能を有する色素増感太陽電池を生産性高く、歩留まりよく製造するために、色素増感太陽電池の製造過程において、発電層の金属酸化膜に対する増感色素の吸着量及び吸着状態と、発電層の電気特性の双方を評価することが要求されている。   Therefore, in order to produce a dye-sensitized solar cell having excellent power generation performance with high productivity and high yield, the amount of adsorption and adsorption of the sensitizing dye to the metal oxide film of the power generation layer in the production process of the dye-sensitized solar cell It is required to evaluate both the state and the electrical characteristics of the power generation layer.

本発明は、上記事情を鑑みてなされたものであり、発電層の金属酸化膜に対する増感色素の吸着量や吸着状態と、発電層の電気特性とを同時又は順次評価できる評価用試験体、発電層の評価方法、色素増感太陽電池の製造設備の管理方法の提供を課題とする。   The present invention has been made in view of the above circumstances, and an evaluation specimen capable of simultaneously or sequentially evaluating the amount and state of adsorption of a sensitizing dye to the metal oxide film of the power generation layer and the electrical characteristics of the power generation layer, It is an object to provide a method for evaluating a power generation layer and a method for managing a production facility for a dye-sensitized solar cell.

本発明の評価用試験体は、金属酸化膜及び前記金属酸化膜に担持させた増感色素からなる発電層に光を照射したときの電気特性の測定と多重内部反射フーリエ変換赤外分光法を用いた前記増感色素の構造解析により前記発電層の評価を行うための評価用試験体であって、赤外分光法用の赤外光が内部伝搬可能な高屈折率媒質からなる評価用基板と、前記評価用基板と間隔をあけて配置され且つ前記光を透過する対向基板と、前記評価用基板と前記対向基板の間に注入された酸化還元対を含む電解質と、を備え、前記評価用基板に第一領域及び第二領域が区画されており、前記評価用基板の第一領域の板面に前記発電層から電子を取り出す電子取り出し層が設けられ、前記評価用基板の第二領域の板面及び前記電子取り出し層の上に前記発電層が設けられ、前記対向基板の板面に前記光を透過し且つ前記電解質の還元能を有する還元層が設けられ、前記評価用基板の第一領域及び前記対向基板の還元層が相互に重なる部分が前記発電層の電気特性を測定するための発電性能評価部とされ、前記評価用基板の第二領域及び前記対向基板の還元層が相互に重なる部分が前記増感色素の構造を解析するための色素評価部とされていることを特徴とする。
また、本発明の評価用試験体においては、前記還元層が導電性の高い金属からなることが好ましい。
The test specimen for evaluation of the present invention is a method for measuring electrical characteristics when a power generation layer comprising a metal oxide film and a sensitizing dye carried on the metal oxide film is irradiated with light, and performing multiple internal reflection Fourier transform infrared spectroscopy. An evaluation test body for evaluating the power generation layer by structural analysis of the sensitizing dye used, and comprising an evaluation substrate comprising a high refractive index medium capable of internally transmitting infrared light for infrared spectroscopy A counter substrate disposed at a distance from the evaluation substrate and transmitting the light, and an electrolyte including a redox pair injected between the evaluation substrate and the counter substrate. A first region and a second region are defined on the evaluation substrate; an electron extraction layer for extracting electrons from the power generation layer is provided on a plate surface of the first region of the evaluation substrate; and the second region of the evaluation substrate The power generation layer on the plate surface and the electron extraction layer A reducing layer that transmits the light and has a reducing ability of the electrolyte is provided on the plate surface of the counter substrate, and the first region of the evaluation substrate and the reduction layer of the counter substrate overlap each other. The power generation performance evaluation unit for measuring the electrical characteristics of the power generation layer is used for analyzing the structure of the sensitizing dye in the portion where the second region of the evaluation substrate and the reduction layer of the counter substrate overlap each other It is characterized by being a dye evaluation section.
In the test specimen for evaluation of the present invention, it is preferable that the reduction layer is made of a metal having high conductivity.

本発明の発電層の評価方法は、前記評価用試験体を用意する工程と、前記評価用試験体の前記電子取り出し層と前記還元層とを端子として、前記対向基板側から前記評価用試験体の発電性能評価部に光を照射して前記発電層の電気特性を測定する測定工程と、前記評価用試験体の前記評価用基板に赤外光を内部伝搬させて、多重内部反射フーリエ変換赤外分光法により前記評価用増感色素の吸収特性を測定し、前記評価用増感色素の化学構造を解析する分析工程と、を備え、前記測定工程と前記分析工程を同時又は順次行うことを特徴とする。
また、本発明の発電層の評価方法では、前記還元層が導電性の高い金属からなることが好ましい。
The method for evaluating a power generation layer according to the present invention includes the step of preparing the evaluation specimen, and the evaluation specimen from the counter substrate side with the electron extraction layer and the reduction layer of the evaluation specimen as terminals. A measuring step of irradiating light to the power generation performance evaluation section of the power generation layer to measure the electrical characteristics of the power generation layer, and internally transmitting infrared light to the evaluation substrate of the test specimen for evaluation, thereby performing multiple internal reflection Fourier transform red Measuring the absorption characteristics of the evaluation sensitizing dye by external spectroscopy, and analyzing the chemical structure of the evaluation sensitizing dye, and performing the measurement step and the analysis step simultaneously or sequentially. Features.
In the power generation layer evaluation method of the present invention, the reduction layer is preferably made of a highly conductive metal.

本発明の色素増感太陽電池の製造設備の管理方法は、前記発電層の評価方法を色素増感太陽電池の製造設備において実施し、前記発電層の評価結果に基づいて前記色素増感太陽電池の製造設備の周辺環境を制御することを特徴とする。   The method for managing the production facility for a dye-sensitized solar cell according to the present invention is the method for evaluating the power generation layer in the production facility for the dye-sensitized solar cell, and the dye-sensitized solar cell based on the evaluation result of the power generation layer. It is characterized by controlling the surrounding environment of the manufacturing facility.

本発明の評価用試験体、発電層の評価方法及び色素増感太陽電池の製造方法によれば、発電層における金属酸化膜に対する増感色素の吸着量や吸着状態と、発電層の電気特性とを評価できる。   According to the test specimen for evaluation, the method for evaluating the power generation layer, and the method for producing the dye-sensitized solar cell of the present invention, the amount and state of adsorption of the sensitizing dye to the metal oxide film in the power generation layer, and the electrical characteristics of the power generation layer Can be evaluated.

本発明の実施形態である評価用試験体を示す平面図である。It is a top view which shows the test body for evaluation which is embodiment of this invention. 本発明の実施形態である評価用試験体を示す図であって、(a)は図1に示すA−A線で矢視した場合の断面図であり、(b)は図1に示すB−B線で矢視した場合の断面図である。It is a figure which shows the test body for evaluation which is embodiment of this invention, Comprising: (a) is sectional drawing at the time of seeing by the AA line shown in FIG. 1, (b) is B shown in FIG. It is sectional drawing at the time of seeing an arrow by -B line. 本発明の実施形態である評価用試験体の動作を示す図であって、図2(a)に示すX領域の拡大図である。It is a figure which shows operation | movement of the test body for evaluation which is embodiment of this invention, Comprising: It is an enlarged view of the X area | region shown to Fig.2 (a). 本発明の実施形態である評価用試験体の測定原理を示す部分拡大図である。It is the elements on larger scale which show the measurement principle of the test body for evaluation which is embodiment of this invention. 本発明の実施形態である評価用試験体の製造工程を示す図であって、(a),(b)は平面図であり、(c)は(b)に示すC−C線で矢視した場合の断面図である。It is a figure which shows the manufacturing process of the test body for evaluation which is embodiment of this invention, Comprising: (a), (b) is a top view, (c) is an arrow view by the CC line | wire shown to (b). FIG. 本発明の実施形態である評価用試験体の製造工程を示す図であって、(a),(b)は平面図であり、(c)は(b)に示すD−D線で矢視した場合の断面図である。It is a figure which shows the manufacturing process of the test body for evaluation which is embodiment of this invention, Comprising: (a), (b) is a top view, (c) is an arrow view by the DD line | wire shown to (b). FIG. 本発明の実施形態である評価用試験体の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the test body for evaluation which is embodiment of this invention. 実施例1及び実施例2の評価用試験体における発電層のI−V特性を示すグラフである。It is a graph which shows the IV characteristic of the electric power generation layer in the test body for evaluation of Example 1 and Example 2. FIG.

以下、本発明の実施形態である評価用試験体と発電層の評価方法及び色素増感太陽電池の製造方法について、図面を参照して説明する。なお、以下の説明で用いる図面は模式的なものであり、長さ、幅、及び厚みの比率等は実際のものと同一とは限らず、適宜変更できる。   Hereinafter, an evaluation test body and a method for evaluating a power generation layer and a method for producing a dye-sensitized solar cell, which are embodiments of the present invention, will be described with reference to the drawings. The drawings used in the following description are schematic, and the length, width, thickness ratio, and the like are not necessarily the same as actual ones, and can be changed as appropriate.

本発明の実施形態である評価用試験体41は、色素増感太陽電池等の光電変換素子における発電層の評価に用いられるものであり、図1に示すように、発電層45のI−V特性等の電気特性を測定するための発電性能評価部61と、多重内部反射FT−IR法を用いた発電層45の増感色素の濃度測定及び構造解析を行うための色素評価部62と、が設けられてなる試験体である。   The test specimen 41 for evaluation which is an embodiment of the present invention is used for evaluating a power generation layer in a photoelectric conversion element such as a dye-sensitized solar cell. As shown in FIG. A power generation performance evaluation unit 61 for measuring electrical characteristics such as characteristics, a dye evaluation unit 62 for performing concentration measurement and structural analysis of the sensitizing dye of the power generation layer 45 using the multiple internal reflection FT-IR method, Is a test body.

また、評価用試験体41は、評価用基板42と、対向基板43と、電解質44と、発電層45と、電子取り出し層52と、還元層53と、を少なくとも備えて構成されている。また、本実施形態の評価用試験体41の対向基板43及び還元層53には電解質44の注入孔49が設けられており、本実施形態の評価用試験体41はガラス板55,57と、封止材47,56と、を備えている。また、本実施形態の評価用試験体41は、配線58と、電気特性測定装置65と、を備えている。なお、図1においては、注入孔49、封止材47,56、ガラス板55,57、配線58及び電気特性測定装置65の図示は省略している。以下、各構成要素について順次説明する。   The evaluation test body 41 includes at least an evaluation substrate 42, a counter substrate 43, an electrolyte 44, a power generation layer 45, an electron extraction layer 52, and a reduction layer 53. Further, an injection hole 49 for an electrolyte 44 is provided in the counter substrate 43 and the reduction layer 53 of the evaluation test body 41 of the present embodiment, and the evaluation test body 41 of the present embodiment includes glass plates 55 and 57, and Sealing materials 47 and 56. In addition, the evaluation test body 41 of the present embodiment includes a wiring 58 and an electrical characteristic measuring device 65. In FIG. 1, illustration of the injection hole 49, the sealing materials 47 and 56, the glass plates 55 and 57, the wiring 58, and the electrical characteristic measuring device 65 is omitted. Hereinafter, each component will be sequentially described.

評価用基板42は、多重内部反射FT−IR法等の赤外分光法用の赤外光が内部伝搬可能な高屈折率媒質によって構成されている。このような高屈折率媒質としては、例えばシリコンや砒化ガリウムが挙げられる。内部伝搬させる赤外光の損失が極めて低い点から、評価用基板42としては、フローティングゾーン法で作られたシリコン基板(以下、Fzシリコン基板と記載する)が好適である。また、発電層45の増感色素82の赤外分光用の赤外光の吸収特性を測定する際に評価用基板42に赤外光を内部伝搬させるため、評価用基板42の形状は、前記高屈折率媒質の屈折率や赤外光の入射角度等を勘案して、赤外光を導入する端面42cと、赤外光を伝搬するための板面42a,42bと、赤外光を評価用基板42の外部に導出する端面42dとが相互に適した角度をなして位置するように設定されることが好ましい(図3及び図4参照)。   The evaluation substrate 42 is made of a high refractive index medium capable of internally propagating infrared light for infrared spectroscopy such as a multiple internal reflection FT-IR method. Examples of such a high refractive index medium include silicon and gallium arsenide. A silicon substrate (hereinafter referred to as an Fz silicon substrate) made by a floating zone method is suitable as the evaluation substrate 42 from the viewpoint of extremely low loss of infrared light propagated internally. In addition, when measuring the absorption characteristics of infrared light for infrared spectroscopy of the sensitizing dye 82 of the power generation layer 45, infrared light is propagated internally to the evaluation substrate 42. Considering the refractive index of the high refractive index medium, the incident angle of infrared light, etc., the end face 42c for introducing infrared light, the plate surfaces 42a and 42b for propagating infrared light, and the infrared light are evaluated. It is preferable that the end face 42d led out to the outside of the working substrate 42 is set so as to be positioned at an angle suitable for each other (see FIGS. 3 and 4).

評価用基板42は、図1に示す発電性能評価部61を形成するための第一領域71と、図1に示す色素評価部62を形成するための第二領域72と、に区画されている。   The evaluation substrate 42 is partitioned into a first region 71 for forming the power generation performance evaluation unit 61 shown in FIG. 1 and a second region 72 for forming the dye evaluation unit 62 shown in FIG. .

対向基板43は、評価用基板42と間隔をあけて配置されており、発電層45に照射される光を透過する媒質によって構成されている。即ち、対向基板43は、図2に示す矢印のように評価用試験体41の外方から対向基板43に照射された光を透過して発電層45に到達させる媒質からなる。本実施形態の評価用試験体41のように発電層45が太陽電池に用いられる場合、発電層45には太陽光が照射されるため、対向基板43としては太陽光を透過するガラス基板や、プラスチック基板が好適である。このようなガラス基材としては、例えば、ソーダライムガラス、硼珪酸ガラス、石英ガラス、ホウケイ酸ガラス、バイコールガラス、無アルカリガラス、青板ガラス及び白板ガラスなどの一般的なガラスが挙げられる。また、プラスチック基材としては、例えば、ポリアクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂及びポリアミド樹脂が挙げられる。   The counter substrate 43 is disposed at a distance from the evaluation substrate 42 and is composed of a medium that transmits light applied to the power generation layer 45. That is, the counter substrate 43 is made of a medium that transmits the light irradiated to the counter substrate 43 from the outside of the evaluation test body 41 and reaches the power generation layer 45 as indicated by arrows in FIG. When the power generation layer 45 is used in a solar cell like the test specimen 41 for evaluation of the present embodiment, the power generation layer 45 is irradiated with sunlight, so that the counter substrate 43 is a glass substrate that transmits sunlight, A plastic substrate is preferred. Examples of such a glass substrate include common glasses such as soda lime glass, borosilicate glass, quartz glass, borosilicate glass, Vycor glass, non-alkali glass, blue plate glass, and white plate glass. Examples of the plastic substrate include polyacrylic resin, polycarbonate resin, polyester resin, polyimide resin, polystyrene resin, polyvinyl chloride resin, and polyamide resin.

図1及び図2に示すように、電解質44は、評価用基板42と対向基板43の間に注入されており、発電性能評価部61において電気を流すための酸化還元反応を生ずる酸化還元対を含む物質である。このような酸化還元対としては、例えば、ヨウ素レドックスが挙げられる。ヨウ素レドックスを含む電解質44には、例えば、アセトニトリルやプロピオニトリル等の非水系溶媒、又は、ヨウ化ジメチルプロピルイミダゾリウムやヨウ化ブチルメチルイミダゾリウム等の溶媒に、ヨウ化リチウムとヨウ素とが混合されてなる溶液が用いられる。   As shown in FIGS. 1 and 2, the electrolyte 44 is injected between the evaluation substrate 42 and the counter substrate 43, and an oxidation-reduction pair that generates an oxidation-reduction reaction for causing electricity to flow in the power generation performance evaluation unit 61. Contains substances. Examples of such a redox pair include iodine redox. In the electrolyte 44 containing iodine redox, for example, lithium iodide and iodine are mixed in a non-aqueous solvent such as acetonitrile or propionitrile, or a solvent such as dimethylpropylimidazolium iodide or butylmethylimidazolium iodide. The resulting solution is used.

電解質44は、その側方を封止材47により封止されている。また、対向基板43及び後述する還元層53には、評価用基板42と対向基板43の間に形成される内部空間に電解質44を注入するための注入孔49が設けられている。電解質44の前記内部空間への注入がなされた後に、注入孔49はガラス板等のガラス板55により閉じられ、ガラス板55の上方向から更に封止材56及びガラス板57により封止されている。封止材47,56としては、例えば光硬化性樹脂と熱硬化性樹脂との混合物を使用し硬化させた材料が挙げられる。   The side of the electrolyte 44 is sealed with a sealing material 47. The counter substrate 43 and the reduction layer 53 described later are provided with injection holes 49 for injecting the electrolyte 44 into the internal space formed between the evaluation substrate 42 and the counter substrate 43. After the electrolyte 44 is injected into the internal space, the injection hole 49 is closed by a glass plate 55 such as a glass plate, and further sealed by a sealing material 56 and a glass plate 57 from above the glass plate 55. Yes. Examples of the sealing materials 47 and 56 include a material cured by using a mixture of a photocurable resin and a thermosetting resin.

発電層45は、評価用試験体41を用いて評価を行う対象となる層であり、色素増感太陽電池に用いられる金属酸化膜81と金属酸化膜81に担持させた増感色素82によって構成されている(図3参照)。金属酸化膜81は、多孔質構造を形成し得る金属材料81Pからなる。ナノオーダーの多孔質構造を形成できる上に、下層の表面積よりも極めて大きな表面積が得られる点から、金属材料81Pとしては、酸化チタン(TiO)が好適である。 The power generation layer 45 is a layer to be evaluated using the test specimen 41 for evaluation, and includes a metal oxide film 81 used in the dye-sensitized solar cell and a sensitizing dye 82 supported on the metal oxide film 81. (See FIG. 3). The metal oxide film 81 is made of a metal material 81P that can form a porous structure. Titanium oxide (TiO 2 ) is preferable as the metal material 81P because it can form a nano-order porous structure and a surface area much larger than the surface area of the lower layer can be obtained.

増感色素82は、金属材料81Pの表面に吸着しており、太陽光等の光が図2に示す矢印のように評価用試験体41の外方から対向基板43を透過して照射された際に金属酸化膜81に電子を放出する。酸化チタンのようにバンドギャップが広く、紫外域にしか吸収体を持たない金属材料81Pからなる金属酸化膜81は、このように増感色素82から電子を受け取る。増感色素82としては、例えばルテニウム錯体、シアニンやクロロフィルといった有機色素が挙げられる。吸収する波長域が広い上に、光励起の寿命が長く、金属酸化膜81に導かれた電子が安定する点から、増感色素82としては、ルテニウム錯体が好適であり、具体的にはシス−ジ(チオシアナト)−ビス(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)(N3と呼ばれることがある)、該シス−ジ(チオシアナト)−ビス(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)のビス−テトラブチルアンモニウム塩(N719と呼ばれることがある)、トリ(チオシアナト)−(4,4’,4’’−トリカルボキシ−2,2’:6’,2’’−ターピリジン)ルテニウムのトリス−テトラブチルアンモニウム塩(ブラックダイと呼ばれることがある)等が挙げられる。   The sensitizing dye 82 is adsorbed on the surface of the metal material 81P, and light such as sunlight is irradiated through the counter substrate 43 from the outside of the evaluation test body 41 as shown by the arrows in FIG. At this time, electrons are emitted to the metal oxide film 81. The metal oxide film 81 made of the metal material 81P having a wide band gap and having an absorber only in the ultraviolet region like titanium oxide receives electrons from the sensitizing dye 82 in this way. Examples of the sensitizing dye 82 include organic dyes such as ruthenium complex, cyanine and chlorophyll. A ruthenium complex is preferable as the sensitizing dye 82 because it absorbs a wide wavelength range, has a long photoexcitation lifetime, and stabilizes the electrons guided to the metal oxide film 81. Di (thiocyanato) -bis (2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium (II) (sometimes referred to as N3), cis-di (thiocyanato) -bis (2,2′- Bipyridyl-4,4′-dicarboxylic acid) ruthenium (II) bis-tetrabutylammonium salt (sometimes referred to as N719), tri (thiocyanato)-(4,4 ′, 4 ″ -tricarboxy-2, 2 ′: 6 ′, 2 ″ -terpyridine) ruthenium tris-tetrabutylammonium salt (sometimes referred to as black dye).

図1及び図2に示すように、電子取り出し層52は、評価用基板42の第一領域71の板面42aに形成されている。電子取り出し層52は、増感色素82から金属酸化膜81に移動した電子を確実に取り出せる電気抵抗の低い材質によって構成されている。このような低抵抗の材質としては、例えば、酸化インジウム/酸化スズ(以下、ITOと記載する)、フッ素ドープ酸化スズ(以下、FTOと記載する)、酸化亜鉛、酸化スズ、アンチモンドープ酸化スズ、酸化インジウム/酸化亜鉛、酸化ガリウム/酸化亜鉛、白金が挙げられる。また、電子取り出し層52の材質として四塩化チタン(TiCl)が挙げられる。TiClからなる電子取り出し層52は、発電性能評価部61の逆電子防止層としても機能する。 As shown in FIGS. 1 and 2, the electron extraction layer 52 is formed on the plate surface 42 a of the first region 71 of the evaluation substrate 42. The electron extraction layer 52 is made of a material with low electrical resistance that can reliably extract electrons transferred from the sensitizing dye 82 to the metal oxide film 81. Examples of such a low resistance material include indium oxide / tin oxide (hereinafter referred to as ITO), fluorine-doped tin oxide (hereinafter referred to as FTO), zinc oxide, tin oxide, antimony-doped tin oxide, Examples include indium oxide / zinc oxide, gallium oxide / zinc oxide, and platinum. Also include titanium tetrachloride (TiCl 4) as the material of the electron extraction layer 52. The electron extraction layer 52 made of TiCl 4 also functions as a reverse electron prevention layer of the power generation performance evaluation unit 61.

還元層53は、対向基板43の板面43aに形成されている。また、還元層53は、図2に示す矢印のように評価用試験体41の外方から対向基板43を透過して発電層45に向かって照射される光を透過し、電解質44の酸化還元対に対して還元能を有する。従って、板面43a全体に還元層53が設けられることにより、電解質44全域の酸化還元対が継続的に還元される。   The reduction layer 53 is formed on the plate surface 43 a of the counter substrate 43. Further, the reduction layer 53 transmits light that is transmitted from the outside of the evaluation test body 41 through the counter substrate 43 to the power generation layer 45 as indicated by an arrow shown in FIG. Has reducing ability for the pair. Accordingly, the reduction layer 53 is provided on the entire plate surface 43a, whereby the redox couple in the entire electrolyte 44 is continuously reduced.

図2(a)に示すように、還元層53には配線58が接続されている。配線58を接続できる点から、還元層53は導電性の高い金属によって構成されていることが好ましい。酸化還元反応に対する触媒能が高く、安定であり、導電性が高い点から、還元層53は白金を含むことがより好ましい。具体的には、メタノール、エタノール等の溶媒に白金を溶かした白金溶液を対向基板43の板面43aに塗布して焼成することにより、発電層45に向かって照射される光を透過し、電解質44の還元能を有すると共に導電性の高い還元層53が形成されている。また、対向基板43として、板面43aに図示しないITOやFTO等からなる薄膜が設けられた導電性基板を用いることにより、還元層53の導電性が向上する。   As shown in FIG. 2A, a wiring 58 is connected to the reduction layer 53. In view of the ability to connect the wiring 58, the reduction layer 53 is preferably made of a highly conductive metal. It is more preferable that the reducing layer 53 contains platinum from the viewpoints of high catalytic ability for oxidation-reduction reaction, stability, and high conductivity. Specifically, a platinum solution in which platinum is dissolved in a solvent such as methanol or ethanol is applied to the plate surface 43a of the counter substrate 43 and baked, thereby transmitting light irradiated toward the power generation layer 45 and electrolyte. A reduction layer 53 having a reduction ability of 44 and high conductivity is formed. Further, by using a conductive substrate provided with a thin film made of ITO or FTO (not shown) on the plate surface 43a as the counter substrate 43, the conductivity of the reducing layer 53 is improved.

配線58は、電子取り出し層52と還元層53とを接続して設けられている。電気特性測定装置65は配線58に配置されており、負荷電源や電流計、電圧計等によって構成されている。配線58と電気特性測定装置65により、発電層45から電子取り出し層52に移動した電子が還元層53に送られると共に、発電層45に印加電圧を加えた際の電気特性が測定値として得られる。   The wiring 58 is provided by connecting the electron extraction layer 52 and the reduction layer 53. The electrical characteristic measuring device 65 is disposed on the wiring 58, and includes a load power source, an ammeter, a voltmeter, and the like. The wiring 58 and the electrical property measuring device 65 send the electrons that have moved from the power generation layer 45 to the electron extraction layer 52 to the reduction layer 53, and the electrical properties when an applied voltage is applied to the power generation layer 45 are obtained as measured values. .

発電性能評価部61は、図2(a)に示すように、評価用基板42の第一領域71と還元層53が相互に重なる部分で構成されている。図2(a)に示す構成により、発電性能評価部61では、発電層45に光を照射したときのI−V特性等の電気特性が測定される。図3は、発電性能評価部61における酸化還元反応を説明する図であり、電解質44の酸化還元対がヨウ素レドックスであり、金属酸化膜81の金属材料81Pが酸化チタンであって、増感色素82がルテニウム錯体である場合を例示している。   As shown in FIG. 2A, the power generation performance evaluation unit 61 includes a portion where the first region 71 of the evaluation substrate 42 and the reduction layer 53 overlap each other. With the configuration shown in FIG. 2A, the power generation performance evaluation unit 61 measures electrical characteristics such as IV characteristics when the power generation layer 45 is irradiated with light. FIG. 3 is a diagram for explaining the oxidation-reduction reaction in the power generation performance evaluation unit 61. The oxidation-reduction pair of the electrolyte 44 is iodine redox, the metal material 81P of the metal oxide film 81 is titanium oxide, and the sensitizing dye. The case where 82 is a ruthenium complex is illustrated.

図3に示す矢印のように、発電性能評価部61の対向基板43を透過し入射した太陽光等の光は、発電層45の金属酸化膜81に担持された増感色素82に吸収される。光吸収により増感色素82は基底状態から励起状態になり、励起状態の増感色素82の電子は金属材料81Pの伝導帯に注入され、ルテニウム錯体は酸化される。金属酸化膜81に注入された電子は、金属材料81P内を移動し、電子取り出し層52に取り出される。電気抵抗の低い電子取り出し層52が設けられていることにより、金属酸化膜81に注入された電子が金属材料81P内を移動する際に増感色素82の酸化体或いは電解質44の三ヨウ化物イオン(I )と再結合することを防止できる。電子取り出し層52に取り出された電子は、配線58を通って還元層53へと移動する。一方で、酸化された増感色素82は、ヨウ素レドックスのヨウ化物イオン(I)から電子を受け取り、基底状態に還元される。ヨウ化物イオンは酸化されて三ヨウ化物イオンになり、電解質44内で拡散されて還元層53へと移動する。三ヨウ化物イオンは還元層53から電子を受け取り、ヨウ化物イオンに戻る。このような一連のサイクルにより、発電性能評価部61では色素増感太陽電池と同様に電気が流れる。従って、配線58に設けられた電気特性測定装置65により印加電圧を加えて、発電層45からの電流を掃引することによってI−V特性が得られる。 As shown by the arrows in FIG. 3, light such as sunlight transmitted through the counter substrate 43 of the power generation performance evaluation unit 61 is absorbed by the sensitizing dye 82 supported on the metal oxide film 81 of the power generation layer 45. . The light absorption causes the sensitizing dye 82 to change from the ground state to the excited state. Electrons of the excited state sensitizing dye 82 are injected into the conduction band of the metal material 81P, and the ruthenium complex is oxidized. The electrons injected into the metal oxide film 81 move in the metal material 81P and are extracted to the electron extraction layer 52. By providing the electron extraction layer 52 having a low electrical resistance, the oxidant of the sensitizing dye 82 or the triiodide ion of the electrolyte 44 when the electrons injected into the metal oxide film 81 move in the metal material 81P. Recombination with (I 3 ) can be prevented. The electrons extracted to the electron extraction layer 52 move to the reduction layer 53 through the wiring 58. On the other hand, the oxidized sensitizing dye 82 receives electrons from the iodide ion (I ) of iodine redox and is reduced to the ground state. The iodide ions are oxidized to triiodide ions, diffused in the electrolyte 44, and move to the reducing layer 53. The triiodide ions receive electrons from the reduction layer 53 and return to iodide ions. Through such a series of cycles, electricity flows in the power generation performance evaluation unit 61 as in the dye-sensitized solar cell. Therefore, an IV characteristic is obtained by applying an applied voltage by the electrical characteristic measuring device 65 provided in the wiring 58 and sweeping the current from the power generation layer 45.

色素評価部62は、図2(b)に示すように、評価用基板42の第二領域72と還元層53が相互に重なる部分で構成されている。図2(b)に示す構成により、色素評価部62では、多重内部反射法により作成直後の初期試験体と評価時の試験体とをそれぞれ評価してその評価結果の差分を計算で求めることで評価がなされる。
図4は、色素評価部62における多重内部反射FT−IR法を用いた発電層45の増感色素82の吸収特性が測定される様子を示す図であって、評価用基板42と、電解液44と、発電層45と封止材47以外の評価用試験体41の構成要素の図示は省略している。
As shown in FIG. 2B, the dye evaluation unit 62 includes a portion where the second region 72 of the evaluation substrate 42 and the reduction layer 53 overlap each other. With the configuration shown in FIG. 2 (b), the dye evaluation unit 62 evaluates the initial test body immediately after creation and the test body at the time of evaluation by the multiple internal reflection method, and calculates the difference between the evaluation results by calculation. Evaluation is made.
FIG. 4 is a diagram illustrating a state in which the absorption characteristics of the sensitizing dye 82 of the power generation layer 45 using the multiple internal reflection FT-IR method are measured in the dye evaluation unit 62. The evaluation substrate 42 and the electrolytic solution The components of the test specimen 41 for evaluation other than 44, the power generation layer 45 and the sealing material 47 are not shown.

図4に示すように、端面42cから評価用基板42の内部に導入された多重内部反射FT−IR法用の赤外光は、高屈折率媒質とその外方との屈折率差によって板面42a,42bにおける反射を繰り返しながら内部空間85を伝搬する。このとき、板面42a,42bにおいて赤外光が低損失に全反射するためには、板面42a,42bの法線に対して臨界角より大きい角度をなすように赤外光が評価用基板42に導入されることが好ましい。   As shown in FIG. 4, the infrared light for the multiple internal reflection FT-IR method introduced into the evaluation substrate 42 from the end face 42c is caused by the difference in refractive index between the high refractive index medium and the outside thereof. It propagates through the internal space 85 while repeating the reflection at 42a and 42b. At this time, in order for the infrared light to be totally reflected on the plate surfaces 42a and 42b with a low loss, the infrared light is made to be an evaluation substrate so as to form an angle larger than the critical angle with respect to the normal line of the plate surfaces 42a and 42b. 42 is preferably introduced.

評価用基板42を内部伝搬する赤外光のパワーは、先ず板面42aでの反射の度に電解質44等の評価用基板42外部の構成要素の赤外光の吸収特性に応じて変化する。評価用基板42と接する発電層45の端面45bに至ると、赤外光のパワーは、板面42aでの反射の度に発電層45の赤外光の吸収特性に応じて変化する。その後、板面42aでの反射の度に、赤外光のパワーは、再び評価用基板42外部の構成要素の赤外光の吸収特性の影響を受けて評価用基板42の端面42dから導出される。このように評価用基板42の端面42dから出射した赤外光には、電解質44、発電層45、封止材47等の赤外光の吸収特性が反映されている。従って、予め取得された評価用基板42外部の構成要素の赤外光の吸収特性と評価用基板42の端面42dから導出された赤外光に反映された特性との比較により、発電層45の赤外光の吸収特性が得られる。   The power of infrared light propagating through the evaluation substrate 42 first changes in accordance with the infrared light absorption characteristics of the components outside the evaluation substrate 42 such as the electrolyte 44 every time it is reflected by the plate surface 42a. When reaching the end face 45b of the power generation layer 45 in contact with the evaluation substrate 42, the power of the infrared light changes according to the infrared light absorption characteristics of the power generation layer 45 every time it is reflected by the plate surface 42a. Thereafter, each time the light is reflected on the plate surface 42a, the power of the infrared light is derived again from the end face 42d of the evaluation substrate 42 under the influence of the infrared light absorption characteristics of the components outside the evaluation substrate 42. The Thus, the infrared light emitted from the end face 42d of the evaluation substrate 42 reflects the infrared light absorption characteristics of the electrolyte 44, the power generation layer 45, the sealing material 47, and the like. Therefore, by comparing the infrared light absorption characteristics of the components outside the evaluation substrate 42 acquired in advance with the characteristics reflected in the infrared light derived from the end face 42d of the evaluation substrate 42, the power generation layer 45 Infrared absorption characteristics can be obtained.

以上説明した本実施形態の評価用試験体41によれば、電子取り出し層52が評価用基板42の第一領域71のみに形成されてなる発電性能評価部61において電解質44及び発電層45の酸化還元反応を継続的に生じさせることができ、発電層45のI−V特性等の電気特性が得られる。また、評価用基板42の第二領域72で発電層45が赤外光を内部伝搬可能な評価用基板42に当接してなる色素評価部62において多重内部反射FT−IR法を用いた発電層45の赤外光に対する吸収特性が得られる。発電層45の前記電気特性の取得と前記吸収特性の取得は同時に行われてもよく、順次行われてもよい。このように発電層45の電気特性と赤外光に対する吸収特性の双方が一つの評価用試験体41を用いて取得されることにより、発電層45のより正確な評価が行われる。   According to the evaluation specimen 41 of the present embodiment described above, the electrolyte 44 and the power generation layer 45 are oxidized in the power generation performance evaluation unit 61 in which the electron extraction layer 52 is formed only in the first region 71 of the evaluation substrate 42. The reduction reaction can be continuously generated, and electrical characteristics such as the IV characteristics of the power generation layer 45 can be obtained. Further, in the second region 72 of the evaluation substrate 42, the power generation layer 45 uses the multiple internal reflection FT-IR method in the dye evaluation unit 62 in contact with the evaluation substrate 42 capable of internally transmitting infrared light. An absorption characteristic for 45 infrared light is obtained. Acquisition of the electrical characteristics of the power generation layer 45 and acquisition of the absorption characteristics may be performed simultaneously or sequentially. Thus, by obtaining both the electrical characteristics of the power generation layer 45 and the absorption characteristics with respect to infrared light using the single test specimen 41 for evaluation, a more accurate evaluation of the power generation layer 45 is performed.

次いで、本実施形態の評価用試験体41を用いた発電層45の評価方法について説明する。発電層45の評価方法は、評価用試験体41を用意する工程と、発電層45の電気特性を測定する測定工程と、発電層45の増感色素82の吸収特性を測定し、化学構造を解析する分析工程と、を備えている。以下、各工程について順次説明する。   Next, an evaluation method of the power generation layer 45 using the evaluation test body 41 of this embodiment will be described. The method for evaluating the power generation layer 45 includes a step of preparing the test specimen 41 for evaluation, a measurement step of measuring the electrical characteristics of the power generation layer 45, and measuring the absorption characteristics of the sensitizing dye 82 of the power generation layer 45 to determine the chemical structure. An analysis process for analysis. Hereinafter, each process will be described sequentially.

[評価用試験体を用意する工程]
図5(a)に示すように、評価用基板42として例えばFz基板を用意し、第一領域71と第二領域72に区画する。続いて、図5(b),(c)に示すように、評価用基板42の第一領域71の板面42aに電子取り出し層52を形成する。電子取り出し層52には、ITO又はFTO等を用いることができる。その場合、例えばスパッタリング法や印刷法によって、電子取り出し層52を形成できる。また、評価用基板42の第一領域71の板面42aのみにTiClを施すことによって、電子取り出し層52を形成できる。
[Step of preparing test specimen for evaluation]
As shown in FIG. 5A, for example, an Fz substrate is prepared as the evaluation substrate 42 and is divided into a first region 71 and a second region 72. Subsequently, as shown in FIGS. 5B and 5C, the electron extraction layer 52 is formed on the plate surface 42 a of the first region 71 of the evaluation substrate 42. For the electron extraction layer 52, ITO, FTO, or the like can be used. In that case, the electron extraction layer 52 can be formed by, for example, a sputtering method or a printing method. Further, by applying TiCl 4 only to the plate surface 42 a of the first region 71 of the evaluation substrate 42, the electron extraction layer 52 can be formed.

次に、図6(a)に示すように、対向基板43として例えばガラス基板を用意して、対向基板43の板面43aに還元層53を形成する。還元層53は、白金をメタノール、エタノール等の溶媒に溶かしてなる溶液を対向基板43の板面43aに塗布して、これを焼成することにより形成できる。その後、パターニング等の方法により、図6(b),(c)に示すように、後に電解液を評価用基板42と対向基板43との間に注入するための注入孔49を、対向基板43及び還元層53を貫通させるように形成する。   Next, as shown in FIG. 6A, for example, a glass substrate is prepared as the counter substrate 43, and the reduction layer 53 is formed on the plate surface 43 a of the counter substrate 43. The reduction layer 53 can be formed by applying a solution obtained by dissolving platinum in a solvent such as methanol or ethanol to the plate surface 43a of the counter substrate 43 and baking the solution. Thereafter, as shown in FIGS. 6B and 6C, an injection hole 49 for injecting an electrolytic solution between the evaluation substrate 42 and the counter substrate 43 later is formed by a method such as patterning. And it forms so that the reduction | restoration layer 53 may be penetrated.

次に、図7(a)に示すように電子取り出し層52の上と、図示略の評価用基板42の第二領域72の板面42aに発電層45を形成する。発電層45は、図3に示すように、電子取り出し層52の上と第二領域72の板面42aの所定の位置に金属酸化膜81を形成した後、金属酸化膜81に増感色素82を担持させることにより形成できる。金属酸化膜81の形成手法は、特に制限されるものではなく、例えば金属材料81Pを含む溶液をスピンコートしてから加熱処理を行う方法、金属材料81Pを粉体状にしてAD法やコールドスプレー法等の粉体吹付法により製膜する方法が挙げられる。また、増感色素82を金属酸化膜81に担持させる方法としては、金属酸化膜81を増感色素82の溶液に浸漬させる方法が挙げられる。該溶液中の増感色素82の濃度、浸漬時間、浸漬させる金属酸化膜81の表面状態、金属酸化膜81を前記溶液に浸漬させた後の温湿度などの条件は、発電層45が用いられる用途に応じて適宜決定すればよい。   Next, as shown in FIG. 7A, the power generation layer 45 is formed on the electron extraction layer 52 and on the plate surface 42 a of the second region 72 of the evaluation substrate 42 (not shown). As shown in FIG. 3, the power generation layer 45 forms a metal oxide film 81 on the electron extraction layer 52 and at a predetermined position on the plate surface 42 a of the second region 72, and then a sensitizing dye 82 on the metal oxide film 81. Can be formed. The formation method of the metal oxide film 81 is not particularly limited. For example, a method of performing a heat treatment after spin-coating a solution containing the metal material 81P, an AD method or a cold spray in which the metal material 81P is powdered. Examples thereof include a method of forming a film by a powder spraying method such as a method. Further, as a method of supporting the sensitizing dye 82 on the metal oxide film 81, a method of immersing the metal oxide film 81 in a solution of the sensitizing dye 82 can be mentioned. The power generation layer 45 is used for conditions such as the concentration of the sensitizing dye 82 in the solution, the immersion time, the surface state of the metal oxide film 81 to be immersed, and the temperature and humidity after the metal oxide film 81 is immersed in the solution. What is necessary is just to determine suitably according to a use.

次に、図7(b)に示すように、後に電解液を注入する空間Sを囲むように適当な厚みを有する封止材47を配置する。ここで、適当な厚みとは、図2(a),(b)に示す電解液44の厚みと同程度の厚みを示す。続いて、評価用基板42の第一領域71及び対向基板43の還元層53が相互に重なると共に、評価用基板42の第二領域72及び対向基板43の還元層53が相互に重なるように、図6(c)に示す対向基板43の還元層53を電子取り出し層52側に向けて、図6(c)に示す対向基板43を評価用基板42と対向させて配置する。その後、封止材47を適切な硬化工程により硬化させる。封止材47として光硬化性樹脂と熱硬化性樹脂との混合物を用いた場合の硬化工程としては、例えば紫外線を対向基板43側から照射した後、約80℃の温度下で保持及び静置する工程が挙げられる。   Next, as shown in FIG. 7B, a sealing material 47 having an appropriate thickness is disposed so as to surround a space S into which an electrolytic solution will be injected later. Here, the appropriate thickness indicates a thickness comparable to the thickness of the electrolytic solution 44 shown in FIGS. 2 (a) and 2 (b). Subsequently, the first region 71 of the evaluation substrate 42 and the reduction layer 53 of the counter substrate 43 overlap each other, and the second region 72 of the evaluation substrate 42 and the reduction layer 53 of the counter substrate 43 overlap each other. The counter substrate 43 shown in FIG. 6C is arranged to face the evaluation substrate 42 with the reduction layer 53 of the counter substrate 43 shown in FIG. 6C facing the electron extraction layer 52 side. Thereafter, the sealing material 47 is cured by an appropriate curing process. As a curing step when a mixture of a photocurable resin and a thermosetting resin is used as the sealing material 47, for example, after irradiation with ultraviolet rays from the counter substrate 43 side, it is held and allowed to stand at a temperature of about 80 ° C. The process to do is mentioned.

次に、図7(b)に示す評価用基板42と封止材47と対向基板43によって囲まれて形成された空間Sに注入孔49を通じて電解質44を注入する。その後、図7(c)に示すように、注入孔49の上部をガラス板55で閉じる。対向基板43とガラス板55の上部を封止材56とガラス板57とで順次覆い、封止材56を適切な硬化工程により硬化させる。
以上の工程により、図1及び図2に示すように発電性能評価部61と色素評価部62とを備えてなる評価用試験体41が完成する。
Next, an electrolyte 44 is injected into the space S formed by the evaluation substrate 42, the sealing material 47, and the counter substrate 43 shown in FIG. Thereafter, as shown in FIG. 7C, the upper part of the injection hole 49 is closed with a glass plate 55. The upper portions of the counter substrate 43 and the glass plate 55 are sequentially covered with the sealing material 56 and the glass plate 57, and the sealing material 56 is cured by an appropriate curing process.
Through the above steps, an evaluation test body 41 including a power generation performance evaluation unit 61 and a dye evaluation unit 62 as shown in FIGS. 1 and 2 is completed.

[測定工程]
製造した評価用試験体41に設けられた発電層45の電気特性を測定するために、先ず評価用試験体41の発電性能評価部61の電子取り出し層52と還元層53とを配線58により接続し、配線58に電気特性測定装置65を設ける。続いて、電気特性測定装置65から印加電圧を還元層53に加えて、電解質44での酸化還元反応(図3参照)を生じさせ、発電層45からの電流を電子取り出し層52及び配線58を介して電気特性測定装置65に取り込む。前記印加電圧を変化させながら、発電層45からの電流を測定することにより、発電性能評価部61の発電層45のI−V特性を正確に測定できる。
[Measurement process]
In order to measure the electrical characteristics of the power generation layer 45 provided in the manufactured test specimen 41 for evaluation, first, the electron extraction layer 52 and the reduction layer 53 of the power generation performance evaluation section 61 of the test specimen 41 for evaluation are connected by the wiring 58. Then, an electrical characteristic measuring device 65 is provided on the wiring 58. Subsequently, an applied voltage is applied from the electrical characteristic measuring device 65 to the reducing layer 53 to cause an oxidation-reduction reaction (see FIG. 3) in the electrolyte 44, and the current from the power generation layer 45 is passed through the electron extraction layer 52 and the wiring 58. Via the electrical characteristic measuring device 65. By measuring the current from the power generation layer 45 while changing the applied voltage, the IV characteristics of the power generation layer 45 of the power generation performance evaluation unit 61 can be accurately measured.

[分析工程]
製造した評価用試験体41に設けられた発電層45の増感色素82の濃度測定及び構造解析を行うために、先ず評価用試験体41の色素評価部62の評価用基板42に赤外分光用の赤外光が導入されるように、評価用試験体41を多重内部反射FT−IR法により測定を行う図示しない赤外分光測定装置に設置する。続いて、図4を用いて説明したように前記赤外分光測定装置からの赤外光を評価用試験体41の色素評価部62の評価用基板42で内部伝搬させて、発電層45の前記赤外光に対する吸収特性を測定する。この測定結果と、予め測定した発電層45の金属酸化膜81及び電解質44の前記赤外光に対する吸収特性とを比較することにより、増感色素82の前記赤外光に対する吸収特性が得られる。そして、増感色素82の前記赤外光に対する吸収特性を解析することにより、増感色素82の化学構造及びその変化を解析できる。
[Analysis process]
In order to perform concentration measurement and structural analysis of the sensitizing dye 82 of the power generation layer 45 provided in the manufactured test specimen 41 for evaluation, first, infrared spectroscopy is applied to the evaluation substrate 42 of the dye evaluation section 62 of the test specimen 41 for evaluation. The test specimen 41 for evaluation is installed in an infrared spectrometer (not shown) that performs measurement by the multiple internal reflection FT-IR method so that infrared light for use is introduced. Subsequently, as described with reference to FIG. 4, the infrared light from the infrared spectroscopic measurement device is propagated internally by the evaluation substrate 42 of the dye evaluation unit 62 of the evaluation test body 41, and the power generation layer 45 Measure the absorption characteristics for infrared light. By comparing the measurement results with the absorption characteristics of the metal oxide film 81 and the electrolyte 44 of the power generation layer 45 measured with respect to the infrared light, the absorption characteristics of the sensitizing dye 82 with respect to the infrared light can be obtained. Then, by analyzing the absorption characteristic of the sensitizing dye 82 with respect to the infrared light, the chemical structure of the sensitizing dye 82 and its change can be analyzed.

上記説明した発電層45の評価方法においては、前記測定工程と前記分析工程を同時に行ってもよく、順次行ってもよい。   In the method for evaluating the power generation layer 45 described above, the measurement step and the analysis step may be performed simultaneously or sequentially.

以上説明したように、本実施形態の発電層45の評価方法においては、発電性能評価部61と色素評価部62とを備えた評価用試験体41を用いて、発電層45のI−V特性等の電気特性を取得すると共に、多重内部反射FT−IR法を用いた赤外光に対する吸収特性の測定結果を解析して増感色素82の濃度、化学構造及びその変化を得ることができる。   As described above, in the method for evaluating the power generation layer 45 of the present embodiment, the IV characteristics of the power generation layer 45 are obtained using the evaluation test body 41 including the power generation performance evaluation unit 61 and the dye evaluation unit 62. In addition, the concentration, chemical structure and change of the sensitizing dye 82 can be obtained by analyzing the measurement result of the absorption characteristic for infrared light using the multiple internal reflection FT-IR method.

次いで、本実施形態の評価用試験体41を用いた色素増感太陽電池の製造設備の管理方法について説明する。   Next, a method for managing a production facility for a dye-sensitized solar cell using the test specimen 41 for evaluation of the present embodiment will be described.

図示しない色素増感太陽電池の製造設備は、上記説明した発電層45の評価方法の各工程と同様の工程を実施できる設備である。但し、色素増感太陽電池は、評価用試験体41の評価用基板42の替わりに樹脂フィルムやガラス板等の透明基材を用い、この透明基材を第一領域及び第二領域に区画せずに、一方の板面の全体に電子取り出し層52と同様の材質からなる透明導電層を形成して製造される。また、対向基板の板面には対向導電層及び還元層が形成される。   A dye-sensitized solar cell manufacturing facility (not shown) is a facility that can perform the same steps as the steps of the method for evaluating the power generation layer 45 described above. However, in the dye-sensitized solar cell, a transparent substrate such as a resin film or a glass plate is used instead of the evaluation substrate 42 of the evaluation test body 41, and the transparent substrate is partitioned into a first region and a second region. Instead, it is manufactured by forming a transparent conductive layer made of the same material as that of the electron extraction layer 52 on one whole plate surface. Further, a counter conductive layer and a reduction layer are formed on the plate surface of the counter substrate.

色素増感太陽電池の製造設備の管理方法では、上記の色素増感太陽電池の製造設備において、金属酸化膜81と増感色素82からなる発電層45の材質、形成方法及び周辺環境を同一に揃えること以外は、色素増感太陽電池と評価用試験体41とを、それぞれの構成要素に適した材質を用いて、適切な形成方法及び周辺環境を設定・実施しながら、並行して製造する。そして、色素増感太陽電池と評価用試験体41における発電層45の形成段階において、上記説明した発電層45の評価方法を実施し、得られた結果に基づいて色素増感太陽電池の製造設備の周辺環境を制御する。具体的には、発電層45の評価方法によって得られた発電層45のI−V特性及び増感色素82の構造解析の結果が所定の条件に該当しない場合は、色素増感太陽電池の製造設備の周辺環境にフィードバック制御をかけて、前記所定の条件を満たすように前記周辺環境を変更してもよい。   In the method for managing the production facility of the dye-sensitized solar cell, the material, the formation method, and the surrounding environment of the power generation layer 45 including the metal oxide film 81 and the sensitizing dye 82 are the same in the production facility of the dye-sensitized solar cell. Except for aligning, the dye-sensitized solar cell and the test specimen 41 for evaluation are manufactured in parallel using materials suitable for each component while setting and implementing an appropriate formation method and surrounding environment. . And in the formation stage of the electric power generation layer 45 in the dye-sensitized solar cell and the test body 41 for evaluation, the evaluation method of the electric power generation layer 45 demonstrated above is implemented, and the manufacturing equipment of a dye-sensitized solar cell based on the obtained result Control the surrounding environment. Specifically, when the IV characteristics of the power generation layer 45 obtained by the evaluation method of the power generation layer 45 and the result of the structural analysis of the sensitizing dye 82 do not satisfy the predetermined conditions, the production of the dye-sensitized solar cell is performed. The surrounding environment may be changed so as to satisfy the predetermined condition by applying feedback control to the surrounding environment of the facility.

本実施形態の色素増感太陽電池の製造設備の管理方法では、発電層45の評価方法で得られた発電層45の電気特性と増感色素82の構造解析により発電層45が所定の条件で製造されているかを正確に見極めることができ、色素増感太陽電池の生産性を高めて、歩留まりよく製造できる。   In the method for managing the production facility of the dye-sensitized solar cell according to the present embodiment, the power generation layer 45 is subjected to a predetermined condition based on the electrical characteristics of the power generation layer 45 obtained by the evaluation method of the power generation layer 45 and the structural analysis of the sensitizing dye 82. It is possible to accurately determine whether it is manufactured, increase the productivity of the dye-sensitized solar cell, and manufacture with good yield.

以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments, and various modifications are possible within the scope of the gist of the present invention described in the claims. Deformation / change is possible.

次に、本発明を以下の実施例により詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。   Next, the present invention will be described in detail by the following examples, but the present invention is not limited only to these examples.

(実施例1)
先ず、評価用基板としてFzシリコン基板を用意し、前記基板の長手方向の中央を第二領域とし、その両側を第一領域として区分した。次いで、スパッタリング法により、第一領域のFzシリコン基板の一方の板面にITOからなる電子取り出し層を形成する。その後、スクリーン印刷法により、電子取り出し層と第二領域のFzシリコン基板の前記一方の板面とを跨ぐようにTiOペーストを塗布して、500℃で焼成することによりTiOからなる金属酸化膜を形成した。次いで、N719と、アセトニトリルとt−ブタノールとの1:1混合溶媒とからなるN719濃度0.3%の増感色素溶液が収容された浸漬槽に、金属酸化膜を温度30℃で24時間浸漬させて、金属酸化膜に増感色素を担持させた発電層を形成した。
Example 1
First, an Fz silicon substrate was prepared as an evaluation substrate, and the center in the longitudinal direction of the substrate was defined as a second region, and both sides thereof were classified as a first region. Next, an electron extraction layer made of ITO is formed on one plate surface of the Fz silicon substrate in the first region by sputtering. Then, a TiO 2 paste is applied by screen printing so as to straddle the electron extraction layer and the one surface of the Fz silicon substrate in the second region, and baked at 500 ° C. to oxidize the metal oxide composed of TiO 2. A film was formed. Next, the metal oxide film was immersed for 24 hours at a temperature of 30 ° C. in an immersion tank containing N719 and a sensitizing dye solution containing N719 and a 1: 1 mixed solvent of acetonitrile and t-butanol. Thus, a power generation layer in which a sensitizing dye was supported on a metal oxide film was formed.

次に、一方の面にFTOがコーティングされたガラスからなる対向基板(以下、FTOガラス基板という)を用意した。次いで、メタノール、エタノール等の溶媒に白金を溶かした白金溶液をFTO上に塗布した後、500℃で120分間、焼成して白金からなる還元層を形成した。   Next, a counter substrate (hereinafter referred to as an FTO glass substrate) made of glass with one surface coated with FTO was prepared. Next, a platinum solution in which platinum was dissolved in a solvent such as methanol or ethanol was applied on the FTO, and then fired at 500 ° C. for 120 minutes to form a reduced layer made of platinum.

次に、Fzシリコン基板とFTOガラス基板との間に電解液を注入するための空間を形成するために、Fzシリコン基板又はFTOガラス基板の一方の板面の所定の位置に、紫外線硬化樹脂と熱硬化樹脂を混合した封止樹脂からなる封止材を配置した。次いで、Fzシリコン基板とFTOガラス基板の各第一領域、各第二領域がそれぞれ相互に重なり、Fzシリコン基板とFTOガラス基板のそれぞれの一方の板面が互いに対向するように、Fzシリコン基板とFTOガラス基板とを封止材を介在させて配置した。その後、この封止材を硬化させて、Fzシリコン基板とFTOガラス基板との間に形成された空間にアセトニトリル溶媒の市販の色素増感太陽電池用の電解液(商品名:イオドライトAN−50(ソラノニクス社製)からなる電解液を注入し、注入孔をガラス板で封止した。更に、そのガラス板の上から前記封止樹脂からなる封止材とガラス板とを順次積載して封止し、図1及び図2に示す評価用試験体Aを得た。   Next, in order to form a space for injecting an electrolyte between the Fz silicon substrate and the FTO glass substrate, an ultraviolet curable resin and a predetermined position on one plate surface of the Fz silicon substrate or the FTO glass substrate The sealing material which consists of sealing resin which mixed thermosetting resin was arrange | positioned. Next, the first and second regions of the Fz silicon substrate and the FTO glass substrate overlap with each other, and the Fz silicon substrate and the FTO glass substrate face each other so that one plate surface of each of the Fz silicon substrate and the FTO glass substrate faces each other. An FTO glass substrate was placed with a sealing material interposed. Then, this sealing material is hardened, and an electrolytic solution (trade name: Iodolite AN-50 (tradename: Iodolite AN-50) of acetonitrile solvent in a space formed between the Fz silicon substrate and the FTO glass substrate. An electrolyte solution made of Sola Nonix Co., Ltd. was injected, and the injection hole was sealed with a glass plate, and the sealing material made of the sealing resin and the glass plate were sequentially stacked on the glass plate and sealed. Thus, the test specimen A for evaluation shown in FIGS. 1 and 2 was obtained.

(実施例2)
ITOからなる電子取り出し層に替えて、第一領域のFzシリコン基板の一方の板面にTiCl処理を施すこと以外は、実施例1と同一の材料を用いて、同様の作業を行うことにより評価用試験体Bを得た。
(Example 2)
By replacing the electron extraction layer made of ITO with the same material as in Example 1 except that one plate surface of the Fz silicon substrate in the first region is treated with TiCl 4 , A test specimen B for evaluation was obtained.

(比較例1)
Fzシリコン基板の前記一方の板面全体にITOからなる電子取り出し層を形成し、第一及び第二の領域のFzシリコン基板の前記一方の板面を跨ぐようにTiOペーストを塗布すること以外は、実施例1と同一の材料を用いて、同様の作業を行うことにより評価用試験体Cを得た。
(Comparative Example 1)
Other than forming an electron extraction layer made of ITO on the entire surface of the Fz silicon substrate and applying the TiO 2 paste so as to straddle the one surface of the Fz silicon substrate in the first and second regions. Obtained the test body C for evaluation by performing the same operation using the same material as in Example 1.

(比較例2)
Fzシリコン基板の第一領域にITOからなる電子取り出し層を形成せずに、第一及び第二の領域のFzシリコン基板の前記一方の板面を跨ぐようにTiOペーストを塗布すること以外は、実施例1と同一の材料を用いて、同様の作業を行うことにより評価用試験体Dを得た。
(Comparative Example 2)
Except for applying the TiO 2 paste so as to straddle the one surface of the Fz silicon substrate in the first and second regions without forming the electron extraction layer made of ITO in the first region of the Fz silicon substrate. A test specimen D for evaluation was obtained by performing the same operation using the same material as in Example 1.

(評価用試験体A〜Dを用いた発電層の発電性能の評価)
実施例1,2及び比較例1で得られた各評価用試験体A〜Cにおいて、図2(a)に示すように、電子取り出し層と還元層とを配線で接続し、電気特性測定装置を配置した。比較例2で得られた評価用試験体Dには電子取り出し層を形成しなかったため、評価用試験体DのFzシリコン基板と還元層とを配線で接続し、電気特性測定装置を配置した。次いで、電気特性測定装置を用いて、各評価用試験体A〜Dの発電層のI−V特性を取得した。実施例1及び実施例2の各評価用試験体A,Bの発電層のI−V特性のグラフを図8に示す。この後、図2(a)において矢印で示すように、対向基板側から評価用試験体A〜Dに市販のLEDライト(パナソニック株式会社製、照度:46k lux)からの光を照射してエネルギー変換効率を測定した。各評価用試験体A〜Dの発電層のI−V特性における開放電圧(Voc)、短絡電流(Jsc)、フィルファクター(FF)、エネルギー変換効率(PCE)を表1に示す。
(Evaluation of power generation performance of power generation layer using test specimens A to D for evaluation)
In each of the test specimens A to C obtained in Examples 1 and 2 and Comparative Example 1, as shown in FIG. 2 (a), the electron extraction layer and the reduction layer are connected by wiring, and an electrical property measuring device Arranged. Since the test sample D for evaluation obtained in Comparative Example 2 was not formed with an electron extraction layer, the Fz silicon substrate of the test sample for evaluation D and the reducing layer were connected by wiring, and an electrical property measuring device was arranged. Subsequently, the IV characteristic of the power generation layer of each of the test specimens for evaluation A to D was obtained using an electrical characteristic measuring device. FIG. 8 shows a graph of the IV characteristics of the power generation layers of the test specimens A and B for evaluation in Example 1 and Example 2. Thereafter, as shown by arrows in FIG. 2 (a), energy from a commercially available LED light (manufactured by Panasonic Corporation, illuminance: 46 k lux) is irradiated onto the test specimens A to D for evaluation from the counter substrate side. Conversion efficiency was measured. Table 1 shows the open-circuit voltage (V oc ), short-circuit current (J sc ), fill factor (FF), and energy conversion efficiency (PCE) in the IV characteristics of the power generation layer of each test specimen A to D.

表1からわかるように、本発明を適用した実施例1及び実施例2の評価用試験体A,Bの第一領域に電流取り出し層が設けられていることにより、各評価用試験体A,Bの発電層のI−V特性等の電気特性が良好に取得されている。比較例1の評価用試験体CにおいてもI−V特性等の電気特性が良好に取得されたが、比較例2の評価用試験体Dでは電子取り出し層が形成されなかったため、電解質及び発電層の酸化還元反応が継続的に生じず、電気特性を測定することは不可能であった。   As can be seen from Table 1, by providing a current extraction layer in the first region of the evaluation specimens A and B of Example 1 and Example 2 to which the present invention is applied, each evaluation specimen A, The electric characteristics such as the IV characteristic of the power generation layer of B have been acquired well. In the evaluation specimen C of Comparative Example 1, electrical characteristics such as IV characteristics were obtained well, but in the evaluation specimen D of Comparative Example 2, the electron extraction layer was not formed. Thus, it was impossible to measure the electrical characteristics.

Figure 2014157797
Figure 2014157797

(評価用試験体A〜Dを用いた発電層の増感色素の評価)
次に、実施例1,2及び比較例1,2の各評価用試験体A〜DのFzシリコン基板側を多重内部反射FT−IR測定装置(商品名:MB100(BOMEN社製))に対向させて、エネルギー変換効率を測定した時と同様の光を評価用試験体A〜Dに照射しながら、多重内部反射FT−IR法を用いて評価用試験体A〜Dの各発電層の増感色素の化学構造を解析した。解析を行うにあたっての各評価用試験体A〜Dにおける赤外光の透過性の評価結果を表1に示す。
(Evaluation of sensitizing dye of power generation layer using test specimens A to D for evaluation)
Next, the Fz silicon substrate side of each of the test specimens A to D for Examples 1 and 2 and Comparative Examples 1 and 2 is opposed to a multiple internal reflection FT-IR measuring device (trade name: MB100 (BOMEN)). Then, while irradiating the evaluation specimens A to D with the same light as when the energy conversion efficiency was measured, the multiple power generation layers of the evaluation specimens A to D were increased using the multiple internal reflection FT-IR method. The chemical structure of the dye was analyzed. Table 1 shows the evaluation results of the infrared light transmittance in each of the test specimens A to D for analysis.

表1の「赤外光透過性」の欄には、評価用試験体D、即ちFzシリコン基板の第一領域、第二領域の何れの領域にも電子取り出し層が形成されていない評価用試験体の赤外光の透過性を基準「◎」として記載した。評価用試験体Aは、評価用試験体Dよりも赤外光の透過率は劣るものの、多重内部反射FT−IR測定装置で取得したスペクトルの信号雑音比が良好で増感色素の化学構造の解析可能なスペクトルを取得可能であった。評価用試験体Bは、かろうじてスペクトルを得られるものの、スペクトルの信号雑音比が悪く、増感色素の化学構造の解析は困難であった。評価用試験体Cは、赤外光を全く通さず、増感色素の化学構造の解析は不可能であった。   In the column of “Infrared light transmissivity” in Table 1, an evaluation test D, that is, an evaluation test in which an electron extraction layer is not formed in any of the first region and the second region of the Fz silicon substrate. The infrared light transmittance of the body was described as a reference “◎”. Although the test specimen A for evaluation has a lower infrared light transmittance than the test specimen D for evaluation, the signal-to-noise ratio of the spectrum obtained with the multiple internal reflection FT-IR measurement apparatus is good, and the chemical structure of the sensitizing dye is An analyzable spectrum could be obtained. Although the test specimen B for evaluation was barely able to obtain a spectrum, the signal-to-noise ratio of the spectrum was poor, and it was difficult to analyze the chemical structure of the sensitizing dye. The test specimen C for evaluation did not pass infrared light at all, and analysis of the chemical structure of the sensitizing dye was impossible.

以上説明したように、本発明によれば、電子取り出し層がFzシリコン基板の第一領域のみに形成されている発電性能評価部において、発電層のI−V特性等の電気特性が得られることを確認した。また、発電層が赤外光を内部伝搬可能なFzシリコン基板に当接してなる色素評価部において多重内部反射FT−IR法を用いた発電層の赤外光に対する吸収特性が得られることを確認した。   As described above, according to the present invention, in the power generation performance evaluation unit in which the electron extraction layer is formed only in the first region of the Fz silicon substrate, electrical characteristics such as the IV characteristics of the power generation layer can be obtained. It was confirmed. In addition, it was confirmed that the power generation layer absorbs infrared light with the power generation layer using the multiple internal reflection FT-IR method in the dye evaluation section formed by contacting the power generation layer with an Fz silicon substrate capable of internally transmitting infrared light. did.

41…評価用試験体、42…評価用基板、43…対向基板、44…電解質、52…電子取り出し層、53…還元層、61…発電性能評価部、62…色素評価部、71…第一領域、72…第二領域   DESCRIPTION OF SYMBOLS 41 ... Test body for evaluation, 42 ... Substrate for evaluation, 43 ... Counter substrate, 44 ... Electrolyte, 52 ... Electron extraction layer, 53 ... Reduction layer, 61 ... Power generation performance evaluation part, 62 ... Dye evaluation part, 71 ... First Area, 72 ... second area

Claims (5)

金属酸化膜及び前記金属酸化膜に担持させた増感色素からなる発電層に光を照射したときの電気特性の測定と多重内部反射フーリエ変換赤外分光法を用いた前記増感色素の構造解析により前記発電層の評価を行うための評価用試験体であって、
赤外分光法用の赤外光が内部伝搬可能な高屈折率媒質からなる評価用基板と、
前記評価用基板と間隔をあけて配置され且つ前記光を透過する対向基板と、
前記評価用基板と前記対向基板の間に注入された酸化還元対を含む電解質と、を備え、
前記評価用基板に第一領域及び第二領域が区画されており、
前記評価用基板の第一領域の板面に前記発電層から電子を取り出す電子取り出し層が設けられ、
前記評価用基板の第二領域の板面及び前記電子取り出し層の上に前記発電層が設けられ、
前記対向基板の板面に前記光を透過し且つ前記電解質の還元能を有する還元層が設けられ、
前記評価用基板の第一領域及び前記対向基板の還元層が相互に重なる部分が前記発電層の電気特性を測定するための発電性能評価部とされ、前記評価用基板の第二領域及び前記対向基板の還元層が相互に重なる部分が前記増感色素の構造を解析するための色素評価部とされていることを特徴とする評価用試験体。
Measurement of electrical characteristics of a power generation layer composed of a metal oxide film and a sensitizing dye supported on the metal oxide film, and structural analysis of the sensitizing dye using multiple internal reflection Fourier transform infrared spectroscopy A test specimen for evaluation for evaluating the power generation layer according to
An evaluation substrate made of a high refractive index medium capable of internally transmitting infrared light for infrared spectroscopy;
A counter substrate disposed at a distance from the evaluation substrate and transmitting the light;
An electrolyte containing an oxidation-reduction pair injected between the evaluation substrate and the counter substrate,
A first region and a second region are defined on the evaluation substrate;
An electron extraction layer for extracting electrons from the power generation layer is provided on the plate surface of the first region of the evaluation substrate,
The power generation layer is provided on the plate surface of the second region of the evaluation substrate and the electron extraction layer,
A reducing layer that transmits the light and has a reducing ability of the electrolyte is provided on a plate surface of the counter substrate;
A portion where the first region of the evaluation substrate and the reduction layer of the counter substrate overlap each other is a power generation performance evaluation unit for measuring electrical characteristics of the power generation layer, and the second region of the evaluation substrate and the counter A test specimen for evaluation characterized in that a portion where the reduction layers of the substrate overlap each other serves as a dye evaluation unit for analyzing the structure of the sensitizing dye.
前記還元層が導電性の高い金属からなることを特徴とする請求項1に記載の評価用試験体。   The test specimen for evaluation according to claim 1, wherein the reduction layer is made of a highly conductive metal. 請求項1に記載の評価用試験体を用意する工程と、
前記評価用試験体の前記電子取り出し層と前記還元層とを端子として、前記対向基板側から前記評価用試験体の発電性能評価部に光を照射して前記発電層の電気特性を測定する測定工程と、
前記評価用試験体の前記評価用基板に赤外光を内部伝搬させて、多重内部反射フーリエ変換赤外分光法により前記評価用増感色素の吸収特性を測定し、前記評価用増感色素の化学構造を解析する分析工程と、を備え、
前記測定工程と前記分析工程を同時又は順次行うことを特徴とする発電層の評価方法。
Preparing a test specimen for evaluation according to claim 1;
Measurement of measuring the electrical characteristics of the power generation layer by irradiating the power generation performance evaluation section of the test body for evaluation from the counter substrate side with the electron extraction layer and the reduction layer of the evaluation test body as terminals. Process,
Infrared light is propagated internally to the evaluation substrate of the evaluation test body, and the absorption characteristics of the evaluation sensitizing dye are measured by multiple internal reflection Fourier transform infrared spectroscopy, and the evaluation sensitizing dye An analysis process for analyzing the chemical structure,
A method for evaluating a power generation layer, wherein the measurement step and the analysis step are performed simultaneously or sequentially.
前記還元層が導電性の高い金属からなることを特徴とする請求項3に記載の発電層の評価方法。  The power generation layer evaluation method according to claim 3, wherein the reduction layer is made of a highly conductive metal. 請求項3又は4に記載の発電層の評価方法を色素増感太陽電池の製造設備において実施し、前記発電層の評価結果に基づいて前記色素増感太陽電池の製造設備の周辺環境を制御することを特徴とする色素増感太陽電池の製造設備の管理方法。

The method for evaluating a power generation layer according to claim 3 or 4 is carried out in a production facility for a dye-sensitized solar cell, and the surrounding environment of the production facility for the dye-sensitized solar cell is controlled based on an evaluation result of the power generation layer. A method for managing a production facility for a dye-sensitized solar cell.

JP2013029503A 2013-02-18 2013-02-18 Test specimen for evaluation, evaluation method for power generation layer, management method for manufacturing equipment of dye-sensitized solar cell Active JP6118981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013029503A JP6118981B2 (en) 2013-02-18 2013-02-18 Test specimen for evaluation, evaluation method for power generation layer, management method for manufacturing equipment of dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013029503A JP6118981B2 (en) 2013-02-18 2013-02-18 Test specimen for evaluation, evaluation method for power generation layer, management method for manufacturing equipment of dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2014157797A true JP2014157797A (en) 2014-08-28
JP6118981B2 JP6118981B2 (en) 2017-04-26

Family

ID=51578545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013029503A Active JP6118981B2 (en) 2013-02-18 2013-02-18 Test specimen for evaluation, evaluation method for power generation layer, management method for manufacturing equipment of dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP6118981B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323192A (en) * 1999-03-10 2000-11-24 Fuji Xerox Co Ltd Semiconductor electrode and photoelectric conversion element utilizing the electrode
JP2009016174A (en) * 2007-07-04 2009-01-22 Fujikura Ltd Photoelectric conversion element
US20110240989A1 (en) * 2010-04-06 2011-10-06 Sony Corporation Transparent conductive film and photoelectric converion element
JP2012122797A (en) * 2010-12-07 2012-06-28 Sony Corp Method and device for evaluating oxide semiconductor electrode, and method of manufacturing oxide semiconductor electrode
JP2012520822A (en) * 2009-03-19 2012-09-10 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) Modified surface
JP2013053862A (en) * 2011-09-01 2013-03-21 Sekisui Chem Co Ltd Evaluation test piece, evaluation method for sensitizing dye, and manufacturing method of dye-sensitized solar cell
US20130074932A1 (en) * 2011-09-23 2013-03-28 Chj-Don TENG Solar cell package structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323192A (en) * 1999-03-10 2000-11-24 Fuji Xerox Co Ltd Semiconductor electrode and photoelectric conversion element utilizing the electrode
JP2009016174A (en) * 2007-07-04 2009-01-22 Fujikura Ltd Photoelectric conversion element
JP2012520822A (en) * 2009-03-19 2012-09-10 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) Modified surface
US20110240989A1 (en) * 2010-04-06 2011-10-06 Sony Corporation Transparent conductive film and photoelectric converion element
JP2011222167A (en) * 2010-04-06 2011-11-04 Sony Corp Transparent conducting film and photoelectric conversion device
JP2012122797A (en) * 2010-12-07 2012-06-28 Sony Corp Method and device for evaluating oxide semiconductor electrode, and method of manufacturing oxide semiconductor electrode
JP2013053862A (en) * 2011-09-01 2013-03-21 Sekisui Chem Co Ltd Evaluation test piece, evaluation method for sensitizing dye, and manufacturing method of dye-sensitized solar cell
US20130074932A1 (en) * 2011-09-23 2013-03-28 Chj-Don TENG Solar cell package structure

Also Published As

Publication number Publication date
JP6118981B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
Barnes et al. Electron injection efficiency and diffusion length in dye-sensitized solar cells derived from incident photon conversion efficiency measurements
Halme et al. Spectral characteristics of light harvesting, electron injection, and steady-state charge collection in pressed TiO2 dye solar cells
Yan et al. Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%
Wang et al. Influence of electrolyte cations on electron transport and electron transfer in dye-sensitized solar cells
Christians et al. Best practices in perovskite solar cell efficiency measurements. Avoiding the error of making bad cells look good
Ravishankar et al. Intensity-modulated photocurrent spectroscopy and its application to perovskite solar cells
Richards et al. The mechanism of iodine reduction by TiO2 electrons and the kinetics of recombination in dye-sensitized solar cells
O’Regan et al. Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage
Jennings et al. Efficiency limitations in dye-sensitized solar cells caused by inefficient sensitizer regeneration
Wenger et al. Coupled optical and electronic modeling of dye-sensitized solar cells for steady-state parameter extraction
Shi et al. General characterization methods for photoelectrochemical cells for solar water splitting
Kopidakis et al. Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2
Katoh et al. Efficiencies of electron injection from excited sensitizer dyes to nanocrystalline ZnO films as studied by near-IR optical absorption of injected electrons
Furube et al. Lithium ion effect on electron injection from a photoexcited coumarin derivative into a TiO2 nanocrystalline film investigated by visible-to-IR ultrafast spectroscopy
Bai et al. Lithium-modulated conduction band edge shifts and charge-transfer dynamics in dye-sensitized solar cells based on a dicyanamide ionic liquid
Jennings et al. Reliable determination of electron diffusion length and charge separation efficiency in dye-sensitized solar cells
Anderson et al. Simultaneous transient absorption and transient electrical measurements on operating dye-sensitized solar cells: elucidating the intermediates in iodide oxidation
Li et al. Determination of sensitizer regeneration efficiency in dye-sensitized solar cells
Katoh et al. Effect of the particle size on the electron injection efficiency in dye-sensitized nanocrystalline TiO2 films studied by time-resolved microwave conductivity (TRMC) measurements
Hinsch et al. Status of dye solar cell technology as a guideline for further research
Xu et al. Charge recombination with fractional reaction orders in water-splitting dye-sensitized photoelectrochemical cells
Regan et al. Size-dependent ultrafast charge carrier dynamics of WO3 for photoelectrochemical cells
Nour-Mohhamadi et al. Determination of the light-induced degradation rate of the solar cell sensitizer N719 on TiO2 nanocrystalline particles
Zhang et al. Alternation of charge injection and recombination in dye-sensitized solar cells by the addition of nonconjugated bridge to organic dyes
Miettunen et al. Two-dimensional time-dependent numerical modeling of edge effects in dye solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170224

R150 Certificate of patent or registration of utility model

Ref document number: 6118981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350