JP2014157709A - Insulation cable and method for manufacturing the same - Google Patents

Insulation cable and method for manufacturing the same Download PDF

Info

Publication number
JP2014157709A
JP2014157709A JP2013027522A JP2013027522A JP2014157709A JP 2014157709 A JP2014157709 A JP 2014157709A JP 2013027522 A JP2013027522 A JP 2013027522A JP 2013027522 A JP2013027522 A JP 2013027522A JP 2014157709 A JP2014157709 A JP 2014157709A
Authority
JP
Japan
Prior art keywords
insulated cable
layer
insulating member
skin layer
porous resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013027522A
Other languages
Japanese (ja)
Other versions
JP5895869B2 (en
Inventor
Hiroshi Ishikawa
弘 石川
Minoru Oikawa
実 及川
Hideki Nonen
秀樹 南畝
Takehiro Sugiyama
剛博 杉山
Takashi Kumakura
崇 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013027522A priority Critical patent/JP5895869B2/en
Publication of JP2014157709A publication Critical patent/JP2014157709A/en
Application granted granted Critical
Publication of JP5895869B2 publication Critical patent/JP5895869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Abstract

PROBLEM TO BE SOLVED: To provide an insulation cable which can prevent infiltration of water from the end surface of an insulation member while suppressing cost increase, and a method for manufacturing the insulation cable.SOLUTION: An insulation cable 1 comprises a pair of conductors 21, 22, and an insulation member 3 which covers the pair of conductors 21, 22. The insulation member 3 includes a porous resin layer 31 in which vacancies 310 are formed, an outer peripheral skin layer 32 which prevents infiltration of water from the outer peripheral surface of the insulation member 3, and an end skin layer 33 which prevents infiltration of water from the end surface in the longitudinal direction of the insulation member 3. The end skin layer 33 is formed by heat-melting a part of the porous resin layer 31.

Description

本発明は、導線を絶縁部材で被覆した絶縁ケーブル及びその製造方法に関する。   The present invention relates to an insulated cable in which a conducting wire is covered with an insulating member and a method for manufacturing the same.

従来、導体を発泡絶縁体で被覆し、さらに発泡絶縁体の外周に非発泡のスキン層を設けた絶縁ケーブルが知られている(例えば、特許文献1,2,3参照)。   Conventionally, an insulated cable is known in which a conductor is covered with a foamed insulator and a non-foamed skin layer is provided on the outer periphery of the foamed insulator (see, for example, Patent Documents 1, 2, and 3).

これらの絶縁ケーブルは、発泡により多数の空孔が形成された樹脂材料を絶縁体として用いることにより、絶縁体の誘電率を小さくし、信号の高速伝送を可能としている。また、絶縁ケーブルの外周からの空孔への水分の浸入は、スキン層によって抑止されている。   These insulating cables use a resin material in which a large number of holes are formed by foaming as an insulator, thereby reducing the dielectric constant of the insulator and enabling high-speed signal transmission. Further, the penetration of moisture into the holes from the outer periphery of the insulated cable is suppressed by the skin layer.

特開平6−290644号公報JP-A-6-290644 特開平7−6631号公報Japanese Unexamined Patent Publication No. 7-6663 特開平11−120827号公報JP-A-11-120828

これらの絶縁ケーブルでは、絶縁ケーブルの外周からの水分の浸入はスキン層によって抑止されているが、絶縁ケーブルの長手方向における発泡絶縁体の端面では、多数の空孔がスキン層の外部に露出するので、この端面から水分が浸入してしまうおそれがある。   In these insulated cables, moisture permeation from the outer periphery of the insulated cable is suppressed by the skin layer, but a large number of holes are exposed to the outside of the skin layer on the end surface of the foamed insulator in the longitudinal direction of the insulated cable. Therefore, there is a possibility that moisture may enter from this end face.

水の比誘電率は例えば20℃において80.4であり、空気の比誘電率(1.0)よりも高いので、空孔に水分が浸入すると、発泡絶縁体の誘電率が高くなる。これにより、絶縁ケーブルの信号伝送特性が劣化してしまう。この信号伝送特性の劣化は、特に近年の高速通信(例えば1Gbps以上の通信)では大きな問題となり得る。   The relative dielectric constant of water is, for example, 80.4 at 20 ° C., which is higher than the relative dielectric constant of air (1.0). Therefore, when moisture enters the pores, the dielectric constant of the foamed insulator increases. Thereby, the signal transmission characteristic of an insulated cable will deteriorate. This deterioration in signal transmission characteristics can be a big problem especially in recent high-speed communications (for example, communications of 1 Gbps or more).

また、この発泡絶縁体の端面からの水分の浸入を防ぐため、例えば耐水性を有する樹脂によって発泡絶縁体の端面を封止することも考えられるが、この場合には、発泡絶縁体の端面を封止するための材料及び工数の増加によってコストが大きく上昇してしまう。   Further, in order to prevent moisture from entering from the end face of the foamed insulator, for example, it is conceivable to seal the end face of the foamed insulator with a water-resistant resin. The cost increases greatly due to an increase in materials and man-hours for sealing.

そこで、本発明は、コストの上昇を抑制しながら、絶縁部材の端面からの水分の浸入を防ぐことが可能な絶縁ケーブル、及び絶縁ケーブルの製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the insulated cable which can prevent the penetration | invasion of the water | moisture content from the end surface of an insulating member, and the insulated cable, suppressing the raise in cost.

本発明は、上記課題を解決することを目的として、導線と、前記導線を被覆する絶縁部材とを備え、前記絶縁部材は、空孔が形成された多孔質樹脂層と、前記絶縁部材の外周面からの水分の浸入を防ぐ外周表皮層と、前記絶縁部材の長手方向の端面からの水分の浸入を防ぐ端部表皮層とを有し、前記端部表皮層は、前記多孔質樹脂層の一部が熱により溶融することにより形成された絶縁ケーブルを提供する。   In order to solve the above-described problems, the present invention includes a conductive wire and an insulating member that covers the conductive wire, and the insulating member includes a porous resin layer in which pores are formed, and an outer periphery of the insulating member. An outer peripheral skin layer that prevents moisture from entering from the surface, and an end skin layer that prevents moisture from entering from the longitudinal end face of the insulating member, and the end skin layer is formed of the porous resin layer. Provided is an insulated cable that is partially melted by heat.

また、本発明は、上記課題を解決することを目的として、前記絶縁部材から導出された前記導線を加熱することにより、前記絶縁部材の長手方向の端部における前記多孔質樹脂層の一部を溶融させて前記端部表皮層を形成する、絶縁ケーブルの製造方法を提供する。   In addition, in order to solve the above-mentioned problems, the present invention heats the conducting wire led out from the insulating member, so that a part of the porous resin layer at the end in the longitudinal direction of the insulating member is formed. Provided is a method for manufacturing an insulated cable, which is melted to form the end skin layer.

本発明に係る絶縁ケーブル及びその製造方法によれば、コストの上昇を抑制しながら、絶縁部材の端面からの水分の浸入を防ぐことが可能となる。   According to the insulated cable and the method for manufacturing the same according to the present invention, it is possible to prevent moisture from entering from the end face of the insulating member while suppressing an increase in cost.

本発明の第1の実施の形態に係る絶縁ケーブルの端部付近を示す外観図。The external view which shows the edge part vicinity of the insulated cable which concerns on the 1st Embodiment of this invention. (a)は、図1のA−A線断面図。(b)は、図1のB−B線断面図。(A) is the sectional view on the AA line of FIG. (B) is the BB sectional drawing of FIG. 絶縁ケーブルの端部スキン層の形成工程を示し、(a)は斜視図、(b)は(a)のC−C線断面図。The formation process of the edge part skin layer of an insulated cable is shown, (a) is a perspective view, (b) is CC sectional view taken on the line of (a). 第2の実施の形態に係る絶縁ケーブルの端部付近を示す外観図。The external view which shows the edge part vicinity of the insulated cable which concerns on 2nd Embodiment. (a)は、図4のD−D線断面図。(b)は、図4のE−E線断面図。(A) is the DD sectional view taken on the line of FIG. (B) is the EE sectional view taken on the line of FIG. 絶縁ケーブルの端部スキン層の形成工程を示し、(a)は端部スキン層の形成前の状態を示す斜視図、(b)は端部スキン層の形成後の状態を示す絶縁部材の端面図。The formation process of the end part skin layer of an insulated cable is shown, (a) is a perspective view which shows the state before formation of an end part skin layer, (b) is the end surface of the insulation member which shows the state after formation of an end part skin layer Figure. 第3の実施の形態に係る絶縁ケーブルを示し、(a)は端部付近を示す外観図、(b)は端面図。The insulated cable which concerns on 3rd Embodiment is shown, (a) is an external view which shows an edge part vicinity, (b) is an end elevation. 第4の実施の形態に係る絶縁ケーブルの製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the insulated cable which concerns on 4th Embodiment.

[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る絶縁ケーブルの端部付近を示す外観図である。図2(a)は、図1のA−A線断面図である。図2(b)は、図1のB−B線断面図である。
[First Embodiment]
FIG. 1 is an external view showing the vicinity of an end of an insulated cable according to a first embodiment of the present invention. FIG. 2A is a cross-sectional view taken along line AA in FIG. FIG. 2B is a sectional view taken along line BB in FIG.

この絶縁ケーブル1は、一対の導線21,22と、これら一対の導線21,22を一括して被覆する絶縁部材3とを備えている。絶縁部材3は、図2(a)に示すように、一対の導線21,22の外周を被覆する多孔質樹脂層31、及び外周表皮層としての外周スキン層32を有する。多孔質樹脂層31には、微細な空孔310が形成されている。外周スキン層32は、多孔質樹脂層31の外周側を覆い、絶縁部材3の外周側からの水分の浸入を防いでいる。   The insulated cable 1 includes a pair of conducting wires 21 and 22 and an insulating member 3 that collectively covers the pair of conducting wires 21 and 22. As shown in FIG. 2A, the insulating member 3 includes a porous resin layer 31 that covers the outer periphery of the pair of conductive wires 21 and 22, and an outer peripheral skin layer 32 as an outer peripheral skin layer. Fine pores 310 are formed in the porous resin layer 31. The outer peripheral skin layer 32 covers the outer peripheral side of the porous resin layer 31 and prevents moisture from entering from the outer peripheral side of the insulating member 3.

一対の導線21,22は、例えばスズめっき軟銅線等の金属線からなり、互いに平行に配置されている。導線21,22は、撚線であることが望ましいが、単線であってもよい。導線21,22が撚線であれば、絶縁ケーブル1の可撓性を高めることができる。導線21,22は、それぞれの導体サイズが24AWG(導体径0.51mm)よりも細いものを好適に用いることができる。一対の導線21,22は、例えば通信速度が1Gbps以上の差動信号を伝送する。   The pair of conductive wires 21 and 22 are made of metal wires such as tin-plated annealed copper wires, for example, and are arranged in parallel to each other. The conducting wires 21 and 22 are preferably stranded wires, but may be single wires. If the conducting wires 21 and 22 are stranded wires, the flexibility of the insulated cable 1 can be increased. As the conductors 21 and 22, a conductor whose conductor size is thinner than 24AWG (conductor diameter 0.51 mm) can be suitably used. The pair of conductive wires 21 and 22 transmit a differential signal having a communication speed of 1 Gbps or more, for example.

多孔質樹脂層31としては、例えばポリエチレンあるいはPTFE(ポリテトラフルオロエチレン)等の樹脂に熱膨張性中空球を含んで発泡させたものを用いることができる。熱膨張性中空球としては、例えばシェル組成がメチルメタクリエートアクリロニトリルで、内包剤がイソブタンからなり、粒子径が32〜62μmのものを用いることができる。また、多孔質樹脂層31として、給水膨潤させた吸水性ポリマーを紫外線硬化型樹脂組成物に分散させ、その後脱水処理したものを用いてもよい。   As the porous resin layer 31, for example, a resin such as polyethylene or PTFE (polytetrafluoroethylene) that is foamed by including thermally expandable hollow spheres can be used. As the thermally expandable hollow sphere, for example, a shell composition of methyl methacrylate acrylonitrile, an encapsulant of isobutane, and a particle size of 32 to 62 μm can be used. Further, as the porous resin layer 31, a water-absorbing polymer swollen by water supply may be dispersed in an ultraviolet curable resin composition and then dehydrated.

多孔質樹脂層31は、上記のようにして形成された多数の空孔310を含み、その体積に占める空孔率は例えば30%以上70%以下である。なお、図2では、空孔310を模式的に示しているが、多孔質樹脂層31は、多数の空孔310が互いに連通して水分を吸収する吸水構造を有している。   The porous resin layer 31 includes a large number of pores 310 formed as described above, and the porosity in the volume is, for example, 30% or more and 70% or less. In FIG. 2, the pores 310 are schematically shown, but the porous resin layer 31 has a water absorption structure in which a large number of pores 310 communicate with each other to absorb moisture.

外周スキン層32は、例えば高密度ポリエチレン、ポリプロピレン、ポリメチルペンテン−1、ポリイミド(ナイロン)、ポリエステルの中から選ばれた非発泡樹脂材料を押出機で多孔質樹脂層31の外周に押し出し被覆して形成される。   The outer peripheral skin layer 32 is formed by, for example, extruding a non-foamed resin material selected from high density polyethylene, polypropylene, polymethylpentene-1, polyimide (nylon), and polyester on the outer periphery of the porous resin layer 31 with an extruder. Formed.

また、絶縁部材3は、図2(b)に示すように、絶縁部材3の長手方向の端面3aからの水分の浸入を防ぐ端部表皮層としての端部スキン層33を有している。この端部スキン層33は、多孔質樹脂層31の一部が熱により溶融することにより形成されている。多孔質樹脂層31が溶融する過程で、空孔310は多孔質樹脂層31が溶融した液状の溶融樹脂の流動によって消滅するため、端部スキン層33は防水性を有している。つまり、多孔質樹脂層31の長手方向の端部が、その全体に亘って端部スキン層33に覆われることにより、多孔質樹脂層31への水分の浸入が抑止されている。   In addition, as shown in FIG. 2B, the insulating member 3 has an end skin layer 33 as an end skin layer that prevents moisture from entering from the end surface 3 a in the longitudinal direction of the insulating member 3. The end skin layer 33 is formed by melting a part of the porous resin layer 31 with heat. In the process in which the porous resin layer 31 is melted, the pores 310 disappear due to the flow of the liquid molten resin in which the porous resin layer 31 is melted, so that the end skin layer 33 is waterproof. That is, the end portion in the longitudinal direction of the porous resin layer 31 is covered with the end portion skin layer 33 over the entire portion, so that the intrusion of moisture into the porous resin layer 31 is suppressed.

図2(a)に示すように、絶縁部材3は、その長手方向に垂直な断面における外周面3bの形状が、凸円弧状に湾曲して連続し、かつ一対の導線21,22の並列方向に沿った第1の方向における幅が、第1の方向に直交する第2の方向における幅よりも大きい長円形状である。図2(a)に示す例では、絶縁部材3の断面形状が楕円形状である。   As shown in FIG. 2 (a), the insulating member 3 has an outer peripheral surface 3b in a cross section perpendicular to the longitudinal direction thereof, curved in a convex arc shape and continuous, and a parallel direction of the pair of conductors 21 and 22 Is an ellipse having a width in the first direction that is greater than the width in the second direction orthogonal to the first direction. In the example shown in FIG. 2A, the cross-sectional shape of the insulating member 3 is an elliptical shape.

絶縁部材3は、第1の方向における幅が例えば1mm以上5mm以下であり、第2の方向における幅が例えば0.5mm以上2.5mm以下である。   The insulating member 3 has a width in the first direction of, for example, 1 mm to 5 mm, and a width in the second direction of, for example, 0.5 mm to 2.5 mm.

次に、図3を参照して絶縁ケーブル1の製造方法の一例について説明する。図3は、絶縁ケーブル1の端部スキン層33の形成工程を示し、(a)は斜視図、(b)は(a)のC−C線断面図である。   Next, an example of a method for manufacturing the insulated cable 1 will be described with reference to FIG. 3A and 3B show a process of forming the end skin layer 33 of the insulated cable 1, wherein FIG. 3A is a perspective view, and FIG. 3B is a cross-sectional view taken along the line CC of FIG.

この工程では、絶縁部材3から導出された一対の導線21,22を加熱することにより、絶縁部材3の長手方向の端部における多孔質樹脂層31の一部を溶融させて端部スキン層33を形成する。   In this step, by heating the pair of conductive wires 21 and 22 led out from the insulating member 3, a part of the porous resin layer 31 at the end in the longitudinal direction of the insulating member 3 is melted, and the end skin layer 33. Form.

より具体的には、絶縁部材3から導出された一対の導線21,22を、絶縁部材3の近傍において加熱治具6によって加熱し、一対の導線21,22を介した熱伝導によって多孔質樹脂層31の一部を溶融させる。加熱治具6は、相対移動可能な第1加熱部材61と第2加熱部材62とを有し、第1加熱部材61及び第2加熱部材62によって一対の導線21,22を挟持することにより、一対の導線21,22を加熱する。   More specifically, the pair of conducting wires 21 and 22 led out from the insulating member 3 are heated by the heating jig 6 in the vicinity of the insulating member 3, and the porous resin is formed by heat conduction through the pair of conducting wires 21 and 22. A part of the layer 31 is melted. The heating jig 6 includes a first heating member 61 and a second heating member 62 that are relatively movable, and by sandwiching the pair of conductors 21 and 22 by the first heating member 61 and the second heating member 62, A pair of conducting wires 21 and 22 are heated.

第1加熱部材61及び第2加熱部材62は、図略の電熱線等の熱源により、多孔質樹脂層31が溶融する温度よりも高い温度(例えば350℃以上)に加熱されている。なお、この熱源は、第1加熱部材61及び第2加熱部材62の一方のみに設けられていてもよい。例えば第1加熱部材61のみに熱源が設けられている場合、第2加熱部材62は第1加熱部材61よりも熱伝導率が低い材料であることが望ましい。   The first heating member 61 and the second heating member 62 are heated to a temperature (for example, 350 ° C. or higher) higher than the temperature at which the porous resin layer 31 melts by a heat source such as a heating wire (not shown). This heat source may be provided only on one of the first heating member 61 and the second heating member 62. For example, when the heat source is provided only in the first heating member 61, the second heating member 62 is desirably a material having a lower thermal conductivity than the first heating member 61.

加熱治具6によって加熱された一対の導線21,22の熱は、多孔質樹脂層31の一部が溶融した液状の溶融樹脂を発生させる。その後、この溶融樹脂の温度が低下して固化することにより、端部スキン層33が形成される。   The heat of the pair of conductors 21 and 22 heated by the heating jig 6 generates a liquid molten resin in which a part of the porous resin layer 31 is melted. Thereafter, the temperature of the molten resin is lowered and solidified, whereby the end skin layer 33 is formed.

一対の導線21,22が加熱される位置と多孔質樹脂層31の端面との距離は、一対の導線21,22を介した熱伝導により多孔質樹脂層31が溶融する距離であればよい。   The distance between the position where the pair of conducting wires 21 and 22 is heated and the end surface of the porous resin layer 31 may be a distance at which the porous resin layer 31 is melted by heat conduction through the pair of conducting wires 21 and 22.

なお、図3では、一対の導線21,22を一括して同時に加熱治具6によって加熱する場合について説明しているが、例えば一方の導線21のみの加熱によって多孔質樹脂層31の一部を溶融させてもよい。また、一方の導線21を加熱した後に他方の導線22を加熱してもよい。   In addition, although FIG. 3 demonstrates the case where a pair of conducting wire 21 and 22 is heated by the heating jig 6 simultaneously, for example, a part of the porous resin layer 31 is formed by heating only one conducting wire 21. It may be melted. Moreover, after heating one conducting wire 21, the other conducting wire 22 may be heated.

(第1の実施の形態の作用及び効果)
以上説明した第1の実施の形態によれば、以下に述べる作用及び効果が得られる。
(Operation and effect of the first embodiment)
According to the first embodiment described above, the following operations and effects can be obtained.

(1)絶縁部材3の端面3aからの水分の浸入が端部スキン層33によって抑止されるので、多孔質樹脂層31への水分の浸入により、多孔質樹脂層31における誘電率が高くなってしまうことを防ぐことができる。これにより、絶縁ケーブル1の信号伝送特性の劣化を抑制することができる。 (1) Since the penetration of moisture from the end face 3a of the insulating member 3 is suppressed by the end skin layer 33, the penetration of moisture into the porous resin layer 31 increases the dielectric constant in the porous resin layer 31. Can be prevented. Thereby, deterioration of the signal transmission characteristic of the insulated cable 1 can be suppressed.

(2)端部スキン層33は、多孔質樹脂層31の一部が溶融することにより形成されるので、例えば他の樹脂部材等によって多孔質樹脂層31の端面を覆うことにより防水処理を行う場合に比較して、コストの上昇を抑制することができる。 (2) Since the end skin layer 33 is formed by melting a part of the porous resin layer 31, for example, a waterproof treatment is performed by covering the end surface of the porous resin layer 31 with another resin member or the like. Compared to the case, an increase in cost can be suppressed.

(3)多孔質樹脂層31は、一対の導線21,22からの熱伝導により加熱されるので、絶縁部材3の長手方向の端部付近における多孔質樹脂層31のみを部分的に加熱することができる。これにより、例えば絶縁部材3に熱風を当てて多孔質樹脂層31を加熱する場合に比較して、意図しない部分が溶融してしまうことを抑制することができる。 (3) Since the porous resin layer 31 is heated by heat conduction from the pair of conductive wires 21 and 22, only the porous resin layer 31 in the vicinity of the end in the longitudinal direction of the insulating member 3 is partially heated. Can do. Thereby, compared with the case where hot air is applied, for example to the insulating member 3, and the porous resin layer 31 is heated, it can suppress that the part which is not intended melt | dissolves.

[第2の実施の形態]
次に、本発明の第2の実施の形態について、図4乃至図6を参照して説明する。図4乃至図6において、第1の実施の形態について説明したものと実質的に共通する機能を有する部材等については、同一の符号を付してその説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. 4 to 6, members having substantially the same functions as those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図4は、第2の実施の形態に係る絶縁ケーブル1Aの端部付近を示す外観図である。図5(a)は、図4のD−D線断面図である。図5(b)は、図4のE−E線断面図である。   FIG. 4 is an external view showing the vicinity of the end of the insulated cable 1A according to the second embodiment. Fig.5 (a) is the DD sectional view taken on the line of FIG. FIG.5 (b) is the EE sectional view taken on the line of FIG.

本実施の形態に係る絶縁ケーブル1Aは、一対の導線21,22、及び絶縁部材3に加え、絶縁部材3の外周スキン層32の外周側を覆うシールド層4と、シールド層4の外周側を覆うジャケット5とを備えている。   Insulated cable 1A according to the present embodiment includes shield layer 4 covering the outer peripheral side of outer peripheral skin layer 32 of insulating member 3 in addition to the pair of conductive wires 21 and 22 and insulating member 3, and the outer peripheral side of shield layer 4 And a covering jacket 5.

シールド層4は、例えば銅等の良導電性の金属箔を帯状の樹脂部材に一体化したテープ状の部材を、絶縁部材3に螺旋巻き又は縦添え巻きすることにより形成されている。ジャケット5は、例えばフッ素樹脂等の可撓性を有する絶縁体からなり、筒状に形成されている。シールド層4は、絶縁ケーブル1Aの長手方向の端部において、その外周面4aがジャケット5から露出している。   The shield layer 4 is formed, for example, by spirally winding or longitudinally winding a tape-shaped member in which a highly conductive metal foil such as copper is integrated with a belt-shaped resin member around the insulating member 3. The jacket 5 is made of a flexible insulator such as a fluororesin, and is formed in a cylindrical shape. The shield layer 4 has an outer peripheral surface 4 a exposed from the jacket 5 at the end in the longitudinal direction of the insulated cable 1 </ b> A.

本実施の形態では、絶縁部材3の端部スキン層33が、絶縁部材3の長手方向の端部をシールド層4を介して外周側から加熱し、多孔質樹脂層31の一部を溶融させることにより形成されている。このため、端部スキン層33は、図5(b)に示すように、シールド層4の内周面4bに接触している。この端部スキン層33は、シールド層4よりも内側における絶縁部材3の端部をその全体に亘って覆っている。   In the present embodiment, the end skin layer 33 of the insulating member 3 heats the end of the insulating member 3 in the longitudinal direction from the outer peripheral side via the shield layer 4 to melt a part of the porous resin layer 31. It is formed by. Therefore, the end skin layer 33 is in contact with the inner peripheral surface 4b of the shield layer 4 as shown in FIG. The end skin layer 33 covers the entire end of the insulating member 3 inside the shield layer 4.

図6は、絶縁ケーブル1Aの端部スキン層33の形成工程を示し、(a)は端部スキン層33の形成前の状態を示す斜視図、(b)は端部スキン層33の形成後の状態を示す絶縁部材3の端面図である。   6A and 6B show a process of forming the end skin layer 33 of the insulated cable 1A, (a) is a perspective view showing a state before the end skin layer 33 is formed, and (b) is a view after the end skin layer 33 is formed. It is an end view of the insulating member 3 which shows the state.

絶縁ケーブル1Aは、基板7に形成された電極71にシールド層4を半田付けすることにより形成される。つまり、シールド層4の金属箔と電極71とを半田付けする際の熱によって多孔質樹脂層31の一部を溶融させることにより、端部スキン層33が形成される。この際、絶縁部材3の端部の全体に亘って端部スキン層33を形成するため、シールド層4と半田72との接触面は、できるだけ広くすることが望ましい。このため、一対の導線21,22の並列方向に沿った第1の方向における絶縁部材3の幅よりも、この第1の方向に沿った電極71の幅の方が広いことが望ましい。   Insulated cable 1 </ b> A is formed by soldering shield layer 4 to electrode 71 formed on substrate 7. That is, the end skin layer 33 is formed by melting a part of the porous resin layer 31 by heat when soldering the metal foil of the shield layer 4 and the electrode 71. At this time, since the end skin layer 33 is formed over the entire end of the insulating member 3, it is desirable that the contact surface between the shield layer 4 and the solder 72 be as wide as possible. For this reason, it is desirable that the width of the electrode 71 along the first direction is wider than the width of the insulating member 3 in the first direction along the parallel direction of the pair of conductive wires 21 and 22.

(第2の実施の形態の作用及び効果)
以上説明した第2の実施の形態によれば、第1の実施の形態について説明した(1)及び(2)の作用及び効果に加え、シールド層4によるシールド効果が得られると共に、端部スキン層33がシールド層4に接触するので、外周スキン層32とシールド層4との間に水分が浸入し、この水分によって絶縁ケーブル1Aの信号伝送特性が劣化することを抑制することができる。
(Operation and effect of the second embodiment)
According to the second embodiment described above, in addition to the operations and effects of (1) and (2) described for the first embodiment, the shield effect by the shield layer 4 can be obtained, and the end skin Since the layer 33 is in contact with the shield layer 4, it is possible to prevent moisture from entering between the outer skin layer 32 and the shield layer 4 and the signal transmission characteristics of the insulated cable 1 </ b> A from being deteriorated by this moisture.

[第3の実施の形態]
次に、本発明の第3の実施の形態について、図7を参照して説明する。図7において、第1及び第2の実施の形態について説明したものと実質的に共通する機能を有する部材等については、同一の符号を付してその説明を省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG. In FIG. 7, members and the like having substantially the same functions as those described in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.

図7は、第3の実施の形態に係る絶縁ケーブル1Bを示し、(a)は絶縁ケーブル1Bの端部付近を示す外観図、(b)は端面図である。   7A and 7B show an insulated cable 1B according to the third embodiment. FIG. 7A is an external view showing the vicinity of the end of the insulated cable 1B, and FIG. 7B is an end view.

この絶縁ケーブル1Bは、第2の実施の形態に係る絶縁ケーブル1Aと同様、一対の導線21,22と、絶縁部材3と、シールド層4と、ジャケット5とを備えているが、シールド層4の外側に接続部材8をさらに備えた構成が、第2の実施の形態に係る絶縁ケーブル1Aとは異なる。接続部材8は、シールド層4を例えば接地されたグランド線等の他の導体に接続するためのものである。   Like the insulated cable 1A according to the second embodiment, the insulated cable 1B includes a pair of conductors 21 and 22, an insulating member 3, a shield layer 4, and a jacket 5, but the shield layer 4 The configuration in which the connection member 8 is further provided outside is different from the insulated cable 1A according to the second embodiment. The connection member 8 is for connecting the shield layer 4 to another conductor such as a grounded ground line.

接続部材8は、例えば銅やアルミニウム等の良導電性の金属板を屈曲して形成され、シールド層4の端部における外周面に半田付けされた本体部81と、本体部81から突出した2つの突部82と一体にを有している。本体部81は、シールド層4を三方から囲む形状に形成され、一対の導線21,22を挟む2箇所に突部82が形成されている。それぞれの突部82は、絶縁部材3からの一対の導線21,22の導出方向に平行な方向に突出している。突部82は、例えば接地されたグランド線又は基板のグランドパターンに半田付けによって接続される。   The connecting member 8 is formed by bending a highly conductive metal plate such as copper or aluminum, for example, and has a main body 81 soldered to the outer peripheral surface at the end of the shield layer 4 and 2 protruding from the main body 81. One protrusion 82 is integrally formed. The main body 81 is formed in a shape surrounding the shield layer 4 from three sides, and protrusions 82 are formed at two locations sandwiching the pair of conductive wires 21 and 22. Each protrusion 82 protrudes in a direction parallel to the direction in which the pair of conducting wires 21 and 22 from the insulating member 3 is led out. The protrusion 82 is connected to, for example, a grounded ground line or a ground pattern of the substrate by soldering.

絶縁ケーブル1Bの長手方向における絶縁部材3の端面は、端部スキン層33によって形成されている。この端部スキン層33は、接続部材8の本体部81とシールド層4とを半田80によって接続する際の熱により、多孔質樹脂層31の一部が溶融して形成されたものである。つまり、端部スキン層33は、絶縁ケーブル1Bの製造工程において、接続部材8の本体部81とシールド層4とを半田付けする際の熱により、多孔質樹脂層31の一部を溶融させることによって形成されている。端部スキン層33は、絶縁部材3の端部の全体に亘って形成され、その周縁部がシールド層4に接触している。   The end face of the insulating member 3 in the longitudinal direction of the insulated cable 1B is formed by the end skin layer 33. The end skin layer 33 is formed by melting a part of the porous resin layer 31 by heat when the main body 81 of the connection member 8 and the shield layer 4 are connected by the solder 80. That is, the end skin layer 33 melts a part of the porous resin layer 31 by heat when soldering the main body 81 of the connection member 8 and the shield layer 4 in the manufacturing process of the insulated cable 1B. Is formed by. The end skin layer 33 is formed over the entire end of the insulating member 3, and the peripheral edge thereof is in contact with the shield layer 4.

(第3の実施の形態の作用及び効果)
以上説明した第3の実施の形態によれば、第2の実施の形態について説明したものと同様の作用及び効果が得られる。また、シールド層4を他の導体に電気的に接続する作業が容易となる。
(Operation and effect of the third embodiment)
According to the third embodiment described above, the same operations and effects as those described for the second embodiment can be obtained. Moreover, the operation | work which electrically connects the shield layer 4 to another conductor becomes easy.

[第4の実施の形態]
次に、本発明の第4の実施の形態について、図8を参照して説明する。図8において、第1の実施の形態について説明したものと実質的に共通する機能を有する部材等については、同一の符号を付してその説明を省略する。本実施の形態は、絶縁ケーブル1の製造方法が第1の実施の形態とは異なる。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIG. In FIG. 8, members and the like having substantially the same functions as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted. This embodiment is different from the first embodiment in the method for manufacturing the insulated cable 1.

図8は、第4の実施の形態に係る絶縁ケーブル1の製造工程を示す説明図である。   FIG. 8 is an explanatory view showing a manufacturing process of the insulated cable 1 according to the fourth embodiment.

本実施の形態では、多孔質樹脂層31の溶融温度よりも高い温度に加熱された第1及び第2の刃具91,92によって絶縁部材3を切断することにより多孔質樹脂層31の一部を溶融させ、端部スキン層33(図2参照)を形成する。これにより、図1及び図2に示すものと同様の構成の絶縁ケーブル1が得られる。   In the present embodiment, a part of the porous resin layer 31 is formed by cutting the insulating member 3 with the first and second blades 91 and 92 heated to a temperature higher than the melting temperature of the porous resin layer 31. The end skin layer 33 (see FIG. 2) is formed by melting. Thereby, the insulated cable 1 of the structure similar to what is shown in FIG.1 and FIG.2 is obtained.

第1の刃具91は、刃先部911に半円状の切欠き91a,91bが形成されている。切欠き91a,91bの間隔は、一対の導線21,22の間隔に適合した間隔である。また、第2の刃具92は、刃先部921に半円状の切欠き92a,92bが形成されている。切欠き92a,92bの間隔は、第1の刃具91の切欠き91a,91bの間隔と同じ間隔である。   The first cutting tool 91 has semicircular cutouts 91 a and 91 b formed in the blade edge portion 911. The interval between the notches 91a and 91b is an interval adapted to the interval between the pair of conductors 21 and 22. Further, the second cutting tool 92 is formed with semicircular cutouts 92 a and 92 b in the blade edge portion 921. The interval between the notches 92a and 92b is the same as the interval between the notches 91a and 91b of the first blade 91.

第1の刃具91の切欠き91a,91bの円弧半径、及び第2の刃具92の切欠き92a,92bの円弧半径は、第1及び第2の導線21,22の半径と略同等もしくは第1及び第2の導線21,22の半径よりも僅かに大きい寸法に設定されている。   The arc radii of the notches 91a and 91b of the first cutting tool 91 and the arc radii of the notches 92a and 92b of the second cutting tool 92 are substantially equal to the radii of the first and second conductors 21 and 22 or the first radius. And a dimension slightly larger than the radius of the second conductive wires 21 and 22.

第1の刃具91及び第2の刃具92は、図略の電熱線等の熱源により、多孔質樹脂層31が溶融する温度よりも高い温度(例えば350℃以上)に加熱されている。第1の刃具91と第2の刃具92とを、刃先部911,921同士を向かい合わせて接近させることにより、第1の刃具91及び第2の刃具92の間に挟まれた絶縁部材3が切断される。この際、第1の刃具91及び第2の刃具92の熱により、第1の刃具91又は第2の刃具92に接触した多孔質樹脂層31の一部が溶融し、端部スキン層33が形成される。   The first blade 91 and the second blade 92 are heated to a temperature (for example, 350 ° C. or higher) higher than the temperature at which the porous resin layer 31 melts by a heat source such as a heating wire (not shown). The insulating member 3 sandwiched between the first blade tool 91 and the second blade tool 92 is caused by bringing the first blade tool 91 and the second blade tool 92 close to each other with the blade edge portions 911 and 921 facing each other. Disconnected. At this time, due to the heat of the first cutting tool 91 and the second cutting tool 92, a part of the porous resin layer 31 in contact with the first cutting tool 91 or the second cutting tool 92 is melted, and the end skin layer 33 is formed. It is formed.

一方、第1及び第2の導線21,22は、切欠き91a,91b及び切欠き92a,92bに収容されるため切断されない。そして、刃先部911,921同士を当接させた状態のままで第1の刃具91及び第2の刃具92を第1及び第2の導線21,22に沿って移動させることにより、第1の実施の形態と同様の構成の絶縁ケーブル1が得られる。   On the other hand, the first and second conducting wires 21 and 22 are not cut because they are accommodated in the notches 91a and 91b and the notches 92a and 92b. And by moving the 1st blade tool 91 and the 2nd blade tool 92 along the 1st and 2nd conducting wires 21 and 22 in the state where blade edge parts 911 and 921 were contacted, the 1st Insulated cable 1 having the same configuration as the embodiment is obtained.

(第4の実施の形態の作用及び効果)
以上説明した第4の実施の形態によれば、第1の実施の形態について説明した(1)及び(2)の作用及び効果に加え、絶縁部材3の一部を除去して第1及び第2の導線21,22を露出させる作業と端部スキン層33を形成する作業とを一つの工程で行うことができる。これにより、絶縁ケーブル1の製造をより低コストに行うことができる。
(Operation and effect of the fourth embodiment)
According to the fourth embodiment described above, in addition to the operations and effects of (1) and (2) described for the first embodiment, a part of the insulating member 3 is removed to remove the first and first. The operation of exposing the two conductive wires 21 and 22 and the operation of forming the end skin layer 33 can be performed in one step. Thereby, manufacture of the insulated cable 1 can be performed at lower cost.

(実施の形態のまとめ)
次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号等は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
(Summary of embodiment)
Next, the technical idea grasped from the embodiment described above will be described with reference to the reference numerals in the embodiment. However, the reference numerals and the like in the following description are not intended to limit the constituent elements in the claims to the members and the like specifically shown in the embodiments.

[1]:導線(21,22)と、前記導線(21,22)を被覆する絶縁部材(3)とを備え、前記絶縁部材(3)は、空孔(310)が形成された多孔質樹脂層(31)と、前記絶縁部材(3)の外周面からの水分の浸入を防ぐ外周表皮層(32)と、前記絶縁部材(3)の長手方向の端面からの水分の浸入を防ぐ端部表皮層(33)とを有し、前記端部表皮層(33)は、前記多孔質樹脂層(31)の一部が熱により溶融することにより形成された絶縁ケーブル(1,1A,1B)。 [1]: a conductive wire (21, 22) and an insulating member (3) that covers the conductive wire (21, 22), and the insulating member (3) is porous in which pores (310) are formed. Resin layer (31), outer peripheral skin layer (32) that prevents moisture from entering from the outer peripheral surface of insulating member (3), and an end that prevents moisture from entering from the end surface in the longitudinal direction of insulating member (3) An insulation cable (1, 1A, 1B) formed by melting part of the porous resin layer (31) by heat. ).

[2]:前記外周表皮層(32)の外周側を覆うシールド層(4)をさらに備え、前記端部表皮層(33)は、前記シールド層(4)に接触している、[1]に記載の絶縁ケーブル(1A,1B)。 [2]: A shield layer (4) covering the outer peripheral side of the outer peripheral skin layer (32) is further provided, and the end skin layer (33) is in contact with the shield layer (4). [1] Insulated cable (1A, 1B).

[3]:前記シールド層(4)の端部における外周面に半田付けされた本体部(81)、及び前記本体部(81)から突出した突部(82)を有する接続部材(8)をさらに備えた、[2]に記載の絶縁ケーブル(1B)。 [3] A connecting member (8) having a main body (81) soldered to the outer peripheral surface at the end of the shield layer (4) and a protrusion (82) protruding from the main body (81). The insulated cable (1B) according to [2], further provided.

[4]:[1]乃至[3]の何れか1つに記載の絶縁ケーブル(1,1A,1B)の製造方法であって、前記絶縁部材(3)から導出された前記導線(21,22)を加熱することにより、前記絶縁部材(3)の長手方向の端部における前記多孔質樹脂層(31)の一部を溶融させて前記端部表皮層(33)を形成する、絶縁ケーブル(1,1A,1B)の製造方法。 [4]: A method for manufacturing an insulated cable (1, 1A, 1B) according to any one of [1] to [3], wherein the conducting wire (21, 21) led out from the insulating member (3) is provided. 22) is heated to melt part of the porous resin layer (31) at the longitudinal end of the insulating member (3) to form the end skin layer (33). A manufacturing method of (1, 1A, 1B).

[5]:[1]乃至[3]の何れか1つに記載の絶縁ケーブル(1,1A,1B)の製造方法であって、前記絶縁部材(3)を前記多孔質樹脂層(31)の溶融温度よりも高い温度に加熱された刃具(91,92)によって切断することにより、前記多孔質樹脂層(31)の一部を溶融させて前記端部表皮層(33)を形成する、絶縁ケーブル(1,1A,1B)の製造方法。 [5]: The method for manufacturing an insulated cable (1, 1A, 1B) according to any one of [1] to [3], wherein the insulating member (3) is attached to the porous resin layer (31). By cutting with a cutting tool (91, 92) heated to a temperature higher than the melting temperature of, to melt a part of the porous resin layer (31) to form the end skin layer (33), Manufacturing method of insulated cable (1, 1A, 1B).

[6]:[2]又は[3]に記載の絶縁ケーブル(1A,1B)の製造方法であって、前記絶縁部材(3)の長手方向の端部を前記シールド層(4)を介して外周側から加熱し、前記多孔質樹脂層(31)の一部を溶融させて前記端部表皮層(33)を形成する、絶縁ケーブル(1A,1B)の製造方法。 [6]: The method for manufacturing an insulated cable (1A, 1B) according to [2] or [3], wherein an end portion in the longitudinal direction of the insulating member (3) is interposed through the shield layer (4). A method for manufacturing an insulated cable (1A, 1B), in which the end skin layer (33) is formed by heating from the outer peripheral side to melt a part of the porous resin layer (31).

[7]:[3]に記載の絶縁ケーブル(1B)の製造方法であって、前記接続部材(8)の前記本体部(81)と前記シールド層(4)とを半田付けする際の熱により、前記多孔質樹脂層(31)の一部を溶融させて前記端部表皮層(33)を形成する、絶縁ケーブル(1B)の製造方法。 [7]: The method for manufacturing the insulated cable (1B) according to [3], wherein the heat at the time of soldering the main body portion (81) of the connection member (8) and the shield layer (4) is provided. The method for manufacturing an insulated cable (1B), wherein a part of the porous resin layer (31) is melted to form the end skin layer (33).

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. In addition, it should be noted that not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

また、本発明は、その趣旨を逸脱しない範囲で適宜変形して実施することが可能である。例えば、上記各実施の形態では、絶縁ケーブル1,1A,1Bが2本の導線21,22を有する場合について説明したが、これに限らず、絶縁ケーブルが備える導線の数は1本でもよく、3本以上でもよい。また、絶縁部材3は、多孔質樹脂層31、外周スキン層32、及び端部スキン層33に加え、他の層を備えていてもよい。絶縁ケーブルの用途にも特に限定はない。   Further, the present invention can be appropriately modified and implemented without departing from the spirit of the present invention. For example, in each of the above-described embodiments, the case where the insulated cables 1, 1A, 1B have the two conducting wires 21, 22 has been described. However, the number of conducting wires provided in the insulated cable is not limited to this. Three or more may be used. Further, the insulating member 3 may include other layers in addition to the porous resin layer 31, the outer peripheral skin layer 32, and the end skin layer 33. There is no particular limitation on the use of the insulated cable.

1,1A,1B…絶縁ケーブル、3…絶縁部材、3a…端面、3b…外周面、4…シールド層、4a…外周面、4b…内周面、5…ジャケット、6…加熱治具、7…基板、8…接続部材、21,22…導線、31…多孔質樹脂層、32…外周スキン層、33…端部スキン層、61…第1加熱部材、62…第2加熱部材、71…電極、72,80…半田、81…本体部、82…突部、91…第1の刃具、92…第2の刃具、310…空孔、911,921…刃先部
DESCRIPTION OF SYMBOLS 1,1A, 1B ... Insulated cable, 3 ... Insulating member, 3a ... End surface, 3b ... Outer peripheral surface, 4 ... Shield layer, 4a ... Outer peripheral surface, 4b ... Inner peripheral surface, 5 ... Jacket, 6 ... Heating jig, 7 DESCRIPTION OF SYMBOLS ... Board | substrate, 8 ... Connection member, 21, 22 ... Conductor, 31 ... Porous resin layer, 32 ... Outer peripheral skin layer, 33 ... End part skin layer, 61 ... 1st heating member, 62 ... 2nd heating member, 71 ... Electrode, 72, 80 ... solder, 81 ... main body, 82 ... projection, 91 ... first blade, 92 ... second blade, 310 ... hole, 911,921 ... blade

Claims (7)

導線と、前記導線を被覆する絶縁部材とを備え、
前記絶縁部材は、
空孔が形成された多孔質樹脂層と、
前記絶縁部材の外周面からの水分の浸入を防ぐ外周表皮層と、
前記絶縁部材の長手方向の端面からの水分の浸入を防ぐ端部表皮層とを有し、
前記端部表皮層は、前記多孔質樹脂層の一部が熱により溶融することにより形成された
絶縁ケーブル。
A conductive wire and an insulating member covering the conductive wire;
The insulating member is
A porous resin layer in which pores are formed;
An outer peripheral skin layer for preventing moisture from entering from the outer peripheral surface of the insulating member;
An end skin layer that prevents moisture from entering from the longitudinal end face of the insulating member;
The end skin layer is an insulated cable formed by melting a part of the porous resin layer by heat.
前記外周表皮層の外周側を覆うシールド層をさらに備え、
前記端部表皮層は、前記シールド層に接触している、
請求項1に記載の絶縁ケーブル。
Further comprising a shield layer covering the outer peripheral side of the outer peripheral skin layer,
The end skin layer is in contact with the shield layer;
The insulated cable according to claim 1.
前記シールド層の端部における外周面に半田付けされた本体部、及び前記本体部から突出した突部を有する接続部材をさらに備えた、
請求項2に記載の絶縁ケーブル。
A main body portion soldered to the outer peripheral surface of the end portion of the shield layer, and a connecting member having a protrusion protruding from the main body portion;
The insulated cable according to claim 2.
請求項1乃至3の何れか1項に記載の絶縁ケーブルの製造方法であって、
前記絶縁部材から導出された前記導線を加熱することにより、前記絶縁部材の長手方向の端部における前記多孔質樹脂層の一部を溶融させて前記端部表皮層を形成する、
絶縁ケーブルの製造方法。
A method for manufacturing an insulated cable according to any one of claims 1 to 3,
By heating the conductive wire led out from the insulating member, a part of the porous resin layer at the end in the longitudinal direction of the insulating member is melted to form the end skin layer.
Insulated cable manufacturing method.
請求項1乃至3の何れか1項に記載の絶縁ケーブルの製造方法であって、
前記絶縁部材を前記多孔質樹脂層の溶融温度よりも高い温度に加熱された刃具によって切断することにより、前記多孔質樹脂層の一部を溶融させて前記端部表皮層を形成する、
絶縁ケーブルの製造方法。
A method for manufacturing an insulated cable according to any one of claims 1 to 3,
By cutting the insulating member with a blade heated to a temperature higher than the melting temperature of the porous resin layer, a part of the porous resin layer is melted to form the end skin layer.
Insulated cable manufacturing method.
請求項2又は3に記載の絶縁ケーブルの製造方法であって、
前記絶縁部材の長手方向の端部を前記シールド層を介して外周側から加熱し、前記多孔質樹脂層の一部を溶融させて前記端部表皮層を形成する、
絶縁ケーブルの製造方法。
A method for producing an insulated cable according to claim 2 or 3,
Heating the end of the insulating member in the longitudinal direction from the outer peripheral side through the shield layer, and melting the part of the porous resin layer to form the end skin layer;
Insulated cable manufacturing method.
請求項3に記載の絶縁ケーブルの製造方法であって、
前記接続部材の前記本体部と前記シールド層とを半田付けする際の熱により、前記多孔質樹脂層の一部を溶融させて前記端部表皮層を形成する、
絶縁ケーブルの製造方法。
A method for producing an insulated cable according to claim 3,
The end skin layer is formed by melting part of the porous resin layer by heat when soldering the main body portion of the connection member and the shield layer.
Insulated cable manufacturing method.
JP2013027522A 2013-02-15 2013-02-15 Insulated cable and manufacturing method thereof Active JP5895869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013027522A JP5895869B2 (en) 2013-02-15 2013-02-15 Insulated cable and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013027522A JP5895869B2 (en) 2013-02-15 2013-02-15 Insulated cable and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014157709A true JP2014157709A (en) 2014-08-28
JP5895869B2 JP5895869B2 (en) 2016-03-30

Family

ID=51578479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013027522A Active JP5895869B2 (en) 2013-02-15 2013-02-15 Insulated cable and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5895869B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283240B1 (en) 2018-03-19 2019-05-07 Te Connectivity Corporation Electrical cable
US10283238B1 (en) 2018-03-19 2019-05-07 Te Connectivity Corporation Electrical cable
US10304592B1 (en) 2018-03-19 2019-05-28 Te Connectivity Corporation Electrical cable
JPWO2018096854A1 (en) * 2016-11-28 2019-10-31 株式会社オートネットワーク技術研究所 Shield cable for communication
US10600537B1 (en) 2018-10-12 2020-03-24 Te Connectivity Corporation Electrical cable
US10600536B1 (en) 2018-10-12 2020-03-24 Te Connectivity Corporation Electrical cable
US10741308B2 (en) 2018-05-10 2020-08-11 Te Connectivity Corporation Electrical cable
US10950367B1 (en) 2019-09-05 2021-03-16 Te Connectivity Corporation Electrical cable
US11069458B2 (en) 2018-04-13 2021-07-20 TE Connectivity Services Gmbh Electrical cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154433A (en) * 1997-11-20 1999-06-08 Fujikura Ltd Manufacture of and device for low density foam coaxial cable
JP2012099434A (en) * 2010-11-05 2012-05-24 Hitachi Cable Ltd Connecting structure and connecting method of differential signal transmission cable and circuit substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154433A (en) * 1997-11-20 1999-06-08 Fujikura Ltd Manufacture of and device for low density foam coaxial cable
JP2012099434A (en) * 2010-11-05 2012-05-24 Hitachi Cable Ltd Connecting structure and connecting method of differential signal transmission cable and circuit substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018096854A1 (en) * 2016-11-28 2019-10-31 株式会社オートネットワーク技術研究所 Shield cable for communication
US10818415B2 (en) 2016-11-28 2020-10-27 Autonetworks Technologies, Ltd. Shielded communication cable
US10283240B1 (en) 2018-03-19 2019-05-07 Te Connectivity Corporation Electrical cable
US10283238B1 (en) 2018-03-19 2019-05-07 Te Connectivity Corporation Electrical cable
US10304592B1 (en) 2018-03-19 2019-05-28 Te Connectivity Corporation Electrical cable
US11069458B2 (en) 2018-04-13 2021-07-20 TE Connectivity Services Gmbh Electrical cable
US10741308B2 (en) 2018-05-10 2020-08-11 Te Connectivity Corporation Electrical cable
US10600537B1 (en) 2018-10-12 2020-03-24 Te Connectivity Corporation Electrical cable
US10600536B1 (en) 2018-10-12 2020-03-24 Te Connectivity Corporation Electrical cable
US10950367B1 (en) 2019-09-05 2021-03-16 Te Connectivity Corporation Electrical cable

Also Published As

Publication number Publication date
JP5895869B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5895869B2 (en) Insulated cable and manufacturing method thereof
US11495371B2 (en) Electrical ribbon cable
JP5974992B2 (en) Coaxial cable for high-frequency signal transmission
JP2010218741A (en) High-speed differential cable
JP2012009321A (en) Cable for differential signal transmission and method of manufacturing the same
JP6056041B1 (en) Cable core and transmission cable
JP2015204195A (en) Differential signal cable, production method thereof and multi-pair differential signal cable
JP2016072196A (en) Two-core parallel electric wire
CN204010812U (en) Differential signal transmission cable
JP2010244931A (en) High-speed differential cable
JP2008293862A (en) Insulated electrical wire
TWI824193B (en) Twin axial cable
JP2011071095A (en) Coaxial cable and multicore coaxial cable
JP7247895B2 (en) two-core parallel wire
EP3077861B1 (en) Conductive water blocking material including metallic particles and an optical cable and method of constructing an optical cable including the same
JPH0686223U (en) Coaxial cable and coaxial flat cable using the same
JP2008071525A (en) Manufacturing method of shielded conductive path, manufacturing device of shielded conductive path, and shielded conductive path
TW201640525A (en) Signal transmission flat cable
JP2010073463A (en) High-speed differential cable
JP5910519B2 (en) Shielded cable
JP2010103685A (en) Leakage coaxial cable
CN206649922U (en) A kind of carbon fiber composite core wire
JP6210641B2 (en) Covered wire intermediate material, covered wire, method for manufacturing covered wire, and wire harness
US20160086690A1 (en) Cable Beam and Method of Manufacturing the Same
CN214203310U (en) Coaxial cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent or registration of utility model

Ref document number: 5895869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350