JP2014155897A - Ionizing radiation curable film formation body production method - Google Patents

Ionizing radiation curable film formation body production method Download PDF

Info

Publication number
JP2014155897A
JP2014155897A JP2013027553A JP2013027553A JP2014155897A JP 2014155897 A JP2014155897 A JP 2014155897A JP 2013027553 A JP2013027553 A JP 2013027553A JP 2013027553 A JP2013027553 A JP 2013027553A JP 2014155897 A JP2014155897 A JP 2014155897A
Authority
JP
Japan
Prior art keywords
ionizing radiation
radiation curable
substrate
electron beam
irradiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013027553A
Other languages
Japanese (ja)
Inventor
Shin Yasojima
伸 八十島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2013027553A priority Critical patent/JP2014155897A/en
Publication of JP2014155897A publication Critical patent/JP2014155897A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of an ionizing radiation curable film formation body capable of forming, with high adhesion force, an ionizing radiation curable film on a substrate having low surface activity without using an adhesive agent or a primer.SOLUTION: A production method of an ionizing radiation curable film formation body comprises the steps of: applying an ionizing radiation curable composition to one surface of a substrate 1; drying the substrate 1; irradiating the substrate 1 with an electron beam from the other surface side of the substrate; and irradiating the substrate 1 with an ionization radiation from the one surface side of the substrate, and these steps are performed sequentially and continuously.

Description

本発明は、プラスチック基材の一方の面に形成された電離放射線硬化型塗膜形成体の製造方法に関するものである。   The present invention relates to a method for producing an ionizing radiation curable coating film formed on one surface of a plastic substrate.

従来、床材や壁紙に使用される化粧シートの基材としては、印刷や後加工のし易さとコスト面での利点から塩化ビニル樹脂(塩ビ)が主流であった。しかしながら近年、環境問題などから塩ビ基材が問題となり、その代替として、より環境を配慮したポリエチレンやポリプロピレンなどのオレフィン系樹脂基材が用いられている。   Conventionally, vinyl chloride resin (vinyl chloride) has been the mainstream as a base material for decorative sheets used for flooring and wallpaper, because of the advantages of printing and post-processing and cost. However, in recent years, PVC base materials have become a problem due to environmental problems and the like, and as an alternative, more environmentally-friendly olefin resin base materials such as polyethylene and polypropylene have been used.

またさらに、化粧シートには高耐性や高機能が求められるようになり、例えば、基材上に施された印刷やエンボス加工などによる意匠性に加えて、ハードコートなどに代表される保護層が形成されている。   Furthermore, the decorative sheet is required to have high resistance and high function. For example, in addition to the design properties by printing or embossing applied on the base material, a protective layer represented by a hard coat or the like is provided. Is formed.

一般的に上記のような保護層は、表面硬度や耐候性を提供するものであり、その多くは基材の一方の面に保護層として電子線硬化樹脂又は紫外線硬化型樹脂などから構成される電離放射線硬化型塗膜が形成されている。   In general, the protective layer as described above provides surface hardness and weather resistance, and many of them are composed of an electron beam curable resin or an ultraviolet curable resin as a protective layer on one surface of the substrate. An ionizing radiation curable coating film is formed.

しかしながら、上記のようなオレフィン系樹脂基材を用いた場合は、オレフィン系樹脂基材の表面活性の低さから、前記電離放射線硬化型塗膜との密着性の不足により実用レベルとしては問題がある。   However, when the olefin resin substrate as described above is used, there is a problem as a practical level due to the lack of adhesion with the ionizing radiation curable coating film due to the low surface activity of the olefin resin substrate. is there.

そこで上記のようなオレフィン系樹脂基材を用いる場合には、前記電離放射線硬化型塗膜との密着性を向上させる為に、一般的には接着剤やプライマー処理などを施すことが知られている。   Therefore, in the case of using the olefin-based resin substrate as described above, it is generally known that an adhesive or a primer treatment is applied in order to improve the adhesion with the ionizing radiation curable coating film. Yes.

例えば、基材の耐性を向上させるために基材にプライマーを塗布し、その上に紫外線硬化型塗料を塗布し、その上にフィルムをラミネートした後、紫外線を照射して硬化させ、不要なフィルムを除去するという方法が提案がされている(特許文献1)。   For example, in order to improve the resistance of the base material, a primer is applied to the base material, an ultraviolet curable paint is applied thereon, a film is laminated thereon, and then cured by irradiating with ultraviolet light, thereby unnecessary film. There has been proposed a method of removing (Patent Document 1).

しかしながら、基材と電離放射線硬化型塗膜との密着性を向上させるために、上記のようにプライマーまたは接着剤を使用すると、工程が増え生産性の低下やコスト高の問題が生じる。   However, if a primer or an adhesive is used as described above in order to improve the adhesion between the base material and the ionizing radiation curable coating film, the number of steps increases, resulting in a problem of reduced productivity and high cost.

特開昭62−61677号公報JP-A-62-61677

本発明は、表面活性の低い基材に対して、接着剤やプライマー等を介することなく、前記基材に電離放射線硬化型塗膜を高い密着力で形成することができる、電離放射線硬化型塗膜形成体の製造方法の提供を目的とするものである。   The present invention provides an ionizing radiation curable coating that can form an ionizing radiation curable coating film on a substrate having low surface activity with high adhesion without using an adhesive or a primer. It aims at providing the manufacturing method of a film formation body.

本発明に係る請求項1の発明は、基材の一方の面に電離放射線硬化型組成物を塗布する工程と、乾燥する工程と、前記基材の他方の面側から電子線を照射する工程と、前記基材
の一方の面側から電離放射線を照射する工程とを、順次連続して経ることを特徴とする電離放射線硬化型塗膜形成体の製造方法である。
The invention of claim 1 according to the present invention is a step of applying an ionizing radiation curable composition to one surface of a substrate, a step of drying, and a step of irradiating an electron beam from the other surface side of the substrate. And a step of irradiating ionizing radiation from one surface side of the base material sequentially and successively.

また、請求項2の発明は、前記基材の他方の面側から電子線を照射する工程において、電子線を照射する電子線照射装置が、前記乾燥する工程に具備した乾燥炉と前記電離放射線を照射する工程に具備した電離放射線照射装置との間に設置したことを特徴とする請求項1に記載の電離放射線硬化型塗膜形成体の製造方法である。   Further, the invention of claim 2 is directed to a drying furnace and the ionizing radiation provided in the drying step by an electron beam irradiation apparatus that irradiates the electron beam in the step of irradiating the electron beam from the other surface side of the substrate. It is installed between the ionizing radiation irradiation apparatuses with which the process of irradiating was carried out, It is a manufacturing method of the ionizing radiation hardening-type coating-film formation body of Claim 1 characterized by the above-mentioned.

また、請求項3の発明は、前記基材がポリオレフィン系樹脂からなり、その膜厚が20μmから200μmの範囲であることを特徴とする請求項1または2に記載の電離放射線硬化型塗膜形成体の製造方法である。   The invention according to claim 3 is characterized in that the base material is made of a polyolefin resin, and the film thickness thereof is in the range of 20 μm to 200 μm. Ionizing radiation curable coating film formation according to claim 1 or 2 It is a manufacturing method of a body.

本発明に係る請求項1、2の発明によれば、基材の一方の面に塗布された電離放射線硬化型組成物を乾燥し、続いて、乾燥後の前記基材の他方の面側(裏面側)に具備した電子線照射装置から基材の裏面側に電子線を照射することで、基材の反対側(前記電離放射線硬化型組成物が塗布された側)の基材表面のC‐H結合が切断され、活性種であるC・ラジカルを発生させることができる。   According to the first and second aspects of the present invention, the ionizing radiation curable composition applied to one surface of the substrate is dried, and then the other surface side of the substrate after drying ( By irradiating the back surface side of the base material with an electron beam from the electron beam irradiation device provided on the back surface side, C on the surface of the base material on the opposite side of the base material (the side on which the ionizing radiation curable composition is applied) The —H bond is cleaved to generate a C · radical that is an active species.

すなわち、上記の活性種の発生により、従来のような電離放射線硬化型組成物が硬化する前に、この活性種を介して電離放射線硬化型組成物と基材とが化学結合により密着力を向上することが出来る。結果として、その後の電離放射線の照射により優れた密着力を有する電離放射線硬化型塗膜を形成することができる。   That is, due to the generation of the above active species, the ionizing radiation curable composition and the substrate are improved in adhesion through chemical bonds before the conventional ionizing radiation curable composition is cured. I can do it. As a result, an ionizing radiation curable coating film having excellent adhesion can be formed by subsequent irradiation with ionizing radiation.

また、請求項3の発明によれば、前記基材がポリオレフィン系樹脂からなり、その膜厚が20μmから200μmの範囲であることにより、電子線照射による基材表面のC‐H結合の切断と、それによる活性種であるC・ラジカルを効率よく発生させることができる。   According to the invention of claim 3, the base material is made of polyolefin resin, and the film thickness is in the range of 20 μm to 200 μm. Thus, C. radicals, which are active species, can be efficiently generated.

本発明に係る電離放射線硬化型塗膜形成体の概略断面図。1 is a schematic cross-sectional view of an ionizing radiation curable coating film forming body according to the present invention. 図1に示す塗膜形成体の製造方法の一実施形態を示す工程概略図。Process schematic which shows one Embodiment of the manufacturing method of the coating-film formation body shown in FIG.

以下、本発明について図面に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to the drawings.

図1は、本発明に係る基材の一方の面に形成した電離放射線硬化型塗膜形成体の概略断面図である。また、図2は、図1の電離放射線硬化型塗膜形成体の製造方法の一実施形態を示す工程概略図である。   FIG. 1 is a schematic cross-sectional view of an ionizing radiation curable coating film formed on one surface of a substrate according to the present invention. Moreover, FIG. 2 is process schematic which shows one Embodiment of the manufacturing method of the ionizing radiation hardening type coating-film formation body of FIG.

本発明は、図1及び図2に示すように、基材1の一方の面に塗布装置3により電離放射線硬化型組成物2を塗布する工程と、必要に応じて希釈溶剤を乾燥炉4により乾燥する工程と、前記基材1の他方の面側から電子線照射装置5により電子線を照射する工程と、電離放射線照射装置6で硬化する工程とからなる電離放射線硬化型塗膜形成体の製造方法である。   In the present invention, as shown in FIGS. 1 and 2, a step of applying an ionizing radiation curable composition 2 to one surface of a substrate 1 by a coating device 3, and a diluting solvent as needed using a drying furnace 4. An ionizing radiation curable coating film forming body comprising a drying step, a step of irradiating an electron beam with the electron beam irradiation device 5 from the other surface side of the substrate 1, and a step of curing with an ionizing radiation irradiation device 6. It is a manufacturing method.

本発明に係る基材1としては、その一方の面に前記電離放射線硬化型組成物2を用いて、電離放射線照射により塗膜を硬化することにおいて、実用に耐える十分な密着性が得られない、すなわち、従来密着力を向上させるために、例えば接着層やプライマー層が不可欠であった基材表面が不活性な樹脂基材に適している。特に、例えばポリエチレンやポリプロピレンからなるポリオレフィン系樹脂が好ましい。また、前記ポリオレフィン系樹脂は単独であっても、積層体であってもよい。またさらに、前記積層体は同種の積層体でも異種の積層体でもよく、特に限定するものではない。   As the base material 1 according to the present invention, sufficient adhesiveness that can withstand practical use cannot be obtained by curing the coating film by irradiation with ionizing radiation using the ionizing radiation curable composition 2 on one surface thereof. In other words, in order to improve the adhesion strength in the past, for example, the surface of the base material, on which an adhesive layer or primer layer has been indispensable, is suitable for an inactive resin base material. In particular, for example, a polyolefin resin made of polyethylene or polypropylene is preferable. The polyolefin resin may be a single resin or a laminate. Furthermore, the laminated body may be the same kind of laminated body or a different kind of laminated body, and is not particularly limited.

前記基材1の厚みは、基材1の他方の面側(裏面側)から電子線照射装置5により電子線を照射することで、基材1と硬化後の電離放射線硬化塗膜との密着性の向上を得るために、前記20μmから200μmが好ましい。   The thickness of the substrate 1 is such that the electron beam irradiation device 5 irradiates the electron beam from the other surface side (back surface side) of the substrate 1 so that the substrate 1 and the cured ionizing radiation cured coating film are in close contact with each other. In order to improve the property, the thickness is preferably 20 μm to 200 μm.

基材1の厚みが20μm未満である場合、電子線照射装置5により基材1の裏面側から照射される電子線が、基材1の一方の面(表側)まで到達し、基材1の表面が十分に活性化される前に前記電離放射線硬化型組成物2の硬化反応が進行してしまい密着強度を上げることができない。   When the thickness of the base material 1 is less than 20 μm, the electron beam irradiated from the back side of the base material 1 by the electron beam irradiation device 5 reaches one surface (front side) of the base material 1, and Before the surface is sufficiently activated, the curing reaction of the ionizing radiation curable composition 2 proceeds and the adhesion strength cannot be increased.

また、基材1の厚みを200μmより厚くすると、一般的な電子線照射装置の出力では基材表面まで電子線を到達させることがでず、基材1表面を活性化することができない。   If the thickness of the base material 1 is greater than 200 μm, the output of a general electron beam irradiation apparatus cannot reach the surface of the base material, and the surface of the base material 1 cannot be activated.

本発明に係る前記電離放射線硬化型組成物2としては、電子線や紫外線などに代表される一般的な電離放射線硬化型化合物を用いることができる。またこれらの電離放射線硬化型化合物に希釈溶剤や添加剤、特に紫外線による硬化では光開始剤などを加えて用いることができる。   As the ionizing radiation curable composition 2 according to the present invention, a general ionizing radiation curable compound typified by electron beam or ultraviolet ray can be used. In addition, these ionizing radiation curable compounds can be used by adding a diluent solvent or an additive, particularly a photoinitiator or the like for curing with ultraviolet rays.

前記電離放射線硬化型化合物としては、例えば、官能基としてアクリロイル基を含有するモノマー、オリゴマー、ポリマーなどを用いることができる。また、前記官能基の数を増やすことにより、更に密度の高い架橋構造を形成することが出来る。   As the ionizing radiation curable compound, for example, a monomer, oligomer, polymer or the like containing an acryloyl group as a functional group can be used. Further, by increasing the number of the functional groups, it is possible to form a crosslinked structure having a higher density.

次に、本発明に係る各工程について以下に説明する。   Next, each process according to the present invention will be described below.

図2は、図1の電離放射線硬化型形成体の製造方法の一実施形態を示す工程概略図であり、以下、個々の工程及び装置について説明する。   FIG. 2 is a process schematic diagram showing an embodiment of a method for producing the ionizing radiation curable molded body of FIG. 1, and individual processes and apparatuses will be described below.

本発明は、図2に示すように、基材1の一方の面に塗布装置3により電離放射線硬化型組成物2を塗布する工程と、必要に応じて希釈溶剤を乾燥装置4により乾燥する工程と、前記基材1の他方の面側から電子線照射装置5により電子線を照射する工程と、電離放射線照射装置6で硬化する工程とからなる電離放射線硬化型形成体の製造方法である。   In the present invention, as shown in FIG. 2, a step of applying an ionizing radiation curable composition 2 to one surface of a substrate 1 by a coating device 3 and a step of drying a diluting solvent by a drying device 4 as required. And an ionizing radiation curable molded body comprising a step of irradiating an electron beam from the other surface side of the substrate 1 with an electron beam irradiation device 5 and a step of curing with an ionizing radiation irradiation device 6.

本発明の特徴は、上記硬化方法において、電離放射線硬化型組成物2を塗布した基材1の他方の面側から電子線を照射して、基材1の一方の面側(塗布側)の表面を活性化し、基材1と電離放射線硬化型組成物2との密着力を向上させることにある。   A feature of the present invention is that, in the curing method, an electron beam is irradiated from the other surface side of the substrate 1 on which the ionizing radiation curable composition 2 is applied, and the one surface side (application side) of the substrate 1 is irradiated. The surface is activated to improve the adhesion between the substrate 1 and the ionizing radiation curable composition 2.

すなわち、基材1の一方の面に塗布した電離放射線硬化型組成物2に電離放射線照射装置6から電離放射線を照射して硬化させる前に、基材1の他方の面側から電子線照射装置5により電子線を照射する。これにより、電離放射線硬化型組成物2が塗布された側の基材1の表面に活性種が発生し、基材1と電離放射線硬化型組成物2間で化学結合が生じて密着力が上がり、その後の電離放射線の照射による硬化において強い密着力を有した電離放射線硬化型塗膜形成体を得ることができる。   That is, before the ionizing radiation curable composition 2 applied to one surface of the substrate 1 is irradiated with ionizing radiation from the ionizing radiation irradiation device 6 and cured, the electron beam irradiation device is applied from the other surface side of the substrate 1. 5 is irradiated with an electron beam. As a result, active species are generated on the surface of the substrate 1 on the side on which the ionizing radiation curable composition 2 is applied, and a chemical bond is generated between the substrate 1 and the ionizing radiation curable composition 2 to increase the adhesion. Then, an ionizing radiation curable coating film forming body having strong adhesion in curing by irradiation with ionizing radiation can be obtained.

本発明に係る塗布装置3としては、リップダイコーター、スロットダイコーター、コンマコーター、ブレードコーター等の中から、電離放射線硬化型組成物の粘度に応じて種々のものを選択できる。例えば、電離放射線硬化型組成物の粘度が1〜1000mPasの場合、スロットダイコーターを選択することができる。   As the coating device 3 according to the present invention, various devices can be selected from lip die coaters, slot die coaters, comma coaters, blade coaters and the like according to the viscosity of the ionizing radiation curable composition. For example, when the ionizing radiation curable composition has a viscosity of 1 to 1000 mPas, a slot die coater can be selected.

また本発明に係る乾燥装置4は、一般的に熱源として用いられている熱風や電気ヒーター方式の乾燥装置を使用することができ、特に限定するものではない。   Moreover, the drying apparatus 4 according to the present invention can use hot air or an electric heater type drying apparatus generally used as a heat source, and is not particularly limited.

また、本発明に係る電子線照射装置5は、乾燥装置4と電離放射線照射装置6との間に、しかも基材1の他方の側(非塗布側)から電子線が照射できる位置に設置されることを特徴とする。電子線照射装置としては基材1の膜厚20〜200μmを透過して、活性種(ラジカル)を発生できる出力を有するものであれば特に限定するものではない。   The electron beam irradiation apparatus 5 according to the present invention is installed between the drying apparatus 4 and the ionizing radiation irradiation apparatus 6 at a position where the electron beam can be irradiated from the other side (non-coating side) of the substrate 1. It is characterized by that. The electron beam irradiation apparatus is not particularly limited as long as it has an output capable of transmitting active species (radicals) through a film thickness of 20 to 200 μm of the substrate 1.

電子線照射装置5を乾燥装置4と電離放射線照射装置6との間に設置することで、例えば前記電離放射線硬化型組成物に含まれる希釈溶剤を十分に蒸発させた状態で電子線を照射することができる。これにより、基材表面に発生したラジカルと樹脂の化学結合を阻害する要因を減少することができ、より効率的に基材1と電離放射線硬化型組成物との化学結合を行うことが出来る。   By installing the electron beam irradiation device 5 between the drying device 4 and the ionizing radiation irradiation device 6, for example, the electron beam is irradiated in a state in which the diluting solvent contained in the ionizing radiation curable composition is sufficiently evaporated. be able to. Thereby, the factor which inhibits the chemical bond of the radical which generate | occur | produced on the base-material surface and resin can be reduced, and the chemical bond of the base material 1 and an ionizing radiation-curable composition can be performed more efficiently.

また、本発明に用いることのできる電離放射線照射装置6としては、汎用の紫外線照射装置でも電子線照射装置でも可能であり特に限定するものではない。ただし、紫外線照射装置により硬化させる場合には、前記電離放射線硬化型組成物には光開始剤が不可欠である。   In addition, the ionizing radiation irradiation device 6 that can be used in the present invention is not particularly limited and can be a general-purpose ultraviolet irradiation device or an electron beam irradiation device. However, in the case of curing with an ultraviolet irradiation device, a photoinitiator is indispensable for the ionizing radiation curable composition.

以下、本発明の実施例について説明する。実施例は、図2に示す加工工程に準拠した装置を用い、電離放射線硬化型組成物の塗布、乾燥、裏面からの電子線照射、電離放射線による硬化を連続して行った。   Examples of the present invention will be described below. In Examples, an apparatus conforming to the processing steps shown in FIG. 2 was used, and the ionizing radiation curable composition was applied, dried, irradiated with an electron beam from the back surface, and cured with ionizing radiation.

<実施例1>
基材1として厚さ40μm、幅320mmのLLDPE(Linear Low Density Polyethylene)を用い、下記組成からなる電離放射線硬化型組成物を硬化後の塗膜の厚みが10μmとなるように、スロットダイを塗布装置3の塗布ヘッドとして搬送速度は20m/minで塗布し、乾燥炉4にて乾燥した。
<Example 1>
Using a LLDPE (Linear Low Density Polyethylene) having a thickness of 40 μm and a width of 320 mm as the base material 1, a slot die is applied so that the coating film thickness after curing an ionizing radiation curable composition having the following composition is 10 μm The coating head of the apparatus 3 was coated at a conveyance speed of 20 m / min and dried in the drying furnace 4.

(電離放射線硬化型組成物)
ウレタンアクリレート系樹脂であるUA−306H(共栄社化学社製)に、希釈溶剤としてMEKを用いて総固形分が60wt.%となるよう調整した。なお、得られた電離放射線硬化型組成物の粘度は10mPasであった。
(Ionizing radiation curable composition)
UA-306H (manufactured by Kyoeisha Chemical Co., Ltd.), which is a urethane acrylate resin, has a total solid content of 60 wt. % Was adjusted. The obtained ionizing radiation curable composition had a viscosity of 10 mPas.

次に、乾燥後の基材1を、乾燥装置4と電離放射線照射装置6との間の基材の裏面側に設置された電子線照射装置5により、加速電圧110KeV、線量20Mradの条件下で電子線を照射した。   Next, the dried base material 1 is subjected to an acceleration voltage of 110 KeV and a dose of 20 Mrad by an electron beam irradiation device 5 installed on the back side of the base material between the drying device 4 and the ionizing radiation irradiation device 6. Irradiated with an electron beam.

その後、電離放射線照射装置6として電子線照射装置5を用い、加速電圧140KeV、線量10Mradで硬化して電離照射線硬化型塗膜形成体を得た。   Then, using the electron beam irradiation apparatus 5 as the ionizing radiation irradiation apparatus 6, it hardened | cured with the acceleration voltage of 140 KeV and the dose of 10 Mrad, and the ionizing irradiation ray hardening-type coating-film formation body was obtained.

<比較例1>
電子線照射装置5による電子線の照射を行わないこと以外は、実施例と同様にして電離放射線硬化型塗膜形成体を得た。
<Comparative Example 1>
An ionizing radiation curable coating film forming body was obtained in the same manner as in Example except that the electron beam irradiation by the electron beam irradiation device 5 was not performed.

<評価>
実施例1及び比較例1で得られた電離放射線硬化型塗膜形成体に対して、クロスカット試験により密着力の評価を行った。なお、クロスカット試験とは、前記塗膜の表面から基
材との密着界面まで、1cm内に一辺1mmの□を100個カットした後、汎用の粘着テープを密着し、その後90度剥離した時に残った□の数で密着強度を表す方法である。評価結果を下記の表1に記す。
<Evaluation>
The adhesion strength of the ionizing radiation curable coating film formed body obtained in Example 1 and Comparative Example 1 was evaluated by a cross-cut test. In the cross-cut test, after cutting 100 squares each having a side of 1 mm within 1 cm 2 from the surface of the coating film to the adhesion interface with the substrate, a general-purpose adhesive tape was adhered, and then peeled by 90 degrees. This is a method of expressing the adhesion strength by the number of squares left occasionally. The evaluation results are shown in Table 1 below.

Figure 2014155897
Figure 2014155897

<比較結果>
実施例1で得られた本発明品の電離放射線硬化型塗膜形成体はクロスカット試験の結果、100/100と全て基材との密着を維持し、優れた密着力を示した。一方、比較例1で得られた比較例品の電離放射線硬化型塗膜形成体では、0/100と全てが剥離した。以上の結果より、本発明によれば基材と電離放射線硬化塗膜との密着力が優れた電離放射線硬化型塗膜形成体を得ることができる。
<Comparison result>
As a result of the cross-cut test, the ionizing radiation curable coating film formed body of the present invention obtained in Example 1 maintained close adhesion between 100/100 and the substrate, and showed excellent adhesion. On the other hand, in the ionizing radiation curable coating film forming body of Comparative Example obtained in Comparative Example 1, 0/100 and all were peeled off. From the above results, according to the present invention, an ionizing radiation curable coating film forming body having excellent adhesion between the substrate and the ionizing radiation curable coating film can be obtained.

上記のように本発明によれば、電離放射線硬化型組成物を硬化させる前に基材側から基材にのみ電子線を照射する事で、基材と前記電離放射線硬化型組成物との密着力を向上させた、様々な機能を有する電離放射線硬化型塗膜形成体を製造することができる。   As described above, according to the present invention, before the ionizing radiation curable composition is cured, the substrate and the ionizing radiation curable composition are adhered to each other by irradiating the base material side with the electron beam only. An ionizing radiation curable coating film forming body having various functions with improved force can be produced.

1 基材
2 電離放射線硬化型組成物
3 塗布装置
4 乾燥装置
5 電子線照射装置
6 電離放射線照射装置
DESCRIPTION OF SYMBOLS 1 Substrate 2 Ionizing radiation curable composition 3 Coating device 4 Drying device 5 Electron beam irradiation device 6 Ionizing radiation irradiation device

Claims (3)

基材の一方の面に電離放射線硬化型組成物を塗布する工程と、乾燥する工程と、前記基材の他方の面側から電子線を照射する工程と、前記基材の一方の面側から電離放射線を照射する工程とを、順次連続して経ることを特徴とする電離放射線硬化型塗膜形成体の製造方法。   A step of applying an ionizing radiation curable composition to one side of the substrate, a step of drying, a step of irradiating an electron beam from the other side of the substrate, and a side of the one side of the substrate A method for producing an ionizing radiation-curable coating film forming body, which comprises sequentially irradiating with ionizing radiation. 前記基材の他方の面側から電子線を照射する工程において、電子線を照射する電子線照射装置が、前記乾燥する工程に具備した乾燥炉と前記電離放射線を照射する工程に具備した電離放射線照射装置との間に設置したことを特徴とする請求項1に記載の電離放射線硬化型塗膜形成体の製造方法。   In the step of irradiating the electron beam from the other surface side of the base material, the electron beam irradiation apparatus for irradiating the electron beam comprises the drying furnace provided for the drying step and the ionizing radiation provided for the step of irradiating the ionizing radiation. It installed between irradiation apparatuses, The manufacturing method of the ionizing-radiation-curable coating-film formation body of Claim 1 characterized by the above-mentioned. 前記基材がポリオレフィン系樹脂からなり、その膜厚が20μmから200μmの範囲であることを特徴とする請求項1または2に記載の電離放射線硬化型塗膜形成体の製造方法。   The method for producing an ionizing radiation curable coating film forming body according to claim 1 or 2, wherein the base material is made of a polyolefin-based resin, and the thickness thereof is in the range of 20 µm to 200 µm.
JP2013027553A 2013-02-15 2013-02-15 Ionizing radiation curable film formation body production method Pending JP2014155897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013027553A JP2014155897A (en) 2013-02-15 2013-02-15 Ionizing radiation curable film formation body production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013027553A JP2014155897A (en) 2013-02-15 2013-02-15 Ionizing radiation curable film formation body production method

Publications (1)

Publication Number Publication Date
JP2014155897A true JP2014155897A (en) 2014-08-28

Family

ID=51577162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013027553A Pending JP2014155897A (en) 2013-02-15 2013-02-15 Ionizing radiation curable film formation body production method

Country Status (1)

Country Link
JP (1) JP2014155897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155088A (en) * 2015-02-20 2016-09-01 国立大学法人東京農工大学 Treatment device and method for manufacturing thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155088A (en) * 2015-02-20 2016-09-01 国立大学法人東京農工大学 Treatment device and method for manufacturing thin film

Similar Documents

Publication Publication Date Title
JP2018505928A5 (en)
TWI753008B (en) Gas barrier layered body and sealing body
JP6614136B2 (en) GAS BARRIER FILM AND METHOD FOR PRODUCING THE SAME, ELECTRONIC DEVICE USING THE SAME, AND METHOD FOR PRODUCING THE SAME
RU2011139139A (en) METHOD FOR PRODUCING HYPERTHERMAL HYDROGEN MOLECULES AND THEIR APPLICATION FOR SELECTIVE RELATIONSHIP OF С-Н AND / OR SI-H MOLECULES NEAR OR ON THE SURFACE OF THE SUBSTRATE
CN106232346B (en) The manufacturing method of gas barrier film and gas barrier film
KR20230035012A (en) Pattered Adhesive tape, Release film for forming the same and Method of producing Release film
JP5316528B2 (en) Decorative sheet for flooring
EP1410888A3 (en) Process for the production of paint coating layers
CN110591582A (en) Process film production method for OLED module manufacturing process easy to tear off after UV and product thereof
JP2014155897A (en) Ionizing radiation curable film formation body production method
JP2020011447A (en) Resin substrate with hard coat layer and manufacturing method thereof
JP4861036B2 (en) Release sheet and method for producing the same
JP6232879B2 (en) Transfer sheet and covering member using the same
CN107466306B (en) Method for forming dual-curing nanostructure transfer film
KR20220151682A (en) Method for manufacturing a decorative panel comprising applying a film to a substrate by electrostatic charging
EP0951947A1 (en) Radiation-cured barrier coating and process for manufacturing same
TWI461120B (en) Backing sheet of flexographic printing plate and method for manufacturing the same
KR20210109389A (en) Interior sheet and manufacturing method thereof
JP5407253B2 (en) Cosmetic material and method for producing the same
JP2007068331A (en) Static electricity holding device, transfer method using device, application method of coating film, and molding mold
JP2004300758A (en) Floor material
JP2008296591A (en) Pressure-sensitive transfer material, method for production thereof, and transfer article
WO2022196636A1 (en) Gas barrier film and manufacturing method for gas barrier film
JP7027851B2 (en) Substrate with resin hardened layer and its manufacturing method
JP6655406B2 (en) Labels, how to make labels, how to use labels