JP2014155242A - Magnet embedded rotor for rotary electric machine and rotary electric machine - Google Patents

Magnet embedded rotor for rotary electric machine and rotary electric machine Download PDF

Info

Publication number
JP2014155242A
JP2014155242A JP2013020309A JP2013020309A JP2014155242A JP 2014155242 A JP2014155242 A JP 2014155242A JP 2013020309 A JP2013020309 A JP 2013020309A JP 2013020309 A JP2013020309 A JP 2013020309A JP 2014155242 A JP2014155242 A JP 2014155242A
Authority
JP
Japan
Prior art keywords
magnet
rotor
gap
magnets
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013020309A
Other languages
Japanese (ja)
Other versions
JP5971142B2 (en
Inventor
Shinya Sano
新也 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013020309A priority Critical patent/JP5971142B2/en
Publication of JP2014155242A publication Critical patent/JP2014155242A/en
Application granted granted Critical
Publication of JP5971142B2 publication Critical patent/JP5971142B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve torque generation efficiency while preventing magnets from being demagnetized by a diamagnetic field in a magnet embedded rotor for a rotary electric machine.SOLUTION: In a rotor 14 for a rotary electric machine, magnets 22a, 22b are disposed in magnet accommodation holes 28a, 28b. The magnets 22a, 22b include high coersive regions 23 in which a coercive force is higher than other magnet regions, in both end portions in a rotor axis direction. The magnet accommodation holes 28a, 28b include accommodation parts 30a, 30b for accommodating the magnets 22a, 22b and voids 32a, 32b communicating to the accommodation parts. On wall surfaces 36a, 36b forming the voids 32a, 32b, protrusions 38, 40 protruding inside of the voids 32a, 32b in the vicinity of circumferential end faces of the magnets 22a, 22b are formed at positions of avoiding the high coersive regions 23 of the magnets 22a, 22b inside of the voids 32a, 32b along the rotor axis direction.

Description

本発明は、回転電機の磁石埋め込み型ロータ、および、これを用いた回転電機に関する。   The present invention relates to a magnet-embedded rotor of a rotating electrical machine and a rotating electrical machine using the same.

従来、例えば特開2011−199944号公報(以下、特許文献1という。)には、回転電機の永久磁石埋設型回転子が開示されている。この特許文献1の回転子は、図8に示すように、ロータコア82に形成された収容孔84に永久磁石86が収容されている。この収容孔84は、永久磁石86を収容する収容部87と、収容部87の周方向外側に連通する空隙90をと含む。空隙90の形成面は、永久磁石86の径方向外側面である磁極面86aと向き合う収容孔84の磁極対向面88aに連なる磁極側形成面92aと、永久磁石86の径方向内側面である反磁極面86bと向き合う収容孔84の反磁極対向面88bに連なる反磁極側形成面92bとから構成されている。そして、空隙90の磁極側形成面92aと反磁極側形成面92bには、突部94,96が互いに対向して形成されている。   Conventionally, for example, Japanese Unexamined Patent Application Publication No. 2011-199944 (hereinafter referred to as Patent Document 1) discloses a permanent magnet embedded rotor of a rotating electrical machine. As shown in FIG. 8, the rotor of this Patent Document 1 has a permanent magnet 86 accommodated in an accommodation hole 84 formed in the rotor core 82. The housing hole 84 includes a housing portion 87 that houses the permanent magnet 86, and a gap 90 that communicates with the outer circumferential side of the housing portion 87. The formation surface of the air gap 90 is a magnetic pole side formation surface 92a that is continuous with the magnetic pole facing surface 88a of the accommodation hole 84 that faces the magnetic pole surface 86a that is the radially outer surface of the permanent magnet 86, and the opposite surface that is the radially inner surface of the permanent magnet 86. It is comprised from the antimagnetic pole side formation surface 92b continuing to the antimagnetic pole opposing surface 88b of the accommodating hole 84 facing the magnetic pole surface 86b. Projections 94 and 96 are formed on the magnetic pole side forming surface 92a and the opposite magnetic pole side forming surface 92b of the air gap 90 so as to face each other.

特開2011−199944号公報JP 2011-199944 A

上記の特許文献1に記載される回転子では、ロータコア82の外周面から内部に流れ込んだ反磁界の磁束Fが永久磁石86の磁極面86aに向かうものと、空隙90の突部94,96を介して永久磁石86の反磁極面86b側へ誘導されるものとに分散される。これにより、反磁界の作用により永久磁石86が減磁するのを抑制できる効果がある。   In the rotor described in Patent Document 1, the magnetic field F of the demagnetizing field that has flowed into the inside from the outer peripheral surface of the rotor core 82 is directed to the magnetic pole surface 86 a of the permanent magnet 86, and the protrusions 94 and 96 of the air gap 90. The magnetic field is distributed to the one induced to the opposite magnetic pole surface 86b side of the permanent magnet 86. Accordingly, there is an effect that the permanent magnet 86 can be prevented from being demagnetized by the action of the demagnetizing field.

しかしながら、空隙90に設けられる突部94,96は、反磁界磁束の誘導経路になるだけでなく、図8中に破線で示すように、永久磁石86の磁極面86aから生じた磁束が短絡して反磁極面86bへと回り込んでしまうことになる。そうすると、このような磁束の回り込み又は短絡は回転子のトルク発生に寄与しないことなり、回転電機のトルク発生効率が低下するという問題がある。   However, the protrusions 94 and 96 provided in the air gap 90 not only serve as a demagnetizing magnetic flux guiding path, but also the magnetic flux generated from the magnetic pole face 86a of the permanent magnet 86 is short-circuited as shown by a broken line in FIG. As a result, it goes around to the opposite pole face 86b. Then, the wraparound or short circuit of the magnetic flux does not contribute to the torque generation of the rotor, and there is a problem that the torque generation efficiency of the rotating electrical machine is reduced.

本発明の目的は、回転電機の磁石埋め込み型ロータにおいて、反磁界による磁石の減磁を抑制しながら、トルク発生効率を向上させることである。   An object of the present invention is to improve torque generation efficiency while suppressing demagnetization of a magnet due to a demagnetizing field in a magnet embedded rotor of a rotating electrical machine.

本発明に係る回転電機の磁石埋め込み型ロータは、磁性材料からなるロータコアと、ロータコアに形成された磁石収容孔の中に配置される磁石とを備える回転電機の磁石埋め込み型ロータであって、前記磁石は少なくともロータ軸方向の両端部分に他の磁石領域よりも保磁力が高い高保磁領域を備え、前記磁石収容孔は前記磁石を収容する収容部と前記収容部に連通する空隙部とを含み、前記空隙部を形成する壁面には前記磁石の周方向端面近傍において前記空隙部の内側に突出する突部が形成され、前記突部は、前記磁石の高保磁領域を避けた位置で前記空隙部内においてロータ軸方向に沿って形成されているものである。   A magnet-embedded rotor of a rotating electrical machine according to the present invention is a magnet-embedded rotor of a rotating electrical machine comprising a rotor core made of a magnetic material and a magnet disposed in a magnet housing hole formed in the rotor core, The magnet includes a high coercivity region having a coercivity higher than that of other magnet regions at least at both end portions in the rotor axial direction, and the magnet housing hole includes a housing portion for housing the magnet and a gap portion communicating with the housing portion. The wall surface forming the gap portion is formed with a protrusion protruding inside the gap portion in the vicinity of the circumferential end surface of the magnet, and the protrusion portion is located at a position avoiding the high coercivity region of the magnet. In the part, it is formed along the rotor axial direction.

本発明に係る回転電機の磁石埋め込み型ロータにおいて、前記突部は、前記空隙部の外径側壁面に形成されて、前記空隙部の内径側壁面に向かって突出していてもよい。   In the magnet-embedded rotor of the rotating electrical machine according to the present invention, the protrusion may be formed on the outer diameter side wall surface of the gap and project toward the inner diameter side wall of the gap.

また、本発明に係る回転電機の磁石埋め込み型ロータにおいて、前記空隙部の内径側壁面には、前記外径側壁面から突出する突部に対向するように別の突部が形成されていてもよい。   Further, in the magnet-embedded rotor of the rotating electrical machine according to the present invention, another protrusion may be formed on the inner diameter side wall surface of the gap portion so as to face the protrusion protruding from the outer diameter side wall surface. Good.

さらに、本発明に係る回転電機の磁石埋め込み型ロータにおいて、前記空隙部の内径側壁面に形成された突部は、前記磁石収容孔の収容部に配置された前記磁石の位置決め機能を有してもよい。   Furthermore, in the magnet-embedded rotor of the rotating electrical machine according to the present invention, the protrusion formed on the inner diameter side wall surface of the gap portion has a positioning function of the magnet disposed in the housing portion of the magnet housing hole. Also good.

本発明の別の態様である回転電機は、上記いずれかの構成の磁石埋め込み型ロータと、前記ロータにギャップを隔てて対向するステータとを備える。   A rotating electrical machine according to another aspect of the present invention includes the magnet-embedded rotor having any one of the above-described configurations and a stator facing the rotor with a gap therebetween.

本発明に係る回転電機の磁石埋め込み型ロータ及びこれを用いた回転電機によれば、反磁界による磁石の減磁を抑制しながら、トルク発生効率を向上させることができる。   According to the magnet-embedded rotor of a rotating electrical machine and the rotating electrical machine using the same according to the present invention, torque generation efficiency can be improved while suppressing demagnetization of the magnet due to a demagnetizing field.

本発明の一実施の形態に係る回転電機の横断面図である。1 is a cross-sectional view of a rotating electrical machine according to an embodiment of the present invention. 図1に示す回転電機の軸方向断面図である。It is an axial sectional view of the rotating electrical machine shown in FIG. (a)はロータコアの端部を構成する電磁鋼板と磁石とを示す部分拡大図であり、(b)はロータコアの端部以外を構成する電磁鋼板と磁石とを示す部分拡大図である。(A) is the elements on larger scale which show the electromagnetic steel plate and magnet which comprise the edge part of a rotor core, (b) is the elements on larger scale which show the electromagnetic steel sheet and magnet which comprise other than the edge part of a rotor core. 磁石の斜視図である。It is a perspective view of a magnet. 磁石収容孔内に配置された磁石をロータコアの軸方向端部から見た様子を示す斜視図である。It is a perspective view which shows a mode that the magnet arrange | positioned in a magnet accommodation hole was seen from the axial direction edge part of the rotor core. (a)は磁石の別の実施形態を示す、図4に対応する斜視図であり、(b)は磁石の更に別の実施形態を示す、図4に対応する斜視図である。(A) is a perspective view corresponding to FIG. 4 which shows another embodiment of a magnet, (b) is a perspective view corresponding to FIG. 4 which shows another embodiment of a magnet. 磁石収容孔の変形例を示す、図3(b)に対応する部分拡大図である。It is the elements on larger scale corresponding to Drawing 3 (b) showing the modification of a magnet accommodation hole. 従来の磁石埋埋設型ロータの一例を示す部分拡大図である。It is the elements on larger scale which show an example of the conventional magnet embedding type rotor.

以下に、本発明に係る実施の形態(以下、実施形態という。)について添付図面を参照しながら詳細に説明する。この説明において、具体的な形状、材料、数値、方向等は、本発明の理解を容易にするための例示であって、用途、目的、仕様等にあわせて適宜変更することができる。また、以下において複数の実施形態や変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて用いることは当初から想定されている。   DESCRIPTION OF EMBODIMENTS Embodiments according to the present invention (hereinafter referred to as embodiments) will be described in detail below with reference to the accompanying drawings. In this description, specific shapes, materials, numerical values, directions, and the like are examples for facilitating the understanding of the present invention, and can be appropriately changed according to the application, purpose, specification, and the like. In addition, when a plurality of embodiments and modifications are included in the following, it is assumed from the beginning that these characteristic portions are used in appropriate combinations.

図1は、本実施形態に係る回転電機10の回転中心軸Cと直交する方向に沿った横断面図である。以下において、回転中心軸Cに沿う方向を軸方向といい、回転中心軸Cを基点とする半径方向を径方向といい、回転中心軸C周りの方向を周方向という。図2は、図1に示す回転電機10の軸方向に沿った断面図である。   FIG. 1 is a cross-sectional view along a direction orthogonal to the rotation center axis C of the rotating electrical machine 10 according to the present embodiment. Hereinafter, a direction along the rotation center axis C is referred to as an axial direction, a radial direction with the rotation center axis C as a base point is referred to as a radial direction, and a direction around the rotation center axis C is referred to as a circumferential direction. FIG. 2 is a cross-sectional view along the axial direction of the rotating electrical machine 10 shown in FIG.

図1及び図2に示すように、回転電機10は、略円筒状をなすステータ12と、ステータ12の内周側に設けられたロータ14とを備える。ロータ14は、ステータ12にギャップを隔てて対向して回転可能に配置されている。   As shown in FIGS. 1 and 2, the rotating electrical machine 10 includes a stator 12 having a substantially cylindrical shape, and a rotor 14 provided on the inner peripheral side of the stator 12. The rotor 14 is rotatably disposed so as to face the stator 12 with a gap therebetween.

ステータ12は、例えば電磁鋼板等からなる多数枚の磁性板を積層して構成されている。ステータ12は、円環状のヨーク部16と、ヨーク部16から径方向内側に突出するとともに周方向に均等配置で形成されたティース部18とを有する。ステータ12のティース部18の周囲には、コイル19が例えば分布巻きによって巻装されている。   The stator 12 is configured by laminating a large number of magnetic plates made of, for example, electromagnetic steel plates. The stator 12 includes an annular yoke portion 16 and a teeth portion 18 that protrudes radially inward from the yoke portion 16 and is uniformly arranged in the circumferential direction. A coil 19 is wound around the teeth portion 18 of the stator 12 by, for example, distributed winding.

ロータ14は、永久磁石埋め込み型の回転子であり、略円筒状のロータコア20と、ロータコア20内に埋め込まれている磁石22とを備える。ロータコア20もまた、例えば電磁鋼板等からなる多数枚の磁性板を積層して構成されている。   The rotor 14 is a permanent magnet embedded rotor, and includes a substantially cylindrical rotor core 20 and a magnet 22 embedded in the rotor core 20. The rotor core 20 is also configured by laminating a large number of magnetic plates made of, for example, electromagnetic steel plates.

ロータコア20の中心部には、軸穴24が貫通形成されている。軸穴24には、図示しないシャフトが例えば締り嵌め、圧入等によって貫通して固定される。このシャフトが回転電機10を収容するケースに設けられた軸受部材によって回転可能に支持される。   A shaft hole 24 is formed through the central portion of the rotor core 20. A shaft (not shown) is penetrated and fixed to the shaft hole 24 by, for example, interference fitting or press fitting. This shaft is rotatably supported by a bearing member provided in a case that houses the rotating electrical machine 10.

また、図2に示すように、ロータコア20は、軸方向の両端部側に位置する端部領域20aと、これらの端部領域20a以外の中間領域20bとに区画されている。端部領域20aと中間領域20bとでは、ロータコア20に形成される磁石収容孔の空隙部の形状が異なっている。その詳細については後述する。   As shown in FIG. 2, the rotor core 20 is partitioned into an end region 20a located on both end sides in the axial direction and an intermediate region 20b other than these end regions 20a. The end region 20a and the intermediate region 20b are different in the shape of the gap portion of the magnet accommodation hole formed in the rotor core 20. Details thereof will be described later.

ロータ14は、複数の磁極26を有する。本実施形態では、8つの磁極26が周方向に均等な間隔で設けられている。各磁極26に埋め込まれた磁石22は、一対の磁石22a,22bによって構成される。   The rotor 14 has a plurality of magnetic poles 26. In the present embodiment, eight magnetic poles 26 are provided at equal intervals in the circumferential direction. The magnet 22 embedded in each magnetic pole 26 is constituted by a pair of magnets 22a and 22b.

一対の磁石22a,22bは、同じ形状及び大きさに形成されており、矩形状の端面形状および横断面形状を有してロータコア20と略同じ長さで軸方向に延伸している。また、一対の磁石22a,22bは、各磁極26においてロータコア20の外周面21側に向かって略V字状に広がるように配置されている。   The pair of magnets 22 a and 22 b are formed in the same shape and size, have a rectangular end face shape and a transverse cross-sectional shape, and extend in the axial direction with substantially the same length as the rotor core 20. Further, the pair of magnets 22 a and 22 b are arranged so as to spread in a substantially V shape toward the outer peripheral surface 21 side of the rotor core 20 in each magnetic pole 26.

なお、本実施形態では、1つの磁極26に2つの磁石22a,22bが含まれる例について説明するが、これに限定されるものではなく、1つの各磁極26に1つの磁石が含まれてもよいし、または、3つ以上の磁石が含まれてもよい。   In this embodiment, an example in which two magnets 22a and 22b are included in one magnetic pole 26 will be described. However, the present invention is not limited to this, and one magnetic pole 26 may include one magnet. Or more than two magnets may be included.

一対の磁石22a,22bは、ロータコア20に形成された磁石収容孔28a,28b内に軸方向へ挿入されて配置される。各磁石22a,22bは、磁石収容孔28a,28b内に例えば樹脂等の接着剤を用いてロータコア20に固定されている。   The pair of magnets 22a and 22b are inserted and disposed in the magnet housing holes 28a and 28b formed in the rotor core 20 in the axial direction. The magnets 22a and 22b are fixed to the rotor core 20 using an adhesive such as a resin in the magnet housing holes 28a and 28b.

図3は軸方向から見た磁極26の部分拡大図であり、(a)はロータコア20の端部領域20aを構成する電磁鋼板と磁石22a,22bとを示し、(b)はロータコア20の中間領域20bを構成する電磁鋼板と磁石22a,22bとを示す。   FIG. 3 is a partially enlarged view of the magnetic pole 26 as viewed from the axial direction. FIG. 3A shows an electromagnetic steel plate and magnets 22a and 22b constituting the end region 20a of the rotor core 20, and FIG. An electromagnetic steel sheet and magnets 22a and 22b constituting the region 20b are shown.

図3(a),(b)に示すように、ロータコア20に形成されている磁石収容孔28a,28bは、磁石22a,22bを収容する収容部30a,30bと、収容部30a,30bに対して磁極26の周方向外側にそれぞれ連通する空隙部32a,32bとを含む。   As shown in FIGS. 3A and 3B, the magnet housing holes 28a and 28b formed in the rotor core 20 are provided with respect to the housing portions 30a and 30b for housing the magnets 22a and 22b and the housing portions 30a and 30b. And gaps 32a and 32b communicating with the outer sides of the magnetic pole 26 in the circumferential direction.

これらの空隙部32a,32bは、電磁鋼板に比べて磁気抵抗が格段に大きい空隙を含むために磁気フラックスバリア(磁束障壁)として機能する。これにより、磁石22a,22bの径方向外側の表面である磁極面から出た磁束が、磁石22a,22bの径方向内側の表面である反磁極面にロータコア20を構成する電磁鋼板内を通って回り込んで短絡するのを防止または抑制している。   These air gap portions 32a and 32b function as magnetic flux barriers (magnetic flux barriers) because they include air gaps that have a remarkably larger magnetic resistance than electromagnetic steel sheets. Thereby, the magnetic flux which came out of the magnetic pole surface which is the surface of the magnet 22a, 22b on the radial outer side passes through the inside of the electrical steel sheet constituting the rotor core 20 on the counter magnetic pole surface which is the surface of the magnet 22a, 22b on the radial inner side. Prevents or suppresses short circuiting and shorting.

磁石収容孔28a,28bの収容部30a,30bは、磁石22a,22bに略対応する矩形状に形成されている。磁極26の周方向中央位置において収容部30a,30bの壁面と磁石22a,22bとの間には、磁石収容孔28a,28b内に磁石22a,22bを固定するための樹脂等を充填する隙間34が形成されている。   The accommodating portions 30a and 30b of the magnet accommodating holes 28a and 28b are formed in a rectangular shape substantially corresponding to the magnets 22a and 22b. A gap 34 that fills the magnet housing holes 28a and 28b with resin or the like for fixing the magnets 22a and 22b between the wall surfaces of the housing portions 30a and 30b and the magnets 22a and 22b at the circumferential center position of the magnetic pole 26. Is formed.

磁石収容孔28a,28bの空隙部32a,32bを形成する壁面は、径方向外側に位置するが外径側壁面36aと、径方向内側に位置して外径側壁面36aに空隙を挟んで対向する内径側壁面36bとを含む。   The wall surfaces forming the gap portions 32a and 32b of the magnet housing holes 28a and 28b are located on the radially outer side, but are opposed to the outer diameter side wall surface 36a and located on the radially inner side with the outer diameter side wall surface 36a sandwiched between the gaps. And an inner diameter side wall surface 36b.

図3(b)に示すように、ロータコア20の中間領域20b(図2参照)では、空隙部32a,32bの外径側壁面36aに第1突部38が形成されている。第1突部38は、磁石22a,22bの周方向外側の端面近傍に位置して、空隙部32a,32bの内径側壁面36bに向かって突設されている。   As shown in FIG. 3B, in the intermediate region 20b (see FIG. 2) of the rotor core 20, a first protrusion 38 is formed on the outer diameter side wall surface 36a of the gaps 32a and 32b. The first protrusion 38 is located near the end face on the outer side in the circumferential direction of the magnets 22a and 22b, and protrudes toward the inner diameter side wall surface 36b of the gaps 32a and 32b.

他方、空隙部32a,32bの内径側壁面36bには、第2突部40が形成されている。第2突部40は、磁石22a,22bの周方向外側の端面近傍に位置して、空隙部32a,32bの外径側壁面36aに向かって突設されて第1突部38に対向している。ここで、第2突部40の根元部は、収容部30a,30b内に収容された磁石22a,22bを位置決めする位置決め部としても機能する。   On the other hand, the 2nd protrusion 40 is formed in the internal-diameter side wall surface 36b of space | gap part 32a, 32b. The second protrusion 40 is located in the vicinity of the outer circumferential surface of the magnets 22a and 22b, protrudes toward the outer diameter side wall surface 36a of the gaps 32a and 32b, and faces the first protrusion 38. Yes. Here, the base part of the 2nd protrusion part 40 functions also as a positioning part which positions magnet 22a, 22b accommodated in accommodating part 30a, 30b.

このように、ロータコア20の中間領域20bにおける磁石収容孔28a,28bでは、空隙部32a,32bに設けられた第1および第2突部38,40が互いに接近して磁気抵抗が比較的小さくなっていることで、外周面21からロータコア20内部に進入した反磁界の磁束F(図8参照)の一部を磁石22a,22bの反磁極面側へと誘導して分散させる機能を果たす。   As described above, in the magnet housing holes 28a and 28b in the intermediate region 20b of the rotor core 20, the first and second protrusions 38 and 40 provided in the gaps 32a and 32b approach each other and the magnetic resistance becomes relatively small. Therefore, a part of the magnetic field F (see FIG. 8) of the demagnetizing field that has entered the rotor core 20 from the outer peripheral surface 21 is guided and distributed to the opposite magnetic pole surface side of the magnets 22a and 22b.

これに対し、ロータコア20の端部領域20a(図1参照)では、図3(a)に示すように、磁石収容孔28a,28bの空隙部32a,32bに上記のような第1および第2突部38,40が設けられていない。具体的には、空隙部32a,32bの外径側壁面36aは、磁石収容孔28a,28bの収容部30a,30bの外径側壁面と略真っ直ぐに連なった形状を有する。また、空隙部32a,32bの内径側壁面36bは、収容部30b内の磁石22a,22bを位置決めする段部36cが形成されているだけで、外径側壁面36a側に突出するような形状となっていない。   On the other hand, in the end region 20a (see FIG. 1) of the rotor core 20, as shown in FIG. 3A, the first and second gaps 32a and 32b of the magnet housing holes 28a and 28b are formed as described above. The protrusions 38 and 40 are not provided. Specifically, the outer diameter side wall surfaces 36a of the gap portions 32a and 32b have a shape that is connected substantially straight to the outer diameter side wall surfaces of the accommodation portions 30a and 30b of the magnet accommodation holes 28a and 28b. Further, the inner diameter side wall surfaces 36b of the gap portions 32a and 32b are formed so as to protrude toward the outer diameter side wall surface 36a only by forming the step portions 36c for positioning the magnets 22a and 22b in the accommodating portion 30b. is not.

このようにロータコア20の端部領域20aにおける磁石収容孔28a,28bでは、空隙部32a,32bの壁面に突部が設けられていないことでフラックスバリアとして有効に機能し、磁石22a,22bの周方向外側端部における磁束の回り込みを抑制して該磁束をロータコア20の外部へと向かわせ、その結果、トルク発生効率の向上に寄与することができる。   As described above, the magnet housing holes 28a and 28b in the end region 20a of the rotor core 20 function effectively as a flux barrier because the protrusions are not provided on the wall surfaces of the gaps 32a and 32b, and the magnets 22a and 22b are surrounded by the periphery. The wraparound of the magnetic flux at the outer end portion in the direction can be suppressed and the magnetic flux can be directed to the outside of the rotor core 20, and as a result, the torque generation efficiency can be improved.

この場合、空隙部32a,32bにおいて反磁界の磁束Fを分散させる機能はないため、磁石22a,22bの軸方向端部における反磁界による減磁が懸念される。そこで、本実施形態では、軸方向の両端部分に他の磁石領域よりも保磁力が高い高保磁領域を備える磁石22a,22bを用いている。   In this case, since there is no function to disperse the magnetic flux F of the demagnetizing field in the gaps 32a and 32b, there is a concern about demagnetization due to the demagnetizing field at the axial ends of the magnets 22a and 22b. Therefore, in the present embodiment, magnets 22a and 22b having high coercivity regions having higher coercive force than other magnet regions at both end portions in the axial direction are used.

図4は、本実施形態における磁石22a,22bを示す斜視図である。図5は、磁石収容孔28b内に配置された磁石22bをロータコア20の軸方向一端部から見た様子を示す斜視図である。   FIG. 4 is a perspective view showing the magnets 22a and 22b in the present embodiment. FIG. 5 is a perspective view showing a state in which the magnet 22b disposed in the magnet accommodation hole 28b is viewed from one end of the rotor core 20 in the axial direction.

図4に示すように、磁石22a,22bは、軸方向の両端部に保磁力が高い部分である高保磁領域23を備える。このような高保磁領域23は、磁石22a,22bの基材の端部表面に例えばジスプロシウム(Dy)やテルビウム(Tb)等の希土類元素を拡散させることによって形成することができる。具体的には、例えばジスプロシウム等をスパッタリング法、蒸着法、塗布等の方法で磁石22a,22bの端部領域だけに付着させ、その後、磁石22a,22bを加熱してジスプロシウム等を磁石内部の粒界内に拡散または浸透させることによって形成される。   As shown in FIG. 4, the magnets 22 a and 22 b include high coercivity regions 23 that are portions having a high coercivity at both ends in the axial direction. Such a high coercive region 23 can be formed by diffusing rare earth elements such as dysprosium (Dy) and terbium (Tb) on the end surface of the base material of the magnets 22a and 22b. Specifically, for example, dysprosium or the like is attached only to the end regions of the magnets 22a and 22b by a sputtering method, vapor deposition method, coating method or the like, and then the magnets 22a and 22b are heated so It is formed by diffusing or penetrating into the field.

図5に示すように、磁石22bが磁石収容孔28b内に配置されたとき、空隙部32bの第1および第2突部38,40は、磁石22bの高保磁領域23を避けた位置で空隙部32b内において軸方向に形成されている。より詳しくは、第1および第2突部38,40の軸方向端面がロータコア20の軸方向端面から奥まって位置しており、この突部端面が磁石22bにおける高保磁領域23と他の磁石領域との境界に略一致している。このことは、図5に示されていない磁石22aについても同様である。   As shown in FIG. 5, when the magnet 22b is disposed in the magnet housing hole 28b, the first and second protrusions 38 and 40 of the gap portion 32b are spaced away from the highly coercive region 23 of the magnet 22b. It is formed in the axial direction in the portion 32b. More specifically, the axial end surfaces of the first and second projecting portions 38 and 40 are located behind the axial end surface of the rotor core 20, and the projecting end surfaces are the high coercivity region 23 and other magnet regions in the magnet 22b. It almost coincides with the boundary. The same applies to the magnet 22a not shown in FIG.

このように本実施形態におけるロータ14では、軸方向両端部に高保磁領域23を有する磁石22a,22bを用いると共に、磁石22a,22bにおいて保磁力が相対的に低い部分である上記高保磁領域以外の部分に対応して、磁石収容孔28a,28bの空隙部32a,32bに反磁界磁束の分散機能を果たす第1および第2突部38,40を設けている。これにより、磁石22a,22bの軸方向全体について反磁界による減磁を効果的に抑制することできると共に、磁石22a,22bの軸方向端部における磁束の回り込みを防止又は低減してトルク発生効率を向上させることができる。   As described above, in the rotor 14 according to the present embodiment, the magnets 22a and 22b having the high coercive regions 23 at both ends in the axial direction are used, and the magnets 22a and 22b other than the high coercive regions that are relatively low coercive force portions. Corresponding to this portion, first and second projecting portions 38, 40 that perform a function of dispersing the demagnetizing magnetic flux are provided in the gap portions 32a, 32b of the magnet housing holes 28a, 28b. As a result, demagnetization due to the demagnetizing field can be effectively suppressed for the entire axial direction of the magnets 22a and 22b, and the torque generation efficiency can be improved by preventing or reducing the wraparound of the magnetic flux at the axial ends of the magnets 22a and 22b. Can be improved.

なお、本発明に係るロータは、上述した構成のものに限定されず、本願の特許請求の範囲に記載された事項およびそれに均等な範囲において種々の変更や改良が可能である。   Note that the rotor according to the present invention is not limited to the above-described configuration, and various changes and improvements can be made within the scope of matters described in the claims of the present application and a range equivalent thereto.

例えば、上記においては、ロータ14に埋め込まれる磁石22a,22bは軸方向の両端部に高保磁領域23を有するものとして説明したが、これに限定されるものではなく、磁石は少なくとも軸方向の両端部分に他の磁石領域よりも保磁力が高い領域を備えていればよい。   For example, in the above description, the magnets 22a and 22b embedded in the rotor 14 have been described as having the high coercivity regions 23 at both ends in the axial direction. However, the present invention is not limited to this. What is necessary is just to provide the area | region where a coercive force is higher than another magnet area | region in the part.

例えば、図6(a)に示すように、磁石22a,22bは、軸方向両端部分に高保磁領域23を有するのに加えて、反磁界による減磁が生じやすい部分であることが分かっている軸方向に沿った稜線角部25の周辺にもジスプロシウム等の拡散によって高保磁領域を形成してもよい。   For example, as shown in FIG. 6A, the magnets 22a and 22b have high coercivity regions 23 at both end portions in the axial direction, and are known to be portions where demagnetization due to a demagnetizing field is likely to occur. A high coercive region may also be formed around the ridge line corner 25 along the axial direction by diffusion of dysprosium or the like.

また、図6(b)に示すように、磁石22a,22bの表面全体にジスプロシウム等を付着および拡散してもよい。この場合でも、図6(b)に指紋状の等濃度線で示すように、磁石22a,22bの表面から内部に向かうにつれてジスプロシウム等の拡散濃度が低くなるため、軸方向両端部分が磁石内部領域よりも保磁力が高い部分であるといえる。   In addition, as shown in FIG. 6B, dysprosium or the like may be attached and diffused over the entire surface of the magnets 22a and 22b. Even in this case, as shown by the fingerprint-like isoconcentration lines in FIG. 6B, the diffusion concentration of dysprosium and the like decreases from the surface of the magnets 22a and 22b toward the inside, so that both end portions in the axial direction are magnet internal regions. It can be said that the coercive force is higher than that.

さらに、上記においては、磁石収容孔28a,28bの空隙部32a,32bの外径側壁面36aに第1突部38を設けるとともに内径側壁面36bに第2突部40を設けるものと説明したが、これに限定されるものではない。例えば、図7に示すように、ロータコア20の中間領域20bにおいて、磁石収容孔28a,28bの外径側壁面36aだけに第1突部38を設けてもよいし、これとは逆に、内径側壁面36bだけに第2突部40を設けてもよい。   Further, in the above description, it has been described that the first protrusion 38 is provided on the outer diameter side wall surface 36a of the gaps 32a, 32b of the magnet housing holes 28a, 28b and the second protrusion 40 is provided on the inner diameter side wall surface 36b. However, the present invention is not limited to this. For example, as shown in FIG. 7, in the intermediate region 20b of the rotor core 20, the first protrusions 38 may be provided only on the outer diameter side wall surfaces 36a of the magnet housing holes 28a, 28b. The second protrusion 40 may be provided only on the side wall surface 36b.

10 回転電機、12 ステータ、14 ロータ、16 ヨーク部、18 ティース部、19 コイル、20 ロータコア、20a 端部領域、20b 中間領域、21 外周面、22,22a,22b 磁石、23 高保磁領域、24 軸穴、25 稜線角部、26 磁極、28a,28b 磁石収容孔、30a,30b 収容部、32a,32b 空隙部、34 隙間、36a 外径側壁面、36b 内径側壁面、36c 段部、38 第1突部(突部)、40 第2突部(突部)。C 回転中心軸、F 磁束。   DESCRIPTION OF SYMBOLS 10 Rotating electrical machine, 12 Stator, 14 Rotor, 16 Yoke part, 18 Teeth part, 19 Coil, 20 Rotor core, 20a End area, 20b Intermediate area, 21 Outer peripheral surface, 22, 22a, 22b Magnet, 23 High coercive area, 24 Shaft hole, 25 ridge line corner, 26 magnetic pole, 28a, 28b magnet accommodation hole, 30a, 30b accommodation portion, 32a, 32b gap portion, 34 gap, 36a outer diameter side wall surface, 36b inner diameter side wall surface, 36c stepped portion, 38th 1 protrusion (protrusion), 40 second protrusion (protrusion). C rotation center axis, F magnetic flux.

Claims (5)

磁性材料からなるロータコアと、ロータコアに形成された磁石収容孔の中に配置される磁石とを備える回転電機の磁石埋め込み型ロータであって、
前記磁石は少なくともロータ軸方向の両端部分に他の磁石領域よりも保磁力が高い高保磁領域を備え、
前記磁石収容孔は前記磁石を収容する収容部と前記収容部に連通する空隙部とを含み、
前記空隙部を形成する壁面には前記磁石の周方向端面近傍において前記空隙部の内側に突出する突部が形成され、前記突部は、前記磁石の高保磁領域を避けた位置で前記空隙部内においてロータ軸方向に沿って形成されている、回転電機の磁石埋め込み型ロータ。
A rotor-embedded magnet rotor of a rotating electrical machine comprising a rotor core made of a magnetic material, and a magnet disposed in a magnet housing hole formed in the rotor core,
The magnet is provided with a high coercivity region having a higher coercivity than other magnet regions at least at both end portions in the rotor axial direction,
The magnet housing hole includes a housing portion for housing the magnet and a gap portion communicating with the housing portion,
The wall surface forming the gap is formed with a protrusion protruding inward of the gap in the vicinity of the circumferential end surface of the magnet, and the protrusion is located inside the gap at a position avoiding the high coercivity region of the magnet. A rotor embedded in a magnet, which is formed along the rotor axial direction.
請求項1に記載の回転電機の磁石埋め込み型ロータにおいて、
前記突部は、前記空隙部の外径側壁面に形成されて、前記空隙部の内径側壁面に向かって突出している、回転電機の磁石埋め込み型ロータ。
In the rotary electric machine embedded magnet rotor according to claim 1,
The projecting portion is formed on an outer diameter side wall surface of the gap portion and protrudes toward an inner diameter side wall surface of the gap portion.
請求項2に記載の回転電機の磁石埋め込み型ロータにおいて、
前記空隙部の内径側壁面には、前記外径側壁面から突出する突部に対向するように別の突部が形成されている、回転電機の磁石埋め込み型ロータ。
In the rotor embedded in a rotating electric machine according to claim 2,
A magnet-embedded rotor for a rotating electrical machine, wherein another protrusion is formed on the inner diameter side wall surface of the gap so as to face the protrusion protruding from the outer diameter side wall surface.
請求項3に記載の回転電機の磁石埋め込み型ロータにおいて、
前記空隙部の内径側壁面に形成された突部は、前記磁石収容孔の収容部に配置された前記磁石を位置決めする、回転電機の磁石埋め込み型ロータ。
In the rotor embedded in a rotating electric machine according to claim 3,
The protrusion formed on the inner diameter side wall surface of the gap portion positions the magnet arranged in the accommodating portion of the magnet accommodating hole, and is a magnet-embedded rotor of a rotating electrical machine.
請求項1ないし5のいずれか一項に記載の磁石埋め込み型ロータと、
前記ロータにギャップを隔てて対向するステータと、を備える回転電機。
A magnet-embedded rotor according to any one of claims 1 to 5,
A rotating electrical machine comprising: a stator facing the rotor with a gap therebetween.
JP2013020309A 2013-02-05 2013-02-05 Magnet embedded rotor of rotating electrical machine and rotating electrical machine Expired - Fee Related JP5971142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013020309A JP5971142B2 (en) 2013-02-05 2013-02-05 Magnet embedded rotor of rotating electrical machine and rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013020309A JP5971142B2 (en) 2013-02-05 2013-02-05 Magnet embedded rotor of rotating electrical machine and rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2014155242A true JP2014155242A (en) 2014-08-25
JP5971142B2 JP5971142B2 (en) 2016-08-17

Family

ID=51576651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013020309A Expired - Fee Related JP5971142B2 (en) 2013-02-05 2013-02-05 Magnet embedded rotor of rotating electrical machine and rotating electrical machine

Country Status (1)

Country Link
JP (1) JP5971142B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4060873A1 (en) * 2021-03-19 2022-09-21 Siemens Aktiengesellschaft Permanently magnetic synchronous motor
US11682936B2 (en) 2020-11-04 2023-06-20 Toyota Jidosha Kabushiki Kaisha Motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119190A (en) * 2008-11-12 2010-05-27 Toyota Motor Corp Rotor for magnet-embedded motors and magnet-embedded motor
WO2012011191A1 (en) * 2010-07-23 2012-01-26 トヨタ自動車株式会社 Rotor and ipm motor
JP2012210040A (en) * 2011-03-29 2012-10-25 Mitsubishi Electric Corp Embedded magnet type motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119190A (en) * 2008-11-12 2010-05-27 Toyota Motor Corp Rotor for magnet-embedded motors and magnet-embedded motor
WO2012011191A1 (en) * 2010-07-23 2012-01-26 トヨタ自動車株式会社 Rotor and ipm motor
JP2012210040A (en) * 2011-03-29 2012-10-25 Mitsubishi Electric Corp Embedded magnet type motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11682936B2 (en) 2020-11-04 2023-06-20 Toyota Jidosha Kabushiki Kaisha Motor
EP4060873A1 (en) * 2021-03-19 2022-09-21 Siemens Aktiengesellschaft Permanently magnetic synchronous motor
WO2022194819A1 (en) * 2021-03-19 2022-09-22 Siemens Aktiengesellschaft Permanent magnet synchronous motor

Also Published As

Publication number Publication date
JP5971142B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5353917B2 (en) Rotating machine rotor
JP2012161226A (en) Rotor for rotary electric machine
JP2011223836A (en) Permanent magnet type revolving armature
JP2012125000A (en) End plate and rotor for rotating electric machine using the same
US9337692B2 (en) Permanent magnet rotor with flux barrier for reduced demagnetization
CN110808643A (en) Stator core for rotating electrical machine and rotating electrical machine
JP2012100428A (en) Rotary electric machine
JP2016220514A (en) Rotary electric machine
KR20130066528A (en) Permanent magnet rotor and electric motor incorporating the rotor
KR101897635B1 (en) Permanent magnet-embedded motor and rotor thereof
JP2012217278A (en) Permanent magnet type rotary electric machine and manufacturing method therefor
US8698369B2 (en) Rotor of rotating electrical machine
JP2013132124A (en) Core for field element
WO2021065687A1 (en) Rotor and motor
JP2014064427A (en) Rotor and rotary electric machine
JP5971142B2 (en) Magnet embedded rotor of rotating electrical machine and rotating electrical machine
WO2017073172A1 (en) Rotary electric machine
JP2014113033A (en) Embedded magnet dynamo-electric machine
JP2018098936A (en) Magnet unit
JP5353804B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
JP2017046386A (en) Permanent magnet electric motor
WO2013132625A1 (en) Rotating electric machine
JP6330425B2 (en) Rotating electrical machine
JP7224986B2 (en) Rotating electric machine
JP2014161206A (en) Interior magnet type rotating electrical machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R151 Written notification of patent or utility model registration

Ref document number: 5971142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees