JP2014154340A - Battery jar laminate structure - Google Patents

Battery jar laminate structure Download PDF

Info

Publication number
JP2014154340A
JP2014154340A JP2013022836A JP2013022836A JP2014154340A JP 2014154340 A JP2014154340 A JP 2014154340A JP 2013022836 A JP2013022836 A JP 2013022836A JP 2013022836 A JP2013022836 A JP 2013022836A JP 2014154340 A JP2014154340 A JP 2014154340A
Authority
JP
Japan
Prior art keywords
battery case
battery
flow path
cases
battery jar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013022836A
Other languages
Japanese (ja)
Inventor
Yasunari Takauchi
康成 高内
Masahiro Imai
正浩 今井
Koji Ando
幸司 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojima Industries Corp
Original Assignee
Kojima Press Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojima Press Industry Co Ltd filed Critical Kojima Press Industry Co Ltd
Priority to JP2013022836A priority Critical patent/JP2014154340A/en
Publication of JP2014154340A publication Critical patent/JP2014154340A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery jar laminate structure having the degree of freedom in a molding shape of a battery jar and advantage in cost.SOLUTION: (1) A battery jar laminate structure includes a plurality of square type metallic battery jars 20 laminated in the lamination direction of the battery jar, and each of the plurality of battery jars 20 is constituted of first and second battery jar elements 30, 40 which are press molded products jointed to each other in the lamination direction of the battery jar. (2) In the battery jar laminate structure, a coolant passage forming part 50 for forming a coolant passage between two battery jars adjacent to each other out of the plurality of battery jars 20 laminated in the lamination direction of the battery jar is molded integrally with at least one of the first and second battery jar elements 30, 40.

Description

本発明は、複数の角型電池(Liイオン電池)の電槽(電池ケース)の積層構造に関する。   The present invention relates to a laminated structure of a battery case (battery case) of a plurality of prismatic batteries (Li ion batteries).

特開2011−113706号公報は、つぎの電槽積層構造を開示している。
(a)積層される複数の角型の電槽(電池ケース)の各電槽が、一部品構成である。
(b)互いに隣り合う2つの電槽間に冷媒流路を形成するために、2つの電槽間に、電槽とは別体品の樹脂枠を配置している。
JP 2011-113706 A discloses the following battery case laminate structure.
(A) Each battery case of a plurality of stacked rectangular battery cases (battery cases) has a one-part configuration.
(B) In order to form a refrigerant flow path between two battery cases adjacent to each other, a resin frame separate from the battery case is disposed between the two battery cases.

しかし、従来の電槽積層構造には、つぎの問題点がある。
(a)各電槽が一部品構成であり、各電槽は深絞り成形にて成形されることが一般的である。そのため、各電槽の成形形状の自由度が比較的低い。
(b)2つの電槽間に樹脂枠を配置しているため、複数の電槽を積層する際に各電槽間に樹脂枠を配置させる作業が必要である。そのため、複数の電槽を積層させるのに要する工数が多くなり、コスト上不利である。
However, the conventional battery case laminated structure has the following problems.
(A) Each battery case has a single component configuration, and each battery case is generally formed by deep drawing. Therefore, the degree of freedom of the shape of each battery case is relatively low.
(B) Since the resin frame is arranged between the two battery cases, it is necessary to arrange the resin frame between the battery cases when the plurality of battery cases are stacked. Therefore, the man-hour required for laminating a plurality of battery cases increases, which is disadvantageous in terms of cost.

特開2011−113706号公報JP 2011-113706 A

本発明の目的は、従来に比べて電槽の成形形状の自由度が高い電槽積層構造を提供することにある。
本発明の第2の目的は、従来に比べてコスト上有利な電槽積層構造を提供することにある。
The objective of this invention is providing the battery case laminated structure with a high freedom degree of the shaping | molding shape of a battery case compared with the past.
The second object of the present invention is to provide a battery case laminated structure which is advantageous in terms of cost as compared with the conventional case.

上記目的を達成する本発明はつぎの通りである。
(1) 電槽積層方向に積層される複数の角型の金属製の電槽を有し、
前記複数の電槽の各電槽は、前記電槽積層方向に互いに接合されるプレス成形品である第1、第2の電槽要素で構成されている、電槽積層構造。
(2) 前記第1、第2の電槽要素の少なくともいずれか一方に、前記電槽積層方向に積層される前記複数の電槽のうちの互いに隣り合う2つの電槽間に冷媒流路を形成する冷媒流路形成部が、一体成形されている、(1)記載の電槽積層構造。
The present invention for achieving the above object is as follows.
(1) having a plurality of rectangular metal battery cases stacked in the battery case stacking direction,
Each battery case of the plurality of battery cases is a battery case laminated structure composed of first and second battery case elements which are press-formed products joined to each other in the battery case lamination direction.
(2) A refrigerant flow path is provided between at least one of the first and second battery case elements between two battery cases adjacent to each other among the plurality of battery cases stacked in the battery case stacking direction. The battery case laminated structure according to (1), wherein a refrigerant flow path forming portion to be formed is integrally formed.

上記(1)の電槽積層構造によれば、各電槽が電槽積層方向に互いに接合されるプレス成形品である第1、第2の電槽要素で構成されているため、各電槽が一部品構成であり深絞り成形にて成形される場合に比べて、形状の自由度が高くなる。その結果、各電槽に冷媒流路形成部を一体に成形することができる。 According to the battery case laminated structure of (1) above, each battery case is composed of first and second battery case elements that are press-formed products joined together in the battery case lamination direction. Compared with the case where is a one-component configuration and is formed by deep drawing, the degree of freedom of shape is increased. As a result, the refrigerant flow path forming portion can be integrally formed in each battery case.

上記(2)の電槽積層構造によれば、第1、第2の電槽要素の少なくともいずれか一方に、電槽積層方向に積層される複数の電槽のうちの互いに隣り合う2つの電槽間に冷媒流路を形成する冷媒流路形成部が、一体成形されているため、互いに隣り合う2つの電槽間に冷媒流路を形成するために配置される樹脂枠を無くすことができる。そのため、複数の電槽を積層する際に各電槽間に樹脂枠を配置させる作業は不要である。そのため、従来に比べて、複数の電槽を積層させるのに要する工数が減り、コスト上有利である。   According to the battery case stacking structure of (2) above, two batteries adjacent to each other among a plurality of battery cases stacked in the battery case stacking direction on at least one of the first and second battery case elements. Since the refrigerant flow path forming portion that forms the refrigerant flow path between the tanks is integrally formed, the resin frame disposed to form the refrigerant flow path between two adjacent battery tanks can be eliminated. . Therefore, the operation | work which arrange | positions a resin frame between each battery case when laminating | stacking a some battery case is unnecessary. Therefore, compared with the prior art, the number of steps required to stack a plurality of battery cases is reduced, which is advantageous in terms of cost.

本発明実施例の電槽積層構造の、複数の電槽を積層した状態の模式側面図である。It is a model side view of the state which laminated | stacked the several battery case of the battery case laminated structure of this invention Example. 本発明実施例の電槽積層構造の、互いに隣り合う2つの電槽の模式分解側面図である。It is a model decomposition | disassembly side view of two battery cases adjacent to each other of the battery case lamination structure of this invention Example. 本発明実施例の電槽積層構造の、複数の電槽のうちの1つの電槽の斜視図である。It is a perspective view of one battery case of a plurality of battery cases of the battery case laminated structure of this invention Example. 本発明実施例の電槽積層構造の、複数の電槽のうちの1つの電槽の分解斜視図である。It is a disassembled perspective view of one battery case of the several battery case of the battery case laminated structure of this invention Example. 本発明実施例の電槽積層構造の、複数の電槽のうちの1つの電槽の正面図である。It is a front view of one battery case of a plurality of battery cases of the battery case laminated structure of the present invention example. 本発明実施例の電槽積層構造の変形例の、複数の電槽のうちの1つの電槽の斜視図である。It is a perspective view of one battery case in a plurality of battery cases of the modification of the battery case laminated structure of the example of the present invention. 本発明実施例の電槽積層構造の変形例の、互いに隣り合う2つの電槽の模式側面図である。It is a schematic side view of two battery cases adjacent to each other in a modified example of the battery case laminated structure of the embodiment of the present invention. 本発明実施例の電槽積層構造の変形例の、複数の電槽のうちの1つの電槽の斜視図である。It is a perspective view of one battery case in a plurality of battery cases of the modification of the battery case laminated structure of the example of the present invention.

以下に、本発明実施例の電槽積層構造を、図面を参照して説明する。なお、図中、UPは上方を示す。
本発明実施例の電槽積層構造(装置)は、図1に示すように、電槽積層方向Dに積層される複数の電槽(電池ケース)20を有する。
Below, the battery case laminated structure of this invention Example is demonstrated with reference to drawings. In the figure, UP indicates the upper side.
As shown in FIG. 1, the battery stack structure (apparatus) of the embodiment of the present invention has a plurality of battery cases (battery cases) 20 stacked in the battery stacking direction D.

電槽20は、角型電池に用いられる電槽であり、角型である。電槽20は、金属製であり、たとえばアルミニウム製である。各電槽20は、第1、第2の電槽要素30,40で構成されている。第1、第2の電槽要素30,40は、それぞれ、図示略の一定厚の平板状素材をプレス成形(プレス機を用いた浅絞り成形)して作製される。すなわち、第1、第2の電槽要素30,40は、それぞれ、プレス成形品である。 The battery case 20 is a battery case used for a square battery, and is square. The battery case 20 is made of metal, for example, aluminum. Each battery case 20 is composed of first and second battery case elements 30 and 40. The first and second battery case elements 30 and 40 are respectively produced by press-forming (shallow drawing using a pressing machine) a flat plate material having a constant thickness (not shown). That is, each of the first and second battery case elements 30 and 40 is a press-formed product.

第1の電槽要素30は、図4に示すように、電槽積層方向Dと直交する第1の平板部30aと、第1の平板部30aの左右両側縁および下縁から電槽積層方向Dに延びる第1の積層方向延び部30bと、第1の積層方向延び部30bの延び方向先端部から電槽積層方向Dと直交する方向に延びる第1のフランジ部30cと、を備える。 As shown in FIG. 4, the first battery case element 30 includes a first flat plate portion 30a orthogonal to the battery case stacking direction D, and left and right side edges and a lower edge of the first flat plate portion 30a. A first stacking direction extending portion 30b extending to D, and a first flange portion 30c extending in a direction orthogonal to the battery case stacking direction D from the extending direction leading end of the first stacking direction extending portion 30b.

第2の電槽要素40は、電槽積層方向Dと直交する第2の平板部40aと、第2の平板部40aの左右両側縁および下縁から電槽積層方向Dに延びる第2の積層方向延び部40bと、第2の積層方向延び部40bの延び方向先端部から電槽積層方向Dと直交する方向に延びる第2のフランジ部40cと、を備える。第2の積層方向延び部40bの第2の平板部40aからの延び方向は、第1の積層方向延び部30bの第1の平板部30aからの延び方向と反対方向である。 The second battery case element 40 includes a second flat plate portion 40a orthogonal to the battery case stacking direction D, and a second stack extending in the battery case stacking direction D from the left and right side edges and the lower edge of the second flat plate portion 40a. A direction extending portion 40b and a second flange portion 40c extending in a direction orthogonal to the battery case stacking direction D from the extending direction front end portion of the second stacking direction extending portion 40b. The extending direction of the second stacking direction extending portion 40b from the second flat plate portion 40a is opposite to the extending direction of the first stacking direction extending portion 30b from the first flat plate portion 30a.

電槽20は、図3に示すように、第1の電槽要素30の第1のフランジ部30cと第2の電槽要素40の第2のフランジ部40cとを互いに溶接することで作製される。なお、第1のフランジ部30cと第2のフランジ部40cとの溶接は、特に限定するものではないが、たとえばレーザ溶接である。 As shown in FIG. 3, the battery case 20 is manufactured by welding the first flange portion 30c of the first battery case element 30 and the second flange portion 40c of the second battery case element 40 to each other. The The welding of the first flange portion 30c and the second flange portion 40c is not particularly limited, but is, for example, laser welding.

電槽20内には、図示略の電池(セル)が収納される。具体的には、電槽20内に、正極板と負極板とをセパレータを介して積層してなる極板群(図示略)と電解液(図示略)とが、収納される。図2に示すように、電槽積層方向Dに積層される複数の電槽20のうちの互いに隣り合う2つの電槽20a,20b(複数の電槽20のうちの互いに隣り合う2つの電槽20の選び方は任意)は、一方の電槽20aの第1の電槽要素30の第1の平板部30aと他方の電槽20bの第2の電槽要素40の第2の平板部40aとが電槽積層方向Dに対向している。 A battery (cell) (not shown) is accommodated in the battery case 20. Specifically, an electrode plate group (not shown) in which a positive electrode plate and a negative electrode plate are stacked via a separator and an electrolyte solution (not shown) are accommodated in the battery case 20. As shown in FIG. 2, two battery cases 20a and 20b adjacent to each other among the plurality of battery cases 20 stacked in the battery case stacking direction D (two battery cases adjacent to each other among the plurality of battery cases 20). 20 is arbitrary), the first flat plate portion 30a of the first battery case element 30 of one battery case 20a and the second flat plate portion 40a of the second battery case element 40 of the other battery case 20b Faces the battery case stacking direction D.

第1、第2の電槽要素30,40の少なくともいずれか一方に、互いに隣り合う2つの電槽20a、20b間に冷媒流路P(図1参照)を形成する冷媒流路形成部50が、一体成形されている。なお、図1〜図6、図8は、冷媒流路形成部50が第1の電槽要素30のみに一体成形される場合を示しており、図7は、冷媒流路形成部50が第1、第2の電槽要素30,40の双方にそれぞれ一体成形される場合を示している。なお、冷媒流路Pを流れる冷媒は、たとえば気体であり空気である。 At least one of the first and second battery case elements 30 and 40 has a refrigerant flow path forming unit 50 that forms a refrigerant flow path P (see FIG. 1) between two adjacent battery cases 20a and 20b. It is integrally molded. 1 to 6 and 8 show a case where the refrigerant flow path forming portion 50 is integrally formed only with the first battery case element 30, and FIG. The case where it integrally molds to both the 1st and 2nd battery case elements 30 and 40 is shown. The refrigerant flowing through the refrigerant flow path P is, for example, gas and air.

冷媒流路形成部50は、冷媒流路形成部50が一体成形される部材(第1、第2の電槽要素30,40の少なくともいずれか一方)から、電槽積層方向Dに突出して(延びて)いる。冷媒流路形成部50は、冷媒流路形成部50が一体成形される部材に少なくとも1個設けられている。冷媒流路形成部50が複数設けられる場合、複数の冷媒流路形成部50のうちの少なくとも一部は、突出方向の先端部で、電槽積層方向Dに隣り合う位置にある電槽20に当接している。 The refrigerant flow path forming part 50 protrudes in the battery case stacking direction D from a member (at least one of the first and second battery case elements 30 and 40) in which the refrigerant flow path forming part 50 is integrally formed ( Extended). At least one refrigerant flow path forming portion 50 is provided in a member in which the refrigerant flow path forming portion 50 is integrally formed. When a plurality of the refrigerant flow path forming portions 50 are provided, at least a part of the plurality of refrigerant flow path forming portions 50 is the tip portion in the protruding direction, and the battery case 20 at a position adjacent to the battery case stacking direction D It is in contact.

各冷媒流路形成部50の形状は、特に限定するものではないが、(i)図1〜図5、図7、図8に示すように、直線状または少なくとも1つの湾曲部または屈曲部を有して電槽積層方向Dと直交する方向に延びる長尺形状であってもよく、(ii)図6に示すように、電槽積層方向Dに突出する円柱状であってもよく、(iii)上記(i)と上記(ii)との複合形状であってもよく、(iv)その他の形状であってもよい。 The shape of each refrigerant flow path forming portion 50 is not particularly limited. (I) As shown in FIGS. 1 to 5, 7, and 8, a linear shape or at least one curved portion or bent portion is provided. It may have an elongated shape extending in a direction perpendicular to the battery case stacking direction D, or (ii) a columnar shape protruding in the battery case stacking direction D as shown in FIG. iii) A composite shape of (i) and (ii) may be used, or (iv) other shapes may be used.

つぎに、本発明実施例の作用、効果を説明する。
本発明実施例では、各電槽20が電槽積層方向Dに互いに接合されるプレス成形品である第1、第2の電槽要素30,40で構成されているため、各電槽20が一部品構成であり深絞り成形にて成形される場合に比べて、形状の自由度が高くなる。その結果、各電槽20に冷媒流路形成部50を一体に成形することができる。
Next, the operation and effect of the embodiment of the present invention will be described.
In the embodiment of the present invention, each battery case 20 is composed of the first and second battery case elements 30 and 40 which are press-formed products joined to each other in the battery case lamination direction D. Compared to the case of one-part configuration and deep drawing, the shape is more flexible. As a result, the refrigerant flow path forming part 50 can be integrally formed in each battery case 20.

第1、第2の電槽要素30,40の少なくともいずれか一方に、電槽積層方向Dに積層される複数の電槽20のうちの互いに隣り合う2つの電槽20a、20b間に冷媒流路Pを形成する冷媒流路形成部50が、一体成形されているため、互いに隣り合う2つの電槽20a、20b間に冷媒流路Pを形成するために配置される樹脂枠(従来)を無くすことができる。そのため、複数の電槽20を積層する際に各電槽20間に樹脂枠を配置させる作業は不要である。そのため、従来に比べて、複数の電槽20を積層させるのに要する工数が減り、コスト上有利である。   A refrigerant flow between two battery cases 20a and 20b adjacent to each other among a plurality of battery cases 20 stacked in a battery case stacking direction D on at least one of the first and second battery case elements 30 and 40. Since the refrigerant flow path forming portion 50 that forms the path P is integrally formed, a resin frame (conventional) disposed to form the refrigerant flow path P between the two adjacent battery cases 20a and 20b is provided. It can be lost. Therefore, when stacking a plurality of battery cases 20, an operation of arranging a resin frame between the battery cases 20 is not necessary. Therefore, compared with the conventional case, the number of steps required to stack the plurality of battery cases 20 is reduced, which is advantageous in terms of cost.

各電槽20に冷媒流路形成部50が一体成形されるため、各電槽20に冷媒流路形成部50が一体成形されていない場合に比べて、各電槽20の表面積が増加し、各電槽20の放熱効果を向上させることができる。
また、各電槽20は、第1の電槽要素30の第1のフランジ部30cと第2の電槽要素40の第2のフランジ部40cとを互いに溶接することで作製されるため、第1、第2のフランジ部30c、40cで構成されるフランジ部を有している。そのため、各電槽20がフランジ部を有していない場合に比べて、各電槽20の表面積が増加し、各電槽20の放熱効果を向上させることができる。
Since the refrigerant flow path forming part 50 is integrally formed in each battery case 20, the surface area of each battery case 20 is increased as compared with the case where the refrigerant flow path forming part 50 is not integrally formed in each battery case 20, The heat dissipation effect of each battery case 20 can be improved.
Each battery case 20 is manufactured by welding the first flange portion 30c of the first battery case element 30 and the second flange portion 40c of the second battery case element 40 to each other. 1. It has the flange part comprised by the 2nd flange parts 30c and 40c. Therefore, compared with the case where each battery case 20 does not have a flange part, the surface area of each battery case 20 increases, and the heat dissipation effect of each battery case 20 can be improved.

各電槽20に冷媒流路形成部50が一体成形されるため、図7に示すように冷媒流路形成部50が第1、第2の電槽要素30,40の双方にそれぞれ一体成形される場合、第1の電槽要素30に設けられる冷媒流路形成部50の一部を第2の電槽要素40に設けられる冷媒流路形成部50の一部で挟み込むなどすることにより、冷媒流路形成部50を利用して互いに隣り合う電槽20a、20b同士の相対位置決めをすることができる。 Since the refrigerant flow path forming part 50 is integrally formed in each battery case 20, the refrigerant flow path forming part 50 is integrally formed on both the first and second battery case elements 30, 40 as shown in FIG. The refrigerant flow path forming part 50 provided in the first battery case element 30 is sandwiched by a part of the refrigerant flow path forming part 50 provided in the second battery case element 40, etc. Using the flow path forming unit 50, the battery cases 20a and 20b adjacent to each other can be positioned relative to each other.

本発明実施例では、各電槽20が第1、第2の電槽要素30,40の2部品で構成されている場合を説明したが、各電槽20は、図8に示すように、電槽積層方向Dで第1、第2の電槽要素30,40の間に配置されて(第1、第2の電槽要素30,40に挟持されて)第1、第2の電槽要素30,40を溶接する際に同時に溶接される第3の電槽要素60を少なくとも1個備えていてもよい。第3の電槽要素60を備える場合、各電槽20内に図示略の電池を2個以上(複数個)配置でき、多セル1モジュール体を構成することができる。 In the embodiment of the present invention, the case has been described in which each battery case 20 is composed of two parts of the first and second battery case elements 30 and 40. As shown in FIG. 1st and 2nd battery case which is arrange | positioned between the 1st, 2nd battery case elements 30 and 40 (between the 1st and 2nd battery case elements 30 and 40) by the battery case lamination direction D At least one third battery case element 60 to be welded simultaneously when the elements 30 and 40 are welded may be provided. When the third battery case element 60 is provided, two or more (a plurality of) unillustrated batteries can be arranged in each battery case 20, and a multi-cell one module body can be configured.

20 電槽(電池ケース)
20a、20b 互いに隣り合う2つの電槽
30 第1の電槽要素
30a 第1の平板部
30b 第1の積層方向延び部
30c 第1のフランジ部
40 第2の電槽要素
40a 第2の平板部
40b 第2の積層方向延び部
40c 第2のフランジ部
50 冷媒流路形成部
60 第3の電槽要素
D 電槽積層方向
P 冷媒流路
20 Battery case (battery case)
20a, 20b Two battery cases 30 adjacent to each other First battery case element 30a First flat plate portion 30b First stacking direction extending portion 30c First flange portion 40 Second battery case element 40a Second flat plate portion 40b 2nd lamination direction extension part 40c 2nd flange part 50 Refrigerant flow path formation part 60 3rd battery case element D Battery case lamination direction P Refrigerant flow path

Claims (2)

電槽積層方向に積層される複数の角型の金属製の電槽を有し、
前記複数の電槽の各電槽は、前記電槽積層方向に互いに接合されるプレス成形品である第1、第2の電槽要素で構成されている、電槽積層構造。
It has a plurality of rectangular metal battery cases stacked in the battery case stacking direction,
Each battery case of the plurality of battery cases is a battery case laminated structure composed of first and second battery case elements which are press-formed products joined to each other in the battery case lamination direction.
前記第1、第2の電槽要素の少なくともいずれか一方に、前記電槽積層方向に積層される前記複数の電槽のうちの互いに隣り合う2つの電槽間に冷媒流路を形成する冷媒流路形成部が、一体成形されている、請求項1記載の電槽積層構造。   Refrigerant that forms a refrigerant flow path between two adjacent battery cases among the plurality of battery cases stacked in the battery case stacking direction on at least one of the first and second battery case elements. The battery case laminate structure according to claim 1, wherein the flow path forming portion is integrally formed.
JP2013022836A 2013-02-08 2013-02-08 Battery jar laminate structure Pending JP2014154340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013022836A JP2014154340A (en) 2013-02-08 2013-02-08 Battery jar laminate structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013022836A JP2014154340A (en) 2013-02-08 2013-02-08 Battery jar laminate structure

Publications (1)

Publication Number Publication Date
JP2014154340A true JP2014154340A (en) 2014-08-25

Family

ID=51576021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013022836A Pending JP2014154340A (en) 2013-02-08 2013-02-08 Battery jar laminate structure

Country Status (1)

Country Link
JP (1) JP2014154340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096431A (en) * 2017-11-21 2019-06-20 トヨタ自動車株式会社 Battery pack, and manufacturing method of unit cell used for battery pack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096431A (en) * 2017-11-21 2019-06-20 トヨタ自動車株式会社 Battery pack, and manufacturing method of unit cell used for battery pack
JP7037720B2 (en) 2017-11-21 2022-03-17 トヨタ自動車株式会社 How to manufacture an assembled battery and a cell used for the assembled battery

Similar Documents

Publication Publication Date Title
JP5908128B2 (en) Battery case for secondary battery
JP6392323B2 (en) Battery system
JP4617672B2 (en) Laminated battery module and manufacturing method thereof
JP2019500734A (en) Pouch exterior material for secondary battery, pouch-type secondary battery using the same, and manufacturing method thereof
JP2014110219A (en) Battery pack and method of manufacturing the same
JP5488035B2 (en) Laminated battery structure
JP2008053019A5 (en)
EP2648271B1 (en) Battery pack
JP2015201288A (en) Power storage device, holder, and assembly method of power storage device
JP2016207584A (en) Battery pack and conductive member
JP2016143576A (en) Battery pack and manufacturing method for the same
JP5473558B2 (en) Battery module
KR20170027993A (en) Notching Apparatus Having Integral Die and Stripper
JP5470918B2 (en) Flat battery
JP6089984B2 (en) Sealed battery
JP2014154340A (en) Battery jar laminate structure
JP2017147201A (en) Power storage device, method for manufacturing power storage device, and method for manufacturing adjacent member for power storage device
CA2871344C (en) Fuel cell stack with displacement absorbing projections
US20190221902A1 (en) Power storage module
JP2013183092A (en) Solar cell module
JP2016046023A (en) Battery pack
JP6402525B2 (en) Method for manufacturing electrode assembly
US20150037661A1 (en) Battery pack
KR101209790B1 (en) Safety case for battery
JP2014127366A (en) Module battery