JP2014153601A - Device for evaluating difficulty degree of infant vocabulary comprehension, infant vocabulary retrieval device, and infant vocabulary classification device, and method and program for the devices - Google Patents

Device for evaluating difficulty degree of infant vocabulary comprehension, infant vocabulary retrieval device, and infant vocabulary classification device, and method and program for the devices Download PDF

Info

Publication number
JP2014153601A
JP2014153601A JP2013024274A JP2013024274A JP2014153601A JP 2014153601 A JP2014153601 A JP 2014153601A JP 2013024274 A JP2013024274 A JP 2013024274A JP 2013024274 A JP2013024274 A JP 2013024274A JP 2014153601 A JP2014153601 A JP 2014153601A
Authority
JP
Japan
Prior art keywords
vocabulary
learning
infant
understanding
acquisition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013024274A
Other languages
Japanese (ja)
Other versions
JP5925140B2 (en
Inventor
Yasuhiro Minami
泰浩 南
Tetsuo Kobayashi
哲生 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013024274A priority Critical patent/JP5925140B2/en
Publication of JP2014153601A publication Critical patent/JP2014153601A/en
Application granted granted Critical
Publication of JP5925140B2 publication Critical patent/JP5925140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new index for evaluating a degree of difficulty of vocabulary comprehension in a vocabulary learning process of an infant.SOLUTION: The device for evaluating a difficulty degree of infant vocabulary comprehension includes: a logistic function approximation section; a learning day-age calculating section; and a learning period calculating section. The logistic function approximation section uses a learning time xand a learning ratio f(x) of vocabulary i for a vocabulary learning process of multiple infants as input in order to approximate a relationship of the learning time xand the learning ratio f(x) for each vocabulary i in a logistic curve. The learning day-age calculating section uses the logistic function to obtain an α% learning day-age and a β% learning day-age which is smaller than the α. The learning period calculating section uses the α% learning day-age and the β% learning day-age as input and calculates the learning period of the vocabulary i in order to output the learning period as the comprehension difficulty degree of the vocabulary i.

Description

本発明は、幼児の語彙学習過程における語彙理解の難易度を評価する幼児語彙理解難易度評価装置と幼児語彙検索装置と幼児語彙分類装置とそれらの方法とプログラムに関する。   The present invention relates to an infant vocabulary comprehension difficulty evaluation device, an infant vocabulary search device, an infant vocabulary classification device, and methods and programs thereof for evaluating lexical comprehension difficulty in an infant vocabulary learning process.

従来、発達心理学の分野では、親の回答に基づくアンケート調査において語彙チェックリストを用いた大規模集団データで語彙の特徴を捉えてきた。この手法では、非特許文献1に示すように語彙チェックリスト法の横断データから算出した各語彙の「50%到達日齢」(50%の子供が語彙を理解している日齢時点)が何時かを調べ、それを語彙の理解日齢としていた。   Traditionally, in the field of developmental psychology, vocabulary features have been captured by large-scale group data using vocabulary checklists in questionnaire surveys based on parents' answers. In this method, as shown in Non-Patent Document 1, what is the “50% reached age” of each vocabulary calculated from the cross-sectional data of the vocabulary checklist method (when the 50% children understand the vocabulary) I examined it and made it the age of understanding vocabulary.

幼児の全員がすぐ理解あるいは発話できる単語を選ぶことは、分かり易い幼児教材を作成する上で重要である。また、逆に幼児の全員がすぐには理解あるいは発話できない単語を選ぶことも、問題の難易度を調整する上では重要である。しかし、これまで、単語の特徴として、幼児の全員がすぐに理解あるいは発話できるという情報を利用することはなかった。   Choosing words that can be easily understood or spoken by all infants is important in creating easy-to-understand infant materials. On the other hand, selecting words that cannot be understood or spoken by all infants is also important in adjusting the difficulty of the problem. However, until now, the information that all infants can understand or speak immediately has not been used as a characteristic of the word.

今までは、どの日齢で単語を獲得するかは図1に示すような表で提示されてきた。図1は、各語彙を理解する幼児の割合を示す。1行目は、各語彙を理解した日齢、2行目以降は各語彙を理解した幼児の割合を示す。   Until now, the age at which words are acquired has been presented in a table as shown in FIG. FIG. 1 shows the percentage of infants who understand each vocabulary. The first line indicates the age at which each vocabulary is understood, and the second and subsequent lines indicate the percentage of infants who understand each vocabulary.

従来は、この表から、例えば50%の幼児が理解した日齢を求め、単語の難易度とすることが行われていた。   Conventionally, from this table, for example, the age understood by 50% of infants is obtained, and the difficulty level of words is determined.

小椋たみ子、綿巻徹、「日本のこどもの語彙発達の基準研究:日本語マッカーサー乳幼児言語発達質問紙から」発達・療育研 2008. vol.24,3-42.Tamako Komine, Toru Watanamaki, “Standard Research on Vocabulary Development in Japanese Children: From the Japanese MacArthur Infant Language Development Questionnaire”, Development and Nursing Research Institute 2008. vol.24,3-42. 小林哲生、南泰浩、永田昌明、「縦断および横断データを用いた幼児早期現語の獲得日齢の特定」言語処理学会第18回年次大会、P2-3,2012.Tetsuo Kobayashi, Yasuhiro Minami, Masaaki Nagata, “Identification of Age of Early Childhood Acquisition Using Longitudinal and Cross-sectional Data,” 18th Annual Conference of the Language Processing Society, P2-3, 2012.

しかし、従来は、この表から対象語が、幼児全員がすぐ理解できる単語なのか、あるいは、すぐ発話できるのかを調べ、単語選択に利用する考えはなかった。その理由としては、理解のための累積語獲得確率分布を、全ての単語について求めるのが難しいことが挙げられる。   However, in the past, there was no idea to use the word selection to investigate whether the target word is a word that can be easily understood by all the infants or can be spoken immediately from this table. The reason is that it is difficult to obtain a cumulative word acquisition probability distribution for understanding for all words.

理解する語彙を調べるアンケートでは、幼児が理解したと思われる語彙の数が多くなると、各々の語彙について正確なデータを得ることが難しくなる。つまり、理解する語彙数は急速に増加する傾向があるため、個々の語彙を理解しているか否かの切り分けが曖昧になる。そのために図1に、パターンを付して示すように、例えば、「あり」、「かに」、「かば」、「かめ」のように、理解する幼児が50%に到達しない語彙がデータの上で多く発生する。   In the questionnaire to find out the vocabulary to understand, if the number of vocabulary that an infant thinks understood increases, it becomes difficult to obtain accurate data for each vocabulary. In other words, since the number of vocabulary to be understood tends to increase rapidly, it becomes ambiguous whether or not each vocabulary is understood. Therefore, as shown in FIG. 1 with a pattern, for example, “Yes”, “Kani”, “Kaba”, “Kame”, and the vocabulary that the infant to understand does not reach 50% is data. It often occurs on the top.

本発明は、このような課題に鑑みてなされたものであり、累積語彙獲得確率分布から計算できる分布の広がり(傾き)を利用する新しい考えに基づいて幼児語彙の理解の難易度の評価を可能にする幼児語彙理解難易度評価装置と幼児語彙検索装置と幼児語彙分類装置と、それらの方法とプログラムを提供することを目的とする。   The present invention has been made in view of such problems, and it is possible to evaluate the difficulty of understanding infant vocabulary based on a new idea that uses the spread (slope) of the distribution that can be calculated from the cumulative vocabulary acquisition probability distribution. It is an object of the present invention to provide an infant vocabulary understanding difficulty evaluation device, an infant vocabulary search device, an infant vocabulary classification device, and methods and programs thereof.

本発明の幼児語彙理解難易度評価装置は、ロジスティック関数近似部と、習得日齢算出部と、習得期間算出部と、を具備する。ロジスティック関数近似部は、複数の幼児の語彙学習過程における語彙iの習得時期xと習得割合f(x)を入力として、語彙i毎に習得時期xと習得割合f(x)との関係をロジスティック曲線で近似する。習得日齢算出部は、ロジスティック関数を用いて、α%習得日齢と当該αよりも小さいβ%のβ%習得日齢とを求める。習得期間算出部は、α%習得日齢とβ%習得日齢を入力として、語彙iの習得期間を算出し、当該習得期間を語彙iの理解難易度として出力する。 The infant vocabulary comprehension difficulty evaluation device of the present invention includes a logistic function approximating unit, a learning age calculating unit, and a learning period calculating unit. Logistic function approximation unit as input a plurality of infants vocabulary learning learning timing vocabulary i in the process x i and learning rate f (x i), and learning time x i for each vocabulary i and learning rate f (x i) Is approximated by a logistic curve. The acquisition day age calculating unit obtains an α% acquisition day age and a β% acquisition day age of β% smaller than the α using a logistic function. The learning period calculation unit calculates the learning period of the vocabulary i by using α% learning age and β% learning age as input, and outputs the learning period as an understanding difficulty level of the vocabulary i.

また、本発明の幼児語彙検索装置は、幼児語彙理解難易度評価装置と語彙検索部を具備する。幼児語彙理解難易度評価装置は、累積理解割合f(x)をモデル化したロジスティック曲線から語彙iの理解難易度を算出する。語彙検索部は、その理解難易度と外部から入力される検索条件とを比較することで、検索条件に合致する語彙iを検索する。 The infant vocabulary retrieval apparatus of the present invention includes an infant vocabulary understanding difficulty evaluation device and a vocabulary retrieval unit. The infant vocabulary comprehension difficulty level evaluation device calculates the comprehension difficulty level of the vocabulary i from a logistic curve that models the cumulative understanding rate f (x i ). The vocabulary search unit searches the vocabulary i that matches the search condition by comparing the degree of understanding difficulty with the search condition input from the outside.

また本発明の幼児語彙分類装置は、上記した幼児語彙理解難易度評価装置と語彙分類部とを具備する。語彙分類部は、語彙理解難易度評価装置で計算された理解難易度とα%習得日齢とを入力として、理解難易度とα%習得日齢を、語彙iに対応させたベクトルとして構成し、理解難易度とα%習得日齢の値に応じて語彙iを分類する。   The infant vocabulary classification device of the present invention includes the above-described infant vocabulary understanding difficulty evaluation device and a vocabulary classification unit. The vocabulary classification unit inputs the understanding difficulty level calculated by the vocabulary understanding difficulty level evaluation device and the α% acquisition date, and configures the understanding difficulty level and the α% acquisition date as a vector corresponding to the vocabulary i. The vocabulary i is classified according to the level of difficulty of understanding and the value of α% acquisition date.

本発明の幼児語彙理解難易度評価装置によれば、累積語彙獲得確率分布から、幼児語彙の理解の難易度を評価する新しい指標を提供することを可能にする。また、この発明の幼児語彙検索装置は、その新しい指標を用いることで、理解難易度に応じた幼児語彙の検索を行うことを可能にする。また、この発明の幼児語分類装置は、理解難易度に応じて幼児語彙を分類することを可能にする。このように本願発明の各装置は、幼児語彙の研究や教育の分野に資する効果を奏する。   According to the infant vocabulary comprehension difficulty evaluation device of the present invention, it is possible to provide a new index for evaluating the comprehension difficulty of infant vocabulary from the cumulative vocabulary acquisition probability distribution. In addition, the infant vocabulary retrieval apparatus according to the present invention makes it possible to retrieve an infant vocabulary according to the degree of understanding difficulty by using the new index. Moreover, the infant word classification device of the present invention makes it possible to classify the infant vocabulary according to the degree of understanding difficulty. Thus, each device of the present invention has an effect that contributes to the field of infant vocabulary research and education.

ある語彙を理解する幼児の割合を日齢ごとに記録したデータを示す図。The figure which shows the data which recorded the ratio of the infant who understands a certain vocabulary for every age. 獲得語彙iを「はい」とした場合の獲得時期xと累積発話割合f(x)との関係の例を示す図。The figure which shows the example of the relationship between the acquisition time x when the acquisition vocabulary i is "Yes", and the cumulative utterance ratio f (x). 獲得語彙iを「ばーば」とした場合の獲得時期xと累積発話割合f(x)との関係の例を示す図。The figure which shows the example of the relationship between the acquisition time x when the acquisition vocabulary i is "Baba", and the cumulative utterance rate f (x). 本発明の幼児語彙理解難易度評価装置100の機能構成例を示す図。The figure which shows the function structural example of the infant vocabulary understanding difficulty level evaluation apparatus 100 of this invention. 幼児語彙理解難易度評価装置100の動作フローを示す図。The figure which shows the operation | movement flow of the infant vocabulary understanding difficulty level evaluation apparatus. 本発明の幼児語彙理解難易度評価装置200の機能構成例を示す図。The figure which shows the function structural example of the infant vocabulary understanding difficulty level evaluation apparatus 200 of this invention. 本発明の幼児語彙理解難易度評価装置300の機能構成例を示す図。The figure which shows the function structural example of the infant vocabulary understanding difficulty evaluation apparatus 300 of this invention. 本発明の幼児語彙理解難易度評価装置400の機能構成例を示す図。The figure which shows the function structural example of the infant vocabulary understanding difficulty level evaluation apparatus 400 of this invention. 幼児語彙理解難易度評価装置400の動作フローを示す図。The figure which shows the operation | movement flow of the infant vocabulary understanding difficulty level evaluation apparatus 400. FIG. 発話語彙ロジスティック関数近似部410の動作フローを示す図。The figure which shows the operation | movement flow of the utterance vocabulary logistic function approximation part 410. FIG. 習得日齢計算部420のより具体的な機能構成例を示す図。The figure which shows the more specific functional structural example of the learning age calculation part 420. FIG. 習得日齢計算部420の動作フローを示す図。The figure which shows the operation | movement flow of the learning age calculation part 420. FIG. 本発明の幼児語彙検索装置500の機能構成例を示す図。The figure which shows the function structural example of the infant vocabulary search apparatus 500 of this invention. 幼児語彙検索装置500の動作フローを示す図。The figure which shows the operation | movement flow of the infant vocabulary search apparatus 500. FIG. 本発明の幼児語彙分類装置600の機能構成例を示す図。The figure which shows the function structural example of the infant vocabulary classification apparatus 600 of this invention. 幼児語彙分類装置600の動作フローを示す図。The figure which shows the operation | movement flow of the infant vocabulary classification apparatus 600.

以下、この発明の実施の形態を図面を参照して説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。   Embodiments of the present invention will be described below with reference to the drawings. The same reference numerals are given to the same components in a plurality of drawings, and the description will not be repeated.

〔発明の考え〕
実施例の説明の前に、この発明の幼児語彙の理解の難易度を評価する新しい考え方を説明する。この発明の幼児語彙理解難易度の評価方法は、複数の幼児の語彙学習過程における語彙iの習得時期xと習得割合f(x)との関係から成る習得率確率分布を、ロジスティック曲線で近似し、その確率密度の広がりから理解難易度を評価する方法である。
[Invention]
Prior to the description of the embodiments, a new concept for evaluating the difficulty of understanding the infant vocabulary according to the present invention will be described. According to the method of evaluating the difficulty level of understanding the infant vocabulary according to the present invention, a learning rate probability distribution consisting of a relationship between a learning period xi of a vocabulary i and a learning ratio f (x i ) in a vocabulary learning process of a plurality of infants is expressed by a logistic curve. It is a method of approximating and evaluating the difficulty of understanding from the spread of the probability density.

習得確率分布として累積発話確率を用いて式(1)でモデル化した例を図2と図3に示す。関数をモデル化するに当たっては、最小二乗法や尤度最大化手法を用いる。この場合、非線形な関数の最適化が必要になるので、最急降下法などの手法を用いて最適なパラメータを求める。何れの手法も周知であり、詳しい説明は省略する。   FIGS. 2 and 3 show examples of modeling using the cumulative utterance probability as the learning probability distribution by the equation (1). In modeling the function, a least square method or a likelihood maximization method is used. In this case, since optimization of a non-linear function is necessary, an optimum parameter is obtained using a technique such as the steepest descent method. Both methods are well known and will not be described in detail.

Figure 2014153601
Figure 2014153601

語彙の累積発話割合f(x)を式(1)でモデル化した例を図2,図3に示す。図2は、獲得語彙を「はい」とした場合の幼児の累積発話割合である。図3は、獲得語彙を「ばーば」とした場合の幼児の累積発話割合である。 An example in which the cumulative utterance rate f (x i ) of the vocabulary is modeled by Equation (1) is shown in FIGS. FIG. 2 shows the cumulative utterance ratio of an infant when the acquired vocabulary is “Yes”. FIG. 3 shows the cumulative utterance ratio of an infant when the acquired vocabulary is “Baba”.

図2,図3に示すロジスティック曲線はS字型の曲線であり、最初は緩やかに増加した後に傾きが急になった後に再び増加量が穏やかになる変化を示す。パラメータcは、その語彙の累積発話割合の傾きであり、bはロジスティック曲線のオフセット量を表す。aは累積発話割合の上限を決める値である。cが大きくなるとS字曲線の中央部分の傾きが急になり、bが大きくなるとS字曲線が獲得時期xの大きい方に移動する関係にある。   The logistic curves shown in FIG. 2 and FIG. 3 are S-shaped curves, and show a change in which the increase amount becomes gentle again after the slope gradually increases after the gentle increase at first. The parameter c is the slope of the cumulative utterance ratio of the vocabulary, and b represents the offset amount of the logistic curve. a is a value that determines the upper limit of the cumulative utterance rate. As c increases, the slope of the central portion of the S-curve becomes steep, and as b increases, the S-curve moves to the larger acquisition time x.

つまり、S字曲線の中央部分の傾きが急であれば、短い日齢で発話する習得の容易な単語であることが分かる。パラメータcの大小で語彙の習得の難易度を評価することが可能である。   That is, if the slope of the central portion of the S-shaped curve is steep, it can be understood that the word is easy to learn and spoke at a short age. It is possible to evaluate the difficulty level of vocabulary acquisition by the size of the parameter c.

また、獲得語彙に関する累積理解割合は、上記した理由で正確なデータを得ることが難しい。そこで、この発明では、発話は語彙を理解した後に行われる点に着目する。つまり、人は語彙を理解してからその語彙を発話する関係を、利用することで理解する幼児が50%に到達しない語彙がデータの上に多く発生する場合でも、正確に理解難易度を算出可能にする工夫を施している。詳しい説明は後述する。   In addition, it is difficult to obtain accurate data on the cumulative understanding ratio regarding the acquired vocabulary for the reasons described above. Therefore, in the present invention, attention is paid to the point that the utterance is performed after understanding the vocabulary. In other words, even if there are many vocabulary words on the data that do not reach 50% of infants who understand the vocabulary and then utter the vocabulary, the difficulty level of the vocabulary is accurately calculated. The device is made possible. Detailed description will be described later.

〔幼児語彙理解難易度評価装置〕
図4に、この発明の幼児語彙理解難易度評価装置100の機能構成例を示す。その動作フローを図5に示す。幼児語彙理解難易度評価装置100は、ロジスティック関数近似部110と、習得日齢算出部120と、習得期間算出部130と、制御部140と、を具備する。幼児語彙理解難易度評価装置100は、例えばROM、RAM、CPU等で構成されるコンピュータに所定のプログラムが読み込まれて、CPUがそのプログラムを実行することで実現されるものである。
[Infant vocabulary comprehension difficulty evaluation device]
FIG. 4 shows a functional configuration example of the infant vocabulary comprehension difficulty evaluation device 100 of the present invention. The operation flow is shown in FIG. The infant vocabulary comprehension difficulty evaluation device 100 includes a logistic function approximation unit 110, a learning age calculation unit 120, a learning period calculation unit 130, and a control unit 140. The infant vocabulary comprehension difficulty evaluation device 100 is realized by, for example, reading a predetermined program into a computer composed of a ROM, a RAM, a CPU, and the like, and executing the program by the CPU.

ロジスティック関数近似部110は、複数の幼児の語彙学習過程における語彙iの習得時期xと習得割合f(x)を入力として、語彙i毎に習得時期xと習得割合f(x)との関係をロジスティック曲線で近似する(ステップS110)。ロジスティック曲線は、例えば上記した式(1)に示す関数である。 Logistic function approximation unit 110 is input with multiple infants vocabulary learning learning timing vocabulary i in the process x i and learning rate f (x i), timing learning for each vocabulary i x i a learning rate f (x i) Is approximated by a logistic curve (step S110). The logistic curve is, for example, a function shown in the above equation (1).

習得日齢算出部120は、ロジスティック関数近似部110で近似したロジスティック曲線を用いて、α%習得日齢とα%よりも小さいβ%のβ習得日齢とを求める(ステップS120)。ここで、α%は例えば50%、β%は例えば20%を用いる。α%とβ%の組み合わせは、α>βの関係が保たれれば、どのようなものであっても良い。ここでは、データとして50%以下のものも含まれるため(図1)、信頼性を考慮して全ての語彙iでデータの存在する20%と、幼児の半分が習得する50%の2つを用いた。   The learning day age calculation unit 120 uses the logistic curve approximated by the logistic function approximation unit 110 to obtain an α% learning day age and a β learning day age of β% smaller than α% (step S120). Here, for example, α% is 50%, and β% is 20%, for example. Any combination of α% and β% may be used as long as the relationship of α> β is maintained. Here, since data including 50% or less is included as data (Fig. 1), considering reliability, 20% where data exists in all vocabulary i and 50% which half of infants learn Using.

また、式(1)の係数aは0〜1の間の値であり、一般に式(1)の関数の値はこの係数未満となることから、50%の値は、その係数が示すパーセントの値未満で設定(例えばa=0.7のときは70%未満)することがより適切である。また20%は、ロジスティック曲線(S字曲線)の下側の変曲点より小さくならない10%以上で設定することが望ましい。   In addition, the coefficient a in the formula (1) is a value between 0 and 1, and generally the value of the function in the formula (1) is less than this coefficient. Therefore, the value of 50% is the percentage indicated by the coefficient. It is more appropriate to set the value less than the value (for example, less than 70% when a = 0.7). Further, 20% is desirably set to 10% or more which does not become smaller than the lower inflection point of the logistic curve (S-shaped curve).

習得期間算出部130は、α%習得日齢とβ習得日齢を入力として、語彙iの習得期間を(α−β)算出し、その習得期間を語彙iの理解難易度として出力する(ステップS130)。ステップS110〜ステップS130の動作は、全ての語彙iについての処理が終了するまで繰り返される(ステップS140のNo)。この繰り返し動作の制御は制御部140が行う。   The learning period calculation unit 130 calculates the learning period of the vocabulary i as (α−β) using the α% learning age and the β learning age as inputs, and outputs the learning period as an understanding difficulty level of the vocabulary i (step) S130). The operations in steps S110 to S130 are repeated until the processing for all the vocabulary i is completed (No in step S140). The control unit 140 controls this repetitive operation.

実施例1で示した幼児語彙理解難易度評価装置100によれば、幼児語彙の理解難易度を評価するための新しい指標を提供することができる。なお、幼児語彙理解難易度評価装置100に入力する習得時期と習得割合とからなる累積語彙獲得確率分布には、二つの種類が存在する。用いる累積語彙獲得確率分布を限定した幼児語彙理解難易度評価装置を、次に変形例として説明する。   According to the infant vocabulary comprehension difficulty evaluation device 100 shown in the first embodiment, a new index for evaluating the comprehension difficulty of an infant vocabulary can be provided. Note that there are two types of cumulative vocabulary acquisition probability distributions consisting of acquisition time and acquisition ratio input to the infant vocabulary understanding difficulty evaluation device 100. An infant vocabulary comprehension difficulty evaluation device that limits the cumulative vocabulary acquisition probability distribution to be used will now be described as a modification.

〔変形例1〕
図6に、この発明の幼児語彙理解難易度評価装置200の機能構成例を示す。幼児語彙理解難易度評価装置200は、用いる累積語彙獲得確率分布を、幼児が語を理解する割合(幼児語理解割合)としたものである。幼児語彙理解難易度評価装置200は、幼児語彙理解難易度評価装置100のロジスティック関数近似部110が、ロジスティック関数近似部210に置き換わったものであり、習得日齢算出部120と習得期間算出部130は、参照符号から明らかなように同じものである。
[Modification 1]
FIG. 6 shows a functional configuration example of the infant vocabulary comprehension difficulty evaluation device 200 of the present invention. The infant vocabulary comprehension difficulty evaluation device 200 uses the cumulative vocabulary acquisition probability distribution to be used as a ratio that an infant understands a word (infant word comprehension ratio). The infant vocabulary comprehension difficulty evaluation device 200 is obtained by replacing the logistic function approximating unit 110 of the infant vocabulary comprehension difficulty evaluating device 100 with a logistic function approximating unit 210, and a learning age calculating unit 120 and a learning period calculating unit 130. Are the same as is apparent from the reference signs.

ロジスティック関数近似部210は、習得時期xを語彙iの理解時期x、習得割合f′(x)を累積理解割合f′(x)として、理解語彙i毎にロジスティック曲線を描く次式の関数をモデル化し、 Logistic function approximation unit 210, understanding the time x i vocabulary i mastery time x i, as learning rate f '(x i) the cumulative understanding ratio f' (x i), draw a logistic curve for each understood vocabulary i following Model the function of the expression,

Figure 2014153601
Figure 2014153601

理解語彙パラメータa′,b′,c′を算出する。 Comprehension vocabulary parameters a i ′, b i ′, and c i ′ are calculated.

〔変形例2〕
図7に、この発明の幼児語彙理解難易度評価装置300の機能構成例を示す。幼児語彙理解難易度評価装置300は、用いる累積語彙獲得確率分布を、幼児が語を発話した割合(幼児語発話割合)としたものである。幼児語彙理解難易度評価装置300は、幼児語彙理解難易度評価装置100のロジスティック関数近似部110のみが、ロジスティック関数近似部310に置き換わったものである。
[Modification 2]
FIG. 7 shows a functional configuration example of the infant vocabulary comprehension difficulty evaluation device 300 of the present invention. The infant vocabulary comprehension difficulty level evaluation apparatus 300 uses the cumulative vocabulary acquisition probability distribution to be used as the ratio of infant utterances (infant word utterance ratio). The infant vocabulary comprehension difficulty level evaluation device 300 is obtained by replacing only the logistic function approximation unit 110 of the infant vocabulary understanding difficulty level evaluation device 100 with a logistic function approximation unit 310.

ロジスティック関数近似部310は、習得時期xを語彙iの発話時期x、習得割合f(x)を累積発話割合f(x)として、発話語彙i毎にロジスティック曲線を描く関数を上記した式(1)モデル化し、発話語彙パラメータa,b,cを算出する。 Logistic function approximation unit 310, the utterance timing vocabulary i mastery timing x i x i, as learning rate f (x i) the cumulative speech rate f (x i), the function to draw a logistic curve for each utterance vocabulary i Expression (1) is modeled, and utterance vocabulary parameters a i , b i , and c i are calculated.

変形例として示した幼児語彙理解難易度評価装置200,300は、幼児語彙理解難易度評価装置100と同様に、幼児語彙の理解難易度を評価するための新しい指標を提供することができる。但し、上記したように幼児が理解する語彙を調査するには、難しさが伴う。そこで、理解する幼児が50%に到達しない単語が多く存在する場合でも、理解難易度を算出できるように工夫したこの発明の幼児語彙理解難易度評価装置400を、実施例2として次に説明する。   Similar to the infant vocabulary understanding difficulty evaluation device 100, the infant vocabulary understanding difficulty evaluation devices 200 and 300 shown as modifications can provide a new index for evaluating the understanding difficulty of infant vocabulary. However, as mentioned above, it is difficult to investigate the vocabulary understood by young children. Then, the infant vocabulary comprehension difficulty evaluation apparatus 400 of the present invention devised so that the comprehension difficulty level can be calculated even when there are many words that the infant to understand does not reach 50% will be described as a second embodiment. .

図8に、この発明の幼児語彙理解難易度評価装置400の機能構成例を示す。幼児語彙理解難易度評価装置400は、発話語彙iの獲得時期xと累積発話割合f(x)と、理解語彙iの獲得時期xと累積理解割合f′(x)と、を入力として理解語の到達日齢を推定するものである。ここでは、f(x)≦f′(x)の拘束そのものを使うのは困難なので代わりに、a≦a′という拘束を使う。 FIG. 8 shows a functional configuration example of the infant vocabulary comprehension difficulty evaluation device 400 of the present invention. The infant vocabulary comprehension difficulty evaluation device 400 obtains the acquisition time x i of the utterance vocabulary i and the cumulative utterance rate f (x i ), the acquisition time xi of the understanding vocabulary i and the cumulative understanding rate f ′ (x i ). The input age is estimated as the input date. Here, since it is difficult to use the constraint of f (x i ) ≦ f ′ (x i ), the constraint of a i ≦ a ′ i is used instead.

〔累積発話割合〕
累積発話割合f(x)は、非特許文献1で述べている語彙に関するアンケートに回答してもらい、幼児が新たに発話した語彙を把握することで取得する。具体的には、幼児が言葉を覚え始める時期よりも少し前から3歳程度までの期間で、数ヶ月おきに100人程度の母親に上記したアンケートに回答してもらう。表1に、語彙「あーあ」を発話する幼児の累積発話割合f(x)を例示する。
[Cumulative utterance rate]
The cumulative utterance rate f (x i ) is obtained by answering a questionnaire related to vocabulary described in Non-Patent Document 1 and grasping a vocabulary newly spoken by an infant. Specifically, about 100 mothers answer the above questionnaire every few months in a period from a little before the time when the infant starts to learn words to about 3 years old. Table 1 exemplifies the cumulative utterance rate f (x i ) of an infant who utters the vocabulary “Ah”.

Figure 2014153601
Figure 2014153601

表1に示すデータを、幼児が発話する全ての語彙について求める。 The data shown in Table 1 is obtained for all vocabulary spoken by the infant.

〔累積理解割合〕
累積理解割合f′(x)は、幼児が語彙を理解する割合であり、累積発話割合f(x)と同様にして取得する。表に、語彙「あーあ」を理解する幼児の累積理解割合f′(x)を例示する。
[Cumulative understanding ratio]
The cumulative understanding ratio f ′ (x i ) is a ratio at which the infant understands the vocabulary, and is acquired in the same manner as the cumulative utterance ratio f (x i ). The table exemplifies a cumulative understanding ratio f ′ (x i ) of an infant who understands the vocabulary “Ah”.

Figure 2014153601
Figure 2014153601

表2に示すデータを、幼児が理解する全ての語彙について求める。理解する語彙と発話する語彙は、同じ語彙iである。 The data shown in Table 2 is obtained for all vocabulary understood by young children. The vocabulary to understand and the vocabulary to utter are the same vocabulary i.

幼児語彙理解難易度評価装置400(図8)は、発話語彙ロジスティック関数近似部410と、発話語彙パラメータ保存部450と、理解語彙ロジスティック関数近似部460と、理解語彙パラメータ保存部470と、習得日齢算出部420と、習得期間算出部130と、制御部440と、を具備する。その動作フローを図9に示す。幼児語彙理解難易度評価装置400は、例えばROM、RAM、CPU等で構成されるコンピュータに所定のプログラムが読み込まれて、CPUがそのプログラムを実行することで実現されるものである。   The infant vocabulary understanding difficulty evaluation device 400 (FIG. 8) includes an utterance vocabulary logistic function approximation unit 410, an utterance vocabulary parameter storage unit 450, an understanding vocabulary logistic function approximation unit 460, an understanding vocabulary parameter storage unit 470, and a learning date. An age calculation unit 420, a learning period calculation unit 130, and a control unit 440 are provided. The operation flow is shown in FIG. The infant vocabulary comprehension difficulty level evaluation apparatus 400 is realized by reading a predetermined program into a computer including, for example, a ROM, a RAM, and a CPU, and executing the program by the CPU.

発話語彙ロジスティック関数近似部410は、複数の幼児の語彙学習過程における発話語彙iの発話時期x(獲得時期)と累積発話割合f(x)を入力として、発話語彙i毎にロジスティック曲線を描く上記した式(1)の関数をモデル化し、発話語彙パラメータa,b,cを算出する(ステップS410)。 The utterance vocabulary logistic function approximation unit 410 receives the utterance time x i (acquisition time) and the cumulative utterance rate f (x i ) of the utterance vocabulary i in the vocabulary learning process of a plurality of infants, and generates a logistic curve for each utterance vocabulary i. The function of the expression (1) to be drawn is modeled, and the utterance vocabulary parameters a i , b i and c i are calculated (step S410).

図10に、ステップS410を詳しく示す。発話語彙ロジスティック関数近似部410は、式(1)で累積発話割合f(x)をモデル化する(ステップS4100)。モデル化するとパラメータaがa>1となることがある。累積発話割合f(x)が1を越えることは無いので、この場合(ステプS4101のYes)は、a=1としてパラメータb,cを再計算する(ステップS4102)。発話語彙パラメータa,b,cは、発話語彙パラメータ保存部450に保存される(ステップS450)。 FIG. 10 shows step S410 in detail. The utterance vocabulary logistic function approximating unit 410 models the cumulative utterance ratio f (x i ) using the equation (1) (step S4100). When modeling, the parameter a i may be a i > 1. Since the cumulative utterance rate f (x i ) does not exceed 1, in this case (Yes in step S 4101), parameters b i and c i are recalculated with a i = 1 (step S 4102). Speech vocabulary parameters a i, b i, c i is stored in the speech vocabulary parameter storage unit 450 (step S450).

理解語彙ロジスティック関数近似部460は、上記語彙学習過程における発話語彙iと同じ語彙iの理解時期xと累積理解割合f′(x)を入力として、理解語彙i毎にロジスティック曲線を描く上記した式(2)の関数をモデル化し、理解語彙パラメータa′,b′,c′を算出する(ステップS460)。理解語彙パラメータa′,b′,c′は、理解語彙パラメータ保存部470に保存される(ステップS470)。 The understanding vocabulary logistic function approximating unit 460 draws a logistic curve for each understanding vocabulary i, using as input the understanding time xi of the same vocabulary i as the utterance vocabulary i and the cumulative understanding ratio f ′ (x i ) in the vocabulary learning process. The function of the equation (2) is modeled, and the understanding vocabulary parameters a i ', b i ', c i 'are calculated (step S460). The understanding vocabulary parameters a i ′, b i ′, and c i ′ are stored in the understanding vocabulary parameter storage unit 470 (step S470).

習得日齢算出部420は、発話語彙パラメータ保存部450と理解語彙パラメータ保存部470に保存された両パラメータを入力として、理解と発話の関係に基づいて理解語彙の50%到達日齢である理解語彙50%習得日齢と理解語彙20%習得日齢を計算する(ステップS420)。50%習得日齢の計算は、f′(x)=0.5、20%習得日齢の計算はf′(x)=0.2とおいて、例えばニュートン法を用いて行う。又は、他の最適化手法を用いてもよい。 The learning age calculation unit 420 receives both parameters stored in the utterance vocabulary parameter storage unit 450 and the understanding vocabulary parameter storage unit 470 as input, and based on the relationship between the understanding and the utterance, the understanding vocabulary reaches 50% of the understanding age Vocabulary 50% acquisition age and comprehension vocabulary 20% acquisition age are calculated (step S420). The calculation of the 50% learning age is f ′ (x i ) = 0.5, and the calculation of the 20% learning age is f ′ (x i ) = 0.2. For example, the Newton method is used. Alternatively, other optimization methods may be used.

習得期間算出部130は、50%習得日齢と20%習得日齢を入力として、語彙iの習得期間を算出し、その習得期間を語彙iの理解難易度として出力する(ステップS130)。制御部440は、全ての語彙iについて終了するまでステップS410〜S130までの処理を繰り返す(ステップS440)。   The learning period calculation unit 130 calculates the acquisition period of the vocabulary i using 50% acquisition age and 20% acquisition age as inputs, and outputs the acquisition period as an understanding difficulty level of the vocabulary i (step S130). The control unit 440 repeats the processing from step S410 to S130 until the processing is completed for all the vocabulary i (step S440).

以上のように動作することで、この発明の幼児語彙理解時期推定装置100は、理解する語彙を調べるアンケート結果のデータ中に50%を超えて理解する日齢データが無くても理解語彙の50%習得日齢を推定することができる。   By operating as described above, the infant vocabulary understanding time estimation device 100 according to the present invention has 50 vocabulary of understanding vocabulary even if there is no day-age data to understand more than 50% in the questionnaire result data for examining the vocabulary to understand. % Acquisition date can be estimated.

〔習得日齢算出部〕
図11に、習得日齢算出部420のより具体的な機能構成例を示す。その動作フローを図12に示す。
[Learning age calculation part]
FIG. 11 shows a more specific functional configuration example of the learning age calculation unit 420. The operation flow is shown in FIG.

習得日齢算出部420は、パラメータ比較設定手段421と、習得日齢計算手段422と、を備える。パラメータ比較設定手段421は、発話語彙パラメータ保存部450に保存された発話語彙パラメータaと、理解語彙パラメータ保存部470に保存された理解語彙パラメータa′と、を入力として両パラメータの大きさを比較する(ステップS4211)。 The learning age calculation unit 420 includes parameter comparison setting means 421 and learning age calculation means 422. The parameter comparison setting unit 421 receives the utterance vocabulary parameter a i stored in the utterance vocabulary parameter storage unit 450 and the understanding vocabulary parameter a i ′ stored in the understanding vocabulary parameter storage unit 470 as inputs, and the size of both parameters. Are compared (step S4211).

′<aの場合(ステップS4211のYes)は、a′=aとして式(2)による理解語彙ロジスティック関数近似の再計算を行う(ステップS4212)。a′≧aで且つa′>1の場合(ステップS4213のYes)は、a′=1として式(2)による理解語彙ロジスティック関数近似の再計算を行う(ステップS4214)。パラメータ比較設定手段421は、両パラメータa,a′の比較結果と、ロジスティック関数を再近似した理解語彙パラメータa′,b′,c′を習得日齢計算手段422に出力する。 When a i ′ <a i (Yes in step S4211), recalculation of the understanding vocabulary logistic function approximation according to equation (2) is performed with a i ′ = a i (step S4212). If a i ′ ≧ a i and a i ′> 1 (Yes in step S4213), recalculation of the understanding vocabulary logistic function approximation by equation (2) is performed with a i ′ = 1 (step S4214). The parameter comparison setting means 421 outputs the comparison result of the two parameters a i and a i ′ and the understanding vocabulary parameters a i ′, b i ′ and c i ′ re-approximate the logistic function to the acquired age calculation means 422. .

習得日齢計算手段422は、両パラメータa,a′の比較結果と、再計算した理解語彙パラメータa′,b′,c′と、理解語彙パラメータ保存部470に保存された理解語彙パラメータa′,b′,c′と、を入力として、上記再近似した理解語彙パラメータa′,b′,c′又は上記理解語彙パラメータ保存部470に保存された理解語彙パラメータa′,b′,c′のどちらかを用いて50%習得日齢と20%習得日齢を計算する(ステップS422)。 The learning age calculation means 422 is stored in the comprehension vocabulary parameter storage unit 470, the comparison result of both parameters a i , a i ′, the recalculated comprehension vocabulary parameters a i ′, b i ′, c i ′. With the understanding vocabulary parameters a i ′, b i ′, and c i ′ as inputs, the re-approximate understanding vocabulary parameters a i ′, b i ′, c i ′ or the understanding vocabulary parameter storage 470 A 50% learning age and a 20% learning age are calculated using any one of the understanding vocabulary parameters a i ′, b i ′, and c i ′ (step S422).

習得日齢計算手段422は、理解語彙パラメータa′が発話語彙パラメータaよりも小さい場合(ステップS4221のYes)、又は、理解語彙パラメータa′が1より大きい場合(ステップS4222のYes)、にパラメータ比較設定手段421で再近似した理解語彙パラメータa′,b′,c′を用いて50%習得日齢と20%習得日齢を計算する(ステップS4223)。 The learning age calculation means 422 determines that the understanding vocabulary parameter a i ′ is smaller than the utterance vocabulary parameter a i (Yes in step S4221) or the understanding vocabulary parameter a i ′ is greater than 1 (Yes in step S4222). Then, using the comprehension vocabulary parameters a i ′, b i ′, c i ′ re-approximate by the parameter comparison setting means 421, the 50% learning age and the 20% learning age are calculated (step S4223).

理解語彙パラメータa′が発話語彙パラメータaの大きさ以上で且つa′以下の場合(ステップS4222のNo)は、理解語彙パラメータ保存部470に保存された理解語彙パラメータa′,b′,c′を用いて50%習得日齢と20%習得日齢を計算する(ステップS4224)。このように動作することで、50%を超えて理解する日齢データが無くても理解語彙の50%習得日齢を推定することができる。 When the understanding vocabulary parameter a i ′ is not less than the size of the utterance vocabulary parameter a i and not more than a i ′ (No in step S4222), the understanding vocabulary parameter a i ′, b stored in the understanding vocabulary parameter storage unit 470 is used. A 50% acquisition day and a 20% acquisition day are calculated using i ′ and c i ′ (step S4224). By operating in this way, it is possible to estimate the age at which 50% of the understanding vocabulary is acquired even if there is no age data to be understood that exceeds 50%.

〔習得日齢の具体例〕
上記した幼児語彙理解難易度評価装置400で、50%習得日齢と20%習得日齢を求めた結果を表3に示す。データは、1699名に回答してもらったMacarthur乳幼児言語発達質問紙の語と身振り版(448語)、語と文法版(711語)を使って、幼児が発話した語彙のチェックを行ったものを用いた。
[Specific examples of learning age]
Table 3 shows the results of obtaining the 50% acquisition date and the 20% acquisition date with the infant vocabulary understanding difficulty evaluation device 400 described above. The data was a check of the vocabulary spoken by the infant using the words and gestures (448 words) and words and grammar (711 words) of the Macarthur Infant Language Development Questionnaire, which was answered by 1699 people. Was used.

Figure 2014153601
Figure 2014153601

表3は、社会語に分類される幼児語彙について、発話習得日齢と理解習得日齢のそれぞれの50%習得日齢と20%習得日齢と習得期間を示す。習得期間が80日以下の語を調べると、表3に示していないが、“ありがとう”、“いただきます”、“ごちそうさま”、“だめ”、“ちょうだい”、“どうぞ”、“はい”、“ばいばい”、などの単語が該当する。これらの語は、幼児全員が同時に獲得するような語である。   Table 3 shows 50% acquisition age, 20% acquisition age, and acquisition period of the utterance acquisition date and the understanding acquisition date for the infant vocabulary classified as social languages. Examining words with an acquisition period of 80 days or less, although not shown in Table 3, “Thank you”, “Thank you”, “Feast”, “No”, “Give me”, “Please”, “Yes”, “ This includes words such as “Baibai”. These words are words that all infants acquire simultaneously.

習得期間が130日以上の語彙を調べると、表3に示すような“あーあ”、“ガーガー”、“こけこっこ”、などの語が該当する。これらの語は、20%の幼児が習得してから、50%の幼児が習得するまで130日以上を必要とするものである。このように、この発明の幼児語彙理解難易度評価装置は、幼児語彙を定量的に分析するための新たな指標を提供することができる。   Examining vocabulary with a learning period of 130 days or more, the words such as “Ah”, “Garger”, “Kokekoko”, etc. as shown in Table 3 apply. These words require 130 days or more after 20% of infants learn until 50% of them learn. Thus, the infant vocabulary comprehension difficulty evaluation device of the present invention can provide a new index for quantitatively analyzing an infant vocabulary.

〔応用例1〕
この発明の幼児語彙理解難易度評価装置100,200,300,400を利用することで、検索条件に応じた幼児語彙を検索する幼児語彙検索装置を構成することができる。図13に、この発明の幼児語彙検索装置500の機能構成例を示す。その動作フローを図14に示す。
[Application Example 1]
By using the infant vocabulary comprehension difficulty evaluation device 100, 200, 300, 400 of the present invention, an infant vocabulary retrieval device that retrieves infant vocabulary according to the retrieval condition can be configured. FIG. 13 shows a functional configuration example of the infant vocabulary retrieval apparatus 500 of the present invention. The operation flow is shown in FIG.

幼児語彙検索装置500は、幼児語彙理解難易度評価装置200と、語彙検索部510と、制御部540と、を具備する。幼児語彙理解難易度評価装置200は、上記(図6)したものである。語彙検索部510は、幼児語彙理解難易度評価装置200が出力する語彙iの理解難易度と、外部から入力される検索条件とを入力として、語彙i毎の理解難易度と検索条件とを比較することで、検索条件に合致する語彙iを検索する(ステップS130)。   The infant vocabulary search device 500 includes an infant vocabulary understanding difficulty evaluation device 200, a vocabulary search unit 510, and a control unit 540. The infant vocabulary comprehension difficulty evaluation device 200 is as described above (FIG. 6). The vocabulary search unit 510 receives the understanding difficulty level of the vocabulary i output from the infant vocabulary understanding difficulty level evaluation device 200 and the search condition input from the outside, and compares the understanding difficulty level and the search condition for each vocabulary i. Thus, the vocabulary i that matches the search condition is searched (step S130).

検索条件には、習得期間や習得日齢を設定する。例えば、習得期間を130以上と設定すると上記した表3に示した、例えば“あーあ”、“ガーガー”、“こけこっこ”、の語が検索された語彙として出力される。なお、幼児語彙理解難易度評価装置200と組み合わせる例で説明を行ったが、幼児語彙理解難易度評価装置には上記した何れの装置を用いても良い。   In the search condition, a learning period and a learning age are set. For example, if the learning period is set to 130 or more, the words “Ah”, “Garger”, and “Kokekokko” shown in Table 3 above are output as searched vocabularies. In addition, although it demonstrated by the example combined with the infant vocabulary comprehension difficulty evaluation apparatus 200, you may use any of above-mentioned apparatuses for an infant vocabulary comprehension difficulty evaluation apparatus.

〔応用例2〕
幼児語彙検索装置としては、多数の幼児語について語彙iに対応付けて発話語彙パラメータと理解語彙パラメータをデータベースとして蓄積し、利用者から任意の検索条件を受け付けて、検索条件に合致する語を出力する装置も考えられる。
[Application 2]
As an infant vocabulary search device, utterance vocabulary parameters and comprehension vocabulary parameters are stored as a database in association with vocabulary i for a number of infant words, accept arbitrary search conditions from the user, and output words that match the search conditions It is also conceivable to use a device.

〔応用例3〕
図15に、この発明の幼児語彙分類装置600の機能構成例を示す。その動作フローを図16に示す。幼児語彙分類装置600は、幼児語彙理解難易度評価装置100と、語彙分類部610と、制御部640と、を具備する。
[Application Example 3]
FIG. 15 shows a functional configuration example of the infant vocabulary classification apparatus 600 of the present invention. The operation flow is shown in FIG. The infant vocabulary classification device 600 includes the infant vocabulary understanding difficulty evaluation device 100, a vocabulary classification unit 610, and a control unit 640.

幼児語彙理解難易度評価装置100は、上記(図4)したものである。語彙分類部610は、幼児語彙理解難易度評価装置100で計算された習得期間とα%習得日齢とを入力として、習得期間とα%習得日齢を、語彙iに対応させたベクトルとして構成し、習得期間とα%習得日齢の値に応じて語彙iを分類する(ステップS610)。   The infant vocabulary comprehension difficulty evaluation device 100 is as described above (FIG. 4). The vocabulary classification unit 610 is configured with the learning period calculated by the infant vocabulary comprehension difficulty evaluation device 100 and the α% acquisition date as input, and the acquisition period and α% acquisition date as a vector corresponding to the vocabulary i. Then, the vocabulary i is classified according to the value of the acquisition period and the α% acquisition age (step S610).

α%を例えば50%とすると、αはガウス分布の平均を意味する。また、習得期間は、ガウス分布の分散(σ)に対応する値である。よって、幼児語彙分類装置600は、幼児語彙をいくつかのガウス分布に分類することもできる。   If α% is 50%, for example, α means the average of the Gaussian distribution. The acquisition period is a value corresponding to the variance (σ) of the Gaussian distribution. Therefore, the infant vocabulary classification apparatus 600 can also classify the infant vocabulary into several Gaussian distributions.

分類するクラスタリング手法には、既存の各種の手法を用いることが可能である。幼児語彙分類装置600により、幼児語彙をいくつかのクラスタに分類することができるので、幼児の発達に合わせた学習単語のグループ分けを行うことができる。   Various existing methods can be used as the clustering method for classification. Since the infant vocabulary classification apparatus 600 can classify the infant vocabulary into several clusters, the learning words can be grouped according to the development of the infant.

また、このようなクラスタリング手法を、発話、理解の両方のパラメータを同時に扱うようにしても良い。そうすることで、発話時と理解時の両方を同時に考慮した単語クラスタの分類を行うことも可能になる。   In addition, such a clustering method may handle both speech and understanding parameters at the same time. By doing so, it is also possible to classify word clusters considering both utterance and understanding at the same time.

上記装置における処理手段をコンピュータによって実現する場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、各装置における処理手段がコンピュータ上で実現される。   When the processing means in the above apparatus is realized by a computer, the processing contents of the functions that each apparatus should have are described by a program. Then, by executing this program on the computer, the processing means in each apparatus is realized on the computer.

この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。具体的には、例えば、磁気記録装置として、ハードディスク装置、フレキシブルディスク、磁気テープ等を、光ディスクとして、DVD(Digital Versatile Disc)、DVD-RAM(Random Access Memory)、CD-ROM(Compact Disc Read Only Memory)、CD-R(Recordable)/RW(ReWritable)等を、光磁気記録媒体として、MO(Magneto Optical disc)等を、半導体メモリとしてEEP-ROM(Electronically Erasable and Programmable-Read Only Memory)等を用いることができる。   The program describing the processing contents can be recorded on a computer-readable recording medium. As the computer-readable recording medium, for example, any recording medium such as a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory may be used. Specifically, for example, as a magnetic recording device, a hard disk device, a flexible disk, a magnetic tape or the like, and as an optical disk, a DVD (Digital Versatile Disc), a DVD-RAM (Random Access Memory), a CD-ROM (Compact Disc Read Only) Memory), CD-R (Recordable) / RW (ReWritable), etc., magneto-optical recording media, MO (Magneto Optical disc), etc., semiconductor memory, EEP-ROM (Electronically Erasable and Programmable-Read Only Memory), etc. Can be used.

また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD-ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記録装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。   This program is distributed by selling, transferring, or lending a portable recording medium such as a DVD or CD-ROM in which the program is recorded. Further, the program may be distributed by storing the program in a recording device of a server computer and transferring the program from the server computer to another computer via a network.

また、各手段は、コンピュータ上で所定のプログラムを実行させることにより構成することにしてもよいし、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。   Each means may be configured by executing a predetermined program on a computer, or at least a part of these processing contents may be realized by hardware.

本発明は、幼児を対象としたオーダーメード型教育の分野で利用することができる。   The present invention can be used in the field of customized education for young children.

Claims (11)

複数の幼児の語彙学習過程における語彙iの習得時期xと習得割合f(x)を入力として、語彙i毎に上記習得時期xと上記習得割合f(x)との関係をロジスティック曲線で近似するロジスティック関数近似部と、
上記ロジスティック関数を用いて、α%習得日齢と当該α%よりも小さいβ%のβ%習得日齢とを求める習得日齢算出部と、
上記α%習得日齢と上記β%習得日齢を入力として、上記語彙iの習得期間を算出し、当該習得期間を語彙iの理解難易度として出力する習得期間算出部と、
を具備する幼児語彙理解難易度評価装置。
Logistic as input a plurality of infants vocabulary learning acquisition and learning time x i vocabulary i ratio in the process f (x i), the relationship between the learning time for each vocabulary i x i and the learning rate f (x i) A logistic function approximator approximating with a curve;
Using the above-mentioned logistic function, an acquisition day age calculating part for obtaining an α% acquisition day age and a β% acquisition day age of β% smaller than the α%,
A learning period calculation unit that calculates the learning period of the vocabulary i using the α% learning date and the β% learning date as inputs, and outputs the learning period as an understanding difficulty level of the vocabulary i;
An infant vocabulary comprehension difficulty evaluation device.
請求項1に記載した幼児語彙理解難易度評価装置において、
上記ロジスティック関数近似部は、
上記習得時期xは、上記語彙iの理解時期x、上記習得割合f′(x)は累積理解割合f′(x)として、理解語彙i毎にロジスティック曲線を描く次式の関数をモデル化し、
Figure 2014153601

理解語彙パラメータa′,b′,c′を算出するロジスティック関数近似部であることを特徴とする幼児語彙理解難易度評価装置。
In the infant vocabulary comprehension difficulty evaluation apparatus according to claim 1,
The logistic function approximation part is
The learning time x i is the vocabulary i understood timing x i of, as the learning rate f '(x i) is the cumulative understood fraction f' (x i), a function of the following equation to draw a logistic curve for each understood vocabulary i Model
Figure 2014153601

An infant vocabulary comprehension difficulty evaluation device, which is a logistic function approximating unit for calculating comprehension vocabulary parameters a i ′, b i ′, and c i ′.
請求項1に記載した幼児語彙理解難易度評価装置において、
上記ロジスティック関数近似部は、
上記習得時期xは、上記語彙iの発話時期x、上記習得割合f(x)は累積発話割合f′(x)として、発話語彙i毎にロジスティック曲線を描く次式の関数をモデル化し、
Figure 2014153601

発話語彙パラメータa,b,cを算出するロジスティック関数近似部であることを特徴とする幼児語彙理解難易度評価装置。
In the infant vocabulary comprehension difficulty evaluation apparatus according to claim 1,
The logistic function approximation part is
The learning time x i is the utterance time x i of the vocabulary i, the learning rate f (x i ) is the cumulative utterance rate f ′ (x i ), and a function of the following equation is drawn for each utterance vocabulary i: Model,
Figure 2014153601

An infant vocabulary comprehension difficulty evaluation device, which is a logistic function approximating unit for calculating utterance vocabulary parameters a i , b i and c i .
請求項1に記載した幼児語彙理解難易度評価装置において、
上記ロジスティック関数近似部は、
上記習得時期xは、上記語彙iの理解時期x、上記習得割合f′(x)は累積理解割合f′(x)として、理解語彙i毎にロジスティック曲線を描く次式の関数をモデル化し、
Figure 2014153601

理解語彙パラメータa′,b′,c′を算出する理解語彙ロジスティック関数近似手段と、
上記理解語彙パラメータa′,b′,c′を保存する理解語彙パラメータ保存手段と、
上記習得時期xは、上記語彙iの発話時期x、上記習得割合f(x)は累積発話割合f′(x)として、発話語彙i毎にロジスティック曲線を描く次式の関数をモデル化し、
Figure 2014153601

発話語彙パラメータa,b,cを算出するロジスティック関数近似手段と、
上記発話語彙パラメータa,b,cを保存する発話語彙パラメータ保存手段と、
を備え、
上記習得期間算出部は、
上記理解語彙パラメータ保存手段と上記発話語彙パラメータ保存手段に保存された両パラメータを入力として、理解語彙パラメータa′と発話語彙パラメータaの大きさを比較した結果に基づいて、再近似した理解語彙パラメータa′,b′,c′又は保存された理解語彙パラメータa′,b′,c′のどちらかを用いてα%習得日齢とβ%習得日齢を計算するもの、
であることを特徴とする幼児語彙理解難易度評価装置。
In the infant vocabulary comprehension difficulty evaluation apparatus according to claim 1,
The logistic function approximation part is
The learning time x i is the vocabulary i understood timing x i of, as the learning rate f '(x i) is the cumulative understood fraction f' (x i), a function of the following equation to draw a logistic curve for each understood vocabulary i Model
Figure 2014153601

Understanding vocabulary logistic function approximation means for calculating understanding vocabulary parameters a i ′, b i ′, c i ′;
Understanding vocabulary parameter storage means for storing the above understanding vocabulary parameters a i ′, b i ′, c i ′;
The learning time x i is the utterance time x i of the vocabulary i, the learning rate f (x i ) is the cumulative utterance rate f ′ (x i ), and a function of the following equation is drawn for each utterance vocabulary i: Model,
Figure 2014153601

Logistic function approximation means for calculating utterance vocabulary parameters a i , b i , c i ;
Utterance vocabulary parameter storage means for storing the utterance vocabulary parameters a i , b i and c i ;
With
The acquisition period calculation unit
Based on the result of comparing the size of the understanding vocabulary parameter a i ′ and the utterance vocabulary parameter a i using both parameters stored in the understanding vocabulary parameter storage unit and the utterance vocabulary parameter storage unit as input Calculate α% acquisition day and β% acquisition day using either vocabulary parameters a i ′, b i ′, c i ′ or stored understanding vocabulary parameters a i ′, b i ′, c i ′ What to do,
Infant vocabulary comprehension difficulty evaluation device characterized by being.
請求項2に記載した幼児語彙理解難易度評価装置と、
当該語彙理解難易度評価装置が出力する上記語彙iの理解難易度と、外部から入力される検索条件とを比較することで、当該検索条件に合致する上記語彙iを検索する語彙検索部と、
を具備する幼児語彙検索装置。
An infant vocabulary comprehension difficulty evaluation device according to claim 2;
A vocabulary search unit that searches the vocabulary i that matches the search condition by comparing the comprehension difficulty of the vocabulary i output from the vocabulary understanding difficulty evaluation device with a search condition input from the outside;
An infant vocabulary search device comprising:
請求項1に記載した幼児語彙理解難易度評価装置と、
当該語彙理解難易度評価装置で計算された上記習得期間と上記α%習得日齢とを入力として、上記習得期間と上記α%習得日齢を、上記語彙iに対応させたベクトルとして構成し、上記理解難易度と上記α%習得日齢の値に応じて上記語彙iを分類する語彙分類部と、
を具備する幼児語彙分類装置。
The infant vocabulary comprehension difficulty evaluation device according to claim 1,
The learning period and the α% acquisition date calculated by the vocabulary understanding difficulty evaluation device are input, and the acquisition period and the α% acquisition date are configured as a vector corresponding to the vocabulary i, A vocabulary classification unit that classifies the vocabulary i according to the level of difficulty of understanding and the value of the α% acquisition date;
An infant vocabulary classification device comprising:
複数の幼児の語彙学習過程における語彙iの習得時期xと習得割合f(x)を入力として、語彙i毎に上記習得時期xと上記習得割合f(x)との関係をロジスティック曲線で近似するロジスティック関数近似過程と、
上記ロジスティック関数を用いて、α%習得日齢と当該α%よりも小さいβ%のβ%習得日齢とを求める習得日齢算出過程と、
上記α%習得日齢と上記β%習得日齢を入力として、上記語彙iの習得期間を算出し、当該習得期間を語彙iの理解難易度として出力する習得期間算出過程と、
を備える幼児語彙理解難易度評価方法。
Logistic as input a plurality of infants vocabulary learning acquisition and learning time x i vocabulary i ratio in the process f (x i), the relationship between the learning time for each vocabulary i x i and the learning rate f (x i) Logistic function approximation process that approximates with a curve,
Using the above-mentioned logistic function, an acquisition date calculation process for obtaining an α% acquisition day age and a β% acquisition day age of β% smaller than the α%,
The learning period calculation process of calculating the learning period of the vocabulary i using the α% learning date and the β% learning date as input, and outputting the learning period as an understanding difficulty level of the vocabulary i;
Infant vocabulary comprehension difficulty evaluation method.
請求項7に記載した幼児語彙理解難易度評価方法において、
上記ロジスティック関数近似過程は、
上記習得時期xは、上記語彙iの理解時期x、上記習得割合f′(x)は累積理解割合f′(x)として、理解語彙i毎にロジスティック曲線を描く次式の関数をモデル化し、
Figure 2014153601

理解語彙パラメータa′,b′,c′を算出するロジスティック関数近似過程であることを特徴とする幼児語彙理解難易度評価方法。
In the infant vocabulary comprehension difficulty evaluation method according to claim 7,
The logistic function approximation process is
The learning time x i is the vocabulary i understood timing x i of, as the learning rate f '(x i) is the cumulative understood fraction f' (x i), a function of the following equation to draw a logistic curve for each understood vocabulary i Model
Figure 2014153601

An infant vocabulary comprehension difficulty evaluation method, which is a logistic function approximation process for calculating comprehension vocabulary parameters a i ′, b i ′, and c i ′.
請求項8に記載した幼児語彙理解難易度評価方法と、
当該語彙理解難易度評価装置が出力する上記語彙iの理解難易度と、外部から入力される検索条件とを比較することで、当該検索条件に合致する上記語彙iを検索する語彙検索過程と、
を備える幼児語彙検索方法。
A method for evaluating the difficulty level of understanding the infant vocabulary according to claim 8,
A vocabulary search process for searching for the vocabulary i that matches the search condition by comparing the understanding difficulty level of the vocabulary i output from the vocabulary understanding difficulty evaluation device with a search condition input from the outside;
An infant vocabulary search method comprising:
請求項7に記載した幼児語彙理解難易度評価方法と、
当該語彙理解難易度評価方法で計算された上記習得期間と上記α%習得日齢とを入力として、上記習得期間と上記α%習得日齢を、上記語彙iに対応させたベクトルとして構成し、上記理解難易度と上記α%習得日齢の値に応じて上記語彙iを分類する語彙分類過程と、
を備える幼児語彙分類方法。
The infant vocabulary comprehension difficulty evaluation method according to claim 7,
The learning period calculated by the vocabulary understanding difficulty evaluation method and the α% acquisition date are input, and the acquisition period and the α% acquisition date are configured as a vector corresponding to the vocabulary i. A vocabulary classification process for classifying the vocabulary i according to the degree of understanding difficulty and the value of the α% acquisition date;
An infant vocabulary classification method comprising:
請求項1乃至4の何れか1項に記載した幼児語彙理解難易度評価装置、又は請求項5に記載した幼児語彙検索装置、又は請求項6に記載した幼児語彙分類装置としてコンピュータを動作させるためのプログラム。   To operate a computer as the infant vocabulary comprehension difficulty evaluation device according to any one of claims 1 to 4, the infant vocabulary search device according to claim 5, or the infant vocabulary classification device according to claim 6. Program.
JP2013024274A 2013-02-12 2013-02-12 Infant vocabulary comprehension difficulty assessment device, infant vocabulary search device, infant vocabulary classification device, methods and programs thereof Active JP5925140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013024274A JP5925140B2 (en) 2013-02-12 2013-02-12 Infant vocabulary comprehension difficulty assessment device, infant vocabulary search device, infant vocabulary classification device, methods and programs thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013024274A JP5925140B2 (en) 2013-02-12 2013-02-12 Infant vocabulary comprehension difficulty assessment device, infant vocabulary search device, infant vocabulary classification device, methods and programs thereof

Publications (2)

Publication Number Publication Date
JP2014153601A true JP2014153601A (en) 2014-08-25
JP5925140B2 JP5925140B2 (en) 2016-05-25

Family

ID=51575504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013024274A Active JP5925140B2 (en) 2013-02-12 2013-02-12 Infant vocabulary comprehension difficulty assessment device, infant vocabulary search device, infant vocabulary classification device, methods and programs thereof

Country Status (1)

Country Link
JP (1) JP5925140B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114898A (en) * 2014-12-17 2016-06-23 日本電信電話株式会社 Word presentation device, method, and program
JP2016118598A (en) * 2014-12-19 2016-06-30 日本電信電話株式会社 Word presentation device, calculation device, and method and program thereof
JP2018067017A (en) * 2018-01-19 2018-04-26 日本電信電話株式会社 Calculation device, method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217348A (en) * 2008-03-07 2009-09-24 Kddi Corp Re-learning method for support vector machine
JP2011018155A (en) * 2009-07-08 2011-01-27 Nippon Telegr & Teleph Corp <Ntt> Method, device and program for creating infant vocabulary development database
JP2012196254A (en) * 2011-03-18 2012-10-18 Nippon Telegr & Teleph Corp <Ntt> Vocabulary spurt timing detecting device, method, and program
JP2012200357A (en) * 2011-03-24 2012-10-22 Nippon Telegr & Teleph Corp <Ntt> Vocabulary burst time estimation device, method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217348A (en) * 2008-03-07 2009-09-24 Kddi Corp Re-learning method for support vector machine
JP2011018155A (en) * 2009-07-08 2011-01-27 Nippon Telegr & Teleph Corp <Ntt> Method, device and program for creating infant vocabulary development database
JP2012196254A (en) * 2011-03-18 2012-10-18 Nippon Telegr & Teleph Corp <Ntt> Vocabulary spurt timing detecting device, method, and program
JP2012200357A (en) * 2011-03-24 2012-10-22 Nippon Telegr & Teleph Corp <Ntt> Vocabulary burst time estimation device, method and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015010668; 森藤 大地: 'データ駆動学習仮説に基づく統語知識獲得モデル' 電子情報通信学会技術研究報告 Vol.104 No.139, 20040617, p7-12, 社団法人電子情報通信学会 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114898A (en) * 2014-12-17 2016-06-23 日本電信電話株式会社 Word presentation device, method, and program
JP2016118598A (en) * 2014-12-19 2016-06-30 日本電信電話株式会社 Word presentation device, calculation device, and method and program thereof
JP2018067017A (en) * 2018-01-19 2018-04-26 日本電信電話株式会社 Calculation device, method, and program

Also Published As

Publication number Publication date
JP5925140B2 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
US10839335B2 (en) Call center agent performance scoring and sentiment analytics
Lee et al. Emotion recognition using a hierarchical binary decision tree approach
US12001465B2 (en) Response selecting apparatus, response selecting method, and response selecting program
US10049148B1 (en) Enhanced text clustering based on topic clusters
US9652991B2 (en) Systems and methods for content scoring of spoken responses
US9224383B2 (en) Unsupervised language model adaptation for automated speech scoring
JP2007256342A (en) Clustering system, clustering method, clustering program and attribute estimation system using clustering program and clustering system
WO2021166207A1 (en) Recognition device, learning device, method for same, and program
JP5925140B2 (en) Infant vocabulary comprehension difficulty assessment device, infant vocabulary search device, infant vocabulary classification device, methods and programs thereof
JP7013329B2 (en) Learning equipment, learning methods and learning programs
JP6983729B2 (en) Extractor, evaluation device, extraction method and extraction program
JP6992725B2 (en) Para-language information estimation device, para-language information estimation method, and program
Karpagam et al. Deep learning approaches for answer selection in question answering system for conversation agents
US20210089723A1 (en) Response selecting apparatus, model learning apparatus, response selecting method, model learning method, and program
JP5806642B2 (en) Infant word search device, method and program thereof
JP7044642B2 (en) Evaluation device, evaluation method and evaluation program
JP7013331B2 (en) Extractor, extraction method and extraction program
JP7057229B2 (en) Evaluation device, evaluation method and evaluation program
Stoica et al. The impact of Romanian diacritics on intent detection and slot filling
JP5726821B2 (en) Infant vocabulary understanding time estimation device, method and program
JP7042701B2 (en) Evaluation device, evaluation method and evaluation program
JP7013332B2 (en) Learning equipment, learning methods and learning programs
López-Cózar Automatic creation of scenarios for evaluating spoken dialogue systems via user-simulation
Nothdurft et al. Application of verbal intelligence in dialog systems for multimodal interaction
JP2019215830A (en) Evaluation device, evaluation method, and evaluation program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160419

R150 Certificate of patent or registration of utility model

Ref document number: 5925140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150