JP2014153476A - Carrier for electrostatic charge image development, developer for electrostatic charge image development, process cartridge, and image forming apparatus - Google Patents

Carrier for electrostatic charge image development, developer for electrostatic charge image development, process cartridge, and image forming apparatus Download PDF

Info

Publication number
JP2014153476A
JP2014153476A JP2013021691A JP2013021691A JP2014153476A JP 2014153476 A JP2014153476 A JP 2014153476A JP 2013021691 A JP2013021691 A JP 2013021691A JP 2013021691 A JP2013021691 A JP 2013021691A JP 2014153476 A JP2014153476 A JP 2014153476A
Authority
JP
Japan
Prior art keywords
magnetic particles
carrier
image
developing
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013021691A
Other languages
Japanese (ja)
Inventor
Yosuke Tsurumi
洋介 鶴見
Takeshi Shoji
毅 庄子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2013021691A priority Critical patent/JP2014153476A/en
Publication of JP2014153476A publication Critical patent/JP2014153476A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a carrier for electrostatic charge image development that suppresses a difference in image density occurring on images on a recording medium, even when images are formed at high speed in a high-temperature and high-humidity environment.SOLUTION: A carrier for electrostatic charge image development includes magnetic particles, and has the following properties: an average interval Sm between protrusions and recesses on the surface of the magnetic particles within a range of 1.0 or more and 3.5 or less; an arithmetic average roughness Ra of the surface of the magnetic particles within a range of 0.2 or more and 0.7 or less; a BET specific surface area of the magnetic particles within a range of 0.08 m/g or more and 0.14 m/g or less; and a volume resistance of the magnetic particles in an electric field of 24000 V/cm within a range of 6.0 logΩcm or more and 8.0 logΩcm or less.

Description

本発明は、静電荷像現像用キャリア、静電荷像現像用現像剤、プロセスカートリッジおよび画像形成装置に関する。   The present invention relates to an electrostatic charge image developing carrier, an electrostatic charge image developing developer, a process cartridge, and an image forming apparatus.

電子写真法等静電荷像を経て画像情報を可視化する方法は、現在様々な分野で利用されている。電子写真法においては、帯電、露光工程により像保持体上に静電潜像を形成し(潜像形成工程)、静電荷像現像用トナー(以下、単に「トナー」と呼ぶ場合がある。)を含む静電荷像現像用現像剤(以下、単に「現像剤」と呼ぶ場合がある。)で静電潜像を現像し(現像工程)、転写工程、定着工程を経て可視化される。ここで用いる現像剤は、静電荷像現像用キャリア(以下、単に「キャリア」と呼ぶ場合がある。)とトナーの両者を相互に摩擦帯電させてトナーに適当量の正または負の電荷を付与する二成分現像剤と、磁性トナー等のようにトナー単独で用いる一成分現像剤とに大別される。特に二成分現像剤は、キャリア自身に撹拌、搬送、帯電付与等の機能を持たせ、現像剤に要求される機能の分離を図れるため、設計が容易であること等の理由で現在広く用いられている。   A method for visualizing image information through an electrostatic charge image such as electrophotography is currently used in various fields. In electrophotography, an electrostatic latent image is formed on an image carrier by a charging and exposure process (latent image forming process), and an electrostatic charge image developing toner (hereinafter sometimes simply referred to as “toner”). The electrostatic latent image is developed with a developer for developing an electrostatic charge image (hereinafter sometimes referred to simply as “developer”) (development process), and visualized through a transfer process and a fixing process. The developer used here imparts an appropriate amount of positive or negative charge to the toner by triboelectrically charging both the carrier for developing an electrostatic image (hereinafter sometimes simply referred to as “carrier”) and the toner. The two-component developer and the one-component developer used alone, such as magnetic toner, are roughly classified. In particular, the two-component developer is widely used for reasons such as easy design because the carrier itself has functions such as agitation, conveyance, and charging, and the functions required for the developer can be separated. ing.

近年、電子写真法による画像形成装置により形成される画像の高画質化、プロセスの高速度化、長期安定性等が求められ、さらに装置の小型化や使用環境の多様化に伴い、キャリアにおいても様々な検討がなされている。   In recent years, there has been a demand for higher image quality of images formed by electrophotographic image forming apparatuses, higher process speed, long-term stability, etc. Various studies have been made.

例えば、特許文献1には、磁性粒子を有し、(磁性粒子のBET比表面積)/(磁性粒子を真球と仮定したときの真球相当比表面積)の値が、8.0以上30.0以下であり、磁性粒子表面の算術平均粗さRaが、0.050μm以下であり、見掛密度が、2.40g/cc以上であるキャリアについて開示されている。   For example, Patent Document 1 includes magnetic particles, and the value of (BET specific surface area of magnetic particles) / (true sphere equivalent specific surface area when the magnetic particles are assumed to be true spheres) is 8.0 to 30. A carrier having a magnetic particle surface arithmetic mean roughness Ra of 0.050 μm or less and an apparent density of 2.40 g / cc or more is disclosed.

例えば、特許文献2には、磁性粒子及び該磁性粒子を被覆する被覆層で形成されているキャリアであって、キャリアの平均粒径が100μm以下であり、キャリアの体積抵抗が1010Ω・cm以上であるキャリアについて開示されている。 For example, Patent Document 2 discloses a carrier formed of magnetic particles and a coating layer that covers the magnetic particles, the carrier has an average particle size of 100 μm or less, and the carrier has a volume resistance of 10 10 Ω · cm. The above carrier is disclosed.

例えば、特許文献3には、磁性粒子を含有するキャリアコアと該キャリアコアの表面に形成される被覆層とを有するキャリアであって、該キャリアの5000V/cmにおける体積抵抗の10点偏差が0.5桁以内であり、該キャリアの円相当径0.5μm以上200.0μm以下の範囲内における個数基準の円相当径50%値が15μm以上70μmであり、円相当径0.5μm以上200.0μm以下の範囲内における円形度0.200以上1.000以下での平均円形度が0.960以上であり、円相当径15.0μm以上100.0μm以下の範囲内における円形度0.200以上0.925以下の粒子の割合が15.0個数%以下であるキャリアについて開示されている。   For example, Patent Document 3 discloses a carrier having a carrier core containing magnetic particles and a coating layer formed on the surface of the carrier core, and the carrier has a 10-point deviation of 0 in volume resistance at 5000 V / cm. The number-based circle equivalent diameter 50% value in the range of the circle equivalent diameter of the carrier of 0.5 μm or more and 200.0 μm or less is 15 μm or more and 70 μm, and the circle equivalent diameter of 0.5 μm or more and 200. The average circularity at a circularity of 0.200 or more and 1.000 or less within a range of 0 μm or less is 0.960 or more, and the circularity at a circle equivalent diameter of 15.0 μm or more and 100.0 μm or less is 0.200 or more. A carrier having a ratio of particles of 0.925 or less of 15.0% by number or less is disclosed.

例えば、特許文献4には、多孔質磁性粒子と樹脂とを少なくとも有するキャリアであって、該多孔質磁性粒子の水銀圧入法において、細孔径0.10μm以上3.00μm以下の範囲の微分細孔容積が最大となる細孔径が0.80μm以上1.50μm以下であり、細孔径0.80μm以上1.50μm以下の範囲の微分細孔容積の最大値をP1とし、細孔径2.00μm以上3.00μm以下の範囲の微分細孔容積の最大値をP2とした場合に、P1が0.05ml/g以上0.50ml/g以下であり、P2/P1が0.05以上0.30以下であることを特徴とするキャリアについて開示されている。   For example, Patent Document 4 discloses a carrier having at least porous magnetic particles and a resin, and a differential pore having a pore diameter in the range of 0.10 μm to 3.00 μm in the mercury intrusion method of the porous magnetic particles. The maximum pore diameter in which the volume is maximum is 0.80 μm or more and 1.50 μm or less, the maximum value of the differential pore volume in the range of 0.80 μm or more and 1.50 μm or less is P1, and the pore diameter is 2.00 μm or more and 3 P1 is 0.05 ml / g or more and 0.50 ml / g or less, and P2 / P1 is 0.05 or more and 0.30 or less when the maximum value of the differential pore volume in the range of 0.000 μm or less is P2. A carrier characterized in that is disclosed.

特開2009−86340号公報JP 2009-86340 A 特開平7−234548号公報JP-A-7-234548 特開2008−191463号公報JP 2008-191463 A 特開2010−61120号公報JP 2010-61120 A

本発明の目的は、高温高湿の環境下で、高速で画像を形成しても、記録媒体上の画像に生じる画像濃度差が抑制される静電荷像現像用キャリア、静電荷像現像用現像剤、プロセスカートリッジおよび画像形成装置を提供することにある。   An object of the present invention is to provide an electrostatic charge image developing carrier and an electrostatic charge image developing development capable of suppressing an image density difference generated in an image on a recording medium even when an image is formed at high speed in a high temperature and high humidity environment. The present invention provides an agent, a process cartridge, and an image forming apparatus.

請求項1に係る発明は、磁性粒子を有し、前記磁性粒子表面の凹凸の平均間隔Smが1.0以上3.5以下の範囲であり、前記磁性粒子表面の算術平均粗さRaが0.2以上0.7以下の範囲であり、前記磁性粒子のBET比表面積が0.08m/g以上0.14m/g以下の範囲であり、前記磁性粒子の体積抵抗が、24000V/cmの電界下で、6.0logΩcm以上8.0logΩcm以下の範囲である静電荷像現像用キャリアである。 The invention according to claim 1 includes magnetic particles, wherein the average interval Sm of the irregularities on the surface of the magnetic particles is in the range of 1.0 to 3.5, and the arithmetic average roughness Ra of the surface of the magnetic particles is 0. in the range of .2 to 0.7, the BET specific surface area of the magnetic particles is in the range of less 0.08 m 2 / g or more 0.14 m 2 / g, a volume resistivity of said magnetic particles, 24000V / cm The electrostatic charge image developing carrier has a range of 6.0 log Ωcm or more and 8.0 log Ωcm or less under the electric field.

請求項2に係る発明は、前記磁性粒子表面の凹凸の平均間隔Smが2.5以上3.0以下の範囲であり、前記磁性粒子表面の算術平均粗さRaが0.4以上0.7以下の範囲であり、前記磁性粒子のBET比表面積が0.08m/g以上0.12m/g以下の範囲であり、前記磁性粒子の体積抵抗が、24000V/cmの電界下で、7.0logΩcm以上7.8logΩcm以下の範囲である請求項1に記載の静電荷像現像用キャリアである。 In the invention according to claim 2, the average interval Sm of the irregularities on the surface of the magnetic particles is in the range of 2.5 to 3.0, and the arithmetic average roughness Ra of the surface of the magnetic particles is 0.4 to 0.7. in the range of less, the BET specific surface area of the magnetic particles is in the range of less 0.08 m 2 / g or more 0.12 m 2 / g, a volume resistivity of said magnetic particles, under an electric field of 24000V / cm, 7 The carrier for developing an electrostatic charge image according to claim 1, wherein the carrier is in a range of 0.0 log Ωcm to 7.8 log Ωcm.

請求項3に係る発明は、請求項1又は2に記載の静電荷像現像用キャリアを含有する静電荷像現像用現像剤である。   The invention according to claim 3 is an electrostatic charge image developing developer containing the electrostatic charge image developing carrier according to claim 1 or 2.

請求項4に係る発明は、請求項3に記載の静電荷像現像用現像剤を収納し、像保持体表面に形成された静電潜像を前記静電荷像現像用現像剤により現像してトナー像を形成する現像手段を備えるプロセスカートリッジである。   The invention according to claim 4 contains the developer for developing an electrostatic image according to claim 3, and develops the electrostatic latent image formed on the surface of the image carrier with the developer for developing an electrostatic image. It is a process cartridge provided with developing means for forming a toner image.

請求項5に係る発明は、像保持体と、前記像保持体表面を帯電する帯電手段と、前記像保持体表面に静電潜像を形成する静電潜像形成手段と、前記静電潜像を請求項3に記載の静電荷像現像用現像剤により現像してトナー画像を形成する現像手段と、前記トナー画像を被転写体に転写する転写手段と、を備える画像形成装置である。   According to a fifth aspect of the present invention, there is provided an image carrier, a charging unit that charges the surface of the image carrier, an electrostatic latent image forming unit that forms an electrostatic latent image on the surface of the image carrier, and the electrostatic latent image. An image forming apparatus comprising: a developing unit that develops an image with the developer for developing an electrostatic image according to claim 3 to form a toner image; and a transfer unit that transfers the toner image to a transfer target.

請求項1に係る発明によれば、磁性粒子表面の凹凸の平均間隔Smが1.0以上3.5以下の範囲であり、前記磁性粒子表面の算術平均粗さRaが0.2以上0.7以下の範囲であり、前記磁性粒子のBET比表面積が0.08m/g以上0.14m/g以下の範囲であり、前記磁性粒子の体積抵抗が、24000V/cmの電界下で、6.0logΩcm以上8.0logΩcm以下の範囲であるとの条件を満たさない場合と比較して、高温高湿の環境下で、高速で画像を形成しても、記録媒体上の画像に生じる画像濃度差が抑制される静電荷像現像用キャリアが提供される。 According to the first aspect of the present invention, the average interval Sm of the irregularities on the surface of the magnetic particles is in the range of 1.0 to 3.5, and the arithmetic average roughness Ra of the surface of the magnetic particles is 0.2 to 0.00. 7 is a range of the BET specific surface area of the magnetic particles is in the range of less 0.08 m 2 / g or more 0.14 m 2 / g, a volume resistivity of said magnetic particles, under an electric field of 24000V / cm, Image density generated in an image on a recording medium even when an image is formed at high speed in a high-temperature and high-humidity environment as compared with a case where the condition of 6.0 logΩcm or more and 8.0 logΩcm or less is not satisfied. Provided is a carrier for developing an electrostatic image in which the difference is suppressed.

請求項2に係る発明によれば、磁性粒子表面の凹凸の平均間隔Smが2.5以上3.0以下の範囲であり、磁性粒子表面の算術平均粗さRaが0.4以上0.7以下の範囲であり、磁性粒子のBET比表面積が0.08m/g以上0.12m/g以下の範囲であり、磁性粒子の体積抵抗が、24000V/cmの電界下で、7.0logΩcm以上7.8logΩcm以下の範囲であるとの条件を満たさない場合と比較して、高温高湿の環境下で、高速で画像を形成しても、記録媒体上の画像に生じる画像濃度差がより抑制される静電荷像現像用キャリアが提供される。 According to the invention of claim 2, the average interval Sm of the irregularities on the surface of the magnetic particles is in the range of 2.5 to 3.0, and the arithmetic average roughness Ra of the surface of the magnetic particles is 0.4 to 0.7. in the range of below the range BET specific surface area is less than 0.08 m 2 / g or more 0.12 m 2 / g of magnetic particles, the volume resistivity of the magnetic particles, under an electric field of 24000V / cm, 7.0logΩcm Compared with the case where the above condition of 7.8 log Ωcm or less is not satisfied, even when an image is formed at high speed in a high temperature and high humidity environment, the difference in image density generated in the image on the recording medium is greater. A suppressed electrostatic charge image developing carrier is provided.

請求項3に係る発明によれば、キャリアの磁性粒子表面の凹凸の平均間隔Smが1.0以上3.5以下の範囲であり、前記磁性粒子表面の算術平均粗さRaが0.2以上0.7以下の範囲であり、前記磁性粒子のBET比表面積が0.08m/g以上0.14m/g以下の範囲であり、前記磁性粒子の体積抵抗が、24000V/cmの電界下で、6.0logΩcm以上8.0logΩcm以下の範囲であるとの条件を満たさない場合と比較して、高温高湿の環境下で、高速で画像を形成しても、記録媒体上の画像に生じる画像濃度差が抑制される静電荷像現像用現像剤が提供される。 According to the invention of claim 3, the average interval Sm of the irregularities on the magnetic particle surface of the carrier is in the range of 1.0 to 3.5, and the arithmetic average roughness Ra of the magnetic particle surface is 0.2 or more. in the range of 0.7 or less, the BET specific surface area of the magnetic particles is in the range of less 0.08 m 2 / g or more 0.14 m 2 / g, a volume resistivity of the magnetic particles, an electric field of 24000V / cm Even when an image is formed at a high speed in a high temperature and high humidity environment as compared with the case where the condition of 6.0 log Ωcm or more and 8.0 log Ωcm or less is not satisfied, the image on the recording medium is generated. Provided is a developer for developing an electrostatic image in which a difference in image density is suppressed.

請求項4に係る発明によれば、キャリアの磁性粒子表面の凹凸の平均間隔Smが1.0以上3.5以下の範囲であり、前記磁性粒子表面の算術平均粗さRaが0.2以上0.7以下の範囲であり、前記磁性粒子のBET比表面積が0.08m/g以上0.14m/g以下の範囲であり、前記磁性粒子の体積抵抗が、24000V/cmの電界下で、6.0logΩcm以上8.0logΩcm以下の範囲であるとの条件を満たさない場合と比較して、高温高湿の環境下で、高速で画像を形成しても、記録媒体上の画像に生じる画像濃度差が抑制されるプロセスカートリッジが提供される。 According to the invention of claim 4, the average interval Sm of the irregularities on the surface of the magnetic particles of the carrier is in the range of 1.0 to 3.5, and the arithmetic average roughness Ra of the surface of the magnetic particles is 0.2 or more. in the range of 0.7 or less, the BET specific surface area of the magnetic particles is in the range of less 0.08 m 2 / g or more 0.14 m 2 / g, a volume resistivity of the magnetic particles, an electric field of 24000V / cm Even when an image is formed at a high speed in a high temperature and high humidity environment as compared with the case where the condition of 6.0 log Ωcm or more and 8.0 log Ωcm or less is not satisfied, the image on the recording medium is generated. A process cartridge is provided in which a difference in image density is suppressed.

請求項5に係る発明によれば、キャリアの磁性粒子表面の凹凸の平均間隔Smが1.0以上3.5以下の範囲であり、前記磁性粒子表面の算術平均粗さRaが0.2以上0.7以下の範囲であり、前記磁性粒子のBET比表面積が0.08m/g以上0.14m/g以下の範囲であり、前記磁性粒子の体積抵抗が、24000V/cmの電界下で、6.0logΩcm以上8.0logΩcm以下の範囲であるとの条件を満たさない場合と比較して、高温高湿の環境下で、高速で画像を形成しても、記録媒体上の画像に生じる画像濃度差が抑制される画像形成装置が提供される。 According to the invention of claim 5, the average interval Sm of the irregularities on the magnetic particle surface of the carrier is in the range of 1.0 to 3.5, and the arithmetic average roughness Ra of the magnetic particle surface is 0.2 or more. in the range of 0.7 or less, the BET specific surface area of the magnetic particles is in the range of less 0.08 m 2 / g or more 0.14 m 2 / g, a volume resistivity of the magnetic particles, an electric field of 24000V / cm Even when an image is formed at a high speed in a high temperature and high humidity environment as compared with the case where the condition of 6.0 log Ωcm or more and 8.0 log Ωcm or less is not satisfied, the image on the recording medium is generated. An image forming apparatus in which a difference in image density is suppressed is provided.

本発明の実施形態に係る画像形成装置に用いられる現像装置の構成の一例を示す概略構成図である。1 is a schematic configuration diagram illustrating an example of a configuration of a developing device used in an image forming apparatus according to an embodiment of the present invention. 現像装置から電子写真感光体にトナーが供給される様子を表す模式図である。FIG. 4 is a schematic diagram illustrating a state in which toner is supplied from a developing device to an electrophotographic photosensitive member. 本発明の実施形態に係る画像形成装置の一例を示す概略構成図である。1 is a schematic configuration diagram illustrating an example of an image forming apparatus according to an embodiment of the present invention. 本発明の実施形態に係るプロセスカートリッジの一例を示す概略構成図である。It is a schematic structure figure showing an example of a process cartridge concerning an embodiment of the present invention.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本発明の実施形態に係る画像形成装置に用いられる現像装置の構成の一例を示す概略構成図である。図1に示す現像装置50のケース51の内部には現像剤が収容されている。ケース51の電子写真感光体20側の開口部には、電子写真感光体20に対向して現像ロール52が設けられている。現像ロール52は回転体であり、筒状の部材である。現像ロール52は、内部に固定した状態で配置されたマグネットロール521と、マグネットロール521の外周に回転自在に設けられた現像スリーブ522と、を有する。マグネットロール521は、現像ロール52の周面に現像剤を保持させるための磁界を発生する。現像スリーブ522は、非磁性のスリーブであり、決められた現像電位の現像バイアス電圧が与えられて、図中の矢印D方向に回転させられる。ここでの現像電位は、例えば−600Vである。現像装置50において現像ロール52のさらに奥側には、現像剤を攪拌しつつ、現像ロール52に現像剤を供給する供給ロール53が設けられる。供給ロール53のさらに奥側には、攪拌ロール54が設けられる。   FIG. 1 is a schematic configuration diagram illustrating an example of a configuration of a developing device used in an image forming apparatus according to an embodiment of the present invention. Developer is accommodated in the case 51 of the developing device 50 shown in FIG. A developing roll 52 is provided in the opening of the case 51 on the electrophotographic photoreceptor 20 side so as to face the electrophotographic photoreceptor 20. The developing roll 52 is a rotating body and is a cylindrical member. The developing roll 52 includes a magnet roll 521 disposed in a state of being fixed inside, and a developing sleeve 522 that is rotatably provided on the outer periphery of the magnet roll 521. The magnet roll 521 generates a magnetic field for holding the developer on the peripheral surface of the developing roll 52. The developing sleeve 522 is a non-magnetic sleeve, and is supplied with a developing bias voltage having a predetermined developing potential, and is rotated in the direction of arrow D in the drawing. The development potential here is, for example, −600V. In the developing device 50, a supply roll 53 that supplies the developer to the developing roll 52 while stirring the developer is provided on the further back side of the developing roll 52. On the further back side of the supply roll 53, a stirring roll 54 is provided.

現像ロール52は、マグネットロール521の磁気吸着力によって現像剤を周面に保持したまま回転させられる。より具体的には、現像ロール52の現像スリーブ522上に現像剤が保持される。この現像剤は、マグネットロール521が与える磁力により磁力線に沿って束状に配列する、所謂磁気ブラシを形成する。この磁気ブラシは、現像スリーブ522の回転とともに、層厚規制部材511によって層厚が規制された後、さらに回転方向下流側に搬送される。ケース51のカバー部512は、現像ロール52や電子写真感光体20から飛散したトナーが、画像形成装置内の別の場所に至ることを抑制するために設けられている。   The developing roll 52 is rotated while the developer is held on the peripheral surface by the magnetic attractive force of the magnet roll 521. More specifically, the developer is held on the developing sleeve 522 of the developing roll 52. This developer forms a so-called magnetic brush that is arranged in a bundle along the magnetic field lines by the magnetic force applied by the magnet roll 521. The magnetic brush is conveyed further downstream in the rotational direction after the layer thickness is regulated by the layer thickness regulating member 511 as the developing sleeve 522 rotates. The cover portion 512 of the case 51 is provided to prevent the toner scattered from the developing roll 52 and the electrophotographic photosensitive member 20 from reaching another place in the image forming apparatus.

図2は、現像装置から電子写真感光体にトナーが供給される様子を表す模式図である。図2に示す白抜きの丸印は静電荷像現像用キャリアを表しており、ハッチングで示す丸印は静電荷像現像用トナーを表している。現像ロール52は、磁気吸着により現像剤である磁気ブラシを保持したまま、矢印D方向である周方向に回転させられる。そして、現像ロール52と電子写真感光体20との距離が最小となる領域を含む供給経路T1において、磁気ブラシを電子写真感光体20に接触させ、又は近接させて、磁気ブラシ中のトナーを電子写真感光体20上の潜像に供給する。このとき、現像スリーブ522の現像電位と、電子写真感光体20に形成された潜像の電位との電位差によって生じる電界(以下、「現像電界」という。)により電気的引力が作用し、電子写真感光体20の表面にトナーが移動して付着する(現像)。   FIG. 2 is a schematic diagram illustrating a state in which toner is supplied from the developing device to the electrophotographic photosensitive member. The white circles shown in FIG. 2 represent the electrostatic image developing carrier, and the hatched circles represent the electrostatic image developing toner. The developing roll 52 is rotated in the circumferential direction, which is the arrow D direction, while holding the magnetic brush as the developer by magnetic adsorption. Then, in the supply path T1 including the region where the distance between the developing roll 52 and the electrophotographic photosensitive member 20 is minimized, the magnetic brush is brought into contact with or close to the electrophotographic photosensitive member 20, and the toner in the magnetic brush is electronically transferred. The latent image on the photographic photosensitive member 20 is supplied. At this time, an electric attractive force acts due to an electric field (hereinafter referred to as “developing electric field”) generated by a potential difference between the developing potential of the developing sleeve 522 and the potential of the latent image formed on the electrophotographic photosensitive member 20. The toner moves and adheres to the surface of the photoreceptor 20 (development).

そして、後述するような転写工程、定着工程等を経て、画像が形成された記録媒体が画像形成装置から出力されることになる。一般的に、記録媒体上に高速で画像を形成する際には、現像ロール52等を高速で回転させること等が必要であるが、画像形成を高速にするほど、すなわち現像ロール52が高速で回転するほど、現像ロール52に形成される磁気ブラシの穂立ち高さや磁気ブラシの密度等にばらつきが生じ易くなる場合がある。ここで、高速で画像を形成するとは、普通紙を40枚/分以上で出力することである。   A recording medium on which an image is formed is output from the image forming apparatus through a transfer process, a fixing process, and the like, which will be described later. In general, when an image is formed on a recording medium at a high speed, it is necessary to rotate the developing roll 52 or the like at a high speed. However, the higher the image formation speed, that is, the higher the developing roll 52 is at a higher speed. As the rotation increases, variations may occur in the height of the magnetic brush that is formed on the developing roll 52, the density of the magnetic brush, and the like. Here, forming an image at high speed means outputting plain paper at 40 sheets / minute or more.

また、高温(例えば28℃以上32℃以下)高湿(例えば、80%RH以上)環境下で、記録媒体上に画像を形成する場合、キャリアの抵抗が低いほど、トナーに帯電した電荷がキャリアを通してリークし易くなり、現像ロール52に形成される磁気ブラシの穂立ち高さや磁気ブラシの密度等にばらつきが生じ易くなる場合がある。磁気ブラシ穂立ち高さは、図2に示す供給経路T1での磁気ブラシの高さである。なお、磁気ブラシ穂立ち高さは、顕微鏡等を用いて観察し、その平均高さを計測することにより求められ、磁気ブラシの密度は、図2に示す供給経路T1での磁気ブラシの密度である。磁気ブラシの密度は、レーザーの透過率などにより求められるほか、拡大鏡による目視観察や写真画像から相対比較する方法がある。   In addition, when an image is formed on a recording medium in a high temperature (for example, 28 ° C. to 32 ° C.) and high humidity (for example, 80% RH or more) environment, the lower the carrier resistance, the more charged the toner is In some cases, there is a tendency for variations to occur in the height of the head of the magnetic brush formed on the developing roll 52, the density of the magnetic brush, and the like. The magnetic brush head height is the height of the magnetic brush in the supply path T1 shown in FIG. The height of the magnetic brush head is obtained by observing with a microscope or the like and measuring the average height. The density of the magnetic brush is the density of the magnetic brush in the supply path T1 shown in FIG. is there. The density of the magnetic brush is determined by the laser transmittance or the like, and there are methods of relative comparison from visual observation with a magnifying glass and photographic images.

そして、磁気ブラシ穂立ち高さや磁気ブラシの密度等にばらつきが生じた場合、磁気ブラシ先端における現像効率に差が発生し、記録媒体上の画像に画像濃度差が発生すると考えられる。したがって、高温高湿の環境下で、高速で画像を形成すると、記録媒体上の画像に画像濃度差が発生し易くなる。本発明者らは、本実施形態に係る静電荷像現像用キャリアを用いることにより、高温高湿の環境下で、高速で画像を形成しても、記録媒体上の画像に生じる画像濃度差が抑制されることを見出した。以下、本実施形態に係る静電荷像現像用キャリアについて説明する。   When variations occur in the height of the magnetic brush head, the density of the magnetic brush, and the like, it is considered that a difference occurs in the developing efficiency at the tip of the magnetic brush and an image density difference occurs in the image on the recording medium. Therefore, when an image is formed at a high speed in a high temperature and high humidity environment, an image density difference tends to occur in the image on the recording medium. By using the electrostatic charge image developing carrier according to the present embodiment, the present inventors can produce an image density difference in an image on a recording medium even when an image is formed at a high speed in a high temperature and high humidity environment. It was found to be suppressed. Hereinafter, the electrostatic image developing carrier according to the present embodiment will be described.

<静電荷像現像用キャリア>
本実施形態に係る静電荷像現像用キャリアは、磁性粒子を有し、前記磁性粒子表面の凹凸の平均間隔Smが1.0以上3.5以下の範囲であり、前記磁性粒子表面の算術平均粗さRaが0.2以上0.7以下の範囲であり、前記磁性粒子のBET比表面積が0.08m/g以上0.14m/g以下の範囲であり、前記磁性粒子の体積抵抗が、24000V/cmの電界下で、6.0logΩcm以上8.0logΩcm以下の範囲である。磁性粒子表面の凹凸の平均間隔Sm、磁性粒子表面の算術平均粗さRa、磁性粒子のBET比表面積、磁性粒子の体積抵抗の測定方法について後述する(実施例参照)。
<Carrier for developing electrostatic image>
The carrier for developing an electrostatic charge image according to this embodiment has magnetic particles, the average interval Sm of the irregularities on the surface of the magnetic particles is in the range of 1.0 to 3.5, and the arithmetic average of the surface of the magnetic particles ranges roughness Ra of 0.2 to 0.7, the BET specific surface area of the magnetic particles is in the range of less 0.08 m 2 / g or more 0.14 m 2 / g, a volume resistivity of said magnetic particles Is in the range of 6.0 log Ωcm or more and 8.0 log Ωcm or less under an electric field of 24000 V / cm. A method for measuring the average spacing Sm of the irregularities on the surface of the magnetic particles, the arithmetic average roughness Ra of the surface of the magnetic particles, the BET specific surface area of the magnetic particles, and the volume resistance of the magnetic particles will be described later (see Examples).

磁性粒子表面の凹凸の平均間隔Smを1.0以上3.5以下の範囲とし、磁性粒子表面の算術平均粗さRaを0.2以上0.7以下の範囲とし、磁性粒子のBET比表面積を0.08m/g以上0.14m/g以下の範囲とすることにより、上記これらの範囲を満たさない場合と比較して、高速で画像を形成しても、図1に示す現像装置50のケース51の内部等において、キャリアを含む現像剤の流動性が安定し、磁気ブラシが現像ロール52上で滑り難くなり、磁気ブラシ穂立ち高さや磁気ブラシの密度等のばらつき等が抑えられると考えられる。また、磁性粒子の体積抵抗を24000V/cmの電界下で、6.0logΩcm以上8.0logΩcm以下の範囲とすることにより、上記範囲を満たさない場合と比べて、高温高湿の環境下でも、トナーに帯電した電荷がキャリアを通してリークし難くなり、現像ロール52に形成される磁気ブラシの穂立ち高さや磁気ブラシの密度等のばらつきが抑えられると考えられる。したがって、磁性粒子表面の凹凸の平均間隔Smを1.0以上3.5以下の範囲とし、磁性粒子表面の算術平均粗さRaを0.2以上0.7以下の範囲とし、磁性粒子のBET比表面積を0.08m/g以上0.14m/g以下の範囲とし、磁性粒子の体積抵抗を24000V/cmの電界下で、6.0logΩcm以上8.0logΩcm以下の範囲とすることにより、上記範囲を満たさない場合と比べて、高温高湿の環境下で、高速で画像を形成しても、磁気ブラシ穂立ち高さや磁気ブラシの密度等のばらつきが抑えられ、記録媒体上の画像に生じる画像濃度差が抑制される。本実施形態では、磁性粒子と、磁性粒子の表面に形成される被覆層とを有するキャリアにおいても、磁性粒子表面の凹凸の平均間隔Sm、磁性粒子表面の算術平均粗さRa、磁性粒子のBET比表面積、磁性粒子の体積抵抗が上記範囲を満たせば、上記範囲を満たさない場合と比べて、高温高湿の環境下で、高速で画像を形成しても、記録媒体上の画像に生じる画像濃度差が抑制される。 The average interval Sm of the irregularities on the magnetic particle surface is in the range of 1.0 to 3.5, the arithmetic average roughness Ra of the magnetic particle surface is in the range of 0.2 to 0.7, and the BET specific surface area of the magnetic particles with 0.08 m 2 / g or more 0.14 m 2 / g or less of range, as compared with the case that does not satisfy the above these ranges, even when forming an image at a high speed, a developing device shown in FIG. 1 The fluidity of the developer containing the carrier is stabilized inside the 50 case 51, the magnetic brush is difficult to slide on the developing roll 52, and variations such as the height of the magnetic brush head and the density of the magnetic brush can be suppressed. it is conceivable that. Further, by setting the volume resistance of the magnetic particles in the range of 6.0 log Ωcm to 8.0 log Ωcm under an electric field of 24000 V / cm, the toner can be used in a high temperature and high humidity environment as compared with the case where the above range is not satisfied. It is considered that the charged electric charge is less likely to leak through the carrier, and variations in the height of the magnetic brush formed on the developing roll 52 and the density of the magnetic brush are suppressed. Therefore, the average interval Sm of the irregularities on the surface of the magnetic particles is in the range of 1.0 to 3.5, the arithmetic average roughness Ra of the surface of the magnetic particles is in the range of 0.2 to 0.7, and the BET of the magnetic particles the specific surface area and 0.08 m 2 / g or more 0.14 m 2 / g or less in the range, the volume resistivity of the magnetic particles in an electric field of 24000V / cm, by a 8.0logΩcm following range of 6.0Logomegacm, Compared to the case where the above range is not satisfied, even when an image is formed at high speed in a high-temperature and high-humidity environment, variations such as the height of the magnetic brush head and the density of the magnetic brush are suppressed, and the image on the recording medium is reduced. The resulting image density difference is suppressed. In the present embodiment, even in a carrier having magnetic particles and a coating layer formed on the surface of the magnetic particles, the average interval Sm of the irregularities on the surface of the magnetic particles, the arithmetic average roughness Ra of the surface of the magnetic particles, the BET of the magnetic particles If the specific surface area and the volume resistivity of the magnetic particles satisfy the above range, an image generated on the image on the recording medium even when an image is formed at a high speed in a high temperature and high humidity environment as compared with the case where the above range is not satisfied. Density difference is suppressed.

磁性粒子表面の凹凸の平均間隔Smが1.0未満であると、Smが1.0以上の場合と比較して、磁気ブラシが現像ロール52上で滑り易くなり、磁気ブラシの穂立ち高さや磁気ブラシの密度等にばらつきが生じる場合がある。また、磁性粒子表面の凹凸の平均間隔Smが3.5を超えると、Smが3.5以下の場合と比較して、磁性粒子表面の凹凸が大きくなりすぎて、磁気ブラシが現像ロール52上で滑り易くなり、磁気ブラシの穂立ち高さや磁気ブラシの密度等にばらつきが生じる場合がある。また、磁性粒子表面の算術平均粗さRaが0.2未満であると、Raが0.2以上の場合と比較して、磁性粒子同士の引っかかりが小さくなり、磁気ブラシの穂立ち高さや磁気ブラシの密度等にばらつきが生じる場合がある。また、磁性粒子表面の算術平均粗さRaが0.7を超えると、Raが0.7以下の場合と比較して、磁気ブラシが現像ロール52に固定されて、動き難くなるため、磁気ブラシが現像ロール52上で滑り易くなり、磁気ブラシの穂立ち高さや磁気ブラシの密度等にばらつきが生じる場合がある。また、磁性粒子の体積抵抗が24000V/cmの電界下で、6.0logΩcm未満であると、磁性粒子の体積抵抗が24000V/cmの電界下で、6.0logΩcm以上の場合と比較して、トナーに帯電した電荷がキャリアを通してリークし易くなり、磁気ブラシの穂立ち高さや磁気ブラシの密度等にばらつきが生じる場合がある。また、磁性粒子の体積抵抗が24000V/cmの電界下で、8.0logΩcmを超えると、磁性粒子の体積抵抗が24000V/cmの電界下で、8.0logΩcm以下の場合と比較して、トナーに帯電した電荷と逆の電荷がキャリアに蓄積され易くなり、磁気ブラシの穂立ち高さや磁気ブラシの密度等にばらつきが生じる場合がある。また、磁性粒子のBET比表面積が0.08m/g未満の場合又は0.14m/gを超える場合、BET比表面積が0.08m/g以上0.14m/g以下の場合と比較して、磁性粒子の体積抵抗が24000V/cmの電界下で、6.0logΩcm以上8.0logΩcm以下の範囲において、トナーに帯電した電荷がキャリアを通してリーク易くなり、磁気ブラシの穂立ち高さや磁気ブラシの密度等にばらつきが生じる場合がある。したがって、磁性粒子表面の凹凸の平均間隔Sm、磁性粒子表面の算術平均粗さRa、磁性粒子のBET比表面積、磁性粒子の体積抵抗のいずれも上記範囲を満たすことにより、少なくともいずれか1つを満たさない場合と比較して、高温高湿の環境下で、高速で画像を形成しても、磁気ブラシ穂立ち高さや磁気ブラシの密度等のばらつき等が抑えられ、記録媒体上の画像に生じる画像濃度差が抑制される。 When the average interval Sm between the irregularities on the surface of the magnetic particles is less than 1.0, the magnetic brush is more easily slid on the developing roll 52 as compared with the case where Sm is 1.0 or more. There may be variations in the density and the like of the magnetic brush. Further, when the average interval Sm of the irregularities on the surface of the magnetic particles exceeds 3.5, the irregularities on the surface of the magnetic particles become too large compared to the case where Sm is 3.5 or less, and the magnetic brush is on the developing roll 52. It may become slippery and may cause variations in the height of the magnetic brush head, the density of the magnetic brush, and the like. Further, when the arithmetic average roughness Ra on the surface of the magnetic particles is less than 0.2, the trapping between the magnetic particles becomes smaller compared to the case where Ra is 0.2 or more, and the height of the magnetic brush spikes and the magnetic Variations may occur in brush density and the like. Further, when the arithmetic average roughness Ra of the magnetic particle surface exceeds 0.7, the magnetic brush is fixed to the developing roll 52 and becomes difficult to move as compared with the case where Ra is 0.7 or less. However, it may become slippery on the developing roll 52, and variations may occur in the height of the magnetic brush head, the density of the magnetic brush, and the like. Further, when the volume resistance of the magnetic particles is less than 6.0 log Ωcm under an electric field of 24000 V / cm, the toner has a volume resistance of 6.0 log Ωcm or more under an electric field of 24000 V / cm. In some cases, the charged electric charge easily leaks through the carrier, causing variations in the height of the magnetic brush head, the density of the magnetic brush, and the like. In addition, when the volume resistance of the magnetic particles exceeds 8.0 log Ωcm under an electric field of 24000 V / cm, the toner has a higher volume resistance than that of 8.0 log Ωcm under an electric field of 24000 V / cm. Charges opposite to the charged charges are likely to be accumulated in the carriers, and variations may occur in the height of the magnetic brush heads, the density of the magnetic brushes, and the like. Further, if the BET specific surface area of the magnetic particles is more than a case or 0.14 m 2 / g of less than 0.08 m 2 / g, BET specific surface area is less than 0.08 m 2 / g or more 0.14 m 2 / g and In comparison, the electric charge charged in the toner easily leaks through the carrier in the range of 6.0 log Ωcm or more and 8.0 log Ωcm or less under the electric field where the volume resistance of the magnetic particles is 24000 V / cm, and the height of the magnetic brush head and the magnetic Variations may occur in brush density and the like. Therefore, at least any one of the average interval Sm of the irregularities on the magnetic particle surface, the arithmetic average roughness Ra of the magnetic particle surface, the BET specific surface area of the magnetic particle, and the volume resistance of the magnetic particle satisfy the above ranges. Compared to the case where it is not satisfied, even when an image is formed at high speed in a high-temperature and high-humidity environment, variations such as the height of the magnetic brush ears and the density of the magnetic brush are suppressed, and this occurs in the image on the recording medium. The image density difference is suppressed.

本実施形態の磁性粒子の体積平均粒径としては、例えば、30μm以上50μm以下の範囲が好ましい。磁性粒子の体積平均粒径が30μm未満であると、キャリア飛散が抑制され難くなる場合があり、50μmを超えるとキャリアとした際にトナーをできるだけ均一に帯電させることが困難となる場合がある。   As a volume average particle diameter of the magnetic particles of the present embodiment, for example, a range of 30 μm or more and 50 μm or less is preferable. If the volume average particle size of the magnetic particles is less than 30 μm, carrier scattering may be difficult to suppress, and if it exceeds 50 μm, it may be difficult to charge the toner as uniformly as possible when the carrier is used.

本実施形態の静電荷像現像用キャリアの製造方法は、特に制限はないが、例えば、鉄化合物、マンガン化合物、マグネシウム化合物、カルシウム化合物、及びストロンチウム化合物等を含むキャリア材料を焼成する仮焼成工程、前記仮焼成工程の後、焼成したキャリア材料を粉砕する粉砕工程、前記粉砕工程の後、粉砕したキャリア材料を造粒する造粒工程、前記造粒工程の後、キャリア材料を焼成する本焼成工程含む製造方法であることが好ましい。   The method for producing the electrostatic charge image developing carrier of the present embodiment is not particularly limited, but for example, a preliminary firing step of firing a carrier material containing an iron compound, a manganese compound, a magnesium compound, a calcium compound, a strontium compound, and the like, After the pre-baking step, a pulverizing step of pulverizing the baked carrier material, after the pulverizing step, a granulating step of granulating the pulverized carrier material, and a main baking step of baking the carrier material after the granulating step It is preferable that it is a manufacturing method containing.

キャリア材料として用いられる鉄化合物、マンガン化合物、マグネシウム化合物、カルシウム化合物、及びストロンチウム化合物等は、例えば、酸化物、水酸化物、炭酸塩等如何なる組成であってもよい。   The iron compound, manganese compound, magnesium compound, calcium compound, strontium compound and the like used as the carrier material may have any composition such as an oxide, a hydroxide, and a carbonate.

仮焼成工程における焼成温度は、特に制限されるものではないが、例えば、800℃以上1200℃以下であることが好ましい。仮焼成工程における酸素濃度は特に制限されるものではないが、例えば、1%以上10%以下の範囲とすることが好ましい。仮焼成工程における焼成時間としては、キャリア材料の組成や、焼成温度、乾燥の程度などにもよるが、例えば、0.5時間以上48時間以下であることが好ましく、1時間以上12時間以下であることがより好ましい。仮焼成工程、及び後述する本焼成工程及び追加焼成工程の焼成は、公知の装置が用いられ、例えば、電気炉やロータリーキルン等が挙げられる。   The firing temperature in the preliminary firing step is not particularly limited, but is preferably 800 ° C. or higher and 1200 ° C. or lower, for example. The oxygen concentration in the pre-baking step is not particularly limited, but is preferably in the range of 1% to 10%, for example. The firing time in the pre-baking step depends on the composition of the carrier material, the firing temperature, the degree of drying, etc., but is preferably 0.5 hours or more and 48 hours or less, preferably 1 hour or more and 12 hours or less. More preferably. A known apparatus is used for the pre-baking process, and the baking of the main baking process and the additional baking process described later, and examples thereof include an electric furnace and a rotary kiln.

仮焼成工程の後、焼成したキャリア材料を粉砕する粉砕工程、及び粉砕工程後、粉砕した粉砕品(キャリア材料)を造粒する造粒工程を含むことが好ましい。粉砕工程においては、公知の装置が用いられ、例えば、湿式ボールミル等が挙げられる。造粒工程においては、公知の装置が用いられ、例えば、スプレードライヤー等が挙げられる。また、造粒工程の後、造粒したキャリア材料を乾燥する乾燥工程を含むことが好ましい。   It is preferable to include a pulverization step for pulverizing the baked carrier material after the pre-baking step, and a granulation step for granulating the pulverized pulverized product (carrier material) after the pulverization step. In the pulverization step, a known apparatus is used, and examples thereof include a wet ball mill. In the granulation step, a known device is used, and examples thereof include a spray dryer. Moreover, it is preferable to include the drying process which dries the granulated carrier material after a granulation process.

本焼成工程における焼成時間としては、キャリア材料の組成や、焼成温度、乾燥の程度などにもよるが、例えば、1時間以上24時間以下であることが好ましく、2時間以上12時間以下であることがより好ましい。また、本焼成工程後、本焼成工程により得られる磁性粒子の解砕工程、及び分級工程を行うことが好ましい。なお、解砕工程においては、公知の装置が用いられ、例えば、ピンミルやハンマーミル等が挙げられる。分級工程においては、公知の装置が用いられ、例えば、振動篩や気流分級機等が挙げられる。   The firing time in the main firing step depends on the composition of the carrier material, the firing temperature, the degree of drying, and the like, but is preferably 1 hour or longer and 24 hours or shorter, and preferably 2 hours or longer and 12 hours or shorter. Is more preferable. Moreover, it is preferable to perform the crushing process and the classification process of the magnetic particles obtained by the main baking process after the main baking process. In the crushing step, a known device is used, and examples thereof include a pin mill and a hammer mill. In the classification process, a known device is used, and examples thereof include a vibration sieve and an airflow classifier.

本実施形態では、キャリア材料にシリカ(SiO)等の表面性調整剤を添加すること、仮焼成後の粉砕工程等における粉砕品(キャリア材料)の体積平均粒径を制御すること、本焼成工程等における焼成温度及び酸素濃度を調整すること等により、磁性粒子表面の凹凸の平均間隔Smを1.0以上3.5以下の範囲とし、磁性粒子表面の算術平均粗さRaを0.2以上0.7以下の範囲とし、磁性粒子のBET比表面積を0.08m/g以上0.14m/g以下の範囲とし、磁性粒子の体積抵抗を24000V/cmの電界下で、6.0logΩcm以上8.0logΩcm以下の範囲に調整することが好ましい。 In the present embodiment, a surface property adjusting agent such as silica (SiO 2 ) is added to the carrier material, the volume average particle diameter of the pulverized product (carrier material) in the pulverization step after temporary calcination, etc. is controlled. By adjusting the firing temperature and oxygen concentration in the process, etc., the average interval Sm of the irregularities on the surface of the magnetic particles is set in the range of 1.0 to 3.5, and the arithmetic average roughness Ra of the surface of the magnetic particles is 0.2. above 0.7 and the range, the BET specific surface area of the magnetic particles and 0.08 m 2 / g or more 0.14 m 2 / g or less in the range, the volume resistivity of the magnetic particles in the electric field of 24000V / cm, 6. It is preferable to adjust in the range of 0 log Ωcm or more and 8.0 log Ωcm or less.

まず、仮焼成工程を行うキャリア材料にシリカ等の表面性調整剤を添加することにより、最終的に得られる磁性粒子の粒界の面積(大きさ)が調整される。具体的には、シリカ等の表面性調整剤の添加量を多くするほど、磁性粒子の粒界の面積が大きくなり、主に磁性粒子表面の凹凸の平均間隔Smが大きくなり易い。仮焼成工程後の粉砕工程における粉砕品の体積平均粒径が大きいほど、磁性粒子の粒界の面積が大きくなり、主に磁性粒子表面の凹凸の平均間隔Smが大きくなり易い。また、本焼成工程における焼成温度及び酸素濃度を調整することにより、最終的に得られる磁性粒子の粒界の面積(大きさ)が調整される。具体的には、本焼成工程における焼成温度を高くすると、磁性粒子の粒界の面積が大きくなり、主に磁性粒子表面の凹凸の平均間隔Smが大きくなり易い。また、本焼成工程における酸素濃度を高くすると、粒界の成長が遅くなり粒界間の隙間が残りやすく、主に磁性粒子表面の算術平均粗さRaが大きくなり易い。また、本焼成工程における焼成温度を高く、酸素濃度を低くするほど、主に(磁性粒子の磁化が高くなり)体積抵抗が低くなり易い。また、本焼成において磁性粒子を得た後に、大気雰囲気下で磁性粒子を流動させながら焼成を行う追加焼成を行うことにより、上記追加焼成を行わない場合と比較して、粒界間の隙間が小さくなり、Sm及びRaの変化を抑えながら、主に磁性粒子のBET比表面積が小さくなり易い。例えば、磁性粒子表面の凹凸の平均間隔Sm、磁性粒子表面の算術平均粗さRa、磁性粒子のBET比表面積、磁性粒子の体積抵抗を上記範囲とするために、シリカ等の表面性調整剤の添加量は、キャリア材料の全量に対して0.01質量%以上0.5質量%以下の範囲とすることが好ましく、本焼成工程における焼成温度は、例えば、900℃以上1500℃以下であることが好ましく、本焼成工程における酸素濃度は、例えば、0.5%以上8%以下の範囲とすることが好ましい。さらに、本焼成工程後には、例えば、磁性粒子を流動させながら、大気雰囲気下で、700℃以上1000℃以下で磁性粒子を焼成する追加焼成を行うことがより好ましい。   First, the area (size) of the grain boundary of the magnetic particles finally obtained is adjusted by adding a surface property adjusting agent such as silica to the carrier material for performing the pre-baking step. Specifically, as the amount of the surface property adjusting agent such as silica increases, the area of the grain boundary of the magnetic particles increases, and the average interval Sm of the irregularities on the surface of the magnetic particles tends to increase. The larger the volume average particle size of the pulverized product in the pulverization step after the pre-baking step, the larger the area of the grain boundary of the magnetic particles, and the average interval Sm between the irregularities on the surface of the magnetic particles is likely to increase. Moreover, the area (size) of the grain boundary of the finally obtained magnetic particles is adjusted by adjusting the firing temperature and oxygen concentration in the main firing step. Specifically, when the firing temperature in the main firing step is increased, the area of the grain boundary of the magnetic particles is increased, and the average interval Sm of the irregularities on the surface of the magnetic particles is likely to be increased. In addition, when the oxygen concentration in the main firing step is increased, the growth of grain boundaries is slowed and gaps between grain boundaries are likely to remain, and the arithmetic average roughness Ra on the surface of the magnetic grains is likely to increase. Moreover, the higher the firing temperature in the main firing step and the lower the oxygen concentration, the lower the volume resistance mainly (the magnetization of the magnetic particles becomes higher). Further, after obtaining the magnetic particles in the main firing, by performing additional firing in which the magnetic particles are flowed in the air atmosphere, the gap between the grain boundaries is smaller than in the case where the additional firing is not performed. The BET specific surface area of the magnetic particles is likely to be small while suppressing the change in Sm and Ra. For example, in order to make the average interval Sm of the irregularities on the magnetic particle surface, the arithmetic average roughness Ra of the magnetic particle surface, the BET specific surface area of the magnetic particle, and the volume resistance of the magnetic particle within the above ranges, The addition amount is preferably in the range of 0.01% by mass to 0.5% by mass with respect to the total amount of the carrier material, and the firing temperature in the main firing step is, for example, 900 ° C. or more and 1500 ° C. or less. The oxygen concentration in the main baking step is preferably in the range of 0.5% to 8%, for example. Furthermore, after the main firing step, for example, it is more preferable to perform additional firing in which the magnetic particles are fired at 700 ° C. or higher and 1000 ° C. or lower in the atmosphere while flowing the magnetic particles.

また、本実施形態の静電荷像現像用キャリアの製造方法は、前記本焼成工程等を経て得られる磁性粒子の表面に樹脂等を被覆する被覆層形成工程を含んでもよい。また、被覆層形成工程により形成された被覆層に導電性粒子、耐電調整剤等の外添剤等を添加してもよい。   In addition, the method for producing an electrostatic charge image developing carrier of this embodiment may include a coating layer forming step of coating the surface of magnetic particles obtained through the main baking step and the like with a resin or the like. Moreover, you may add external additives, such as electroconductive particle and an electrical strength regulator, to the coating layer formed by the coating layer formation process.

被覆層を構成する材料は、例えば絶縁性である樹脂等が用いられる。被覆層を磁性粒子表面へ被覆する方法としては、例えば、溶剤を使用する湿式法と溶剤を使用しない乾式法等が挙げられる。   As the material constituting the coating layer, for example, an insulating resin or the like is used. Examples of the method for coating the surface of the magnetic particles on the surface of the magnetic particles include a wet method using a solvent and a dry method using no solvent.

湿式法としては、例えば、樹脂等を可溶な溶媒に樹脂と導電材料等を投入して被覆層形成用溶液とし、磁性粒子を被覆層形成用溶液中に浸漬する浸漬法、被覆層形成用溶液を磁性粒子の表面に噴霧するスプレー法、磁性粒子を流動エアー等により浮遊させた状態で被覆層形成用溶液を噴霧する流動床法、ニーダーコータ中で磁性粒子と被覆層形成用溶液を混合し、次いで溶剤を除去するニーダーコータ法等がある。   Examples of the wet method include a dipping method in which a resin and a conductive material are added to a soluble solvent to form a coating layer forming solution, and magnetic particles are immersed in the coating layer forming solution. Spray method in which the solution is sprayed on the surface of the magnetic particles, fluidized bed method in which the coating solution for forming the coating layer is sprayed in a state where the magnetic particles are suspended by fluidized air, etc., and the magnetic particles and the coating layer forming solution are mixed in a kneader coater Then, there is a kneader coater method for removing the solvent.

乾式法としては、乳化重合法又は懸濁重合法等により樹脂粒子等を合成するか、又は合成後の樹脂等を粉砕分級や水中で乳化分散して得た樹脂粒子等を磁性粒子と混合して、機械的衝撃力により、磁性粒子表面に被覆して、必要により樹脂のガラス転移点以上に加熱、溶融させて被覆層を形成する方法等がある。   As a dry method, resin particles or the like are synthesized by an emulsion polymerization method or a suspension polymerization method, or resin particles obtained by emulsifying and dispersing a synthesized resin or the like in water are mixed with magnetic particles. For example, there is a method in which the surface of magnetic particles is coated with a mechanical impact force and, if necessary, heated and melted above the glass transition point of the resin to form a coating layer.

湿式法や乾式法等により磁性粒子に被覆層が形成された後、例えば、外添剤等が添加され、さらに混合攪拌され、被覆層上に外添剤等が付着される。そして、外添剤等が付着された粒子が篩分け網等により篩分けられることにより、キャリアが得られる。   After the coating layer is formed on the magnetic particles by a wet method, a dry method, or the like, for example, an external additive or the like is added, and further mixed and stirred to attach the external additive or the like on the coating layer. Then, the carrier is obtained by sieving the particles to which the external additive or the like is adhered with a sieving net or the like.

本実施形態の被覆層を構成する材料としては、特に制限されるものではないが、例えば、メタアクリレート樹脂およびその誘導体、スチレン−メタアクリレート共重合樹脂、シリコーン樹脂およびその変性体、フッ素樹脂、ビニル系およびビニリデン系樹脂、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、フェノール系樹脂、ポリエステル系樹脂、エポキシ系樹脂、アミノ樹脂等の樹脂等が挙げられる。   The material constituting the coating layer of the present embodiment is not particularly limited. For example, a methacrylate resin and a derivative thereof, a styrene-methacrylate copolymer resin, a silicone resin and a modified product thereof, a fluororesin, and a vinyl And vinylidene resins, olefin resins such as polyethylene and polypropylene, phenol resins, polyester resins, epoxy resins, amino resins, and the like.

被覆層の被覆量としては、例えば、キャリア全体に対して0.5重量%以上5重量%以下の範囲が好ましい。被覆層の被覆量が0.5重量%よりも少ないと帯電性向上効果が少なく、5重量%以上であると磁性粒子から被覆層が剥離し易くなる場合がある。   As a coating amount of the coating layer, for example, a range of 0.5 wt% or more and 5 wt% or less is preferable with respect to the entire carrier. When the coating amount of the coating layer is less than 0.5% by weight, the effect of improving the charging property is small, and when it is 5% by weight or more, the coating layer may be easily peeled off from the magnetic particles.

本実施形態においては、被覆層中にラウリルアミン塩酸塩、ステアリルアミン塩酸塩等のカチオン活性剤、ラウリン酸カリウム、オレイン酸ナトリウム等のアニオン界面活性剤、ポリオキシエチレンオクチルエーテル、ポリオキシエチレンラウリルエーテル等の非イオン性界面活性剤等の公知の界面活性剤等を含んでいても良い。   In the present embodiment, in the coating layer, cationic surfactants such as laurylamine hydrochloride and stearylamine hydrochloride, anionic surfactants such as potassium laurate and sodium oleate, polyoxyethylene octyl ether, polyoxyethylene lauryl ether It may contain known surfactants such as nonionic surfactants.

また、本実施形態においては、被覆層中にニグロシン染料、ベンゾイミダゾール系化合物等の公知の帯電制御剤を含んでいても良い。   In the present embodiment, the coating layer may contain a known charge control agent such as a nigrosine dye or a benzimidazole compound.

前記樹脂被覆層の平均膜厚は、経時にわたり安定したキャリアの体積抵抗を発現させる観点等から、0.5μm以上3μm以下であることが好ましい。   The average film thickness of the resin coating layer is preferably 0.5 μm or more and 3 μm or less from the viewpoint of expressing a stable volume resistance of the carrier over time.

本実施形態に係るキャリアの体積抵抗は、高画質を達成する観点等から、通常の現像コントラスト電位の上下限に相当する1000V時において、10Ω・cm以上1014Ω・cm以下であることが好ましく、10Ω・cm以上1013Ω・cm以下であることがより好ましい。キャリアの体積抵抗が10Ω・cm未満であると、細線の再現性が悪くなる場合がある。一方、キャリアの体積抵抗が1014Ω・cmを超えると、黒ベタ画像や、ハーフトーン画像の再現が悪くなる場合がある。 The volume resistance of the carrier according to this embodiment is 10 6 Ω · cm or more and 10 14 Ω · cm or less at 1000 V corresponding to the upper and lower limits of a normal development contrast potential from the viewpoint of achieving high image quality. Is preferably 10 8 Ω · cm or more and 10 13 Ω · cm or less. When the volume resistance of the carrier is less than 10 6 Ω · cm, the reproducibility of the thin line may be deteriorated. On the other hand, when the volume resistance of the carrier exceeds 10 14 Ω · cm, reproduction of a black solid image or a halftone image may be deteriorated.

本実施形態に係るキャリアの体積平均粒径としては、例えば、20μm以上100μm以下が好ましい。キャリアの体積平均粒径が20μm未満であると、トナーとともに現像されやすくなる場合があり、100μmを超えると、トナーを略均一に帯電させることが困難となる場合がある。   As a volume average particle diameter of the carrier which concerns on this embodiment, 20 micrometers or more and 100 micrometers or less are preferable, for example. If the volume average particle diameter of the carrier is less than 20 μm, it may be easily developed together with the toner, and if it exceeds 100 μm, it may be difficult to charge the toner substantially uniformly.

<静電荷像現像用現像剤>
本実施形態に係る静電荷像現像用現像剤(現像剤)は、本実施形態に係る静電荷像現像用キャリアと静電荷像現像用トナーとを含有する。本実施形態に係る現像剤は、本実施形態に係るキャリアおよびトナーを適当な配合割合で混合することにより調製される。キャリアの含有量((キャリア)/(キャリア+トナー)×100)としては、85質量%以上99質量%以下の範囲が好ましく、87質量%以上98質量%の範囲がより好ましく、89質量%以上97質量%以下の範囲がさらに好ましい。
<Developer for developing electrostatic image>
The developer for developing an electrostatic charge image (developer) according to this embodiment contains the carrier for developing an electrostatic charge image according to this embodiment and the toner for developing an electrostatic charge image. The developer according to this embodiment is prepared by mixing the carrier and toner according to this embodiment at an appropriate blending ratio. The carrier content ((carrier) / (carrier + toner) × 100) is preferably in the range of 85 to 99% by mass, more preferably in the range of 87 to 98% by mass, and 89% by mass or more. The range of 97% by mass or less is more preferable.

以下、本実施形態に係る静電荷像現像用現像剤に用いられるトナーについて説明する。   Hereinafter, the toner used in the developer for developing an electrostatic charge image according to the exemplary embodiment will be described.

本実施形態に用いられるトナーは、少なくとも結着樹脂および着色剤を含有し、必要に応じて離型剤およびその他の成分を含有する。また、本実施形態に用いられるトナーには、上記構成からなるいわゆるトナー粒子の他、種々の目的で外部添加剤(以下、単に「外添剤」と称することがある)が添加されていてもよい。   The toner used in this embodiment contains at least a binder resin and a colorant, and if necessary, a release agent and other components. In addition to the so-called toner particles having the above-described configuration, an external additive (hereinafter sometimes simply referred to as “external additive”) is added to the toner used in the exemplary embodiment for various purposes. Good.

本実施形態に用いられるトナーには、公知の結着樹脂や各種の着色剤等を使用してもよい。本実施形態に用いられるトナーにおける結着樹脂としては、ポリエステル樹脂のほかに、ポリオレフィン樹脂、スチレンとアクリル酸またはメタクリル酸との共重合体、ポリ塩化ビニル、フェノール樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニル、シリコーン樹脂、変性ポリエステル樹脂、ポリウレタン、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、ポリビニルブチラール、テルペン樹脂、クマロンインデン樹脂、石油系樹脂、ポリエーテルポリオール樹脂等を単独で用いてもよいし、併用してもよい。   For the toner used in this embodiment, a known binder resin, various colorants, and the like may be used. As the binder resin in the toner used in this embodiment, in addition to the polyester resin, polyolefin resin, copolymer of styrene and acrylic acid or methacrylic acid, polyvinyl chloride, phenol resin, acrylic resin, methacrylic resin, poly Vinyl acetate, silicone resin, modified polyester resin, polyurethane, polyamide resin, furan resin, epoxy resin, xylene resin, polyvinyl butyral, terpene resin, coumarone indene resin, petroleum resin, polyether polyol resin, etc. may be used alone You may use together.

本実施形態に用いられるトナーにおける着色剤としては、シアンの着色剤として、例えば、C.I.ピグメントブルー1、C.I.ピグメントブルー2、同3、同4、同5、同6、同7、同10、同11、同12、同13、同14、同15、同15:1、同15:2、同15:3、同15:4、同15:6、同16、同17、同23、同60、同65、同73、同83、同180、C.I.バットシアン1、同3、同20等や、紺青、コバルトブルー、アルカリブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルーの部分塩素化物、ファーストスカイブルー、インダスレンブルーBCのシアン顔料、C.I.ソルベントシアン79、162等のシアン染料等を用いてもよい。   Examples of the colorant in the toner used in the exemplary embodiment include cyan colorants such as C.I. I. Pigment blue 1, C.I. I. Pigment Blue 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 17, 17, 23, 60, 65, 73, 83, 180, C.I. I. Vat cyan 1, 3 and 20, etc., bitumen, cobalt blue, alkali blue lake, phthalocyanine blue, metal-free phthalocyanine blue, partially chlorinated phthalocyanine blue, first sky blue, indanthrene blue BC cyan pigment, C.I. I. Cyan dyes such as solvent cyan 79 and 162 may be used.

また、マゼンタの着色剤として、例えば、C.I.ピグメントレッド1、同2、同3、同4、同5、同6、同7、同8、同9、同10、同11、同12、同13、同14、同15、同16、同17、同18、同19、同21、同22、同23、同30、同31、同32、同37、同38、同39、同40、同41、同48、同49、同50、同51、同52、同53、同54、同55、同57、同58、同60、同63、同64、同68、同81、同83、同87、同88、同89、同90、同112、同114、同122、同123、同163、同184、同202、同206、同207、同209等、ピグメントバイオレット19のマゼンタ顔料や、C.I.ソルベントレッド1、同3、同8、同23、同24、同25、同27、同30、同49、同81、同82、同83、同84、同100、同109、同121、C.I.ディスパースレッド9、C.I.ベーシックレッド1、同2、同9、同12、同13、同14、同15、同17、同18、同22、同23、同24、同27、同29、同32、同34、同35、同36、同37、同38、同39、同40等のマゼンタ染料等、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パーマネントレッド4R、リソールレッド、ピラゾロンレッド、ウオッチングレッド、カルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ロータミンレーキB、アリザリンレーキ、ブリリアントカーミン3B等を用いてもよい。   Examples of magenta colorants include C.I. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 21, 22, 23, 30, 31, 32, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 60, 63, 64, 68, 81, 83, 87, 88, 89, 90 112, 114, 122, 123, 163, 184, 202, 206, 207, and 209, pigment violet 19 magenta pigments, C.I. I. Solvent Red 1, 3, 8, 23, 24, 25, 27, 30, 30, 49, 81, 82, 83, 84, 100, 109, 121, C . I. Disper thread 9, C.I. I. Basic Red 1, 2, 9, 9, 13, 14, 15, 17, 17, 18, 22, 23, 24, 27, 29, 32, 34, the same 35, 36, 37, 38, 39, 40, etc. Magenta dyes, etc., Bengala, Cadmium Red, Lead Tan, Mercury Sulfide, Cadmium, Permanent Red 4R, Resol Red, Pyrazolone Red, Watching Red, Calcium Salt, lake red D, brilliant carmine 6B, eosin lake, rotamin lake B, alizarin lake, brilliant carmine 3B and the like may be used.

また、イエローの着色剤として、例えば、C.I.ピグメントイエロー2、同3、同15、同16、同17、同97、同180、同185、同139等のイエロー顔料等を用いてもよい。   Examples of yellow colorants include C.I. I. Pigment Yellow 2, 3, 15, 15, 16, 17, 97, 180, 185, 139, and the like may be used.

さらに、ブラックトナーの場合には、例えば、カーボンブラック、活性炭、チタンブラック、磁性粉、Mn含有の非磁性粉等を用いてもよい。   Further, in the case of black toner, for example, carbon black, activated carbon, titanium black, magnetic powder, Mn-containing nonmagnetic powder, or the like may be used.

また、本実施形態に用いられるトナーは、帯電制御剤を含有してもよく、ニグロシン、4級アンモニウム塩、有機金属錯体、キレート錯体等を用いてもよい。   The toner used in the exemplary embodiment may contain a charge control agent, and nigrosine, a quaternary ammonium salt, an organometallic complex, a chelate complex, or the like may be used.

さらに本実施形態においては、トナー粒子の表面に、表面改質剤として種々の樹脂粉や無機化合物等を外添剤として添加してもよい。樹脂粉としてポリメタクリル酸メチル樹脂(PMMA)、ナイロン、メラミン、ベンゾグアナミン、フッ素系樹脂等の球状粒子等を用いることができる。種々の公知の無機化合物としては、例えば、SiO、TiO、Al、MgO、CuO、ZnO、SnO、CeO、Fe、BaO、CaO、KO、NaO、ZrO、CaO・SiO、CaCO、KO(TiO、MgCO、Al・2SiO、BaSO、MgSO等を例示することができ、好ましくはSiO、TiO、Alが挙げられるが、これらに限定されるものではなく、またこれらの1種あるいは2種以上併用しても構わない。また、外添剤の体積平均粒径は、0.1μm以下のものが好ましく、外添剤の添加量は、例えば、トナー粒子100質量%に対して、0.1質量%以上20質量%以下の範囲である。 Furthermore, in this embodiment, various resin powders, inorganic compounds, and the like may be added as external additives to the surface of the toner particles as a surface modifier. As the resin powder, polymethyl methacrylate resin (PMMA), nylon, melamine, benzoguanamine, spherical particles such as fluorine resin, and the like can be used. Examples of various known inorganic compounds include SiO 2 , TiO 2 , Al 2 O 3 , MgO, CuO, ZnO, SnO 2 , CeO 2 , Fe 2 O 3 , BaO, CaO, K 2 O, and Na 2 O. , ZrO 2 , CaO · SiO 2 , CaCO 3 , K 2 O (TiO 2 ) n , MgCO 3 , Al 2 O 3 · 2SiO 2 , BaSO 4 , MgSO 4 and the like, preferably SiO 2 , Examples thereof include TiO 2 and Al 2 O 3, but are not limited to these, and one or more of these may be used in combination. The volume average particle size of the external additive is preferably 0.1 μm or less, and the addition amount of the external additive is, for example, from 0.1% by mass to 20% by mass with respect to 100% by mass of the toner particles. Range.

さらにまた、本実施形態に用いられるトナーは、離型剤を含有することが好ましい。離型剤としては、エステルワックス、ポリエチレン、ポリプロピレンまたはポリエチレンとポリプロピレンの共重合物、ポリグリセリンワックス、マイクロクリスタリンワックス、パラフィンワックス、カルナバワックス、サゾールワックス、モンタン酸エステルワックス、脱酸カルナバワックス、パルミチン酸、ステアリン酸、モンタン酸、ブランジン酸、エレオステアリン酸、バリナリン酸等の不飽和脂肪酸類、ステアリンアルコール、アラルキルアルコール、ベヘニルアルコール、カルナウビルアルコール、セリルアルコール、メリシルアルコール、あるいはさらに長鎖のアルキル基を有する長鎖アルキルアルコール類等の飽和アルコール類、ソルビトール等の多価アルコール類、リノール酸アミド、オレイン酸アミド、ラウリン酸アミド等の脂肪酸アミド類、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、ヘキサメチレンビスステアリン酸アミド等の飽和脂肪酸ビスアミド類、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’−ジオレイルアジピン酸アミド、N,N’−ジオレイルセバシン酸アミド等の、不飽和脂肪酸アミド類、m−キシレンビスステアリン酸アミド、N,N’ジステアリルイソフタル酸アミド等の芳香族系ビスアミド類、ステアリン酸カルシウム、ラウリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の脂肪酸金属塩(一般に金属石けんと言われているもの)、脂肪族炭化水素系ワックスにスチレンやアクリル酸等のビニル系モノマを用いてグラフト化させたワックス類、ベヘニン酸モノグリセリド等の脂肪酸と多価アルコールの部分エステル化物;植物性油脂の水素添加等によって得られるヒドロキシル基を有するメチルエステル化合物等が挙げられる。   Furthermore, the toner used in the exemplary embodiment preferably contains a release agent. Release agents include ester wax, polyethylene, polypropylene or a copolymer of polyethylene and polypropylene, polyglycerin wax, microcrystalline wax, paraffin wax, carnauba wax, sazol wax, montanic acid ester wax, deoxidized carnauba wax, palmitic Unsaturated fatty acids such as acid, stearic acid, montanic acid, brandic acid, eleostearic acid, valinalic acid, stearic alcohol, aralkyl alcohol, behenyl alcohol, carnauvyl alcohol, seryl alcohol, melyl alcohol, or even longer chain Saturated alcohols such as long-chain alkyl alcohols having an alkyl group, polyhydric alcohols such as sorbitol, linoleic acid amide, oleic acid amide, lauric acid Fatty acid amides such as methylenebisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, hexamethylene bisstearic acid amide, saturated fatty acid bisamides, ethylene bisoleic acid amide, hexamethylene bisoleic acid amide N, N′-dioleyl adipate amide, N, N′-dioleyl sebacic acid amide, etc., unsaturated fatty acid amides, m-xylene bisstearic acid amide, N, N ′ distearyl isophthalic acid amide, etc. Aromatic bisamides, fatty acid metal salts such as calcium stearate, calcium laurate, zinc stearate, magnesium stearate (generally called metal soaps), aliphatic hydrocarbon waxes and vinyl such as styrene and acrylic acid Using system monomers Methyl ester compounds and the like having a hydroxyl group obtained by hydrogenation such as vegetable oils; waxes obtained by shift of fatty acids with polyhydric alcohols of the partial esters of behenic acid monoglyceride.

本実施形態において、トナー(トナー粒子)の製造方法は特に限定されないが、高画質を得るために、湿式製法で作製されることが好ましい。湿式製法としては、結着樹脂の重合性単量体を乳化重合させ、形成された結着樹脂分散液と、着色剤、離型剤、必要に応じて帯電制御剤等の分散液とを混合し、凝集、加熱融着させ、トナー粒子を得る乳化凝集法、結着樹脂を得るための重合性単量体と着色剤、離型剤、必要に応じて帯電制御剤等の溶液を水系溶媒に懸濁させて重合する懸濁重合法、結着樹脂、着色剤、離型剤、必要に応じて帯電制御剤等の溶液を水系溶媒に懸濁させて造粒する溶解懸濁法等が挙げられる。また、上記方法で得られたトナー粒子をコアにして、さらに樹脂粒子を付着、加熱融合してコアシェル構造をもたせる製造方法を行ってもよい。また、一般の粉砕分級法により得られたトナー粒子でもよい。   In this embodiment, the method for producing the toner (toner particles) is not particularly limited, but it is preferably produced by a wet production method in order to obtain high image quality. As a wet manufacturing method, the polymerizable monomer of the binder resin is emulsion-polymerized, and the formed binder resin dispersion is mixed with a dispersion of a colorant, a release agent, and, if necessary, a charge control agent. An emulsion aggregation method in which toner particles are obtained by agglomeration and heat fusion, a solution of a polymerizable monomer and a colorant, a release agent, and a charge control agent as necessary in order to obtain a binder resin in an aqueous solvent Suspension polymerization method in which the polymer is suspended and polymerized, a binder resin, a colorant, a release agent, and a solution suspension method in which a solution such as a charge control agent is suspended in an aqueous solvent and granulated if necessary. Can be mentioned. In addition, a manufacturing method may be performed in which the toner particles obtained by the above method are used as a core, and resin particles are further adhered and heat-fused to have a core-shell structure. Further, toner particles obtained by a general pulverization classification method may be used.

<画像形成装置及びプロセスカートリッジ>
本実施形態に係る画像形成装置は、像保持体と、前記像保持体表面を帯電する帯電手段と、前記像保持体表面に静電潜像を形成する静電潜像形成手段と、前記静電潜像を本実施形態に係る静電荷像現像用現像剤により現像してトナー像を形成する現像手段と、前記トナー像を記録媒体に転写する転写手段と、を備えるものである。本実施形態に係る画像形成装置は、必要に応じて、前記記録媒体に前記トナー像を定着する定着手段、像保持体表面を清掃する像保持体清掃手段等を含むものであってもよい。
<Image forming apparatus and process cartridge>
The image forming apparatus according to the present embodiment includes an image carrier, a charging unit that charges the surface of the image carrier, an electrostatic latent image forming unit that forms an electrostatic latent image on the surface of the image carrier, and the static The image forming apparatus includes a developing unit that develops the electrostatic latent image with the developer for developing an electrostatic image according to the exemplary embodiment to form a toner image, and a transfer unit that transfers the toner image to a recording medium. The image forming apparatus according to the present embodiment may include a fixing unit that fixes the toner image on the recording medium, an image carrier cleaning unit that cleans the surface of the image carrier, and the like, as necessary.

なお、この画像形成装置において、例えば前記現像手段を含む部分が、画像形成装置本体に対して脱着可能なカートリッジ構造(プロセスカートリッジ)であってもよい。該プロセスカートリッジとしては、本実施形態に係る静電荷像現像用現像剤を収納し、像保持体表面に形成された静電潜像を前記静電荷像現像用現像剤により現像してトナー像を形成する現像手段を備え、画像形成装置に着脱されるプロセスカートリッジが好適に用いられる。これにより、静電荷像現像用現像剤の取り扱いを容易にし、種々の構成の画像形成装置への適応性が高められる。   In this image forming apparatus, for example, the part including the developing unit may have a cartridge structure (process cartridge) that can be attached to and detached from the main body of the image forming apparatus. The process cartridge contains the developer for developing an electrostatic image according to the present embodiment, and develops the electrostatic latent image formed on the surface of the image carrier with the developer for developing an electrostatic image to form a toner image. A process cartridge that includes a developing unit for forming and is detachably attached to the image forming apparatus is preferably used. This facilitates handling of the developer for developing an electrostatic charge image and enhances adaptability to image forming apparatuses having various configurations.

以下、本実施形態に係る画像形成装置の一例を示すが、これに限定されるわけではない。   Hereinafter, an example of the image forming apparatus according to the present embodiment will be described, but the present invention is not limited thereto.

図3は、本実施形態に係る画像形成装置の一例を示す概略構成図である。画像形成装置301は、帯電部310と、露光部312と、像保持体である電子写真感光体314と、現像部316と、転写部318と、クリーニング部320と、定着部322とを備える。   FIG. 3 is a schematic configuration diagram illustrating an example of an image forming apparatus according to the present embodiment. The image forming apparatus 301 includes a charging unit 310, an exposure unit 312, an electrophotographic photosensitive member 314 that is an image holding member, a developing unit 316, a transfer unit 318, a cleaning unit 320, and a fixing unit 322.

画像形成装置301において、電子写真感光体314の周囲には、電子写真感光体314の表面を帯電する帯電手段である帯電部310と、帯電された電子写真感光体314を露光し画像情報に応じて静電潜像を形成する静電潜像形成手段である露光部312と、静電潜像を現像剤により現像してトナー像を形成する現像手段である現像部316と、電子写真感光体314の表面に形成されたトナー像を記録媒体324の表面に転写する転写手段である転写部318と、転写後の電子写真感光体314表面上に残存したトナー等の異物を除去して電子写真感光体314の表面を清掃する像保持体清掃手段であるクリーニング部320とがこの順で配置されている。また、記録媒体324に転写されたトナー像を定着する定着手段である定着部322が転写部318の側方に配置されている。   In the image forming apparatus 301, around the electrophotographic photosensitive member 314, a charging unit 310 that is a charging unit that charges the surface of the electrophotographic photosensitive member 314 and the charged electrophotographic photosensitive member 314 are exposed according to image information. An exposure unit 312 that is an electrostatic latent image forming unit that forms an electrostatic latent image, a developing unit 316 that is a developing unit that develops the electrostatic latent image with a developer to form a toner image, and an electrophotographic photosensitive member. The transfer unit 318 that is a transfer unit that transfers the toner image formed on the surface of the recording medium 324 to the surface of the recording medium 324, and foreign matters such as toner remaining on the surface of the electrophotographic photosensitive member 314 after the transfer are removed to perform electrophotography. A cleaning unit 320 that is an image carrier cleaning means for cleaning the surface of the photoconductor 314 is arranged in this order. A fixing unit 322 that is a fixing unit that fixes the toner image transferred to the recording medium 324 is disposed on the side of the transfer unit 318.

本実施形態に係る画像形成装置301の動作について説明する。まず、帯電部310により電子写真感光体314の表面が帯電される(帯電工程)。次に、露光部312により電子写真感光体314の表面に光が当てられ、光の当てられた部分の帯電電荷が除去され、画像情報に応じて静電潜像が形成される(静電荷像形成工程)。その後、静電潜像が現像部316により現像され、電子写真感光体314の表面にトナー像が形成される(現像工程)。例えば、電子写真感光体314として有機感光体を用い、露光部312としてレーザビーム光を用いたデジタル式電子写真複写機の場合、電子写真感光体314の表面は、帯電部310により負電荷を付与され、レーザビーム光によりドット状にデジタル潜像が形成され、レーザビーム光の当たった部分に現像部316でトナーを付与され可視像化される。この場合、現像部316にはマイナスのバイアスが印加されている。次に転写部318で、用紙等の記録媒体324がこのトナー像に重ねられ、記録媒体324の裏側からトナーとは逆極性の電荷が記録媒体324に与えられ、静電気力によりトナー像が記録媒体324に転写される(転写工程)。転写されたトナー像は、定着部322において定着部材により熱および圧力が加えられ、記録媒体324に融着されて定着される(定着工程)。一方、転写されずに電子写真感光体314の表面に残存したトナー等の異物はクリーニング部320で除去される(クリーニング工程)。この帯電からクリーニングに至る一連のプロセスで一回のサイクルが終了する。なお、図3において、転写部318で用紙等の記録媒体324に直接トナー像が転写されているが、中間転写体等の転写体を介して転写されてもよい。   The operation of the image forming apparatus 301 according to this embodiment will be described. First, the surface of the electrophotographic photosensitive member 314 is charged by the charging unit 310 (charging process). Next, light is applied to the surface of the electrophotographic photosensitive member 314 by the exposure unit 312, the charged charge of the exposed portion is removed, and an electrostatic latent image is formed according to image information (electrostatic charge image). Forming step). Thereafter, the electrostatic latent image is developed by the developing unit 316, and a toner image is formed on the surface of the electrophotographic photosensitive member 314 (developing step). For example, in the case of a digital electrophotographic copying machine using an organic photoconductor as the electrophotographic photoconductor 314 and using a laser beam as the exposure unit 312, the surface of the electrophotographic photoconductor 314 is negatively charged by the charging unit 310. Then, a digital latent image is formed in a dot shape by the laser beam light, and a toner is applied to a portion irradiated with the laser beam light by the developing unit 316 to be visualized. In this case, a negative bias is applied to the developing unit 316. Next, a recording medium 324 such as paper is superimposed on the toner image at the transfer unit 318, and a charge having a polarity opposite to that of the toner is applied to the recording medium 324 from the back side of the recording medium 324. 324 is transferred (transfer process). The transferred toner image is heated and pressed by a fixing member in the fixing unit 322, and is fused and fixed to the recording medium 324 (fixing step). On the other hand, foreign matters such as toner remaining on the surface of the electrophotographic photosensitive member 314 without being transferred are removed by the cleaning unit 320 (cleaning step). One cycle is completed in a series of processes from charging to cleaning. In FIG. 3, the toner image is directly transferred to the recording medium 324 such as paper by the transfer unit 318, but may be transferred via a transfer body such as an intermediate transfer body.

以下、図3の画像形成装置301における帯電手段、像保持体、静電荷像形成手段(露光手段)、現像手段、転写手段、像保持体清掃手段、定着手段について説明する。   Hereinafter, the charging unit, the image carrier, the electrostatic charge image forming unit (exposure unit), the developing unit, the transfer unit, the image carrier cleaning unit, and the fixing unit in the image forming apparatus 301 of FIG. 3 will be described.

(帯電手段)
帯電手段である帯電部310としては、例えば、図3に示すようなコロトロン等の帯電器が用いられるが、導電性または半導電性の帯電ロールを用いてもよい。導電性または半導電性の帯電ロールを用いた接触型帯電器は、電子写真感光体314に対し、直流電流を印加するか、交流電流を重畳させて印加してもよい。例えばこのような帯電部310により、電子写真感光体314との接触部近傍の微小空間で放電を発生させることにより電子写真感光体314表面を帯電させる。なお、通常は、−300V以上−1000V以下に帯電される。また前記の導電性または半導電性の帯電ロールは単層構造あるいは多重構造でもよい。また、帯電ロールの表面をクリーニングする機構を設けてもよい。
(Charging means)
As the charging unit 310 serving as a charging unit, for example, a charger such as a corotron as shown in FIG. 3 is used, but a conductive or semiconductive charging roll may be used. A contact charger using a conductive or semiconductive charging roll may apply a direct current to the electrophotographic photosensitive member 314 or may apply an alternating current superimposed thereon. For example, such a charging unit 310 charges the surface of the electrophotographic photosensitive member 314 by generating a discharge in a minute space near the contact portion with the electrophotographic photosensitive member 314. Normally, it is charged to −300V or more and −1000V or less. The conductive or semiconductive charging roll may have a single layer structure or a multiple structure. Further, a mechanism for cleaning the surface of the charging roll may be provided.

(像保持体)
像保持体は、少なくとも潜像(静電荷像)が形成される機能を有する。像保持体としては、電子写真感光体が好適に挙げられる。電子写真感光体314は、円筒状の導電性の基体外周面に有機感光体等を含む塗膜を有する。塗膜は、基体上に、必要に応じて下引き層、および、電荷発生物質を含む電荷発生層と、電荷輸送物質を含む電荷輸送層とを含む感光層がこの順序で形成されたものである。電荷発生層と電荷輸送層の積層順序は逆であってもよい。これらは、電荷発生物質と電荷輸送物質とを別個の層(電荷発生層、電荷輸送層)に含有させて積層した積層型感光体であるが、電荷発生物質と電荷輸送物質との双方を同一の層に含む単層型感光体であってもよく、望ましくは積層型感光体である。また、下引き層と感光層との間に中間層を有していてもよい。また、有機感光体に限らずアモルファスシリコン感光膜等他の種類の感光層を使用してもよい。
(Image carrier)
The image carrier has a function of forming at least a latent image (electrostatic charge image). As the image carrier, an electrophotographic photosensitive member is preferably exemplified. The electrophotographic photoreceptor 314 has a coating film containing an organic photoreceptor or the like on the outer peripheral surface of a cylindrical conductive substrate. The coating film is a substrate in which a subbing layer and a photosensitive layer including a charge generating layer containing a charge generating material and a charge transporting layer containing a charge transporting material are formed in this order, if necessary. is there. The order of stacking the charge generation layer and the charge transport layer may be reversed. These are laminated photoconductors in which a charge generation material and a charge transport material are contained in separate layers (charge generation layer, charge transport layer), but both the charge generation material and the charge transport material are the same. It may be a single layer type photoreceptor included in the above layer, and is preferably a laminated type photoreceptor. Further, an intermediate layer may be provided between the undercoat layer and the photosensitive layer. In addition, other types of photosensitive layers such as an amorphous silicon photosensitive film may be used in addition to the organic photoreceptor.

(静電荷像形成手段)
静電荷像形成手段(露光手段)である露光部312としては、特に制限はなく、例えば、像保持体表面に、半導体レーザ光、LED(Light Emitting Diode)光、液晶シャッタ光等の光源を、所望の像様に露光する光学系機器等が挙げられる。
(Static charge image forming means)
The exposure unit 312 which is an electrostatic charge image forming unit (exposure unit) is not particularly limited, and for example, a light source such as a semiconductor laser beam, LED (Light Emitting Diode) light, or liquid crystal shutter light is provided on the surface of the image carrier. Examples thereof include an optical device that exposes a desired image.

(現像手段)
現像手段である現像部316は、像保持体上に形成された静電荷像を、トナーを含む現像剤により現像してトナー像を形成する機能を有する。そのような現像装置としては、上述の機能を有している限り特に制限はなく、目的に応じて選択すればよいが、例えば、静電荷像現像用トナーをブラシ、ローラ等を用いて電子写真感光体314に付着させる機能を有する公知の現像器等が挙げられる。電子写真感光体314には、通常直流電圧が使用されるが、さらに交流電圧を重畳させて使用してもよい。
(Development means)
The developing unit 316 serving as a developing unit has a function of developing the electrostatic charge image formed on the image carrier with a developer containing toner to form a toner image. Such a developing device is not particularly limited as long as it has the above-described function, and may be selected according to the purpose. For example, an electrostatic image developing toner is electrophotographic using a brush, a roller, or the like. A known developing device having a function of adhering to the photoreceptor 314 may be used. The electrophotographic photosensitive member 314 normally uses a DC voltage, but may be used with an AC voltage superimposed thereon.

(転写手段)
転写手段である転写部318としては、例えば、図3に示すような記録媒体324の裏側からトナーとは逆極性の電荷を記録媒体324に与え、静電気力によりトナー像を記録媒体324に転写するもの、あるいは記録媒体324に直接接触して転写する導電性または半導電性のロール等を用いた転写ロールおよび転写ロール押圧装置を用いればよい。転写ロールには、像保持体に付与する転写電流として、直流電流を印加してもよいし、交流電流を重畳させて印加してもよい。転写ロールは、帯電すべき画像領域幅、転写帯電器の形状、開口幅、プロセススピード(周速)等により、任意に設定すればよい。また、低コスト化のため、転写ロールとして単層の発泡ロール等が好適に用いられる。転写方式としては、紙等の記録媒体324に直接転写する方式でも、中間転写体を介して記録媒体324に転写する方式でもよい。
(Transfer means)
As the transfer unit 318 as a transfer unit, for example, a charge having a polarity opposite to that of the toner is applied to the recording medium 324 from the back side of the recording medium 324 as illustrated in FIG. 3, and the toner image is transferred to the recording medium 324 by electrostatic force. A transfer roll and a transfer roll pressing device using a conductive roll or a semiconductive roll that transfers directly in contact with the recording medium 324 may be used. A direct current may be applied to the transfer roll as a transfer current applied to the image carrier, or an alternating current may be applied in a superimposed manner. The transfer roll may be arbitrarily set according to the width of the image area to be charged, the shape of the transfer charger, the opening width, the process speed (circumferential speed), and the like. Further, a single layer foam roll or the like is suitably used as a transfer roll for cost reduction. As a transfer method, a method of directly transferring to a recording medium 324 such as paper or a method of transferring to a recording medium 324 via an intermediate transfer member may be used.

中間転写体としては、公知の中間転写体を用いればよい。中間転写体に用いられる材料としては、ポリカーボネート樹脂(PC)、ポリフッ化ビニリデン(PVDF)、ポリアルキレンフタレート、PC/ポリアルキレンテレフタレート(PAT)のブレンド材料、エチレンテトラフロロエチレン共重合体(ETFE)/PC、ETFE/PAT、PC/PATのブレンド材料等が挙げられるが、機械的強度の観点から熱硬化ポリイミド樹脂を用いた中間転写ベルトが好ましい。   A known intermediate transfer member may be used as the intermediate transfer member. Materials used for the intermediate transfer member include polycarbonate resin (PC), polyvinylidene fluoride (PVDF), polyalkylene phthalate, PC / polyalkylene terephthalate (PAT) blend material, ethylene tetrafluoroethylene copolymer (ETFE) / PC, ETFE / PAT, PC / PAT blend materials, and the like can be mentioned. From the viewpoint of mechanical strength, an intermediate transfer belt using a thermosetting polyimide resin is preferable.

(像保持体清掃手段)
像保持体清掃手段であるクリーニング部320については、像保持体上の残留トナー等の異物を清掃するものであれば、ブレードクリーニング方式、ブラシクリーニング方式、ロールクリーニング方式を採用したもの等を適宜選定すればよい。
(Image carrier cleaning means)
For the cleaning unit 320 that is an image carrier cleaning means, as long as it cleans foreign matter such as residual toner on the image carrier, a blade cleaning method, a brush cleaning method, a roll cleaning method, or the like is appropriately selected. do it.

(定着手段)
定着手段(画像定着装置)である定着部322としては、記録媒体324に転写されたトナー像を加熱、加圧あるいは加熱加圧により定着するものであり、定着部材を具備する。
(Fixing means)
The fixing unit 322 as a fixing unit (image fixing device) fixes a toner image transferred to the recording medium 324 by heating, pressing, or heating and pressing, and includes a fixing member.

(記録媒体)
トナー像を転写する記録媒体324としては、例えば、電子写真方式の複写機、プリンタ等に使用される普通紙、OHPシート等が挙げられる。定着後における画像表面の平滑性をさらに向上させるには、記録媒体の表面も平滑であることが好ましく、例えば、普通紙の表面を樹脂等でコーティングしたコート紙、印刷用のアート紙等を使用してもよい。
(recoding media)
Examples of the recording medium 324 to which the toner image is transferred include plain paper, an OHP sheet, and the like used for electrophotographic copying machines, printers, and the like. In order to further improve the smoothness of the image surface after fixing, the surface of the recording medium is also preferably smooth. For example, coated paper with the surface of plain paper coated with resin, art paper for printing, etc. are used. May be.

また特公平2−21591号公報で提案されているトリクル現像と組み合わせることにより、さらに長期に安定した画像形成がなされる。   Further, by combining with trickle development proposed in Japanese Patent Publication No. 2-21591, stable image formation can be achieved for a longer period.

図4は、本実施形態に係る静電荷像現像用現像剤を収容するプロセスカートリッジの一例を示す概略構成図である。プロセスカートリッジ200は、現像装置111とともに、感光体107、帯電ローラ108、感光体クリーニング装置113、露光のための開口部118、および、除電露光のための開口部117を取り付けレール116を用いて組み合わせ、そして一体化したものである。なお、図4において符号300は記録媒体を示す。   FIG. 4 is a schematic configuration diagram showing an example of a process cartridge containing the developer for developing an electrostatic charge image according to this embodiment. In the process cartridge 200, the photosensitive member 107, the charging roller 108, the photosensitive member cleaning device 113, the opening 118 for exposure, and the opening 117 for static elimination exposure are combined with the developing device 111 using the mounting rail 116. , And integrated. In FIG. 4, reference numeral 300 denotes a recording medium.

そして、このプロセスカートリッジ200は、転写装置112と、定着装置115と、図示しない他の構成部分とから構成される画像形成装置本体に対して着脱自在としたものであり、画像形成装置本体とともに画像形成装置を構成するものである。   The process cartridge 200 is detachable from an image forming apparatus main body including a transfer device 112, a fixing device 115, and other components (not shown). It forms a forming apparatus.

図4で示すプロセスカートリッジ200では、感光体107、帯電装置108、現像装置111、クリーニング装置113、露光のための開口部118、および、除電露光のための開口部117を備えているが、これら装置は選択的に組み合わせてもよい。本実施形態に係るプロセスカートリッジでは、現像装置111のほかには、感光体107、帯電装置108、クリーニング装置(クリーニング手段)113、露光のための開口部118、および、除電露光のための開口部117から構成される群から選択される少なくとも1種を備えてもよい。   The process cartridge 200 shown in FIG. 4 includes a photosensitive member 107, a charging device 108, a developing device 111, a cleaning device 113, an opening 118 for exposure, and an opening 117 for static elimination exposure. The devices may be selectively combined. In the process cartridge according to the present embodiment, in addition to the developing device 111, the photosensitive member 107, the charging device 108, the cleaning device (cleaning means) 113, the opening 118 for exposure, and the opening for static elimination exposure. You may provide at least 1 sort (s) selected from the group comprised from 117.

次に、トナーカートリッジについて説明する。トナーカートリッジは、画像形成装置に着脱可能に装着され、少なくとも、前記画像形成装置内に設けられた現像手段に供給するためのトナーを収容するものである。なお、トナーカートリッジには少なくともトナーが収容されればよく、画像形成装置の機構によっては、例えば現像剤が収められてもよい。   Next, the toner cartridge will be described. The toner cartridge is detachably attached to the image forming apparatus, and contains at least toner to be supplied to a developing unit provided in the image forming apparatus. The toner cartridge only needs to contain at least toner, and may contain developer, for example, depending on the mechanism of the image forming apparatus.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(キャリア1の調製)
(被覆層形成用溶液の調製)
シクロヘキシルアクリレート樹脂(重量平均分子量5万) 36質量部
カーボンブラックVXC72(キャボット社製) 4質量部
トルエン 250質量部
イソプロピルアルコール 50質量部
上記成分とガラスビーズ(粒径:1mm、トルエンと同量)とを関西ペイント社製サンドミルに投入し、回転速度1200rpmで30分間攪拌し固形分11%の被覆層形成用溶液を調製した。
(Preparation of carrier 1)
(Preparation of coating layer forming solution)
Cyclohexyl acrylate resin (weight average molecular weight 50,000) 36 parts by mass Carbon black VXC72 (manufactured by Cabot) 4 parts by mass Toluene 250 parts by mass Isopropyl alcohol 50 parts by mass The above components and glass beads (particle size: 1 mm, equivalent to toluene) Was put in a sand mill manufactured by Kansai Paint Co., Ltd. and stirred at a rotational speed of 1200 rpm for 30 minutes to prepare a coating layer forming solution having a solid content of 11%.

(磁性材料1の調製)
キャリア材料としてFe1318質量部、Mn(OH)586質量部、Mg(OH)96質量部を準備し、それらを混合して、該混合物に分散剤(ポリカルボン酸ナトリウム)、水、直径1mmのジルコニアビーズを加え、サンドミルで1時間解砕混合した。次いで、ジルコニアビーズをろ過し、乾燥したキャリア材料をロータリーキルンを用いて、20rpm、900℃、2時間、酸素濃度5%の酸素窒素混合雰囲気下で仮焼成した。仮焼成後、キャリア材料(酸化物)に、分散剤(ポリカルボン酸ナトリウム)、水、ポリビニルアルコール6.6質量部を添加し、湿式ボールミルで5時間粉砕混合した。得られた粉砕品の体積平均粒径は1.4μmであった。次に、該粉砕品をスプレードライヤーで、体積平均粒径が40μmになるように造粒、乾燥した。更に、電気炉を用いて1100℃、5時間、酸素濃度1%の酸素窒素混合雰囲気下で本焼成した。そして、解砕工程、分級工程を経て、磁性粒子1を得た。磁性粒子1の体積平均粒径は35μmであり、磁性粒子1表面の凹凸の平均間隔Sm(以下、磁性粒子1のSmと呼ぶ場合がある)は2.5であり、磁性粒子1表面の算出平均粗さRa(以下、磁性粒子1のRaと呼ぶ場合がある)は0.4であり、磁性粒子1のBET比表面積は0.12m/gであり、磁性粒子1の体積抵抗は24000V/cmの電界下で、7logΩcmであった。これらの測定方法については以下の通りである。
(Preparation of magnetic material 1)
As a carrier material, 1318 parts by mass of Fe 2 O 3 , 586 parts by mass of Mn (OH) 2 , 96 parts by mass of Mg (OH) 2 were prepared, and they were mixed, and a dispersant (sodium polycarboxylate) was added to the mixture. Water and zirconia beads having a diameter of 1 mm were added, and the mixture was pulverized and mixed in a sand mill for 1 hour. Next, the zirconia beads were filtered, and the dried carrier material was calcined using a rotary kiln at 20 rpm, 900 ° C. for 2 hours in an oxygen-nitrogen mixed atmosphere with an oxygen concentration of 5%. After calcination, a dispersant (sodium polycarboxylate), water, and 6.6 parts by mass of polyvinyl alcohol were added to the carrier material (oxide), and the mixture was pulverized and mixed with a wet ball mill for 5 hours. The obtained pulverized product had a volume average particle size of 1.4 μm. Next, the pulverized product was granulated and dried with a spray dryer so that the volume average particle size became 40 μm. Furthermore, the main calcination was carried out using an electric furnace at 1100 ° C. for 5 hours in an oxygen-nitrogen mixed atmosphere with an oxygen concentration of 1%. And the magnetic particle 1 was obtained through the crushing process and the classification process. The volume average particle size of the magnetic particles 1 is 35 μm, the average interval Sm of the irregularities on the surface of the magnetic particles 1 (hereinafter sometimes referred to as Sm of the magnetic particles 1) is 2.5, and the calculation of the surface of the magnetic particles 1 The average roughness Ra (hereinafter sometimes referred to as Ra of the magnetic particles 1) is 0.4, the BET specific surface area of the magnetic particles 1 is 0.12 m 2 / g, and the volume resistance of the magnetic particles 1 is 24000V. It was 7 log Ωcm under an electric field of / cm. These measurement methods are as follows.

<磁性粒子1のSm及びRaの測定>
磁性粒子1のSm及びRaの測定方法は、磁性粒子1を50個、超深度カラー3D形状測定顕微鏡(VK−9500、キーエンス社製)を用い、倍率3000倍で表面を換算して求める方法であり、JIS B0601(1994年度版)に準じて行った。具体的に、磁性粒子1のSmは、上記顕微鏡にて観察した磁性粒子1表面の3次元形状から粗さ曲線を求め、該粗さ曲線が平均線と交差する交点から求めた山谷一周期の間隔の平均値により求められる。磁性粒子1のSmを求める際の基準長さは10μmであり、カットオフ値は0.08mmである。磁性粒子1のRaは、上記顕微鏡にて観察した磁性粒子1表面の3次元形状から粗さ曲線を求め、該粗さ曲線の測定値と平均値までの偏差の絶対値を合計し、平均することにより求められる。磁性粒子1のRaを求める際の基準長さは10μmであり、カットオフ値は0.08mmである。
<Measurement of Sm and Ra of Magnetic Particle 1>
The measuring method of Sm and Ra of the magnetic particle 1 is a method of obtaining 50 magnetic particles 1 by converting the surface at a magnification of 3000 times using an ultra-deep color 3D shape measuring microscope (VK-9500, manufactured by Keyence Corporation). Yes, according to JIS B0601 (1994 edition). Specifically, the Sm of the magnetic particle 1 is obtained by calculating a roughness curve from the three-dimensional shape of the surface of the magnetic particle 1 observed with the microscope, and having one cycle of the Yamatani cycle obtained from the intersection where the roughness curve intersects the average line. The average value of the interval is obtained. The reference length for determining Sm of the magnetic particles 1 is 10 μm, and the cutoff value is 0.08 mm. Ra of the magnetic particle 1 is obtained by obtaining a roughness curve from the three-dimensional shape of the surface of the magnetic particle 1 observed with the microscope, and sums and averages the measured value of the roughness curve and the absolute value of the deviation to the average value. Is required. The reference length for determining Ra of the magnetic particle 1 is 10 μm, and the cutoff value is 0.08 mm.

<磁性粒子1の体積平均粒径の測定>
磁性粒子1の体積平均粒径は、レーザー解説粒度分布測定装置LA−700(堀場製作所)により得られた粒度分布を分割された粒度範囲(チャンネル)に対し、小粒子径側から体積累積分布を引いて、累積50%となる粒子径を体積平均粒子径とした。なお、上記粉砕品の体積平均粒径も同様である。
<Measurement of Volume Average Particle Size of Magnetic Particle 1>
The volume average particle size of the magnetic particle 1 is the cumulative volume distribution from the small particle size side with respect to the particle size range (channel) obtained by dividing the particle size distribution obtained by the laser explanation particle size distribution measuring apparatus LA-700 (Horiba Seisakusho). By subtracting, the particle diameter at 50% cumulative was taken as the volume average particle diameter. The volume average particle size of the pulverized product is the same.

<磁性粒子1のBET比表面積の測定>
磁性粒子1のBET比表面積は、5質量部の磁性粒子1をSA3100比表面積測定装置(ベックマンコールター)のセルに入れ、60℃、120分の脱気処理を行い、窒素とヘリウムの混合ガス(30:70)で窒素置換し、JIS Z 8830(2001年度版)に準じた3点法により測定した。
<Measurement of BET specific surface area of magnetic particle 1>
The BET specific surface area of the magnetic particle 1 is obtained by putting 5 parts by mass of the magnetic particle 1 into a cell of an SA3100 specific surface area measuring device (Beckman Coulter), performing a degassing treatment at 60 ° C. for 120 minutes, and then mixing a mixed gas of nitrogen and helium ( 30:70), and nitrogen was substituted, and measurement was performed by a three-point method according to JIS Z 8830 (2001 edition).

<磁性粒子1の体積抵抗の測定>
磁性粒子1の体積抵抗は、2枚の極板を1mmの幅で平行に対峙させ、その間に磁性粒子1を0.25質量部入れ、断面積2.4cmの磁石で保持し、1000Vの印加電圧を掛け(このときの電界は24000V/cm)、電流値を測定し、得られた電流値から計算した。
<Measurement of volume resistance of magnetic particle 1>
The volume resistance of the magnetic particle 1 is such that two electrode plates face each other in parallel with a width of 1 mm, and 0.25 part by mass of the magnetic particle 1 is put between them and held by a magnet having a cross-sectional area of 2.4 cm 2 . The applied voltage was applied (the electric field at this time was 24000 V / cm), the current value was measured, and the current value was calculated.

真空脱気型5Lニーダーに上記磁性粒子1を2000質量部入れ、更に被覆層形成用溶液を560質量部入れ、攪拌しながら、60℃にて−200mmHgまで減圧し15分混合した後、94℃/−720mHgで30分間攪拌及び乾燥させ、75μmメッシュの篩分網で篩分を行い、キャリア1を得た。   Into a vacuum degassing type 5 L kneader, 2000 parts by mass of the above magnetic particles 1 were added, and 560 parts by mass of the coating layer forming solution was added. While stirring, the pressure was reduced to −200 mmHg at 60 ° C. and mixed for 15 minutes. The carrier 1 was obtained by stirring and drying at / -720 mHg for 30 minutes and sieving with a 75 μm mesh sieving screen.

なお、現像剤から磁性粒子を回収し、磁性粒子のSm、Ra、BET比表面積、体積抵抗を測定する場合は、まず、現像剤をエアブローして、トナーを除去し、キャリアを回収する。そして、10質量部のキャリアを100質量部のトルエンに添加し、40kHzの条件で超音波攪拌を30秒行い、被覆層を溶解させる。粒径に合わせ任意のろ紙を用いて磁性粒子と被覆層が溶解した溶液とに分離する。ろ紙に残った磁性粒子に20質量部のトルエンを流して、洗浄し、ろ紙に残った磁性粒子を回収する。回収した磁性粒子を同様にトルエン100質量部に添加し、40kHzの条件で超音波攪拌を30秒行う。上記と同様にろ過し、20質量部のトルエンを流して、洗浄し、ろ紙に残った磁性粒子を回収する。これを合計10回行う。最後に回収した磁性粒子を乾燥させる。このようにして得られる磁性粒子のSm、Ra、BET比表面積、体積抵抗を上記の条件で測定する。   When magnetic particles are collected from the developer and the Sm, Ra, BET specific surface area, and volume resistance of the magnetic particles are measured, the developer is first blown with air to remove the toner and collect the carrier. Then, 10 parts by mass of carrier is added to 100 parts by mass of toluene, and ultrasonic stirring is performed for 30 seconds under the condition of 40 kHz to dissolve the coating layer. The filter is separated into a magnetic particle and a solution in which the coating layer is dissolved using an arbitrary filter paper according to the particle size. The magnetic particles remaining on the filter paper are washed with 20 parts by mass of toluene, and the magnetic particles remaining on the filter paper are recovered. The recovered magnetic particles are similarly added to 100 parts by mass of toluene, and ultrasonic stirring is performed for 30 seconds under the condition of 40 kHz. Filtration is performed in the same manner as described above, and 20 parts by mass of toluene is poured to wash the magnetic particles remaining on the filter paper. This is done a total of 10 times. Finally, the collected magnetic particles are dried. The Sm, Ra, BET specific surface area, and volume resistance of the magnetic particles thus obtained are measured under the above conditions.

(キャリア2の調製)
キャリア材料としてSiOを1.5質量部添加すること、粉砕品の体積平均粒径を2.1μmとしたこと、本焼成の焼成温度を1150℃(表面酸化温度900℃)としたこと以外は、磁性粒子1と同様の条件で行い、磁性粒子2を得た。磁性粒子2の体積平均粒径は35μmであり、磁性粒子2のSmは3.2であり、磁性粒子2のRaは0.4であり、磁性粒子2のBET比表面積は0.10m/gであり、磁性粒子2の体積抵抗は24000V/cmの電界下で、6.5logΩcmであった。そして、磁性粒子1を磁性粒子2に変更すること以外は、キャリア1と同様の条件で行い、キャリア2を得た。
(Preparation of carrier 2)
Except for adding 1.5 parts by mass of SiO 2 as a carrier material, setting the volume average particle size of the pulverized product to 2.1 μm, and setting the firing temperature of the main firing to 1150 ° C. (surface oxidation temperature 900 ° C.). The magnetic particles 2 were obtained under the same conditions as for the magnetic particles 1. The volume average particle diameter of the magnetic particles 2 is 35 μm, the Sm of the magnetic particles 2 is 3.2, the Ra of the magnetic particles 2 is 0.4, and the BET specific surface area of the magnetic particles 2 is 0.10 m 2 / g, and the volume resistance of the magnetic particles 2 was 6.5 log Ωcm under an electric field of 24000 V / cm. Then, except that the magnetic particles 1 were changed to the magnetic particles 2, the same conditions as those of the carrier 1 were performed, and the carrier 2 was obtained.

(キャリア3の調製)
粉砕品の体積平均粒径を1.2μmとしたこと、本焼成の焼成温度を1050℃(表面酸化温度950℃)とし、酸素濃度1.5%の酸素窒素混合雰囲気下で本焼成したこと以外は、磁性粒子1と同様の条件で行い、磁性粒子3を得た。磁性粒子3の体積平均粒径は35μmであり、磁性粒子3のSmは1.2であり、磁性粒子3のRaは0.5であり、磁性粒子3のBET比表面積は0.13m/gであり、磁性粒子3の体積抵抗は24000V/cmの電界下で、7.5logΩcmであった。そして、磁性粒子1を磁性粒子3に変更すること以外は、キャリア1と同様の条件で行い、キャリア3を得た。
(Preparation of carrier 3)
Other than that the volume average particle size of the pulverized product was 1.2 μm, the firing temperature of the main firing was 1050 ° C. (surface oxidation temperature 950 ° C.), and the main firing was performed in an oxygen-nitrogen mixed atmosphere with an oxygen concentration of 1.5%. Was performed under the same conditions as for magnetic particles 1 to obtain magnetic particles 3. The volume average particle size of the magnetic particles 3 is 35 μm, the Sm of the magnetic particles 3 is 1.2, the Ra of the magnetic particles 3 is 0.5, and the BET specific surface area of the magnetic particles 3 is 0.13 m 2 / g, and the volume resistance of the magnetic particles 3 was 7.5 log Ωcm under an electric field of 24000 V / cm. Then, except that the magnetic particles 1 were changed to the magnetic particles 3, the same conditions as those of the carrier 1 were used to obtain the carrier 3.

(キャリア4の調製)
キャリア材料としてSiOを1.2質量部添加すること、酸素濃度0.8%の酸素窒素混合雰囲気下で本焼成したこと以外は、磁性粒子1と同様の条件で行い、磁性粒子4を得た。磁性粒子4の体積平均粒径は35μmであり、磁性粒子4のSmは2.5であり、磁性粒子4のRaは0.2であり、磁性粒子4のBET比表面積は0.10m/gであり、磁性粒子4の体積抵抗は24000V/cmの電界下で、6.4logΩcmであった。そして、磁性粒子1を磁性粒子4に変更すること以外は、キャリア1と同様の条件で行い、キャリア4を得た。
(Preparation of carrier 4)
The magnetic particles 4 are obtained under the same conditions as the magnetic particles 1 except that 1.2 parts by mass of SiO 2 is added as a carrier material and the main baking is performed in an oxygen-nitrogen mixed atmosphere having an oxygen concentration of 0.8%. It was. The volume average particle diameter of the magnetic particles 4 is 35 μm, the Sm of the magnetic particles 4 is 2.5, the Ra of the magnetic particles 4 is 0.2, and the BET specific surface area of the magnetic particles 4 is 0.10 m 2 / g, and the volume resistance of the magnetic particles 4 was 6.4 log Ωcm under an electric field of 24000 V / cm. Then, except that the magnetic particle 1 was changed to the magnetic particle 4, it was performed under the same conditions as the carrier 1 to obtain the carrier 4.

(キャリア5の調製)
粉砕品の体積平均粒径を2.0μmとしたこと、本焼成の焼成温度を1150℃(表面酸化温度880℃)としたこと以外は、磁性粒子1と同様の条件で行い、磁性粒子5を得た。磁性粒子5の体積平均粒径は35μmであり、磁性粒子5のSmは3.0であり、磁性粒子5のRaは0.4であり、磁性粒子5のBET比表面積は0.14m/gであり、磁性粒子5の体積抵抗は24000V/cmの電界下で、6.0logΩcmであった。そして、磁性粒子1を磁性粒子5に変更すること以外は、キャリア1と同様の条件で行い、キャリア5を得た。
(Preparation of carrier 5)
The magnetic particles 5 were prepared under the same conditions as the magnetic particles 1 except that the volume average particle size of the pulverized product was 2.0 μm and the firing temperature of the main firing was 1150 ° C. (surface oxidation temperature 880 ° C.). Obtained. The volume average particle diameter of the magnetic particles 5 is 35 μm, the Sm of the magnetic particles 5 is 3.0, the Ra of the magnetic particles 5 is 0.4, and the BET specific surface area of the magnetic particles 5 is 0.14 m 2 / g, and the volume resistance of the magnetic particles 5 was 6.0 log Ωcm under an electric field of 24000 V / cm. Then, except that the magnetic particles 1 were changed to the magnetic particles 5, the same conditions as those of the carrier 1 were used, and the carrier 5 was obtained.

(キャリア6の調製)
粉砕品の体積平均粒径を1.2μmとしたこと、本焼成の焼成温度を1170(表面酸化温度970℃)、酸素濃度1.2%の酸素窒素混合雰囲気下で本焼成したこと以外は、磁性粒子1と同様の条件で行い、磁性粒子6を得た。磁性粒子6の体積平均粒径は35μmであり、磁性粒子6のSmは1.0であり、磁性粒子6のRaは0.3であり、磁性粒子6のBET比表面積は0.09m/gであり、磁性粒子6の体積抵抗は24000V/cmの電界下で、6.8logΩcmであった。そして、磁性粒子1を磁性粒子6に変更すること以外は、キャリア1と同様の条件で行い、キャリア6を得た。
(Preparation of carrier 6)
Except that the volume average particle size of the pulverized product was 1.2 μm, the firing temperature of the main firing was 1170 (surface oxidation temperature 970 ° C.), and the main firing was performed in an oxygen-nitrogen mixed atmosphere with an oxygen concentration of 1.2%, The magnetic particles 6 were obtained under the same conditions as the magnetic particles 1. The volume average particle diameter of the magnetic particles 6 is 35 μm, the Sm of the magnetic particles 6 is 1.0, the Ra of the magnetic particles 6 is 0.3, and the BET specific surface area of the magnetic particles 6 is 0.09 m 2 / g, and the volume resistance of the magnetic particles 6 was 6.8 log Ωcm under an electric field of 24000 V / cm. Then, except that the magnetic particles 1 were changed to the magnetic particles 6, the same conditions as those of the carrier 1 were performed to obtain a carrier 6.

(キャリア7の調製)
キャリア材料としてSiOを1.4質量部添加すること、粉砕品の体積平均粒径を2.2μmとしたこと、本焼成の焼成温度を1120(表面酸化温度920℃)、酸素濃度1.5%の酸素窒素混合雰囲気下で本焼成したこと以外は、磁性粒子1と同様の条件で行い、磁性粒子7を得た。磁性粒子7の体積平均粒径は35μmであり、磁性粒子7のSmは3.5であり、磁性粒子7のRaは0.6であり、磁性粒子7のBET比表面積は0.12m/gであり、磁性粒子7の体積抵抗は24000V/cmの電界下で、7.6logΩcmであった。そして、磁性粒子1を磁性粒子7に変更すること以外は、キャリア1と同様の条件で行い、キャリア7を得た。
(Preparation of carrier 7)
The addition of 1.4 parts by mass of SiO 2 as a carrier material, the volume average particle size of the pulverized product was 2.2 μm, the firing temperature of the main firing was 1120 (surface oxidation temperature 920 ° C.), and the oxygen concentration was 1.5 The magnetic particles 7 were obtained under the same conditions as the magnetic particles 1 except that the main firing was performed in a mixed atmosphere of oxygen and nitrogen. The volume average particle diameter of the magnetic particles 7 is 35 μm, the Sm of the magnetic particles 7 is 3.5, the Ra of the magnetic particles 7 is 0.6, and the BET specific surface area of the magnetic particles 7 is 0.12 m 2 / g and the volume resistance of the magnetic particles 7 was 7.6 log Ωcm under an electric field of 24000 V / cm. Then, except that the magnetic particle 1 was changed to the magnetic particle 7, it was performed under the same conditions as the carrier 1 to obtain the carrier 7.

(キャリア8の調製)
粉砕品の体積平均粒径を2.0μmとしたこと、本焼成の焼成温度を1170(表面酸化温度900℃)、酸素濃度1.5%の酸素窒素混合雰囲気下で本焼成したこと以外は、磁性粒子1と同様の条件で行い、磁性粒子8を得た。磁性粒子8の体積平均粒径は35μmであり、磁性粒子8のSmは3.0であり、磁性粒子8のRaは0.7であり、磁性粒子8のBET比表面積は0.12m/gであり、磁性粒子8の体積抵抗は24000V/cmの電界下で、7.7logΩcmであった。そして、磁性粒子1を磁性粒子8に変更すること以外は、キャリア1と同様の条件で行い、キャリア8を得た。
(Preparation of carrier 8)
Except that the volume average particle size of the pulverized product was 2.0 μm, the firing temperature of the main firing was 1170 (surface oxidation temperature 900 ° C.), and the main firing was performed in an oxygen-nitrogen mixed atmosphere with an oxygen concentration of 1.5%, The magnetic particles 8 were obtained under the same conditions as the magnetic particles 1. The volume average particle diameter of the magnetic particles 8 is 35 μm, the Sm of the magnetic particles 8 is 3.0, the Ra of the magnetic particles 8 is 0.7, and the BET specific surface area of the magnetic particles 8 is 0.12 m 2 / g, and the volume resistance of the magnetic particles 8 was 7.7 log Ωcm under an electric field of 24000 V / cm. The carrier 8 was obtained under the same conditions as the carrier 1 except that the magnetic particle 1 was changed to the magnetic particle 8.

(キャリア9の調製)
粉砕品の体積平均粒径を2.1μmとしたこと、本焼成の焼成温度を1170(表面酸化温度970℃)、酸素濃度1.0%の酸素窒素混合雰囲気下で本焼成したこと以外は、磁性粒子1と同様の条件で行い、磁性粒子9を得た。磁性粒子9の体積平均粒径は35μmであり、磁性粒子9のSmは3.0であり、磁性粒子9のRaは0.5であり、磁性粒子9のBET比表面積は0.08m/gであり、磁性粒子9の体積抵抗は24000V/cmの電界下で、7.8logΩcmであった。そして、磁性粒子1を磁性粒子9に変更すること以外は、キャリア1と同様の条件で行い、キャリア9を得た。
(Preparation of carrier 9)
Except that the volume average particle size of the pulverized product was 2.1 μm, the firing temperature of the main firing was 1170 (surface oxidation temperature 970 ° C.), and the main firing was performed in an oxygen-nitrogen mixed atmosphere with an oxygen concentration of 1.0%, The magnetic particles 9 were obtained under the same conditions as the magnetic particles 1. The volume average particle size of the magnetic particles 9 is 35 μm, the Sm of the magnetic particles 9 is 3.0, the Ra of the magnetic particles 9 is 0.5, and the BET specific surface area of the magnetic particles 9 is 0.08 m 2 / The volume resistance of the magnetic particles 9 was 7.8 log Ωcm under an electric field of 24000 V / cm. Then, except that the magnetic particle 1 was changed to the magnetic particle 9, it was performed under the same conditions as the carrier 1 to obtain the carrier 9.

(キャリア10の調製)
粉砕品の体積平均粒径を2.1μmとしたこと、本焼成の焼成温度を1120(表面酸化温度970℃)、酸素濃度1.0%の酸素窒素混合雰囲気下で本焼成したこと以外は、磁性粒子1と同様の条件で行い、磁性粒子10を得た。磁性粒子10の体積平均粒径は35μmであり、磁性粒子10のSmは2.5であり、磁性粒子10のRaは0.4であり、磁性粒子10のBET比表面積は0.10m/gであり、磁性粒子10の体積抵抗は24000V/cmの電界下で、8logΩcmであった。そして、磁性粒子1を磁性粒子10に変更すること以外は、キャリア1と同様の条件で行い、キャリア10を得た。
(Preparation of carrier 10)
Except that the volume average particle size of the pulverized product was 2.1 μm, the firing temperature of the main firing was 1120 (surface oxidation temperature 970 ° C.), and the main firing was performed in an oxygen-nitrogen mixed atmosphere with an oxygen concentration of 1.0%, The magnetic particles 10 were obtained under the same conditions as the magnetic particles 1. The volume average particle size of the magnetic particles 10 is 35 μm, the Sm of the magnetic particles 10 is 2.5, the Ra of the magnetic particles 10 is 0.4, and the BET specific surface area of the magnetic particles 10 is 0.10 m 2 / g, and the volume resistance of the magnetic particle 10 was 8 log Ωcm under an electric field of 24000 V / cm. The carrier 10 was obtained under the same conditions as the carrier 1 except that the magnetic particle 1 was changed to the magnetic particle 10.

(キャリア11の調製)
キャリア材料としてSiOを1.5質量部添加すること、粉砕品の体積平均粒径を2.3μmとしたこと、本焼成の焼成温度を1150℃(表面酸化温度900℃)、酸素濃度0.8%の酸素窒素混合雰囲気下で本焼成したこと以外は、磁性粒子1と同様の条件で行い、磁性粒子11を得た。磁性粒子11の体積平均粒径は35μmであり、磁性粒子11のSmは3.6であり、磁性粒子11のRaは0.3であり、磁性粒子11のBET比表面積は0.08m/gであり、磁性粒子11の体積抵抗は24000V/cmの電界下で、6.5logΩcmであった。そして、磁性粒子1を磁性粒子11に変更すること以外は、キャリア1と同様の条件で行い、キャリア11を得た。
(Preparation of carrier 11)
The addition of 1.5 parts by mass of SiO 2 as a carrier material, the volume average particle size of the pulverized product was 2.3 μm, the firing temperature of the main firing was 1150 ° C. (surface oxidation temperature 900 ° C.), and the oxygen concentration was 0.1. The magnetic particles 11 were obtained under the same conditions as the magnetic particles 1 except that the main calcination was performed in an 8% oxygen-nitrogen mixed atmosphere. The volume average particle diameter of the magnetic particles 11 is 35 μm, the Sm of the magnetic particles 11 is 3.6, the Ra of the magnetic particles 11 is 0.3, and the BET specific surface area of the magnetic particles 11 is 0.08 m 2 / The volume resistance of the magnetic particles 11 was 6.5 log Ωcm under an electric field of 24000 V / cm. Then, except that the magnetic particle 1 was changed to the magnetic particle 11, it was performed under the same conditions as the carrier 1 to obtain the carrier 11.

(キャリア12の調製)
粉砕品の体積平均粒径を1.2μmとしたこと、本焼成の焼成温度を1050℃(表面酸化温度920℃)、酸素濃度0.8%の酸素窒素混合雰囲気下で本焼成したこと以外は、磁性粒子1と同様の条件で行い、磁性粒子12を得た。磁性粒子12の体積平均粒径は35μmであり、磁性粒子12のSmは0.9であり、磁性粒子12のRaは0.7であり、磁性粒子12のBET比表面積は0.13m/gであり、磁性粒子12の体積抵抗は24000V/cmの電界下で、7.5logΩcmであった。そして、磁性粒子1を磁性粒子12に変更すること以外は、キャリア1と同様の条件で行い、キャリア12を得た。
(Preparation of carrier 12)
Except that the volume average particle diameter of the pulverized product was 1.2 μm, and that the firing temperature of the main firing was 1050 ° C. (surface oxidation temperature 920 ° C.) and the main firing was performed in an oxygen-nitrogen mixed atmosphere with an oxygen concentration of 0.8%. The magnetic particles 12 were obtained under the same conditions as for the magnetic particles 1. The volume average particle diameter of the magnetic particles 12 is 35 μm, the Sm of the magnetic particles 12 is 0.9, the Ra of the magnetic particles 12 is 0.7, and the BET specific surface area of the magnetic particles 12 is 0.13 m 2 / g, and the volume resistance of the magnetic particles 12 was 7.5 log Ωcm under an electric field of 24000 V / cm. And except having changed the magnetic particle 1 into the magnetic particle 12, it carried out on the conditions similar to the carrier 1, and obtained the carrier 12.

(キャリア13の調製)
キャリア材料としてSiOを1.0質量部添加すること、本焼成の焼成温度を1150(表面酸化温度880℃)、酸素濃度1.5%の酸素窒素混合雰囲気下で本焼成したこと以外は、磁性粒子1と同様の条件で行い、磁性粒子13を得た。磁性粒子13の体積平均粒径は35μmであり、磁性粒子13のSmは2.2であり、磁性粒子13のRaは0.8であり、磁性粒子13のBET比表面積は0.10m/gであり、磁性粒子13の体積抵抗は24000V/cmの電界下で、6.2logΩcmであった。そして、磁性粒子1を磁性粒子13に変更すること以外は、キャリア1と同様の条件で行い、キャリア13を得た。
(Preparation of carrier 13)
Except for adding 1.0 part by mass of SiO 2 as a carrier material, and firing at a firing temperature of 1150 (surface oxidation temperature of 880 ° C.) in an oxygen-nitrogen mixed atmosphere with an oxygen concentration of 1.5%, It carried out on the conditions similar to the magnetic particle 1, and the magnetic particle 13 was obtained. The volume average particle diameter of the magnetic particles 13 is 35 μm, the Sm of the magnetic particles 13 is 2.2, the Ra of the magnetic particles 13 is 0.8, and the BET specific surface area of the magnetic particles 13 is 0.10 m 2 / g, and the volume resistance of the magnetic particles 13 was 6.2 log Ωcm under an electric field of 24000 V / cm. And except having changed the magnetic particle 1 into the magnetic particle 13, it carried out on the conditions similar to the carrier 1, and the carrier 13 was obtained.

(キャリア14の調製)
本焼成の焼成温度を1160(表面酸化温度920℃)、酸素濃度0.50%の酸素窒素混合雰囲気下で本焼成したこと以外は、磁性粒子1と同様の条件で行い、磁性粒子14を得た。磁性粒子14の体積平均粒径は35μmであり、磁性粒子14のSmは2.1であり、磁性粒子14のRaは0.1であり、磁性粒子14のBET比表面積は0.09m/gであり、磁性粒子14の体積抵抗は24000V/cmの電界下で、7.6logΩcmであった。そして、磁性粒子1を磁性粒子14に変更すること以外は、キャリア1と同様の条件で行い、キャリア14を得た。
(Preparation of carrier 14)
The magnetic particles 14 were obtained under the same conditions as those of the magnetic particles 1 except that the main baking was performed at 1160 (surface oxidation temperature 920 ° C.) and an oxygen-nitrogen mixed atmosphere having an oxygen concentration of 0.50%. It was. The volume average particle diameter of the magnetic particles 14 is 35 μm, the Sm of the magnetic particles 14 is 2.1, the Ra of the magnetic particles 14 is 0.1, and the BET specific surface area of the magnetic particles 14 is 0.09 m 2 / g, and the volume resistance of the magnetic particles 14 was 7.6 log Ωcm under an electric field of 24000 V / cm. Then, except that the magnetic particles 1 were changed to the magnetic particles 14, the same conditions as those of the carrier 1 were used to obtain the carrier 14.

(キャリア15の調製)
本焼成の焼成温度を1100℃、酸素濃度1.0%の酸素窒素混合雰囲気下で本焼成したこと以外は、磁性粒子1と同様の条件で行い、磁性粒子15を得た。磁性粒子15の体積平均粒径は35μmであり、磁性粒子15のSmは2.0であり、磁性粒子15のRaは0.7であり、磁性粒子15のBET比表面積は0.18m/gであり、磁性粒子15の体積抵抗は24000V/cmの電界下で、5.00logΩcmであった。そして、磁性粒子1を磁性粒子15に変更すること以外は、キャリア1と同様の条件で行い、キャリア15を得た。
(Preparation of carrier 15)
The magnetic particles 15 were obtained under the same conditions as the magnetic particles 1 except that the main baking was performed at 1100 ° C. in an oxygen-nitrogen mixed atmosphere having an oxygen concentration of 1.0%. The volume average particle diameter of the magnetic particles 15 is 35 μm, the Sm of the magnetic particles 15 is 2.0, the Ra of the magnetic particles 15 is 0.7, and the BET specific surface area of the magnetic particles 15 is 0.18 m 2 / g, and the volume resistance of the magnetic particles 15 was 5.00 log Ωcm under an electric field of 24000 V / cm. Then, except that the magnetic particles 1 were changed to the magnetic particles 15, the same conditions as those of the carrier 1 were used, and the carrier 15 was obtained.

(キャリア16の調製)
粉砕品の体積平均粒径を1.2μmとしたこと、本焼成の酸素濃度0.9%、焼成温度を1160℃(表面酸化温度980℃)としたこと以外は、磁性粒子1と同様の条件で行い、磁性粒子16を得た。磁性粒子16の体積平均粒径は35μmであり、磁性粒子16のSmは2.0であり、磁性粒子16のRaは0.2であり、磁性粒子16のBET比表面積は0.07m/gであり、磁性粒子16の体積抵抗は24000V/cmの電界下で、8.00logΩcmであった。そして、磁性粒子1を磁性粒子16に変更すること以外は、キャリア1と同様の条件で行い、キャリア16を得た。
(Preparation of carrier 16)
Conditions similar to those of the magnetic particle 1 except that the volume average particle size of the pulverized product is 1.2 μm, the oxygen concentration of the main firing is 0.9%, and the firing temperature is 1160 ° C. (surface oxidation temperature 980 ° C.). To obtain magnetic particles 16. The volume average particle diameter of the magnetic particles 16 is 35 μm, the Sm of the magnetic particles 16 is 2.0, the Ra of the magnetic particles 16 is 0.2, and the BET specific surface area of the magnetic particles 16 is 0.07 m 2 / g, and the volume resistance of the magnetic particles 16 was 8.00 log Ωcm under an electric field of 24000 V / cm. Then, except that the magnetic particles 1 were changed to the magnetic particles 16, it was performed under the same conditions as the carrier 1 to obtain a carrier 16.

(キャリア17の調製)
本焼成の焼成温度を1150℃(表面酸化温度970℃)、酸素濃度1.20%の酸素窒素混合雰囲気下で本焼成したこと以外は、磁性粒子1と同様の条件で行い、磁性粒子17を得た。磁性粒子17のSmは2.4であり、磁性粒子17のRaは0.2であり、磁性粒子17のBET比表面積は0.09m/gであり、磁性粒子17の体積抵抗は24000V/cmの電界下で、9.0logΩcmであった。そして、磁性粒子1を磁性粒子17に変更すること以外は、キャリア1と同様の条件で行い、キャリア17を得た。
(Preparation of carrier 17)
The magnetic particles 17 were subjected to the same conditions as the magnetic particles 1 except that the main baking was performed at 1150 ° C. (surface oxidation temperature of 970 ° C.) and an oxygen-nitrogen mixed atmosphere with an oxygen concentration of 1.20%. Obtained. The Sm of the magnetic particles 17 is 2.4, the Ra of the magnetic particles 17 is 0.2, the BET specific surface area of the magnetic particles 17 is 0.09 m 2 / g, and the volume resistance of the magnetic particles 17 is 24,000 V / It was 9.0 log Ωcm under an electric field of cm. Then, except that the magnetic particle 1 was changed to the magnetic particle 17, it was performed under the same conditions as the carrier 1 to obtain the carrier 17.

(キャリア18の調製)
キャリア材料としてSiOを1.5質量部添加したこと、粉砕品の体積平均粒径を2.1μmとしたこと以外は、磁性粒子1と同様の条件で行い、磁性粒子18を得た。磁性粒子18の体積平均粒径は35μmであり、磁性粒子18のSmは3.5であり、磁性粒子18のRaは0.5であり、磁性粒子18のBET比表面積は0.14m/gであり、磁性粒子18の体積抵抗は24000V/cmの電界下で、5.00logΩcmであった。そして、磁性粒子1を磁性粒子18に変更すること以外は、キャリア1と同様の条件で行い、キャリア18を得た。
(Preparation of carrier 18)
Magnetic particles 18 were obtained under the same conditions as for magnetic particles 1 except that 1.5 parts by mass of SiO 2 was added as a carrier material and the volume average particle size of the pulverized product was 2.1 μm. The volume average particle diameter of the magnetic particles 18 is 35 μm, the Sm of the magnetic particles 18 is 3.5, the Ra of the magnetic particles 18 is 0.5, and the BET specific surface area of the magnetic particles 18 is 0.14 m 2 / g, and the volume resistance of the magnetic particles 18 was 5.00 log Ωcm under an electric field of 24000 V / cm. Then, except that the magnetic particle 1 was changed to the magnetic particle 18, it was performed under the same conditions as the carrier 1 to obtain the carrier 18.

表1に磁性粒子1〜18を得る際のSiOの添加量、粉砕品の体積平均粒径、本焼成温度、酸素濃度及び表面酸化温度をまとめた。また、表2に磁性粒子1〜18のSm、Ra、BET比表面積、体積抵抗をまとめた。 Table 1 summarizes the addition amount of SiO 2 in obtaining the magnetic particles 1 to 18, the volume average particle size of the pulverized product, the main firing temperature, the oxygen concentration, and the surface oxidation temperature. Table 2 summarizes the Sm, Ra, BET specific surface area, and volume resistance of the magnetic particles 1-18.

Figure 2014153476
Figure 2014153476

Figure 2014153476
Figure 2014153476

(着色剤分散液の調製)
シアン顔料:銅フタロシアニンB15:3(大日精化社製) 50質量部
アニオン性界面活性剤:ネオゲンSC(第一工業製薬社製) 5質量部
イオン交換水 200質量部
(Preparation of colorant dispersion)
Cyan pigment: Copper phthalocyanine B15: 3 (manufactured by Dainichi Seika Co., Ltd.) 50 parts by mass Anionic surfactant: Neogen SC (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 5 parts by mass Ion-exchanged water 200 parts by mass

上記の成分を混合し、IKA社製ウルトラタラックスにより5分間、更に超音波バスにより10分間分散し、固形分21%の着色剤分散液を得た。堀場製作所製粒度測定器LA−700にて体積平均粒径を測定したところ160nmであった。   The above components were mixed and dispersed for 5 minutes with an Ultra Turrax manufactured by IKA and for 10 minutes with an ultrasonic bath to obtain a colorant dispersion having a solid content of 21%. It was 160 nm when the volume average particle diameter was measured with a Horiba Seisakusho particle size measuring instrument LA-700.

(離型剤分散液の調製)
パラフィンワックス:HNP−9(日本精鑞社製) 19質量部
アニオン性界面活性剤:ネオゲンSC(第一工業製薬社製) 1質量部
イオン交換水 80質量部
(Preparation of release agent dispersion)
Paraffin wax: HNP-9 (Nippon Seiki Co., Ltd.) 19 parts by weight Anionic surfactant: Neogen SC (Daiichi Kogyo Seiyaku Co., Ltd.) 1 part by weight Ion-exchanged water 80 parts by weight

上記の成分を耐熱容器中で混合し、90℃に昇温して30分、攪拌を行った。次いで、容器底部より溶融液をゴーリンホモジナイザーへと流通し、5MPaの圧力条件のもと、3パス相当の循環運転を行った後、圧力を35MPaに昇圧し、更に3パス相当の循環運転を行った。こうして出来た乳化液を前記耐熱溶液中で40℃以下になるまで冷却し、離型剤分散液を得た。堀場製作所製粒度測定器LA−700にて体積平均粒径を測定したところ240nmであった。   The above components were mixed in a heat-resistant container, heated to 90 ° C., and stirred for 30 minutes. Next, the molten liquid is circulated from the bottom of the container to the gorin homogenizer, and under a pressure condition of 5 MPa, a circulation operation corresponding to 3 passes is performed. Then, the pressure is increased to 35 MPa, and further a circulation operation corresponding to 3 passes is performed. It was. The emulsion thus prepared was cooled in the heat-resistant solution to 40 ° C. or lower to obtain a release agent dispersion. It was 240 nm when the volume average particle diameter was measured with a Horiba Seisakusho particle size measuring instrument LA-700.

(樹脂粒子分散液の調製)
(油層)
スチレン(和光純薬社製) 30質量部
アクリル酸n−ブチル(和光純薬社製) 10質量部
β-カルボキシエチルアクリレート(ローディア日華社製) 1.3質量部
ドデカンチオール(和光純薬社製) 0.4質量部
(水層1)
イオン交換水 17質量部
アニオン性界面活性剤(ダウファックス、ダウケミカル社製) 0.4質量部
(水層2)
イオン交換水 40質量部
アニオン性界面活性剤(ダウファックス、ダウケミカル社製) 0.05質量部
ペルオキソ二硫酸アンモニウム(和光純薬社製) 0.4質量部
(Preparation of resin particle dispersion)
(Oil layer)
Styrene (manufactured by Wako Pure Chemical Industries, Ltd.) 30 parts by mass n-butyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 10 parts by mass β-carboxyethyl acrylate (manufactured by Rhodia Nikka Co., Ltd.) 1.3 parts by mass Dodecanethiol (Wako Pure Chemical Industries, Ltd.) Made) 0.4 parts by mass (water layer 1)
17 parts by mass of ion-exchanged water Anionic surfactant (Dowfax, manufactured by Dow Chemical Company) 0.4 parts by mass (water layer 2)
Deionized water 40 parts by weight Anionic surfactant (Dowfax, manufactured by Dow Chemical Co.) 0.05 part by weight Ammonium peroxodisulfate (Wako Pure Chemical Industries, Ltd.) 0.4 part by weight

上記の油層成分と水層1の成分をフラスコに入れて攪拌混合し、単量体乳化分散液とした。反応容器に上記水層2の成分を投入し、容器内を窒素で十分に置換し、攪拌をしながらオイルバスで反応系内が75℃になるまで加熱した。反応容器内に上記の単量体乳化分散液を3時間かけて徐々に滴下し、乳化重合を行った。滴下終了後、更に75℃で重合を継続し、3時間後に重合を終了させた。得られた樹脂粒子は、レーザー回析式粒度分布測定装置(LA−700堀場製作所製)で樹脂微粒子の体積平均粒径D50vを測定したところ250nmであり、示差走査熱量計(DSC−50島津製作所製)を用いて昇温速度10℃/分で樹脂のガラス転移温度を測定したところ53℃であり、分子量測定器(HLC−8020東ソー社製)を用い、THFを溶媒として数平均分子量(ポリスチレン換算)を測定したところ13,000であった。すなわち、体積平均粒径250nm、固形分42%、ガラス転移温度52℃、数平均分子量Mnが13,000の樹脂粒子分散液を得た。   The above oil layer component and water layer 1 component were placed in a flask and mixed with stirring to obtain a monomer emulsified dispersion. The components of the aqueous layer 2 were charged into the reaction vessel, the inside of the vessel was sufficiently replaced with nitrogen, and the reaction system was heated to 75 ° C. with an oil bath while stirring. The above monomer emulsified dispersion was gradually dropped into the reaction vessel over 3 hours to carry out emulsion polymerization. After completion of the dropping, the polymerization was further continued at 75 ° C., and the polymerization was terminated after 3 hours. The obtained resin particles were 250 nm when the volume average particle diameter D50v of the resin fine particles was measured with a laser diffraction particle size distribution analyzer (LA-700, manufactured by Horiba Seisakusho), and a differential scanning calorimeter (DSC-50 Shimadzu Corporation). The glass transition temperature of the resin was measured at a rate of temperature increase of 10 ° C./min. Using a molecular weight measuring device (HLC-8020 manufactured by Tosoh Corporation), and the number average molecular weight (polystyrene) was measured using THF as a solvent. Measurement) was 13,000. That is, a resin particle dispersion having a volume average particle size of 250 nm, a solid content of 42%, a glass transition temperature of 52 ° C., and a number average molecular weight Mn of 13,000 was obtained.

(トナーの調製)
樹脂微粒子分散液 150質量部
着色剤粒子分散液 30質量部
離型剤粒子分散液 40質量部
ポリ塩化アルミニウム 0.4質量部
(Toner preparation)
Resin fine particle dispersion 150 parts by weight Colorant particle dispersion 30 parts by weight Release agent particle dispersion 40 parts by weight Polyaluminum chloride 0.4 part by weight

上記の成分をステンレス製フラスコ中でIKE社製のウルトラタラックスを用いて混合、分散した後、加熱用オイルバスでフラスコを攪拌しながら48℃まで加熱した。48℃で80分保持した後、ここに上記と同じ樹脂微粒子分散液を緩やかに70質量部追加した。その後、濃度0.5mol/Lの水酸化ナトリウム水溶液を用いて系内のpHを6.0 に調整した後、ステンレス製フラスコを密閉し、攪拌軸のシールを磁力シールして攪拌を継続しながら97℃まで加熱して3時間保持した。反応終了後、降温速度を1℃/分で冷却し、濾過、イオン交換水で十分に洗浄した後、ヌッチェ式吸引濾過により固液分離を行った。これをさらに40℃のイオン交換水3Lを用いて再分散し、15分間300rpmで攪拌・洗浄した。この洗浄操作をさらに5回繰り返し、濾液のpHが6.54、電気伝導度6.5μS/cmとなったところで、ヌッチェ式吸引濾過によりNo.5Aのろ紙を用いて固液分離を行った。次いで真空乾燥を12時間継続してトナー母粒子を得た。トナー母粒子の体積平均粒径D50vをコールターカウンターで測定したところ6.2μmであり 、体積平均粒度分布指標GSDvは1.20であった。ルーゼックス社製のルーゼックス画像解析装置で形状観察を行ったところ、粒子の形状係数SF1は135でポテト形状であることが観察された。また、トナーのガラス転移温度は52℃であった。更に、このトナーに、ヘキサメチルジシラザン(以下、「HMDS」と略す場合がある)で表面疎水化処理した1次粒子平均粒径40nmのシリカ(SiO)粒子と、メタチタン酸とイソブチルトリメトキシシランの反応生成物である1次粒子平均粒径20nmのメタチタン酸化合物微粒子とを、トナー粒子の表面に対する被覆率が40%となるように添加し、ヘンシェルミキサーで混合し、トナーを調製した。 The above components were mixed and dispersed in a stainless steel flask using an IKE Ultra Turrax, and then heated to 48 ° C. while stirring the flask in a heating oil bath. After maintaining at 48 ° C. for 80 minutes, 70 parts by mass of the same resin fine particle dispersion as above was gradually added thereto. Then, after adjusting the pH in the system to 6.0 using a sodium hydroxide aqueous solution having a concentration of 0.5 mol / L, the stainless steel flask was sealed, and the stirring shaft seal was magnetically sealed while stirring was continued. Heat to 97 ° C. and hold for 3 hours. After completion of the reaction, the temperature lowering rate was cooled at 1 ° C./min, filtered and thoroughly washed with ion-exchanged water, and then solid-liquid separation was performed by Nutsche suction filtration. This was further redispersed with 3 L of ion exchanged water at 40 ° C., and stirred and washed at 300 rpm for 15 minutes. This washing operation was further repeated 5 times. When the pH of the filtrate was 6.54 and the electric conductivity was 6.5 μS / cm, No. 2 was obtained by Nutsche suction filtration. Solid-liquid separation was performed using 5A filter paper. Next, vacuum drying was continued for 12 hours to obtain toner mother particles. The volume average particle diameter D50v of the toner mother particles was measured with a Coulter counter. As a result, it was 6.2 μm and the volume average particle size distribution index GSDv was 1.20. When the shape was observed with a Luzex image analyzer manufactured by Luzex, the shape factor SF1 of the particles was 135, and it was observed that the particles had a potato shape. Further, the glass transition temperature of the toner was 52 ° C. Further, this toner was treated with silica (SiO 2 ) particles having an average primary particle diameter of 40 nm and surface-hydrophobized with hexamethyldisilazane (hereinafter sometimes abbreviated as “HMDS”), metatitanic acid and isobutyltrimethoxy. Metatitanic acid compound fine particles having an average primary particle diameter of 20 nm, which is a reaction product of silane, were added so that the coverage of the surface of the toner particles was 40%, and mixed with a Henschel mixer to prepare a toner.

<実施例1>
トナー濃度8重量%となるようにキャリア1と上記トナーを混ぜ現像剤を得た。
<Example 1>
The developer was obtained by mixing the carrier 1 and the toner so that the toner concentration was 8% by weight.

(現像剤の評価)
純正Cyan現像剤(トナー濃度8%)をDCC400改造機(トナー濃度8%固定、プリントスピード45枚/分)のCyan位置に仕込んだ。23℃、50%RHの環境下で24時間放置し、A4の普通紙にエリアカバレッジ2%になるようにソリッドパッチを100枚印刷した。次に、DCC400改造機のプリントスピードを90枚/分に調整し、上記現像剤をDCC400改造機のCyan位置に仕込み、30℃、88%RHの環境下で、24時間放置し、A4の普通紙にエリアカバレッジ2%になるようにソリッドパッチを100枚印刷した。上記それぞれ100枚目の画像の画像濃度差ΔEを求めた。画像濃度差ΔEは、X−rite938(X−Rite社製)を用いて、国際照明委員会(CIE)が規格化したCIE L* a* b*から求めた。画像濃度差(ΔE)の評価を下記の基準で行った。得られた結果を表3に示す。
(Developer evaluation)
Pure Cyan developer (toner concentration 8%) was charged into the Cyan position of a DCC400 remodeling machine (toner concentration fixed at 8%, print speed 45 sheets / min). The sheet was left for 24 hours in an environment of 23 ° C. and 50% RH, and 100 solid patches were printed on A4 plain paper so that the area coverage was 2%. Next, the print speed of the DCC400 remodeling machine is adjusted to 90 sheets / min, the developer is charged into the Cyan position of the DCC400 remodeling machine, and left in an environment of 30 ° C. and 88% RH for 24 hours. 100 solid patches were printed on paper so that the area coverage was 2%. The image density difference ΔE of each 100th image was determined. The image density difference ΔE was obtained from CIE L * a * b * standardized by the International Commission on Illumination (CIE) using X-rite 938 (manufactured by X-Rite). The image density difference (ΔE) was evaluated according to the following criteria. The obtained results are shown in Table 3.

(画像濃度差)
◎:画像濃度差がない(ΔEが1.0以下の場合)
○:画像濃度差がほとんどない(ΔEが1.0以上2.0以下の場合)
△:画像濃度差が若干ある(ΔEが2.0超3.0以下の場合)
×:画像濃度差がある(ΔEが3.0超4.0以下の場合)
××:画像濃度差が顕著である(ΔEが4.0超の場合)
(Image density difference)
A: No difference in image density (when ΔE is 1.0 or less)
○: Little difference in image density (when ΔE is 1.0 or more and 2.0 or less)
Δ: Image density is slightly different (when ΔE is more than 2.0 and 3.0 or less)
X: Image density difference (when ΔE is more than 3.0 and 4.0 or less)
XX: Image density difference is remarkable (when ΔE exceeds 4.0)

<実施例2>
実施例1のキャリア1をキャリア2に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Example 2>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 2. The obtained results are shown in Table 3.

<実施例3>
実施例1のキャリア1をキャリア3に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Example 3>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 3. The obtained results are shown in Table 3.

<実施例4>
実施例1のキャリア1をキャリア4に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Example 4>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 4. The obtained results are shown in Table 3.

<実施例5>
実施例1のキャリア1をキャリア5に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Example 5>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 5. The obtained results are shown in Table 3.

<実施例6>
実施例1のキャリア1をキャリア6に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Example 6>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 6. The obtained results are shown in Table 3.

<実施例7>
実施例1のキャリア1をキャリア7に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Example 7>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 7. The obtained results are shown in Table 3.

<実施例8>
実施例1のキャリア1をキャリア8に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Example 8>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 8. The obtained results are shown in Table 3.

<実施例9>
実施例1のキャリア1をキャリア9に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Example 9>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 9. The obtained results are shown in Table 3.

<実施例10>
実施例1のキャリア1をキャリア10に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Example 10>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 10. The obtained results are shown in Table 3.

<比較例1>
実施例1のキャリア1をキャリア11に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Comparative Example 1>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 11. The obtained results are shown in Table 3.

<比較例2>
実施例1のキャリア1をキャリア12に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Comparative example 2>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 12. The obtained results are shown in Table 3.

<比較例3>
実施例1のキャリア1をキャリア13に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Comparative Example 3>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 13. The obtained results are shown in Table 3.

<比較例4>
実施例1のキャリア1をキャリア14に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Comparative example 4>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 14. The obtained results are shown in Table 3.

<比較例5>
実施例1のキャリア1をキャリア15に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Comparative Example 5>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 15. The obtained results are shown in Table 3.

<比較例6>
実施例1のキャリア1をキャリア16に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Comparative Example 6>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 16. The obtained results are shown in Table 3.

<比較例7>
実施例1のキャリア1をキャリア17に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Comparative Example 7>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 17. The obtained results are shown in Table 3.

<比較例8>
実施例1のキャリア1をキャリア18に変更したこと以外は実施例1と同じように現像剤を調製し、評価を行った。得られた結果を表3に示す。
<Comparative Example 8>
A developer was prepared and evaluated in the same manner as in Example 1 except that the carrier 1 in Example 1 was changed to the carrier 18. The obtained results are shown in Table 3.

Figure 2014153476
Figure 2014153476

実施例1〜10の結果が示すように、磁性粒子のSmを1.0以上3.5以下の範囲とし、磁性粒子表面のRaを0.2以上0.7以下の範囲とし、磁性粒子のBET比表面積を0.08m/g以上0.14m/g以下の範囲とし、磁性粒子の体積抵抗を24000V/cmの電界下で、6.0logΩcm以上8.0logΩcm以下の範囲とした磁性粒子を使用することにより、磁性粒子のSm、Ra、BET比表面積、体積抵抗のうち少なくともいずれか1つを満たさない磁性粒子を使用した比較例1〜8に比べて、高温高湿の環境下で、且つ高速で画像を形成しても、記録媒体上の画像に生じる画像濃度差が抑制された。また、磁性粒子表面の凹凸の平均間隔Smが2.5以上3.0以下の範囲であり、磁性粒子表面の算術平均粗さRaが0.4以上0.7以下の範囲であり、磁性粒子のBET比表面積が0.08m/g以上0.12m/g以下の範囲であり、磁性粒子の体積抵抗が、24000V/cmの電界下で、7.0logΩcm以上7.8logΩcm以下の範囲である実施例1、8、9は、実施例2〜7、10に比べて、高温高湿の環境下で、且つ高速で画像を形成しても、記録媒体上の画像に生じる画像濃度差がより抑制された。 As the results of Examples 1 to 10 show, the Sm of the magnetic particles is in the range of 1.0 to 3.5, the Ra of the surface of the magnetic particles is in the range of 0.2 to 0.7, and the magnetic particles the BET specific surface area and 0.08 m 2 / g or more 0.14 m 2 / g or less in the range, the volume resistivity of the magnetic particles in an electric field of 24000V / cm, the magnetic particles with 8.0logΩcm following range of 6.0logΩcm Compared to Comparative Examples 1 to 8 using magnetic particles that do not satisfy at least one of Sm, Ra, BET specific surface area, and volume resistance of the magnetic particles, in a high-temperature and high-humidity environment. In addition, even when an image was formed at a high speed, the difference in image density generated in the image on the recording medium was suppressed. Further, the average interval Sm of the irregularities on the surface of the magnetic particles is in the range of 2.5 to 3.0, the arithmetic average roughness Ra of the surface of the magnetic particles is in the range of 0.4 to 0.7, and the magnetic particles a BET specific surface area in the range of less 0.08 m 2 / g or more 0.12 m 2 / g, a volume resistivity of magnetic particles, under an electric field of 24000V / cm, at 7.8logΩcm following range of 7.0logΩcm In Examples 1, 8, and 9, compared to Examples 2 to 7 and 10, even if an image is formed in a high-temperature and high-humidity environment and at a high speed, there is a difference in image density that occurs in the image on the recording medium. More suppressed.

20 電子写真感光体、50 現像装置、51 ケース、52 現像ロール、53 供給ロール、54 攪拌ロール、107 感光体、108 帯電ローラ(帯電装置)、111 現像装置、112 転写装置、113 感光体クリーニング装置、115 定着装置、116 レール、117,118 開口部、200 プロセスカートリッジ、300 記録媒体、301 画像形成装置、310 帯電部、312 露光部、314 電子写真感光体、316 現像部、318 転写部、320 クリーニング部、322 定着部、324 記録媒体、511 層厚規制部材、512 カバー部、521 マグネットロール、522 現像スリーブ。   20 electrophotographic photosensitive member, 50 developing device, 51 case, 52 developing roll, 53 supply roll, 54 stirring roll, 107 photoconductor, 108 charging roller (charging device), 111 developing device, 112 transfer device, 113 photoconductor cleaning device , 115 fixing device, 116 rail, 117, 118 opening, 200 process cartridge, 300 recording medium, 301 image forming device, 310 charging unit, 312 exposure unit, 314 electrophotographic photosensitive member, 316 developing unit, 318 transfer unit, 320 Cleaning unit, 322 fixing unit, 324 recording medium, 511 layer thickness regulating member, 512 cover unit, 521 magnet roll, 522 developing sleeve.

Claims (5)

磁性粒子を有し、前記磁性粒子表面の凹凸の平均間隔Smが1.0以上3.5以下の範囲であり、前記磁性粒子表面の算術平均粗さRaが0.2以上0.7以下の範囲であり、前記磁性粒子のBET比表面積が0.08m/g以上0.14m/g以下の範囲であり、前記磁性粒子の体積抵抗が、24000V/cmの電界下で、6.0logΩcm以上8.0logΩcm以下の範囲であることを特徴とする静電荷像現像用キャリア。 It has magnetic particles, the average interval Sm of the irregularities on the surface of the magnetic particles is in the range of 1.0 to 3.5, and the arithmetic average roughness Ra of the surface of the magnetic particles is 0.2 to 0.7 in the range, the BET specific surface area of the magnetic particles is in the range of less 0.08 m 2 / g or more 0.14 m 2 / g, a volume resistivity of said magnetic particles, under an electric field of 24000V / cm, 6.0logΩcm A carrier for developing an electrostatic image, wherein the carrier is in a range of 8.0 log Ωcm or less. 前記磁性粒子表面の凹凸の平均間隔Smが2.5以上3.0以下の範囲であり、前記磁性粒子表面の算術平均粗さRaが0.4以上0.7以下の範囲であり、前記磁性粒子のBET比表面積が0.08m/g以上0.12m/g以下の範囲であり、前記磁性粒子の体積抵抗が、24000V/cmの電界下で、7.0logΩcm以上7.8logΩcm以下の範囲であることを特徴とする請求項1に記載の静電荷像現像用キャリア。 The average interval Sm of the irregularities on the surface of the magnetic particles is in the range of 2.5 to 3.0, the arithmetic average roughness Ra of the surface of the magnetic particles is in the range of 0.4 to 0.7, and the magnetic ranges BET specific surface area of 0.08 m 2 / g or more 0.12m in 2 / g or less of the particles, the volume resistivity of the magnetic particles, under an electric field of 24000V / cm, less than 7.0logΩcm 7.8logΩcm 2. The carrier for developing an electrostatic charge image according to claim 1, wherein the carrier for developing an electrostatic image is in a range. 請求項1又は2に記載の静電荷像現像用キャリアを含有することを特徴とする静電荷像現像用現像剤。   An electrostatic charge image developing developer comprising the electrostatic charge image developing carrier according to claim 1. 請求項3に記載の静電荷像現像用現像剤を収納し、像保持体表面に形成された静電潜像を前記静電荷像現像用現像剤により現像してトナー像を形成する現像手段を備えることを特徴とするプロセスカートリッジ。   A developing means for accommodating the developer for developing an electrostatic charge image according to claim 3 and developing a latent image formed on the surface of the image carrier with the developer for developing an electrostatic charge image to form a toner image. A process cartridge comprising: 像保持体と、前記像保持体表面を帯電する帯電手段と、前記像保持体表面に静電潜像を形成する静電潜像形成手段と、前記静電潜像を請求項3に記載の静電荷像現像用現像剤により現像してトナー画像を形成する現像手段と、前記トナー画像を被転写体に転写する転写手段と、を備えることを特徴とする画像形成装置。   The image holding member, a charging unit that charges the surface of the image holding member, an electrostatic latent image forming unit that forms an electrostatic latent image on the surface of the image holding member, and the electrostatic latent image according to claim 3. An image forming apparatus comprising: a developing unit that develops a toner image by developing with a developer for developing an electrostatic image; and a transfer unit that transfers the toner image to a transfer target.
JP2013021691A 2013-02-06 2013-02-06 Carrier for electrostatic charge image development, developer for electrostatic charge image development, process cartridge, and image forming apparatus Pending JP2014153476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013021691A JP2014153476A (en) 2013-02-06 2013-02-06 Carrier for electrostatic charge image development, developer for electrostatic charge image development, process cartridge, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013021691A JP2014153476A (en) 2013-02-06 2013-02-06 Carrier for electrostatic charge image development, developer for electrostatic charge image development, process cartridge, and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2014153476A true JP2014153476A (en) 2014-08-25

Family

ID=51575411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013021691A Pending JP2014153476A (en) 2013-02-06 2013-02-06 Carrier for electrostatic charge image development, developer for electrostatic charge image development, process cartridge, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2014153476A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150268578A1 (en) * 2014-03-24 2015-09-24 Fuji Xerox Co., Ltd. Electrostatic charge image developing carrier, electrostatic charge image developer, and developer cartridge
JP2016153837A (en) * 2015-02-20 2016-08-25 富士ゼロックス株式会社 Electrostatic charge image developer, developer cartridge, process cartridge, image forming apparatus, and image forming method
JP2017146537A (en) * 2016-02-19 2017-08-24 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127428A (en) * 1991-11-05 1993-05-25 Canon Inc Magnetic material dispersion carrier, two-component developer for electrostatic charge image developing, and production of magnetic material despersion carrier
JP2007333886A (en) * 2006-06-13 2007-12-27 Fuji Xerox Co Ltd Carrier for electrostatic image development, developer for electrostatic image development and image forming method
JP2008040270A (en) * 2006-08-08 2008-02-21 Fuji Xerox Co Ltd Carrier for electrostatic latent image development and developer for electrostatic latent image development
JP2010039368A (en) * 2008-08-07 2010-02-18 Powdertech Co Ltd Carrier core material for electrophotographic developer, carrier, method for manufacturing them, and electrophotographic developer using the carrier
JP2010061099A (en) * 2008-03-11 2010-03-18 Canon Inc Two-component developer
JP2010243798A (en) * 2009-04-07 2010-10-28 Powdertech Co Ltd Carrier core material and carrier for electrophotographic developer, manufacturing method thereof, and electrophotographic developer using the carrier
JP2012013865A (en) * 2010-06-30 2012-01-19 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer and ferrite carrier, and electrophotographic developer using the ferrite carrier
JP2012168284A (en) * 2011-02-10 2012-09-06 Fuji Xerox Co Ltd Carrier for electrostatic charge development, developer for developing electrostatic charge image, process cartridge, image forming apparatus, and image forming method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127428A (en) * 1991-11-05 1993-05-25 Canon Inc Magnetic material dispersion carrier, two-component developer for electrostatic charge image developing, and production of magnetic material despersion carrier
JP2007333886A (en) * 2006-06-13 2007-12-27 Fuji Xerox Co Ltd Carrier for electrostatic image development, developer for electrostatic image development and image forming method
JP2008040270A (en) * 2006-08-08 2008-02-21 Fuji Xerox Co Ltd Carrier for electrostatic latent image development and developer for electrostatic latent image development
JP2010061099A (en) * 2008-03-11 2010-03-18 Canon Inc Two-component developer
JP2010039368A (en) * 2008-08-07 2010-02-18 Powdertech Co Ltd Carrier core material for electrophotographic developer, carrier, method for manufacturing them, and electrophotographic developer using the carrier
JP2010243798A (en) * 2009-04-07 2010-10-28 Powdertech Co Ltd Carrier core material and carrier for electrophotographic developer, manufacturing method thereof, and electrophotographic developer using the carrier
JP2012013865A (en) * 2010-06-30 2012-01-19 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer and ferrite carrier, and electrophotographic developer using the ferrite carrier
JP2012168284A (en) * 2011-02-10 2012-09-06 Fuji Xerox Co Ltd Carrier for electrostatic charge development, developer for developing electrostatic charge image, process cartridge, image forming apparatus, and image forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150268578A1 (en) * 2014-03-24 2015-09-24 Fuji Xerox Co., Ltd. Electrostatic charge image developing carrier, electrostatic charge image developer, and developer cartridge
US9557676B2 (en) * 2014-03-24 2017-01-31 Fuji Xerox Co., Ltd. Electrostatic charge image developing carrier, electrostatic charge image developer, and developer cartridge
JP2016153837A (en) * 2015-02-20 2016-08-25 富士ゼロックス株式会社 Electrostatic charge image developer, developer cartridge, process cartridge, image forming apparatus, and image forming method
JP2017146537A (en) * 2016-02-19 2017-08-24 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method

Similar Documents

Publication Publication Date Title
JPWO2009123329A1 (en) Toner and image forming method
JP5309986B2 (en) Replenishment developer set, process cartridge, and image forming apparatus
JP5998991B2 (en) Electrostatic image developing carrier, electrostatic image developing developer, developer cartridge, process cartridge, and image forming apparatus
JP5678713B2 (en) Two-component developer carrier, two-component developer, image forming method, and image forming apparatus
JP2008090055A (en) Image forming apparatus
JP5807438B2 (en) Two-component developer carrier, two-component developer, image forming method, and image forming apparatus
JP4207224B2 (en) Image forming method
JP4428839B2 (en) Toner for developing electrostatic image and image forming method
JP2009204695A (en) Developer for electrophotography, developer cartridge for electrophotography, process cartridge and image forming apparatus
JP4551952B2 (en) Resin-coated carrier, two-component developer, developing device, and image forming apparatus
US9557676B2 (en) Electrostatic charge image developing carrier, electrostatic charge image developer, and developer cartridge
JP2008203623A (en) Carrier for electrostatic charge image development, electrostatic charge image developer, process cartridge and image forming apparatus
JP5640684B2 (en) Electrostatic photographic developer, process cartridge, image forming apparatus and image forming method
JP5104345B2 (en) Electrostatic image developing carrier, electrostatic image developing developer, and image forming apparatus
JP2014153476A (en) Carrier for electrostatic charge image development, developer for electrostatic charge image development, process cartridge, and image forming apparatus
JP4442482B2 (en) Two-component developer, image forming method, and image forming apparatus
JP5678649B2 (en) Electrostatic charge image developing carrier, electrostatic charge image developing developer, developer cartridge, process cartridge, image forming apparatus, and image forming method
JP2010224054A (en) Ferrite carrier for electrophotographic developer and electrophotographic developer using the ferrite carrier
JP4547437B2 (en) Developer, developing device and image forming apparatus
JP6503645B2 (en) Carrier for electrostatic image development, developer for electrostatic image development, developer cartridge, process cartridge, and image forming apparatus
JP2014153469A (en) Carrier for electrostatic charge image development, developer for electrostatic charge image development, process cartridge, and image forming apparatus
JP2010230873A (en) Carrier for replenishment, developer for replenishment, developer cartridge for replenishment, and image forming apparatus
JP2006098816A (en) Developing device
JP2009210896A (en) Electrostatic charge image developing carrier, electrostatic charge image developer, developing device, electrostatic charge image developing cartridge, process cartridge and image forming apparatus
JP2014056158A (en) Carrier for electrostatic charge image development, developer for electrostatic charge image development, developer cartridge, process cartridge, and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160802