JP2014152765A - Rotary machine blade - Google Patents

Rotary machine blade Download PDF

Info

Publication number
JP2014152765A
JP2014152765A JP2013025934A JP2013025934A JP2014152765A JP 2014152765 A JP2014152765 A JP 2014152765A JP 2013025934 A JP2013025934 A JP 2013025934A JP 2013025934 A JP2013025934 A JP 2013025934A JP 2014152765 A JP2014152765 A JP 2014152765A
Authority
JP
Japan
Prior art keywords
blade
leaf spring
turbine
turbine blade
viscoelastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013025934A
Other languages
Japanese (ja)
Other versions
JP6150548B2 (en
Inventor
Naoki Onozato
直樹 小野里
Koji Oyama
宏治 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013025934A priority Critical patent/JP6150548B2/en
Publication of JP2014152765A publication Critical patent/JP2014152765A/en
Application granted granted Critical
Publication of JP6150548B2 publication Critical patent/JP6150548B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce variation of an eigen frequency to improve an attenuation effect, and to suppress vibration of a blade.SOLUTION: Provided is a turbine blade 10 including: a blade body in which a cavity part 13 is formed by respective rear surfaces 11a, 12a of a belly side member 11 and a back side member 12; a waveform plate spring 20 that is arranged in the cavity part 13; a viscoelastic member 30 that is interposed in at least a part of contact parts between the waveform plate spring 20 and the respective rear surfaces 11a, 12a, and is made of a soft material having smaller rigidity than the member of the waveform plate spring 20 such as fluororubber, silicone gel, or graphite fiber.

Description

本発明は、例えば蒸気タービン等に用いられる回転機械翼に関する。   The present invention relates to a rotary machine blade used in, for example, a steam turbine.

従来、蒸気タービンにおいては、軽量化を図るため、腹側部と背側部との各裏面によって空洞部が画成された中空構造としたタービン翼が知られている。このようなタービン翼では、振動を抑制する技術として、タービン翼の振動応答レベルを低減するため板バネ部材等のダンパが用いられている(例えば、特許文献1など参照)。この場合、共振時に翼内部で翼と板バネ部材とが接触するため、双方に摩擦が生じることにより減衰効果が得られることになる。   Conventionally, in order to reduce the weight of a steam turbine, a turbine blade having a hollow structure in which a cavity is defined by the back surfaces of the abdomen and the back is known. In such a turbine blade, as a technique for suppressing vibration, a damper such as a leaf spring member is used to reduce the vibration response level of the turbine blade (see, for example, Patent Document 1). In this case, since the blade and the leaf spring member are in contact with each other inside the blade at the time of resonance, a damping effect is obtained by causing friction in both of them.

特許文献1には、タービン翼の内部に形成される空洞部が内部に形成され、かつ空洞部と外部とを連通させるスリットが形成された静翼において、腹側部材と背側部材との間に、腹側部材と背側部材のうち少なくとも一方と摺接し、双方の少なくとも一方との間に摩擦を生じさせる波形板バネが設けられた構成について記載されている。   In Patent Document 1, a stationary blade in which a hollow portion formed inside a turbine blade is formed and a slit that communicates the hollow portion and the outside is formed between the ventral member and the back member. Further, there is described a configuration in which a corrugated leaf spring is provided which is in sliding contact with at least one of the abdominal member and the dorsal member and generates friction between at least one of both members.

特開2008−133825号公報JP 2008-133825 A

しかしながら、従来のタービン翼では、以下のような問題があった。
すなわち、タービンの実稼働時において、板バネ形状の初期不整によって固有振動数のばらつきが生じ、タービン翼が振動することになり、疲労破壊につながるという問題があった。
また、タービン翼の空洞部の中で、翼と板バネとが接触することにより減衰効果をもたせているが、この摩擦によって翼本体が摩耗して、その厚みが薄くなることで、振動に対する強度不足やタービン翼の固有振動数が次第に変化することによりばらつきが生じる。そのため、翼の振動応答レベルの低減効果が小さくなり、結果的に前述した減衰効果が低減することから、その点で改善の余地があった。
However, the conventional turbine blade has the following problems.
That is, during actual operation of the turbine, there is a problem in that variations in the natural frequency occur due to the initial irregularity of the leaf spring shape, and the turbine blades vibrate, leading to fatigue failure.
In addition, the blade has a damping effect due to the contact between the blade and the leaf spring in the cavity of the turbine blade. Variations occur due to shortage and the gradual change in the natural frequency of the turbine blades. For this reason, the effect of reducing the vibration response level of the blade is reduced, and as a result, the above-described damping effect is reduced.

本発明は、上述する問題点に鑑みてなされたもので、固有振動数のばらつきを低減し、且つ減衰効果を向上させることができ、翼の振動を抑制することができる回転機械翼を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a rotary machine blade that can reduce variations in natural frequency, improve a damping effect, and suppress blade vibration. For the purpose.

上記目的を達成するため、本発明に係る回転機械翼では、腹側部と背側部との各裏面によって空洞部が画成された翼本体と、前記空洞部内に配置された板バネ部材と、前記板バネ部材と各前記裏面との接触部の少なくとも一部に介在された粘弾性部材と、を備えることを特徴としている。   In order to achieve the above object, in the rotary machine blade according to the present invention, a blade body in which a cavity is defined by the back surfaces of the abdomen and the back, and a leaf spring member disposed in the cavity, And a viscoelastic member interposed in at least a part of a contact portion between the leaf spring member and each of the back surfaces.

本発明では、腹側部と背側部との間に、腹側部と背側部と少なくとも一部が摺接する板バネ部材が配置されているので、翼本体が弾性変形すると、板バネ部材が腹側部と背側部のうち少なくとも一方との間で摩擦を生じることになる。この摩擦により、腹側部と背側部の間における相対的な位置変動を減衰することができる。
さらに、この摩擦減衰に加えて、腹側部と背側部の各裏面との接触部の少なくとも一部に剛性の低い粘弾性部材が介在されているので、その粘弾性部材が前記摩擦力によってせん断変形し、粘弾性部材自体に内部減衰が生じることから、固有振動数のばらつきを低減する効果が得られ、減衰効果を向上させることができる。
このように、本発明では、効果的に減衰効果を発揮することができるので、翼本体の振動強度に設計余裕を大きく取る必要がなくなるという利点がある。
In the present invention, since the leaf spring member in which at least a part of the abdominal portion and the dorsal side is in sliding contact is disposed between the ventral portion and the dorsal portion, the leaf spring member is elastically deformed when the wing body is elastically deformed. Will cause friction between at least one of the ventral portion and the dorsal portion. By this friction, the relative position fluctuation between the ventral part and the dorsal part can be attenuated.
Furthermore, in addition to this friction damping, since a viscoelastic member having low rigidity is interposed at least at a part of the contact portion between the back side and the back side, the viscoelastic member is caused by the frictional force. Since shear deformation occurs and internal damping occurs in the viscoelastic member itself, an effect of reducing variations in the natural frequency can be obtained, and the damping effect can be improved.
As described above, the present invention can effectively exhibit a damping effect, and thus has an advantage that it is not necessary to provide a large design margin for the vibration strength of the blade body.

また、板バネ部材と翼本体(腹側部と背側部)との接触面圧を低下させることができるので、翼本体の減肉を防ぐとともに、翼の振動特性を保持することができる。
また、粘弾性部材が摩耗した場合であっても、板バネ部材を交換する場合に比べて容易に且つ低コストで補修・交換を行うことができる。
Further, since the contact surface pressure between the leaf spring member and the wing body (abdomen side portion and back side portion) can be reduced, it is possible to prevent the blade body from being thinned and to maintain the vibration characteristics of the wing.
Even when the viscoelastic member is worn, it can be repaired and replaced easily and at a lower cost than when the leaf spring member is replaced.

また、本発明に係る回転機械翼では、前記板バネ部材は、粘弾性材料を挟んだ積層構造をなしていることが好ましい。   In the rotary machine blade according to the present invention, it is preferable that the leaf spring member has a laminated structure with a viscoelastic material interposed therebetween.

この場合には、翼本体が振動して翼の内部形状が変化したときに、板バネ部材には翼との間の摩擦減衰と、粘弾性材料による内部減衰が生じ、翼の振動応答レベルを低減させることができる。つまり、板バネ部材自体の変形に伴う内部減衰を有するので、前述した翼の減衰効果をより向上させることができる。   In this case, when the blade body vibrates and the internal shape of the blade changes, the leaf spring member undergoes frictional damping with the blade and internal damping due to the viscoelastic material. Can be reduced. That is, since it has internal damping accompanying deformation of the leaf spring member itself, the above-described damping effect of the wing can be further improved.

本発明の回転機械翼によれば、板バネ部材と翼本体との接触部の少なくとも一部に内部減衰し得る粘弾性部材を介在させて、固有振動数のばらつきを低減し、且つ減衰効果を向上させることができ、翼の振動を抑制することができる。   According to the rotary machine blade of the present invention, a viscoelastic member capable of internal damping is interposed in at least a part of the contact portion between the leaf spring member and the blade body, thereby reducing variation in natural frequency and reducing the damping effect. The vibration of the wing can be suppressed.

本発明の第1の実施の形態による蒸気タービンの概略構成を模式的示した図である。It is the figure which showed typically schematic structure of the steam turbine by the 1st Embodiment of this invention. 図1に示す蒸気タービンを低圧最終段側から見た外観図である。It is the external view which looked at the steam turbine shown in FIG. 1 from the low-pressure last stage side. 静翼(タービン翼)を背側から見た拡大図である。It is the enlarged view which looked at the stationary blade (turbine blade) from the back side. タービン翼の翼形を示す断面図である。It is sectional drawing which shows the airfoil of a turbine blade. 第2の実施の形態によるタービン翼の翼形を示す断面図であって、図4に対応する図である。It is sectional drawing which shows the airfoil of the turbine blade by 2nd Embodiment, Comprising: It is a figure corresponding to FIG.

以下、本発明の実施の形態による回転機械翼について、図面に基づいて説明する。かかる実施の形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の技術的思想の範囲内で任意に変更可能である。   Hereinafter, a rotary machine blade according to an embodiment of the present invention will be described with reference to the drawings. This embodiment shows one aspect of the present invention, and does not limit the present invention, and can be arbitrarily changed within the scope of the technical idea of the present invention.

(第1の実施の形態)
図1に示すように、本実施の形態のタービン翼10(回転機械翼)が適用される蒸気タービンは、発電プラント等で用いられているものである。例えば、このような蒸気プラントとしては、高圧の蒸気を発生する蒸気発生器2と、蒸気発生器2から高圧の蒸気が直接供給される高圧蒸気タービン3と、蒸気発生器2及び高圧蒸気タービン3からの蒸気の湿分を分離して加熱する湿分分離加熱器4と、湿分分離加熱器4から低圧の蒸気が供給される低圧蒸気タービン(以下、蒸気タービン1という)が設けられている。
(First embodiment)
As shown in FIG. 1, the steam turbine to which the turbine blade 10 (rotary machine blade) of the present embodiment is applied is used in a power plant or the like. For example, such a steam plant includes a steam generator 2 that generates high-pressure steam, a high-pressure steam turbine 3 to which high-pressure steam is directly supplied from the steam generator 2, and the steam generator 2 and the high-pressure steam turbine 3. A moisture separator / heater 4 that separates and heats the moisture from the steam and a low-pressure steam turbine (hereinafter referred to as steam turbine 1) to which low-pressure steam is supplied from the moisture separator / heater 4 are provided. .

蒸気タービン1において、湿分分離加熱器4からの蒸気は、蒸気入口1Aに供給され、蒸気タービン1に形成されている蒸気通路1Bを、ロータ軸5の軸方向(図中、矢印Aで示す)に沿って流れる。蒸気通路1Bには、動翼6と静翼10(タービン翼10)が交互に配置されており、蒸気タービン1は、静翼10での圧力降下によって運動エネルギーを生じさせ、これを動翼6によって回転トルクに変換している。   In the steam turbine 1, steam from the moisture separation heater 4 is supplied to the steam inlet 1 </ b> A, and the steam passage 1 </ b> B formed in the steam turbine 1 is indicated by the axial direction of the rotor shaft 5 (indicated by an arrow A in the figure). ) Flow along. In the steam passage 1 </ b> B, the moving blades 6 and the stationary blades 10 (turbine blades 10) are alternately arranged. The steam turbine 1 generates kinetic energy by the pressure drop in the stationary blades 10. Is converted into rotational torque.

動翼6は、ロータ軸5に結合されており、これを回転駆動する。一方、静翼10は、図1〜図3に示すように、ロータ軸5の径方向(図中、矢印Rで示す)内側の端がシュラウド7に、径方向Rの外側の端が翼根リング8に、それぞれ溶接により結合されている(図3に溶接部を符号Eで示す)。   The rotor blade 6 is coupled to the rotor shaft 5 and rotationally drives it. On the other hand, as shown in FIGS. 1 to 3, the stationary blade 10 has an inner end in the radial direction (indicated by an arrow R) of the rotor shaft 5 at the shroud 7 and an outer end in the radial direction R at the blade root. Each ring 8 is joined by welding (the welded portion is indicated by symbol E in FIG. 3).

動翼6と静翼10は、一対となって一個の「段」を構成しており、蒸気タービン1には、多数の段が設けられている。これら段は、蒸気通路1Bを上流側から下流側に向かうに従って、動翼6及び静翼10の翼幅(ロータ軸5に略直交する方向の翼の長さ)が、長くなるよう構成されている。蒸気通路1Bの最も下流側にある段を「低圧最終段」という。低圧最終段の静翼10は、上流側の段にある静翼10に比べて、特に翼幅が長いものとなっている。低圧最終段において、静翼10は、図1に示すように、ロータ軸5の周方向(図中、矢印P)に所定の間隔で複数配列されており、翼群を形成している。
なお、以下の説明では、静翼10を「タービン翼10」として説明する。
The moving blade 6 and the stationary blade 10 constitute a single “stage” as a pair, and the steam turbine 1 is provided with a number of stages. These stages are configured such that the blade widths of the moving blades 6 and the stationary blades 10 (the lengths of the blades in a direction substantially perpendicular to the rotor shaft 5) become longer as the steam passage 1B moves from the upstream side to the downstream side. Yes. The stage on the most downstream side of the steam passage 1B is referred to as “low pressure final stage”. The low-pressure final stage stationary blade 10 has a particularly large blade width compared to the stationary blade 10 in the upstream stage. In the low-pressure final stage, as shown in FIG. 1, a plurality of stationary blades 10 are arranged at a predetermined interval in the circumferential direction of the rotor shaft 5 (arrow P in the figure) to form a blade group.
In the following description, the stationary blade 10 is described as the “turbine blade 10”.

タービン翼10は、図4に示すように、主に腹側を構成する腹側部材11と、主に背側を構成する背側部材12と、を有している。腹側部材11と背側部材12は、それぞれ金属製の板状部材を、互いに異なる反り方で湾曲させたものである。腹側部材11は、その表面がタービン翼10の腹面10aとなるよう反りが形成されている。一方、背側部材12は、その表面がタービン翼10の背面10bとなるよう反りが形成されている。   As shown in FIG. 4, the turbine blade 10 includes an abdominal member 11 that mainly constitutes the abdomen and a back member 12 that mainly constitutes the dorsal side. The abdominal member 11 and the dorsal member 12 are formed by bending metal plate-like members with different warping methods. The abdomen side member 11 is warped so that the surface thereof becomes the abdomen surface 10 a of the turbine blade 10. On the other hand, the back member 12 is warped so that the surface thereof becomes the back surface 10 b of the turbine blade 10.

腹側部材11と背側部材12は、略同一の長さに亘って翼幅方向に延びている。
なお、「翼幅方向」とは、図4に示す翼形の断面に垂直な方向であり、タービン翼10の平均反り線(骨格線ともいう、図中、一点鎖線Cで示す)に直交する方向である。本実施例において「翼幅方向」は、図1に示すロータ軸5の径方向と略同一のものとなっている。
The ventral member 11 and the dorsal member 12 extend in the wing span direction over substantially the same length.
The “blade width direction” is a direction perpendicular to the cross section of the airfoil shown in FIG. 4, and is orthogonal to the average warp line of the turbine blade 10 (also referred to as a skeleton line, indicated by a one-dot chain line C in the figure). Direction. In this embodiment, the “blade width direction” is substantially the same as the radial direction of the rotor shaft 5 shown in FIG. 1.

タービン翼10は、腹側部材11と背側部材12を組み合わせ、前縁部10cと後縁部10dにおいて溶接して結合することで、その外装形状が形成されている。これにより、タービン翼10の内部、すなわち腹側部材11の裏面11aと背側部材12の裏面12aとの間には、翼幅方向に沿って延びる空洞部13が形成される。また、タービン翼10の内部には、腹側部材11の裏面11aと背側部材12の裏面12aにより、翼内面(11a,12a)が形成されることになる。   The outer shape of the turbine blade 10 is formed by combining the abdominal member 11 and the back member 12 and joining them by welding at the front edge portion 10c and the rear edge portion 10d. As a result, a cavity 13 extending along the blade width direction is formed inside the turbine blade 10, that is, between the back surface 11 a of the abdominal member 11 and the back surface 12 a of the back member 12. Inside the turbine blade 10, the blade inner surface (11 a, 12 a) is formed by the back surface 11 a of the abdominal member 11 and the back surface 12 a of the back member 12.

このように本実施の形態のタービン翼10においては、腹側部材11が、タービン翼10の空洞部13より腹側の部分となる本発明の腹側部を構成し、背側部材12が、タービン翼10の空洞部13より背側の部分となる本発明の背側部を構成している。
また、本発明の翼本体は、腹側部材11と背側部材12との各裏面11a、12aによって空洞部13が画成されたものより構成されている。
As described above, in the turbine blade 10 of the present embodiment, the ventral member 11 constitutes the ventral portion of the present invention, which is a portion on the ventral side of the cavity 13 of the turbine blade 10, and the back member 12 is The back side part of this invention used as the part of the back side from the cavity part 13 of the turbine blade 10 is comprised.
Further, the wing body of the present invention is configured by a cavity portion 13 defined by the back surfaces 11a and 12a of the abdominal member 11 and the back member 12.

内部に空洞部13を有する中空のタービン翼10は、内部に空洞部13を有しない中実静翼に比べて固有振動数が比較的小さなものとなっており、蒸気タービン1の作動時において、自励振動(フラッタ)が生じ易くなっている。自励振動が生じると、タービン翼10には弾性変形による撓みや捩れが生じ、タービン翼10の腹側部材11と背側部材12との間には、相対的な位置変動が生じる。   The hollow turbine blade 10 having the hollow portion 13 has a relatively low natural frequency as compared with a solid stationary blade having no hollow portion 13 therein, and during operation of the steam turbine 1, Self-excited vibration (flutter) is likely to occur. When the self-excited vibration occurs, the turbine blade 10 is bent or twisted due to elastic deformation, and a relative positional variation occurs between the abdomen side member 11 and the back side member 12 of the turbine blade 10.

この相対的な位置変動を減衰するため、本実施の形態によるタービン翼10においては、空洞部13から、翼内面(11a,12a)に摺接可能な摺接部材が設けられており、タービン翼10が弾性変形すると、この摺接部材は、翼内面(11a,12a)との間に摩擦が生じるようにしており、以下に詳細を説明する。   In order to attenuate this relative position fluctuation, the turbine blade 10 according to the present embodiment is provided with a sliding member that can slide from the cavity 13 to the blade inner surface (11a, 12a). When 10 is elastically deformed, the sliding contact member is caused to generate friction between the blade inner surfaces (11a, 12a), and will be described in detail below.

本実施の形態のタービン翼10においては、図4に示すように、上記摺接部材として、断面が波形状を呈する波形板バネ20(板バネ部材)が、腹側部材11と背側部材12の間に粘弾性部材30を介して設けられている。   In the turbine blade 10 of the present embodiment, as shown in FIG. 4, as the sliding contact member, a corrugated leaf spring 20 (plate spring member) having a corrugated cross section is provided as an abdominal member 11 and a dorsal member 12. Are provided via a viscoelastic member 30.

波形板バネ20は、表側の頂部20a(以下、表側頂部と記す)が腹側部材11の裏面11aに対して粘弾性部材30を介在させて接している。また波形板バネ20は、裏側の頂部20b(以下、裏側頂部と記す)が背側部材12の裏面12aに対して粘弾性部材30を介して接している。   In the corrugated leaf spring 20, a top portion 20 a on the front side (hereinafter referred to as a front side top portion) is in contact with the back surface 11 a of the abdominal member 11 with a viscoelastic member 30 interposed therebetween. Further, the corrugated leaf spring 20 has a back side top portion 20 b (hereinafter referred to as a back side top portion) in contact with the back surface 12 a of the back side member 12 via a viscoelastic member 30.

波形板バネ20は、長手方向(図4で紙面に直交するする方向)に延びる金属製の平らな板状の部材を、幅方向(図4で矢印Wで示す)に沿って山折りと谷折りが交互に連続するよう湾曲させたものである。波形板バネ20は、複数(ここでは2箇所)の表側頂部20aを結ぶ包絡線が、腹側部材11を裏面11aに沿うように形成されており、複数(ここでは、3箇所)の裏側頂部20bを結ぶ包絡線が、背側部材12の裏面12aに沿うように形成されている。波形板バネ20は、前記長手方向が、タービン翼10の翼幅方向となるように位置決めされて、腹側部材11と背側部材12との間にある空洞部13に挿入される。   The corrugated leaf spring 20 is formed of a metal flat plate-like member extending in a longitudinal direction (a direction orthogonal to the paper surface in FIG. 4), and a mountain fold and a valley along a width direction (indicated by an arrow W in FIG. 4). The folds are bent so as to continue alternately. The corrugated leaf spring 20 is formed so that an envelope connecting a plurality (two in this case) of the front side top 20a is formed along the back surface 11a of the abdominal member 11, and a plurality of (here, three) back side tops. An envelope connecting 20 b is formed along the back surface 12 a of the back member 12. The corrugated leaf spring 20 is positioned so that the longitudinal direction thereof is the blade width direction of the turbine blade 10, and is inserted into the cavity 13 between the abdominal member 11 and the back member 12.

このように空洞部13に配設された状態(初期状態)において、波形板バネ20は、撓みにより僅かに弾性変形するように形成されている。この弾性力により、波形板バネ20は、図4に示すように、表側頂部20aが腹側部材11を裏面11aから押圧すると共に、裏側頂部20bが背側部材12を裏面12aから押圧するようになっている。つまり、波形板バネ20は、空洞部13に配設すると、腹側部材11と背側部材12とを、それぞれタービン翼10の翼厚方向の外向きに付勢する(押し広げる)ように構成されている。   Thus, in the state (initial state) arrange | positioned in the cavity part 13, the waveform leaf | plate spring 20 is formed so that it may be elastically deformed slightly by bending. As shown in FIG. 4, the wave-shaped leaf spring 20 causes the front side top portion 20 a to press the abdominal member 11 from the back surface 11 a and the back side top portion 20 b presses the back side member 12 from the back surface 12 a by this elastic force. It has become. That is, when the corrugated leaf spring 20 is disposed in the cavity portion 13, it is configured to urge (push and spread) the ventral member 11 and the back member 12 outward in the blade thickness direction of the turbine blade 10. Has been.

なお、「翼厚方向」とは、図4に示す翼形の断面に平行な方向であり、翼の平均反り線
(図中、一点鎖線Cで示す)と直交する方向を意味している。
The “blade thickness direction” is a direction parallel to the cross section of the airfoil shown in FIG. 4, and means a direction orthogonal to the average warp line of the blade (shown by a one-dot chain line C in the figure).

粘弾性部材30は、例えば、フッ素ゴム、シリコンゲル、グラファイトファイバー等の波形板バネ20の部材よりも剛性が小さく、柔らかい材質のものが用いられており、腹側部材11又は背側部材12、及び波形板バネ20のうち少なくとも一方に固着されている。なお、粘弾性部材30は、固着されることに制限されず、固着されなくても良い。   The viscoelastic member 30 is made of a soft material having a lower rigidity than that of the corrugated leaf spring 20 such as, for example, fluororubber, silicon gel, graphite fiber, and the like. And it adheres to at least one of the corrugated leaf springs 20. The viscoelastic member 30 is not limited to being fixed, and may not be fixed.

以上のように構成されたタービン翼10において、波形板バネ20の表側頂部20aと腹側部材11との裏面11aとの間、および波形板バネの裏側頂部20bと背側部材12の裏面12aとの間には、波形板バネ20の撓みによる付勢力(押圧力)が作用しており、タービン翼10が弾性変形して腹側部材11と背側部材12との間に相対的な位置変動が生じると、この付勢力に応じた大きさの動摩擦力が作用可能となっている。   In the turbine blade 10 configured as described above, between the front side top portion 20a of the corrugated leaf spring 20 and the back surface 11a of the ventral member 11, and between the back side top portion 20b of the corrugated leaf spring and the back surface 12a of the back side member 12. An urging force (pressing force) due to the bending of the corrugated leaf spring 20 acts between them, and the turbine blade 10 is elastically deformed to cause a relative position fluctuation between the ventral member 11 and the dorsal member 12. When this occurs, a dynamic friction force having a magnitude corresponding to the biasing force can be applied.

次に、上述した構成のタービン翼10の作用について、図面に基づいて具体的に説明する。
図1に示すように、本実施の形態では、蒸気タービン1の作動時において、その運転条件によっては、タービン翼10(静翼)に自励振動が生じ、タービン翼10が弾性変形することがある。例えば、腹側部材11が後縁部10d側に弾性変形すると共に、背側部材12が前縁部10c側に弾性変形するなどして、腹側部材11の裏面11aと背側部材12の裏面12aとの間には、相対的な位置変動が生じることがある。
Next, the operation of the turbine blade 10 having the above-described configuration will be specifically described based on the drawings.
As shown in FIG. 1, in the present embodiment, during operation of the steam turbine 1, depending on the operating conditions, self-excited vibration may occur in the turbine blade 10 (static blade), and the turbine blade 10 may be elastically deformed. is there. For example, the abdominal member 11 is elastically deformed toward the rear edge portion 10d and the back member 12 is elastically deformed toward the front edge portion 10c. There may be a relative positional variation between the distance 12a and 12a.

このとき、波形板バネ20は、表側頂部20aと腹側部材11の裏面11aの間、および裏側頂部20bと背側部材12の裏面12aとの間のうち少なくとも一方との間において摺接しているので、腹側部材11と背側部材12の相対的な位置変動を抑制する方向に動摩擦力が生じる。この動摩擦力により、腹側部材11と背側部材12との間における相対的な位置変動が減衰され、タービン翼10の弾性変形を減衰することで、タービン翼10に生じる自励振動を抑制することができる。   At this time, the corrugated leaf spring 20 is in sliding contact between at least one of the front side top portion 20a and the back surface 11a of the ventral member 11 and between the back side top portion 20b and the back surface 12a of the back side member 12. A dynamic friction force is generated in a direction that suppresses relative positional fluctuation between the ventral member 11 and the dorsal member 12. By this dynamic friction force, the relative positional fluctuation between the abdominal member 11 and the back member 12 is attenuated, and the elastic deformation of the turbine blade 10 is attenuated, thereby suppressing the self-excited vibration generated in the turbine blade 10. be able to.

さらに、本実施の形態では、この摩擦減衰に加えて、腹側部材11と背側部材12の各裏面との接触部の少なくとも一部に剛性の低い粘弾性部材30が介在されているので、その粘弾性部材30が前記摩擦力によってせん断変形し、粘弾性部材30自体に内部減衰が生じることから、固有振動数のばらつきを低減する効果が得られ、減衰効果を向上させることができる。
このように、効果的に減衰効果を発揮することができるので、翼本体の振動強度に設計余裕を大きく取る必要がなくなるという利点がある。
Furthermore, in the present embodiment, in addition to this friction damping, the low-rigidity viscoelastic member 30 is interposed in at least part of the contact portion between the back surface of the ventral member 11 and the back member 12, Since the viscoelastic member 30 is shear-deformed by the frictional force and internal damping occurs in the viscoelastic member 30 itself, an effect of reducing variation in natural frequency can be obtained, and the damping effect can be improved.
As described above, since the damping effect can be effectively exhibited, there is an advantage that it is not necessary to provide a large design margin for the vibration strength of the blade body.

また、波形板バネ20と翼本体(腹側部材11と背側部材12)との接触面圧を低下させることができるので、翼本体の減肉を防ぐとともに、タービン翼10の振動特性を保持することができる。   Further, since the contact surface pressure between the corrugated leaf spring 20 and the blade body (the abdominal member 11 and the back member 12) can be reduced, the blade body is prevented from being thinned and the vibration characteristics of the turbine blade 10 are maintained. can do.

また、粘弾性部材30が摩耗した場合であっても、波形板バネ20を交換する場合に比べて容易に且つ低コストで補修・交換を行うことができる。   Even when the viscoelastic member 30 is worn, repair and replacement can be performed easily and at a lower cost than when the corrugated leaf spring 20 is replaced.

また、付勢部材としての波形板バネ20の剛性の選定や、空洞部に配設した状態(初期状態)における付勢力を調節することで、腹側部材11と背側部材12との間における位置変動の減衰特性を、所望の特性に設定することができる。   Further, by selecting the rigidity of the corrugated leaf spring 20 as the urging member and adjusting the urging force in the state of being disposed in the cavity (initial state), between the abdominal member 11 and the dorsal member 12. The attenuation characteristic of the position variation can be set to a desired characteristic.

また、本実施の形態のタービン翼10では、翼幅方向に沿って延びる板状を呈し、撓みによる弾性力によって腹側部材11と背側部材12を押圧する板状バネ部材として波形板バネ20が設けられており、この波形板バネ20は矩形状の板状部材をプレス成形等により幅方向に湾曲させるだけで、板状部材の長手方向すなわちタービン翼10の翼幅方向に延びる付勢部材を容易に実現することができる。   Further, the turbine blade 10 of the present embodiment has a plate shape extending along the blade width direction, and the corrugated leaf spring 20 as a plate spring member that presses the abdominal member 11 and the dorsal member 12 by elastic force due to bending. The corrugated leaf spring 20 is a biasing member that extends in the longitudinal direction of the plate member, that is, in the blade width direction of the turbine blade 10 only by bending the rectangular plate member in the width direction by press molding or the like. Can be easily realized.

また、本実施の形態のタービン翼10において、波形板バネ20は、断面が波形状を呈しており、腹側部材11と背側部材12には、波形の頂部20a、20bが接している。そのため、板状バネ部材をこのような波形状とすることで、腹側部材11と背側部材12の双方に複数の頂部で摺接することができる。これにより、波形板バネ20は、腹側部材11及び/又は背側部材12との間に良好に摩擦を生じさせることができる。   In the turbine blade 10 of the present embodiment, the corrugated leaf spring 20 has a corrugated cross section, and the corrugated top portions 20a and 20b are in contact with the ventral member 11 and the dorsal member 12. Therefore, by making the plate-like spring member into such a wave shape, it is possible to make sliding contact with both the abdominal member 11 and the dorsal member 12 at a plurality of top portions. Thereby, the corrugated leaf | plate spring 20 can produce a favorable friction between the abdominal member 11 and / or the back member 12. FIG.

上述した本実施の形態による回転機械翼では、波形板バネ20と翼本体(腹側部材11背側部材12)との接触部の少なくとも一部に内部減衰し得る粘弾性部材30を介在させて、固有振動数のばらつきを低減し、且つ減衰効果を向上させることができ、タービン翼10の振動を抑制することができる。   In the rotary machine blade according to the present embodiment described above, a viscoelastic member 30 capable of internal damping is interposed in at least a part of the contact portion between the corrugated leaf spring 20 and the blade body (the abdominal member 11 and the dorsal member 12). The variation in the natural frequency can be reduced, the damping effect can be improved, and the vibration of the turbine blade 10 can be suppressed.

次に、本発明の回転機械翼による他の実施の形態について、添付図面に基づいて説明するが、上述の第1の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、第1の実施の形態と異なる構成について説明する。   Next, another embodiment of the rotating machine blade according to the present invention will be described with reference to the accompanying drawings. The same reference numerals are used for members or parts that are the same as or similar to those of the first embodiment described above. A description is omitted, and a configuration different from the first embodiment will be described.

(第2の実施の形態)
図5に示すように、第2の実施の形態によるタービン翼10A(回転機械翼)は、波形板バネ20A(板バネ部材)が粘弾性材料を挟んだ積層構造をなしている。つまり、波形板バネ20Aは、一対の高剛性材料層21の間に粘弾性材料層22が挟持され、上述の第1の実施の形態と同様に翼内面(11a,12a)の曲面に粘弾性部材30を介して摺接する折り曲り構造となっている。
(Second Embodiment)
As shown in FIG. 5, the turbine blade 10A (rotary machine blade) according to the second embodiment has a laminated structure in which a corrugated leaf spring 20A (leaf spring member) sandwiches a viscoelastic material. That is, in the corrugated leaf spring 20A, the viscoelastic material layer 22 is sandwiched between the pair of high-rigidity material layers 21, and viscoelasticity is applied to the curved surface of the blade inner surface (11a, 12a) as in the first embodiment. It has a bent structure in sliding contact with the member 30.

第2の実施の形態では、翼本体(腹側部材11背側部材12)が振動して翼の内部形状が変化したときに、波形板バネ20Aには翼との間の摩擦減衰と、粘弾性材料層22による内部減衰が生じ、翼の振動応答レベルを低減させることができる。つまり、波形板バネ20A自体の変形に伴う内部減衰を有するので、前述した第1の実施の形態による翼の減衰効果をより向上させることができる。   In the second embodiment, when the wing body (the abdominal member 11 and the dorsal member 12) vibrates and the internal shape of the wing changes, the corrugated leaf spring 20A has frictional damping between the wing and viscosity. Internal damping is caused by the elastic material layer 22, and the vibration response level of the blade can be reduced. That is, since it has internal damping accompanying deformation of the corrugated leaf spring 20A itself, the damping effect of the wing according to the first embodiment described above can be further improved.

以上、本発明による回転機械翼の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although embodiment of the rotary machine blade by this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.

例えば、本実施の形態では、波形板バネ20の表側頂部20aと裏側頂部20bのすべてが粘弾性部材30を介して内面に接するように構成されているが、これに限定されることはなく、表側頂部20aと裏側頂部20bのうち振動が大きい必要な箇所のみに粘弾性部材30を設けるようにしてもよい。   For example, in the present embodiment, all of the front side top portion 20a and the back side top portion 20b of the corrugated leaf spring 20 are configured to contact the inner surface via the viscoelastic member 30, but the present invention is not limited thereto. You may make it provide the viscoelastic member 30 only in the location where vibration is large among the front side top part 20a and the back side top part 20b.

また、本実施の形態では、蒸気タービン1の静翼(タービン翼10)を適用対象としているが、これに限定されることはなく、回転機械翼であれば他の対象に適用することも可能である。   Further, in the present embodiment, the stationary blade (turbine blade 10) of the steam turbine 1 is an application target. However, the present invention is not limited to this, and the rotary blade can be applied to other targets. It is.

さらに、上述した第2の実施の形態のタービン翼10Aでは、一層の粘弾性材料層22が一対の高剛性材料層21同士の間に挟持されているが、このような積層構造に制限されることはなく、例えば複数の粘弾性材料層22と高剛性材料層21とが交互に積層された構造とすることも可能である。   Furthermore, in the turbine blade 10A of the second embodiment described above, the single viscoelastic material layer 22 is sandwiched between the pair of high-rigidity material layers 21, but is limited to such a laminated structure. In other words, for example, a structure in which a plurality of viscoelastic material layers 22 and high-rigidity material layers 21 are alternately stacked may be employed.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施の形態を適宜組み合わせてもよい。   In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with well-known constituent elements without departing from the spirit of the present invention, and the above-described embodiments may be appropriately combined.

1 蒸気タービン
2 蒸気発生器
5 ロータ軸
6 動翼
10、10A タービン翼、静翼(回転機械翼)
11 腹側部材
11a 裏面
12 背側部材
12a 裏面
13 空洞部
20、20A 波形板バネ(板バネ部材)
20a 表側頂部
20b 裏側頂部
21 高剛性材料層
22 粘弾性材料層
30 粘弾性部材
DESCRIPTION OF SYMBOLS 1 Steam turbine 2 Steam generator 5 Rotor shaft 6 Rotor blade 10, 10A Turbine blade, stationary blade (rotary machine blade)
DESCRIPTION OF SYMBOLS 11 Abdominal side member 11a Back surface 12 Back side member 12a Back surface 13 Cavity part 20, 20A Wave plate spring (plate spring member)
20a Front side top part 20b Back side top part 21 High rigidity material layer 22 Viscoelastic material layer 30 Viscoelastic member

Claims (2)

腹側部と背側部との各裏面によって空洞部が画成された翼本体と、
前記空洞部内に配置された板バネ部材と、
前記板バネ部材と各前記裏面との接触部の少なくとも一部に介在された粘弾性部材と、
を備えることを特徴とする回転機械翼。
A wing body in which a cavity is defined by each back surface of the ventral side and the back side;
A leaf spring member disposed in the cavity,
A viscoelastic member interposed in at least a part of a contact portion between the leaf spring member and each of the back surfaces;
A rotary machine blade comprising:
前記板バネ部材は、粘弾性材料を挟んだ積層構造をなしていることを特徴とする請求項1に記載の回転機械翼。   The rotary machine blade according to claim 1, wherein the leaf spring member has a laminated structure with a viscoelastic material interposed therebetween.
JP2013025934A 2013-02-13 2013-02-13 Rotating machine blade Expired - Fee Related JP6150548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013025934A JP6150548B2 (en) 2013-02-13 2013-02-13 Rotating machine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013025934A JP6150548B2 (en) 2013-02-13 2013-02-13 Rotating machine blade

Publications (2)

Publication Number Publication Date
JP2014152765A true JP2014152765A (en) 2014-08-25
JP6150548B2 JP6150548B2 (en) 2017-06-21

Family

ID=51574853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013025934A Expired - Fee Related JP6150548B2 (en) 2013-02-13 2013-02-13 Rotating machine blade

Country Status (1)

Country Link
JP (1) JP6150548B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125427A (en) * 1983-12-08 1985-07-04 Nhk Spring Co Ltd Frp leaf spring
JPH0714238A (en) * 1993-06-29 1995-01-17 Hitachi Ltd Vibration-proof mechanism for magneto-optical disk apparatus
US20040253115A1 (en) * 2003-06-10 2004-12-16 Rolls-Royce Plc Damped aerofoil structure
JP2005220902A (en) * 2004-02-04 2005-08-18 United Technol Corp <Utc> Cooling type rotor blade equipped with vibration damping device
JP2008002460A (en) * 2006-06-23 2008-01-10 Snecma Sector of compressor guide vanes assembly or sector of turbomachine nozzle assembly
JP2009024697A (en) * 2007-06-26 2009-02-05 Snecma Damping device for stator of turbo machine
JP2009264219A (en) * 2008-04-24 2009-11-12 Mitsubishi Heavy Ind Ltd Steam turbine
JP2011530038A (en) * 2008-08-06 2011-12-15 スネクマ Vibration damping device for turbomachine blade attachment, related turbomachine, and related engines
US8182233B2 (en) * 2007-07-13 2012-05-22 Rolls-Royce Plc Component with a damping filler
JP2012132375A (en) * 2010-12-22 2012-07-12 Mitsubishi Heavy Ind Ltd Stator blade of steam turbine and steam turbine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125427A (en) * 1983-12-08 1985-07-04 Nhk Spring Co Ltd Frp leaf spring
JPH0714238A (en) * 1993-06-29 1995-01-17 Hitachi Ltd Vibration-proof mechanism for magneto-optical disk apparatus
US20040253115A1 (en) * 2003-06-10 2004-12-16 Rolls-Royce Plc Damped aerofoil structure
JP2005220902A (en) * 2004-02-04 2005-08-18 United Technol Corp <Utc> Cooling type rotor blade equipped with vibration damping device
JP2008002460A (en) * 2006-06-23 2008-01-10 Snecma Sector of compressor guide vanes assembly or sector of turbomachine nozzle assembly
JP2009024697A (en) * 2007-06-26 2009-02-05 Snecma Damping device for stator of turbo machine
US8182233B2 (en) * 2007-07-13 2012-05-22 Rolls-Royce Plc Component with a damping filler
JP2009264219A (en) * 2008-04-24 2009-11-12 Mitsubishi Heavy Ind Ltd Steam turbine
JP2011530038A (en) * 2008-08-06 2011-12-15 スネクマ Vibration damping device for turbomachine blade attachment, related turbomachine, and related engines
JP2012132375A (en) * 2010-12-22 2012-07-12 Mitsubishi Heavy Ind Ltd Stator blade of steam turbine and steam turbine

Also Published As

Publication number Publication date
JP6150548B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
JP4939368B2 (en) Stator blades and steam turbines
US8851844B2 (en) Stationary blade and steam turbine
KR101271363B1 (en) Turbine blade and gas turbine
JP5543032B2 (en) Blade arrangement and gas turbine having the blade arrangement
JP5430657B2 (en) Vibration damping device for turbomachine blade attachment, related turbomachine, and related engines
CN103237959B (en) Steam turbine stator blade and steam turbine
JP2017201171A (en) Bearing damper with external support spring systems and methods
JP6278448B2 (en) Liquid damper and rotary machine blade provided with the same
JP5501609B2 (en) Turbine blade and gas turbine
JP6151932B2 (en) Damping member for rotating machinery
JP6150548B2 (en) Rotating machine blade
JP6118242B2 (en) Rotary machine blades and steam turbines
JP2015155683A (en) Moving blade body and rotary machine
JP2009264219A (en) Steam turbine
JP6256836B2 (en) Rotating machine blade and rotating machine
JP5881355B2 (en) Stator blades and steam turbines
JP6257991B2 (en) Rotor blade and rotating machine
JP6125407B2 (en) Stator blade, steam turbine, and stator blade manufacturing method
JP5956365B2 (en) Turbine blade cascade assembly and steam turbine equipment
JP5501611B2 (en) Turbine blade and gas turbine
JP6689117B2 (en) Stator blade ring and axial flow rotary machine equipped in the axial flow rotary machine
JP5501610B2 (en) Turbine blade and gas turbine
KR20080089838A (en) Air foil bearing
JP5758243B2 (en) Stator blades and steam turbines
JP6167043B2 (en) Blades and turbines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170523

R150 Certificate of patent or registration of utility model

Ref document number: 6150548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees