JP2014152374A - Method for manufacturing composite nanoparticle and apparatus for manufacturing the same - Google Patents

Method for manufacturing composite nanoparticle and apparatus for manufacturing the same Download PDF

Info

Publication number
JP2014152374A
JP2014152374A JP2013024879A JP2013024879A JP2014152374A JP 2014152374 A JP2014152374 A JP 2014152374A JP 2013024879 A JP2013024879 A JP 2013024879A JP 2013024879 A JP2013024879 A JP 2013024879A JP 2014152374 A JP2014152374 A JP 2014152374A
Authority
JP
Japan
Prior art keywords
metal
composite
electrode
nanoparticles
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013024879A
Other languages
Japanese (ja)
Other versions
JP6143260B2 (en
Inventor
Koji Yui
宏治 由井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2013024879A priority Critical patent/JP6143260B2/en
Publication of JP2014152374A publication Critical patent/JP2014152374A/en
Application granted granted Critical
Publication of JP6143260B2 publication Critical patent/JP6143260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a composite nanoparticle by varying the combination of materials to be combined with each other and to provide an apparatus for manufacturing the composite nanoparticle.SOLUTION: The composite nanoparticle produced by combining a first material with a second material in which the first material is a metal and the second material is a metal different from the first material or a carbon material is manufactured by the manufacturing method comprising a step of generating a discharge plasma between a plurality of electrodes 10 disposed in an aqueous solution S containing a metal salt. In the manufacturing method, the metal salt is a salt of the first material and the electrodes are formed of the second material. A variety fo the composite nanoparticle can be manufactured by varying the combination of the first material and the second material.

Description

本発明は、複合ナノ粒子の製造方法及び製造装置に関する。   The present invention relates to a method and apparatus for producing composite nanoparticles.

金属ナノ粒子は、基板の配線材料、触媒、電極材料、医療用検査試薬等に広く利用されている。最近では使用量が増加しており、品質の安定性の他、コストやエネルギー消費の削減を目的に、さまざまな製造方法が検討されている。また、新たな機能の発現や、金属使用量の削減を目的に、単一金属のナノ粒子から複合ナノ粒子への展開も図られている。   Metal nanoparticles are widely used for substrate wiring materials, catalysts, electrode materials, medical test reagents, and the like. Recently, the amount of use has increased, and various manufacturing methods have been studied for the purpose of reducing the cost and energy consumption in addition to the stability of quality. In addition, for the purpose of expressing new functions and reducing the amount of metal used, the development from single metal nanoparticles to composite nanoparticles is also underway.

金属ナノ粒子の製造方法としては気相法、液相法、破砕法等があるが、大きさのそろった金属ナノ粒子を短時間で大量に製造するには、液相法が有利である。液相法の中でも、液中プラズマを反応場とするプロセスは、製造した金属ナノ粒子を安定に分散させるための保護剤を添加せずに製造することが可能であるという利点がある。この方法により製造された金属ナノ粒子には不純物が混入しにくく、金属ナノ粒子表面は効率的に金属が露出しており、触媒反応に用いた場合に活性を向上させることができる。   As a method for producing metal nanoparticles, there are a gas phase method, a liquid phase method, a crushing method and the like, but the liquid phase method is advantageous for producing a large amount of metal nanoparticles of uniform size in a short time. Among the liquid phase methods, a process using plasma in liquid as a reaction field has an advantage that it can be produced without adding a protective agent for stably dispersing the produced metal nanoparticles. Impurities are hardly mixed in the metal nanoparticles produced by this method, and the metal is efficiently exposed on the surface of the metal nanoparticles, and the activity can be improved when used in the catalytic reaction.

例えば、塩化金酸等の金属塩溶液中に配置した一対の液中電極間に、高周波高電圧を連続印加して液中プラズマを生じさせ、発生するラジカルや電子によって溶液中の金属イオンを還元し、金属ナノ粒子を製造する方法が提案されている(特許文献1を参照)。また、エタノール中に設置した液中電極にマイクロ波を供給することにより液中プラズマを発生させ、電極を構成する亜鉛を中心部に、酸化亜鉛を外層部に有するナノ粒子を製造する方法が提案されている(特許文献2を参照)。特許文献1の方法で製造された金属ナノ粒子は、金ナノ粒子、銀ナノ粒子、白金ナノ粒子であり、また、特許文献2の方法で製造された金属ナノ粒子は、亜鉛−酸化亜鉛ナノ粒子であり、いずれも単一の金属種を有するナノ粒子であった。   For example, a high-frequency high voltage is continuously applied between a pair of submerged electrodes placed in a metal salt solution such as chloroauric acid to generate submerged plasma, and the generated ions and radicals reduce the metal ions in the solution. And the method of manufacturing a metal nanoparticle is proposed (refer patent document 1). Also proposed is a method for producing nanoparticles in which zinc in the center and zinc oxide in the outer layer are generated by generating a plasma in liquid by supplying microwaves to an in-liquid electrode placed in ethanol. (See Patent Document 2). The metal nanoparticles produced by the method of Patent Literature 1 are gold nanoparticles, silver nanoparticles, and platinum nanoparticles, and the metal nanoparticles produced by the method of Patent Literature 2 are zinc-zinc oxide nanoparticles. All were nanoparticles having a single metal species.

液中プラズマを利用した複合ナノ粒子の製造方法としては、液体有機化合物中で、ケイ素、チタン等の金属電極又は炭素電極からなる陰極と、ケイ素、チタン等の金属電極からなる陽極との間でパルスプラズマ放電させることにより、炭素−金属コンポジットを製造する方法が提案されている(特許文献3を参照)。しかし、特許文献3の方法で製造された複合ナノ粒子は、金属電極を構成する金属を核として、炭素材で覆われた構造の複合ナノ粒子であった。   As a method for producing composite nanoparticles using in-liquid plasma, in a liquid organic compound, between a cathode made of a metal electrode such as silicon or titanium or a carbon electrode and an anode made of a metal electrode such as silicon or titanium. A method of producing a carbon-metal composite by performing pulsed plasma discharge has been proposed (see Patent Document 3). However, the composite nanoparticles produced by the method of Patent Document 3 were composite nanoparticles having a structure covered with a carbon material with the metal constituting the metal electrode as a nucleus.

特開2008−13810号公報JP 2008-13810 A 特開2012−36468号公報JP 2012-36468 A 特開2012−211049号公報JP 2012-211049 A

このように、従来の液中プラズマを利用したナノ粒子の製造方法では、製造されるナノ粒子が、単一金属のナノ粒子や、金属が炭素材で覆われた構造のナノ粒子に限定されており、新たな機能の発現等のために、複合する材料の組み合わせを自由にできる製造方法はなかった。   As described above, in the conventional method for producing nanoparticles using in-liquid plasma, the produced nanoparticles are limited to single metal nanoparticles or nanoparticles having a structure in which a metal is covered with a carbon material. Therefore, there has been no manufacturing method that can freely combine the composite materials for the development of new functions.

そこで、本発明は、複合する材料の組み合わせを多様化する複合ナノ粒子の製造方法及び製造装置を提供すること目的とする。   Then, this invention aims at providing the manufacturing method and manufacturing apparatus of the composite nanoparticle which diversify the combination of the composite material.

本発明者らは、上記課題を解決するため鋭意研究を重ねたところ、金属塩を含有する水溶液中に配置した電極間に放電プラズマを発生させると、上記金属塩を構成する金属と、上記電極を構成する材料とを構成成分とする複合ナノ粒子を製造できることを見出し、本発明を完成させるに至った。すなわち、本発明は以下の通りである。   The inventors of the present invention have made extensive studies in order to solve the above-mentioned problems. As a result, when discharge plasma is generated between electrodes arranged in an aqueous solution containing a metal salt, the metal constituting the metal salt and the electrode The present inventors have found that composite nanoparticles containing a material constituting the material can be produced as a constituent, and have completed the present invention. That is, the present invention is as follows.

(1)第一の材料と第二の材料とが複合してなり、上記第一の材料が金属であり、上記第二の材料が上記第一の材料と異なる金属又は炭素材である複合ナノ粒子の製造方法であって、金属塩を含有する水溶液中に配置した複数の電極の間に放電プラズマを発生させる工程を含み、上記金属塩は上記第一の材料の塩であり、上記電極は上記第二の材料からなる、製造方法。
(2)(1)に記載の製造方法で製造した複合ナノ粒子。
(3)絶対値が30mV以上のゼータ電位を有する(2)に記載の複合ナノ粒子。
(4)第一の材料と第二の材料とが複合してなり、上記第一の材料が金属であり、上記第二の材料が上記第一の材料と異なる金属又は炭素材である複合ナノ粒子の製造装置であって、上記第一の材料の塩である金属塩を含有する水溶液が貯留されたセルと、上記水溶液中に配置された、上記第二の材料からなる複数の電極と、上記電極の間に放電プラズマが発生するように高周波高電圧を印加する印加部と、を備える製造装置。
(1) A composite nanostructure comprising a composite of a first material and a second material, wherein the first material is a metal, and the second material is a metal or carbon material different from the first material. A method for producing particles, comprising a step of generating a discharge plasma between a plurality of electrodes arranged in an aqueous solution containing a metal salt, wherein the metal salt is a salt of the first material, and the electrode is A manufacturing method comprising the second material.
(2) Composite nanoparticles produced by the production method according to (1).
(3) The composite nanoparticle according to (2), which has a zeta potential having an absolute value of 30 mV or more.
(4) A composite nanostructure comprising a composite of a first material and a second material, wherein the first material is a metal, and the second material is a metal or carbon material different from the first material. A particle manufacturing apparatus, wherein a cell in which an aqueous solution containing a metal salt that is a salt of the first material is stored, and a plurality of electrodes made of the second material disposed in the aqueous solution, An application unit that applies a high-frequency high voltage so that discharge plasma is generated between the electrodes.

本発明によれば、複合する材料の組み合わせを多様化する複合ナノ粒子の製造方法及び製造装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method and manufacturing apparatus of composite nanoparticle which diversify the combination of the composite material can be provided.

本発明の一実施形態に係る複合ナノ粒子の製造装置の概念図である。It is a conceptual diagram of the manufacturing apparatus of the composite nanoparticle which concerns on one Embodiment of this invention. 試験例1で製造したPd−Pt複合ナノ粒子分散液のTEM観察画像を示す図である。4 is a diagram showing a TEM observation image of the Pd—Pt composite nanoparticle dispersion liquid produced in Test Example 1. FIG. 試験例1で製造したPd−Pt複合ナノ粒子の粒子径分布を示す図である。4 is a diagram showing a particle size distribution of Pd—Pt composite nanoparticles produced in Test Example 1. FIG. 試験例1で製造したPd−Pt複合ナノ粒子のEDXスペクトルの一例を示す図である。6 is a diagram showing an example of an EDX spectrum of Pd—Pt composite nanoparticles produced in Test Example 1. FIG. 試験例2で製造したPd−Pt複合ナノ粒子分散液のTEM観察画像を示す図である。4 is a diagram showing a TEM observation image of a Pd—Pt composite nanoparticle dispersion produced in Test Example 2. FIG. 試験例2で製造したPd−Pt複合ナノ粒子の粒子径分布を示す図である。6 is a diagram showing a particle size distribution of Pd—Pt composite nanoparticles produced in Test Example 2. FIG. 試験例3で製造した金ナノ粒子分散液のTEM観察画像を示す図である。6 is a diagram showing a TEM observation image of a gold nanoparticle dispersion liquid produced in Test Example 3. FIG. 試験例4で製造した金ナノ粒子分散液のTEM観察画像を示す図である。6 is a view showing a TEM observation image of a gold nanoparticle dispersion liquid produced in Test Example 4. FIG. 試験例5で製造した金ナノ粒子分散液のTEM観察画像を示す図である。6 is a view showing a TEM observation image of a gold nanoparticle dispersion liquid produced in Test Example 5. FIG. 試験例6で製造した金ナノ粒子のゼータ電位と、製造時の陰極の先端と陽極の先端との間隔との関係を示す図である。It is a figure which shows the relationship between the zeta potential of the gold nanoparticle manufactured in Test Example 6, and the space | interval of the front-end | tip of a cathode at the time of manufacture, and the front-end | tip of an anode.

以下、本発明の実施形態について詳細に説明するが、本発明は、以下の実施形態になんら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention. .

本発明の複合ナノ粒子の製造装置は、第一の材料と第二の材料とが複合してなり、上記第一の材料が金属であり、上記第二の材料が上記第一の材料と異なる金属又は炭素材である複合ナノ粒子の製造装置であって、上記第一の材料の塩である金属塩を含有する水溶液が貯留されたセルと、上記水溶液中に配置された、上記第二の材料からなる複数の電極と、上記電極の間に放電プラズマが発生するように高周波高電圧を印加する印加部と、を備えることを特徴とする。
以下、本発明の複合ナノ粒子の製造装置の一実施形態について、図1を用いて説明する。
The composite nanoparticle production apparatus of the present invention is a composite of a first material and a second material, wherein the first material is a metal and the second material is different from the first material. An apparatus for producing composite nanoparticles that are a metal or a carbon material, wherein a cell in which an aqueous solution containing a metal salt that is a salt of the first material is stored, and the second arranged in the aqueous solution A plurality of electrodes made of a material, and an application unit that applies a high-frequency high voltage so that discharge plasma is generated between the electrodes are provided.
Hereinafter, an embodiment of the composite nanoparticle production apparatus of the present invention will be described with reference to FIG.

図1は本発明の一実施形態に係る複合ナノ粒子の製造装置の概念図である。当該製造装置は、金属塩水溶液Sを貯留したセル30と、金属塩水溶液S中に配置された電極10及び11とを備える。当該製造装置は、更に、電極10及び11を保持する絶縁チューブ20及び21と、光学窓40と、固定板70とを備えており、光学窓40は、パッキン50と、固定棒60と、留め具80とを用いてセル30に固定されている。また、電極10及び11は、パルス電源90に接続されている。このとき、一方の電極10はパルス電源90に内蔵されたトランス100に接続され、他方の電極11はパルス電源90に内蔵されたアース110に接続されている。   FIG. 1 is a conceptual diagram of an apparatus for producing composite nanoparticles according to an embodiment of the present invention. The manufacturing apparatus includes a cell 30 storing a metal salt aqueous solution S and electrodes 10 and 11 arranged in the metal salt aqueous solution S. The manufacturing apparatus further includes insulating tubes 20 and 21 that hold the electrodes 10 and 11, an optical window 40, and a fixing plate 70. The optical window 40 includes a packing 50, a fixing rod 60, and a fastening plate. It is fixed to the cell 30 using the tool 80. The electrodes 10 and 11 are connected to a pulse power supply 90. At this time, one electrode 10 is connected to the transformer 100 built in the pulse power supply 90, and the other electrode 11 is connected to the earth 110 built in the pulse power supply 90.

セル30は、金属塩水溶液Sを貯留するものである。金属塩水溶液Sを貯留することができれば材質は特に限定されない。   The cell 30 stores the metal salt aqueous solution S. The material is not particularly limited as long as the metal salt aqueous solution S can be stored.

セル30に貯留する金属塩水溶液Sは、上記第一の材料の塩である金属塩を含有する水溶液である。上記第一の材料は金属であり、白金、金、パラジウム、タングステン、スズ、銀、銅等が用いられる。   The metal salt aqueous solution S stored in the cell 30 is an aqueous solution containing a metal salt that is a salt of the first material. The first material is a metal, and platinum, gold, palladium, tungsten, tin, silver, copper, or the like is used.

金属塩水溶液Sに含有される金属塩の種類は、特に限定されないが、塩化物塩、硝酸塩、硫酸塩、酢酸塩等を挙げることができる。   Although the kind of metal salt contained in the metal salt aqueous solution S is not specifically limited, chloride salt, nitrate, sulfate, acetate, etc. can be mentioned.

金属塩水溶液Sの濃度は、目的にもよるが数mM程度が一般的な条件である。   The concentration of the metal salt aqueous solution S is generally about several mM although it depends on the purpose.

電極10及び11は、上記第二の材料からなる。上記第二の材料は、金属又は炭素材である。上記第二の材料に用いられる金属としては、白金、金、パラジウム、タングステン、スズ、銀、銅等の純金属、及びこれらの合金を挙げることができる。また、上記第二の材料に用いられる炭素材としては、グラファイト、ガラス状炭素等の炭素材料、及び炭素材料にホウ素や窒素等の他の元素をドープした複合炭素材料が挙げられる。上記第二の材料が金属の場合、上記第一の材料と異なる金属を選択する。   The electrodes 10 and 11 are made of the second material. The second material is a metal or a carbon material. Examples of the metal used for the second material include pure metals such as platinum, gold, palladium, tungsten, tin, silver, and copper, and alloys thereof. Examples of the carbon material used for the second material include carbon materials such as graphite and glassy carbon, and composite carbon materials obtained by doping the carbon material with other elements such as boron and nitrogen. When the second material is a metal, a metal different from the first material is selected.

本発明においては、液中に放電プラズマを発生させるために、電極10及び11はセル30に貯留された金属塩水溶液S中に複数本配置される。各電極には、1種類の上記第二の材料を用いてもよいし、電極ごとに異なる上記第二の材料を用いてもよい。   In the present invention, a plurality of electrodes 10 and 11 are arranged in the metal salt aqueous solution S stored in the cell 30 in order to generate discharge plasma in the liquid. One type of the second material may be used for each electrode, or the second material may be different for each electrode.

電極10及び11の形状には特に制限はなく、角柱状、円柱状等の電極を用いることができる。電極10及び11の大きさは、例えば円柱状の場合、直径数百μm〜数mmが好ましい。   There is no restriction | limiting in particular in the shape of the electrodes 10 and 11, and electrodes, such as prismatic shape and a column shape, can be used. For example, in the case of a cylindrical shape, the electrodes 10 and 11 preferably have a diameter of several hundred μm to several mm.

電極10及び11は、セル30中に少なくとも2本を備えることにより、陽極と陰極との対になり、これらの電極の間で放電プラズマを発生させることができる。電極10と電極11とは、先端が対向するように配置することが電極間距離の制御上好ましいが、この配置に限定するものではない。電極10の先端と電極11の先端との間の距離は、100μm〜1mmが好ましく、300 μm〜700 μmがより好ましい。   By providing at least two electrodes 10 and 11 in the cell 30, a pair of an anode and a cathode is formed, and discharge plasma can be generated between these electrodes. The electrode 10 and the electrode 11 are preferably disposed so that the tips thereof are opposed to each other in terms of control of the distance between the electrodes, but are not limited to this arrangement. The distance between the tip of the electrode 10 and the tip of the electrode 11 is preferably 100 μm to 1 mm, and more preferably 300 μm to 700 μm.

電極10及び11は絶縁チューブ20及び21によってそれぞれ保持される。絶縁チューブ20及び21の材料は、電極10と電極11との間に高周波高電圧を印加して放電プラズマを発生させるときに、スパッタされない材料であれば特に限定されないが、アルミナ等が挙げられる。
電極10及び11の先端は、放電プラズマを発生させやすいように、絶縁チューブ20及び21に覆われていない部分を有する。
Electrodes 10 and 11 are held by insulating tubes 20 and 21, respectively. The material of the insulating tubes 20 and 21 is not particularly limited as long as it is a material that is not sputtered when a high-frequency high voltage is applied between the electrode 10 and the electrode 11 to generate discharge plasma, and examples thereof include alumina.
The tips of the electrodes 10 and 11 have portions that are not covered with the insulating tubes 20 and 21 so that discharge plasma is easily generated.

セル30には、光学窓40を備えており、光学窓を通過した発光を顕微分光分析することで、放電プラズマ反応場中の成分分析を行うことが可能である。光学窓40は、パッキン50と、固定棒60と、固定板70の上部から固定棒60を固定する留め具80とを用いてセル30に密着固定される。固定板70は固定棒60を固定できればよく、セルの上部を全面的に覆ってセルを密閉するものではない。光学窓40の材料は石英等が用いられる。   The cell 30 includes an optical window 40. By analyzing the light emitted through the optical window by microspectroscopy, it is possible to analyze the components in the discharge plasma reaction field. The optical window 40 is tightly fixed to the cell 30 using a packing 50, a fixing bar 60, and a fastener 80 that fixes the fixing bar 60 from above the fixing plate 70. The fixing plate 70 only needs to be able to fix the fixing rod 60, and does not completely cover the upper part of the cell and seal the cell. Quartz etc. are used for the material of the optical window 40.

上記電極10及び11は、パルス電源90に接続される。このとき、一方の電極10はパルス電源90に内蔵されたトランス100に接続され、他方の電極11はパルス電源90に内蔵されたアース110に接続される。このように接続した電極10と電極11との間に高周波高電圧を印加すると、放電プラズマが発生する。トランス100はパルス電源と一体化されたものでも、分割された機器として用いてもよい。   The electrodes 10 and 11 are connected to a pulse power supply 90. At this time, one electrode 10 is connected to the transformer 100 built in the pulse power supply 90, and the other electrode 11 is connected to the earth 110 built in the pulse power supply 90. When a high frequency high voltage is applied between the electrode 10 and the electrode 11 connected in this way, discharge plasma is generated. The transformer 100 may be integrated with a pulse power source or may be used as a divided device.

次に、本発明の複合ナノ粒子の製造方法について説明する。
本発明の複合ナノ粒子の製造方法は、第一の材料と第二の材料とが複合してなり、上記第一の材料が金属であり、上記第二の材料が上記第一の材料と異なる金属又は炭素材である複合ナノ粒子の製造方法であって、金属塩を含有する水溶液中に配置した複数の電極の間に放電プラズマを発生させる工程を含み、上記金属塩は上記第一の材料の塩であり、上記電極は上記第二の材料からなることを特徴とする。
Next, the manufacturing method of the composite nanoparticle of this invention is demonstrated.
In the method for producing composite nanoparticles of the present invention, the first material and the second material are combined, the first material is a metal, and the second material is different from the first material. A method for producing a composite nanoparticle which is a metal or carbon material, comprising a step of generating discharge plasma between a plurality of electrodes arranged in an aqueous solution containing a metal salt, wherein the metal salt is the first material The electrode is made of the second material.

図1において、電極10と電極11との間に放電プラズマを発生させるには、トランス100を内臓したパルス電源90を用い、トランス100に接続した電極10と、アース110に接続した電極11との間に高周波高電圧を印加する。   In FIG. 1, in order to generate discharge plasma between the electrode 10 and the electrode 11, a pulse power supply 90 with a built-in transformer 100 is used, and the electrode 10 connected to the transformer 100 and the electrode 11 connected to the earth 110 are connected. A high frequency high voltage is applied between them.

放電プラズマを発生させるときに、電極10と電極11との間に印加する電圧は、0.5〜4kVが好ましく、1kV程度がより好ましい。
放電プラズマを発生させるときに印加する電圧の波形は、正弦波でも非正弦波でもよい。非正弦波として矩形波で印加する場合、パルス幅は数μ秒以内が好ましく、1〜2μ秒がより好ましい。
放電プラズマを発生させるときの周波数は15〜30kHzが好ましく、20〜25kHzがより好ましい。
放電プラズマを発生させるときの電流は1A程度が好ましい。
放電プラズマを発生させるときの放電時間は数分以内が好ましい。
また、パルス電圧は、バイポーラー、ユニポーラーどちらの入力でもよい。
When generating discharge plasma, the voltage applied between the electrode 10 and the electrode 11 is preferably 0.5 to 4 kV, and more preferably about 1 kV.
The waveform of the voltage applied when generating the discharge plasma may be a sine wave or a non-sine wave. When a rectangular wave is applied as a non-sinusoidal wave, the pulse width is preferably within several microseconds, more preferably 1 to 2 microseconds.
The frequency when generating the discharge plasma is preferably 15 to 30 kHz, and more preferably 20 to 25 kHz.
The current for generating the discharge plasma is preferably about 1A.
The discharge time when generating the discharge plasma is preferably within a few minutes.
The pulse voltage may be either bipolar or unipolar input.

金属塩水溶液S中に配置された電極10と電極11との間に放電プラズマが発生すると、金属塩水溶液Sに含有される金属塩に由来する金属イオンは、放電プラズマを発生させるときに生じた電子及び水素ラジカルによって還元されて、上記第一の材料の金属原子に変換され、複合ナノ粒子を構成する成分となる。また、電極を構成する上記第二の材料はスパッタされて析出し、複合ナノ粒子を構成する成分となる。このため、上記第一の材料と上記第二の材料とを構成成分とする複合ナノ粒子を製造できる。   When a discharge plasma is generated between the electrode 10 and the electrode 11 disposed in the metal salt aqueous solution S, metal ions derived from the metal salt contained in the metal salt aqueous solution S are generated when the discharge plasma is generated. It is reduced by electrons and hydrogen radicals and converted into the metal atoms of the first material, and becomes a component constituting the composite nanoparticles. Further, the second material constituting the electrode is sputtered and deposited, and becomes a component constituting the composite nanoparticles. For this reason, the composite nanoparticle which uses the said 1st material and said 2nd material as a structural component can be manufactured.

例えば、電極10及び11にパラジウムを用い、金属塩水溶液Sに塩化白金酸水溶液を用いると、パラジウムと白金とを構成成分とする複合ナノ粒子を製造できる。
このように、本発明の製造方法によれば、上記第一の材料と上記第二の材料とを種々選択することにより、複合ナノ粒子を構成する材料の組み合わせを多様化することができる。
For example, when palladium is used for the electrodes 10 and 11 and a chloroplatinic acid aqueous solution is used for the metal salt aqueous solution S, composite nanoparticles containing palladium and platinum as constituent components can be produced.
As described above, according to the production method of the present invention, the combination of materials constituting the composite nanoparticles can be diversified by variously selecting the first material and the second material.

金属塩水溶液Sの濃度は、数mM程度が一般的な条件であるが、濃度を高くすると、製造する複合ナノ粒子上に上記第一の材料をより多く析出させることができる。   The concentration of the metal salt aqueous solution S is generally about several mM, but when the concentration is increased, a larger amount of the first material can be deposited on the composite nanoparticles to be produced.

金属塩水溶液Sには、金属塩に加え、他の電解質を添加してもよい。例えば、NaOHを添加すると放電プラズマを安定して発生させることができる。電解質の濃度は、数mM程度が好ましい。   In addition to the metal salt, another electrolyte may be added to the metal salt aqueous solution S. For example, when NaOH is added, discharge plasma can be generated stably. The concentration of the electrolyte is preferably about several mM.

金属塩水溶液S中に配置された電極10と電極11との間に放電プラズマを発生させるとき、電極間の距離を短くすると、製造する複合ナノ粒子の粒子径を小さくすることができる。例えば、電極10の先端と電極11の先端との間の距離を300 μm〜700 μmにすると、平均粒子径が、数nm〜数十nmの複合ナノ粒子を製造しやすい。   When the discharge plasma is generated between the electrode 10 and the electrode 11 arranged in the metal salt aqueous solution S, the particle diameter of the composite nanoparticles to be produced can be reduced by shortening the distance between the electrodes. For example, when the distance between the tip of the electrode 10 and the tip of the electrode 11 is 300 μm to 700 μm, it is easy to produce composite nanoparticles having an average particle diameter of several nm to several tens of nm.

また、電極10と電極11との対向面の面積が小さいと、例えば、電極10及び11が円柱状であればその直径が小さいと、製造する複合ナノ粒子の粒子径は小さくなりやすい。   Moreover, when the area of the opposing surface of the electrode 10 and the electrode 11 is small, for example, if the electrodes 10 and 11 are cylindrical, if the diameter is small, the particle diameter of the composite nanoparticles to be manufactured tends to be small.

次に、本発明の複合ナノ粒子の製造方法により製造された複合ナノ粒子について説明する。上記複合ナノ粒子は、上記第一の材料と上記第二の材料とを構成成分とするものである。   Next, the composite nanoparticles produced by the method for producing composite nanoparticles of the present invention will be described. The composite nanoparticle includes the first material and the second material as constituent components.

金属塩水溶液S中に配置された電極10と電極11との間に放電プラズマを発生させるとき、電極10及び11を構成する上記第二の材料がスパッタされて析出しナノ粒子となる速度と、金属塩水溶液Sに含有される金属塩に由来する金属イオンが、プラズマによって発生する電子や水素ラジカルによって還元されて、上記第一の材料の金属原子となって析出する速度とは、前者の方が速いと考えられるので、上記第二の材料を主構成成分に、上記第一の材料を副構成成分とする複合ナノ粒子が生成しやすいと考えられる。   When generating discharge plasma between the electrode 10 and the electrode 11 arranged in the metal salt aqueous solution S, the second material constituting the electrodes 10 and 11 is sputtered and deposited to form nanoparticles, The rate at which metal ions derived from the metal salt contained in the metal salt aqueous solution S are reduced by electrons or hydrogen radicals generated by plasma and deposited as metal atoms of the first material is the former one. Therefore, it is considered that composite nanoparticles having the second material as a main constituent and the first material as a sub constituent are likely to be generated.

そして、主構成成分をコアとし副構成成分をシェルとしたコアシェル構造や、主構成成分の粒子表面にて斑状に副構成成分が配置された構造を備えた複合ナノ粒子が製造されると考えられる。複合ナノ粒子をこれらの構造とし、かつ副構成成分として触媒活性のある金属元素を選択することにより、ナノ粒子等といった微粒子タイプの触媒において、十分な触媒活性を維持したまま、触媒活性のある金属元素の使用量を削減することができる。   Then, it is considered that composite nanoparticles having a core-shell structure in which the main component is a core and a sub-component is a shell, and a structure in which the sub-components are arranged in a patch shape on the particle surface of the main component are manufactured. . By making the composite nanoparticles into these structures and selecting a metal element having catalytic activity as a sub-component, in a fine particle type catalyst such as nanoparticles, a metal having catalytic activity while maintaining sufficient catalytic activity The amount of element used can be reduced.

上記複合ナノ粒子は、30mVや35mVの絶対値を超えるゼータ電位を有するものとなりやすい。特に、上記電極10の先端と電極11の先端との間隔が短いほど、ゼータ電位の絶対値は大きくなりやすい。絶対値の大きいゼータ電位を有すると、ナノ粒子間の反発力が強くなりナノ粒子の分散安定性が増す。一般に、ナノ粒子の製造においては、分散安定性を高めるためにポリビニルピロリドン、ポリエチレングリコール、ポリスルホン酸等の保護剤を添加するが、本発明の方法により製造した複合ナノ粒子は、ゼータ電位の絶対値が大きいため、保護剤を添加しなくても凝集、沈殿が起こらず、分散安定性が高い。   The composite nanoparticles tend to have a zeta potential exceeding an absolute value of 30 mV or 35 mV. In particular, the shorter the distance between the tip of the electrode 10 and the tip of the electrode 11, the greater the absolute value of the zeta potential. When the zeta potential has a large absolute value, the repulsive force between the nanoparticles increases and the dispersion stability of the nanoparticles increases. In general, in the production of nanoparticles, a protective agent such as polyvinyl pyrrolidone, polyethylene glycol, polysulfonic acid or the like is added to increase dispersion stability. The composite nanoparticles produced by the method of the present invention have an absolute value of zeta potential. Therefore, aggregation and precipitation do not occur even without adding a protective agent, and dispersion stability is high.

以下、実施例等に基づき本発明を詳細に説明するが、本発明は、かかる実施例等になんら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example etc., this invention is not limited to this Example etc. at all.

[試験例1]
50mMに調整した塩化白金酸(HPtCl)の水溶液1mlと1Mの水酸化ナトリウム(NaOH)水溶液0.15mlの混合溶液を準備し、これを全体の体積が50mlになるように純水でメスアップした。このときの水酸化ナトリウムの濃度は3mMとなる。この溶液をセルにいれ、一対の電極を溶液中に設置した。電極は、直径1mm、長さ100mmのパラジウム(Pd)電極であり、陰極の先端と陽極の先端との間隔は300μmとした。電極間に印加電圧約1kV、パルス幅2μ秒、周波数25kHzのパルス電圧を印加し、水溶液中で放電しプラズマを生じさせた。3分間放電させた後、セルから溶液を回収したところ茶褐色の分散液が得られた。この溶液を透過型電子顕微鏡(TEM)で観察すると、図2に示すように、粒子径がそろった粒子が観察された。また、粒子径分布を図3に示す。このときの平均粒子径は2.6±1.7nmであった。このときの溶液のpHは10.9であり、このpHにおけるゼータ電位は−43.8±4.1mVであった。次に、微粒子を特定して、加速電圧200kV、ビーム径約1nm、エネルギー分解能137eVでエネルギー分散型X線分析(EDX)を行ったところ、図4に示すようにEDXスペクトルが得られた。Pd元素のシグナルとPt元素のシグナルとが観測され、複合ナノ粒子となっていることがわかった。
[Test Example 1]
Prepare a mixed solution of 1 ml of an aqueous solution of chloroplatinic acid (H 2 PtCl 6 ) adjusted to 50 mM and 0.15 ml of 1M sodium hydroxide (NaOH) aqueous solution, and add pure water so that the total volume becomes 50 ml. The female was up. The concentration of sodium hydroxide at this time is 3 mM. This solution was placed in a cell, and a pair of electrodes was placed in the solution. The electrode was a palladium (Pd) electrode having a diameter of 1 mm and a length of 100 mm, and the distance between the tip of the cathode and the tip of the anode was 300 μm. A pulse voltage having an applied voltage of about 1 kV, a pulse width of 2 μs, and a frequency of 25 kHz was applied between the electrodes, and a plasma was generated by discharging in an aqueous solution. After discharging for 3 minutes, the solution was recovered from the cell to obtain a brown dispersion. When this solution was observed with a transmission electron microscope (TEM), particles having a uniform particle diameter were observed as shown in FIG. The particle size distribution is shown in FIG. The average particle size at this time was 2.6 ± 1.7 nm. The pH of the solution at this time was 10.9, and the zeta potential at this pH was −43.8 ± 4.1 mV. Next, fine particles were identified, and energy dispersive X-ray analysis (EDX) was performed with an acceleration voltage of 200 kV, a beam diameter of about 1 nm, and an energy resolution of 137 eV. As a result, an EDX spectrum was obtained as shown in FIG. A signal of Pd element and a signal of Pt element were observed, and it was found to be a composite nanoparticle.

[試験例2]
PtCl水溶液の濃度を1mMから2mMに変えた他は試験例1と同様にして、プラズマを生じさせた。溶液を回収し、TEM観察を行ったところ、図5に示すように、粒子径がそろった粒子が観察された。また、粒子径分布を図6に示す。このときの平均粒子径は3.2±1.8nmであった。このときの溶液のpHは9.6であり、このpHにおけるゼータ電位は−36.2±4.4mVであった。これらの微粒子についてEDXを行ったところ、Pt元素のシグナルが強くなっており、金属塩を構成するPtの含有量が高くなっていた。
[Test Example 2]
Plasma was generated in the same manner as in Test Example 1 except that the concentration of the H 2 PtCl 6 aqueous solution was changed from 1 mM to 2 mM. When the solution was collected and subjected to TEM observation, particles having a uniform particle diameter were observed as shown in FIG. The particle size distribution is shown in FIG. The average particle size at this time was 3.2 ± 1.8 nm. The pH of the solution at this time was 9.6, and the zeta potential at this pH was −36.2 ± 4.4 mV. When EDX was performed on these fine particles, the signal of the Pt element was strong and the content of Pt constituting the metal salt was high.

[試験例3]
試験例1と同様な方法でNaOHの3mM水溶液50mlをセルに入れ、一対の電極として、直径1mm、長さ100mmの金(Au)電極を用いた。陰極の先端と陽極の先端との間隔を300μmとし、電極間に印加電圧約1kV、パルス幅2μ秒、周波数25kHzのパルス電圧を印加し、水溶液中で放電してプラズマを生じさせた。3分間放電させた後、セルから溶液を回収したところ赤色の金ナノ粒子の分散液が得られた。この分散液を2週間放置しても沈殿は生じなかった。この溶液のTEM観察を、図7に示す。平均粒子径は4.16±0.79nmであった。このときの溶液のpHは13.1であり、このpHにおけるゼータ電位は−60.8±1.3mVであった。
[Test Example 3]
In the same manner as in Test Example 1, 50 ml of a 3 mM aqueous solution of NaOH was placed in a cell, and a gold (Au) electrode having a diameter of 1 mm and a length of 100 mm was used as a pair of electrodes. The distance between the tip of the cathode and the tip of the anode was set to 300 μm, a pulse voltage having an applied voltage of about 1 kV, a pulse width of 2 μs, and a frequency of 25 kHz was applied between the electrodes, and discharge was performed in an aqueous solution to generate plasma. After discharging for 3 minutes, the solution was recovered from the cell to obtain a dispersion of red gold nanoparticles. No precipitation occurred when this dispersion was allowed to stand for 2 weeks. The TEM observation of this solution is shown in FIG. The average particle size was 4.16 ± 0.79 nm. The pH of the solution at this time was 13.1, and the zeta potential at this pH was −60.8 ± 1.3 mV.

[試験例4]
陰極の先端と陽極の先端との間隔を500μmとする他は、試験例3と同様にして、電極間に放電プラズマを生じさせた。溶液を回収し、TEM観察を行った結果を、図8に示す。生成した金ナノ粒子の平均粒子径は9.69±4.53nmであった。このときの溶液のpHは12.4であり、このpHにおけるゼータ電位は−52.7±1.4mVであった。
[Test Example 4]
A discharge plasma was generated between the electrodes in the same manner as in Test Example 3, except that the distance between the tip of the cathode and the tip of the anode was 500 μm. The results of collecting the solution and performing TEM observation are shown in FIG. The generated gold nanoparticles had an average particle size of 9.69 ± 4.53 nm. The pH of the solution at this time was 12.4, and the zeta potential at this pH was −52.7 ± 1.4 mV.

[試験例5]
陰極の先端と陽極の先端との間隔を700μmとする他は、試験例3と同様にして、電極間に放電プラズマを生じさせた。溶液を回収し、TEM観察を行った結果を、図9に示す。生成した金ナノ粒子の平均粒子径は12.6±8.15nmであった。このときの溶液のpHは12.7であり、このpHにおけるゼータ電位は−44.3±1.1mVであった。
[Test Example 5]
A discharge plasma was generated between the electrodes in the same manner as in Test Example 3, except that the distance between the tip of the cathode and the tip of the anode was 700 μm. The results of collecting the solution and performing TEM observation are shown in FIG. The average particle diameter of the produced gold nanoparticles was 12.6 ± 8.15 nm. The pH of the solution at this time was 12.7, and the zeta potential at this pH was −44.3 ± 1.1 mV.

[試験例6]
陰極の先端と陽極の先端との間隔を変える他は、試験例3と同様に行い、金ナノ粒子を含む溶液を回収した。回収した溶液についてゼータ電位を測定したところ、図10に示すように、上記の間隔が100〜900μmの間で、絶対値が40mVを超えるゼータ電位を示していた。そして、ゼータ電位の絶対値は上記の間隔が短いほど大きくなっていた。
[Test Example 6]
A solution containing gold nanoparticles was collected in the same manner as in Test Example 3, except that the distance between the tip of the cathode and the tip of the anode was changed. When the zeta potential of the recovered solution was measured, as shown in FIG. 10, the zeta potential exceeding 40 mV in absolute value was observed with the interval between 100 to 900 μm. The absolute value of the zeta potential was larger as the above interval was shorter.

10 電極
11 電極
20 絶縁チューブ
21 絶縁チューブ
30 セル
40 光学窓
50 パッキン
60 固定棒
70 固定板
80 留め具
90 パルス電源
100 トランス
110 アース
S 金属塩水溶液
DESCRIPTION OF SYMBOLS 10 Electrode 11 Electrode 20 Insulation tube 21 Insulation tube 30 Cell 40 Optical window 50 Packing 60 Fixing rod 70 Fixing plate 80 Fastener 90 Pulse power supply 100 Transformer 110 Ground S Metal salt aqueous solution

Claims (4)

第一の材料と第二の材料とが複合してなり、前記第一の材料が金属であり、前記第二の材料が前記第一の材料と異なる金属又は炭素材である複合ナノ粒子の製造方法であって、
金属塩を含有する水溶液中に配置した複数の電極の間に放電プラズマを発生させる工程を含み、
前記金属塩は前記第一の材料の塩であり、
前記電極は前記第二の材料からなる、製造方法。
Production of composite nanoparticles comprising a composite of a first material and a second material, wherein the first material is a metal and the second material is a metal or carbon material different from the first material. A method,
Generating a discharge plasma between a plurality of electrodes disposed in an aqueous solution containing a metal salt,
The metal salt is a salt of the first material;
The manufacturing method, wherein the electrode is made of the second material.
請求項1に記載の製造方法で製造した複合ナノ粒子。   The composite nanoparticle manufactured with the manufacturing method of Claim 1. 絶対値が30mV以上のゼータ電位を有する請求項2に記載の複合ナノ粒子。   The composite nanoparticle according to claim 2, which has a zeta potential of 30 mV or more in absolute value. 第一の材料と第二の材料とが複合してなり、前記第一の材料が金属であり、前記第二の材料が前記第一の材料と異なる金属又は炭素材である複合ナノ粒子の製造装置であって、
前記第一の材料の塩である金属塩を含有する水溶液が貯留されたセルと、
前記水溶液中に配置された、前記第二の材料からなる複数の電極と、
前記電極の間に放電プラズマが発生するように高周波高電圧を印加する印加部と、
を備える製造装置。
Production of composite nanoparticles comprising a composite of a first material and a second material, wherein the first material is a metal and the second material is a metal or carbon material different from the first material. A device,
A cell in which an aqueous solution containing a metal salt that is a salt of the first material is stored;
A plurality of electrodes made of the second material, disposed in the aqueous solution;
An application unit for applying a high-frequency high voltage so that discharge plasma is generated between the electrodes;
A manufacturing apparatus comprising:
JP2013024879A 2013-02-12 2013-02-12 Method and apparatus for producing composite nanoparticles Expired - Fee Related JP6143260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013024879A JP6143260B2 (en) 2013-02-12 2013-02-12 Method and apparatus for producing composite nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013024879A JP6143260B2 (en) 2013-02-12 2013-02-12 Method and apparatus for producing composite nanoparticles

Publications (2)

Publication Number Publication Date
JP2014152374A true JP2014152374A (en) 2014-08-25
JP6143260B2 JP6143260B2 (en) 2017-06-07

Family

ID=51574538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013024879A Expired - Fee Related JP6143260B2 (en) 2013-02-12 2013-02-12 Method and apparatus for producing composite nanoparticles

Country Status (1)

Country Link
JP (1) JP6143260B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104486A (en) * 1997-09-30 1999-04-20 Agency Of Ind Science & Technol Manufacture of composite fine particle of metal and carbon
JP2008013810A (en) * 2006-07-05 2008-01-24 Univ Of Tokyo Method for producing metallic nanoparticle, and apparatus for producing metallic nanoparticle
JP2008071656A (en) * 2006-09-15 2008-03-27 Nagaoka Univ Of Technology Solution plasma reaction apparatus, and manufacturing method for nanomaterial using the solution plasma reaction apparatus
JP2009120901A (en) * 2007-11-14 2009-06-04 Ne Chemcat Corp Gold-platinum core-shell nanoparticle colloid, and its manufacturing method
JP2011140405A (en) * 2010-01-05 2011-07-21 Osaka Prefecture Univ Method for producing composite particle
WO2011155473A1 (en) * 2010-06-07 2011-12-15 独立行政法人産業技術総合研究所 Method for producing fine metal particles and fine metal particle dispersion solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104486A (en) * 1997-09-30 1999-04-20 Agency Of Ind Science & Technol Manufacture of composite fine particle of metal and carbon
JP2008013810A (en) * 2006-07-05 2008-01-24 Univ Of Tokyo Method for producing metallic nanoparticle, and apparatus for producing metallic nanoparticle
JP2008071656A (en) * 2006-09-15 2008-03-27 Nagaoka Univ Of Technology Solution plasma reaction apparatus, and manufacturing method for nanomaterial using the solution plasma reaction apparatus
JP2009120901A (en) * 2007-11-14 2009-06-04 Ne Chemcat Corp Gold-platinum core-shell nanoparticle colloid, and its manufacturing method
JP2011140405A (en) * 2010-01-05 2011-07-21 Osaka Prefecture Univ Method for producing composite particle
WO2011155473A1 (en) * 2010-06-07 2011-12-15 独立行政法人産業技術総合研究所 Method for producing fine metal particles and fine metal particle dispersion solution

Also Published As

Publication number Publication date
JP6143260B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
Saito et al. Nanomaterial synthesis using plasma generation in liquid
Kecsenovity et al. Decoration of ultra-long carbon nanotubes with Cu 2 O nanocrystals: a hybrid platform for enhanced photoelectrochemical CO 2 reduction
CN102909388B (en) Gold-silver alloy nano particle prepared with assistant of atmospheric pressure micro-plasma fluid phase
Wan et al. Graphene nanoplatelets supported metal nanoparticles for electrochemical oxidation of hydrazine
Zhang et al. Electrochemical preparation of Pt nanoparticles supported on porous graphene with ionic liquids: Electrocatalyst for both methanol oxidation and H2O2 reduction
US11658307B2 (en) Method and apparatus for manufacturing core-shell catalyst
Zhang et al. Effect of deposition potential on the structure and electrocatalytic behavior of Pt micro/nanoparticles
Lei et al. Synthesis of tungsten nanoparticles by sonoelectrochemistry
CN106222584A (en) A kind of nanoporous Fe base noncrystal alloy and preparation method and the application on analysis oxygen catalysis electrode
Zhang et al. Novel synthesis of PtPd nanoparticles with good electrocatalytic activity and durability
Chen et al. Highly active PdCu alloy nanowire network electrocatalyst for ethanol and methanol electrooxidation
Jeong et al. Ligand-free monophasic CuPd alloys endow boosted reaction kinetics toward energy-efficient hydrogen fuel production paired with hydrazine oxidation
JP6090773B2 (en) Method for producing alloy nanoparticles
JP2015038242A (en) Method of synthesizing metal foam, metal foam, method of uses thereof, and device comprising such metal foam
Li et al. Tuning concave PtSn nanocubes for efficient ethylene glycol and glycerol electrocatalysis
Xu et al. Surface plasmon enhanced ethylene glycol electrooxidation based on hollow platinum-silver nanodendrites structures
Kang et al. Preparation of Ag–Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property
Orriere et al. Effect of plasma polarity on the synthesis of graphene quantum dots by atmospheric-pressure microplasmas
He et al. Advanced In Situ Characterization Techniques for Direct Observation of Gas‐Involved Electrochemical Reactions
Jeong et al. Manifolding surface sites of compositional CoPd alloys via pulsed laser for hydrazine oxidation-assisted energy-saving electrolyzer: Activity origin and mechanism discovery
Huang et al. Facile preparation of Pt hydrosols by dispersing bulk Pt with potential perturbations
Aoki et al. Morphology control of hybrid Cu–Cu2O nanostructures fabricated by electrochemical migration
Beugré et al. Local electrochemistry of nickel (oxy) hydroxide material gradients prepared using bipolar electrodeposition
Li et al. Effects of structural changes on the enhanced hydrogen evolution reaction for Pd NPs@ 2H-MoS2 studied by in-Situ Raman spectroscopy
Song et al. Investigation of palladium nanoparticles supported on metallic titanium pillars as a novel electrode for hydrogen peroxide electroreduction in acidic medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6143260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees