JP2014152368A - High-purity ferrite-based stainless steel sheet having excellent temper color resistance and workability and production method thereof - Google Patents

High-purity ferrite-based stainless steel sheet having excellent temper color resistance and workability and production method thereof Download PDF

Info

Publication number
JP2014152368A
JP2014152368A JP2013024310A JP2013024310A JP2014152368A JP 2014152368 A JP2014152368 A JP 2014152368A JP 2013024310 A JP2013024310 A JP 2013024310A JP 2013024310 A JP2013024310 A JP 2013024310A JP 2014152368 A JP2014152368 A JP 2014152368A
Authority
JP
Japan
Prior art keywords
less
stainless steel
steel sheet
workability
color resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013024310A
Other languages
Japanese (ja)
Other versions
JP6106450B2 (en
Inventor
Masaharu Hatano
正治 秦野
Yuichi Tamura
佑一 田村
Tomohiko Morita
智彦 盛田
Hiroyuki Matsuyama
宏之 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2013024310A priority Critical patent/JP6106450B2/en
Publication of JP2014152368A publication Critical patent/JP2014152368A/en
Application granted granted Critical
Publication of JP6106450B2 publication Critical patent/JP6106450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-purity ferrite-based stainless steel plate having excellent temper color resistance and workability.SOLUTION: A high-purity ferrite-based steel sheet comprises 0.001-0.03% C, 0.01-0.7% Si, 0.01-1% Mn, 0.005-0.05% P, 0.0001-0.01% S, 12-20% Cr, 0.001-0.03% N, 0.005-0.5% Al, 0.05-1% Sn and remaining Fe and unavoidable impurities and has a surface oxide film of a thickness of smaller than 500Å. In the surface oxide film, Sn is present as a tetravalent oxide. The ratio of the Cr concentration in the range from the surface to the depth of 20Å to the amount of Cr contained in steel, (Cr concentration/Cr amount in steel) is 1.1 or higher, based on the ratio of cations alone, other than C, O and N.

Description

本発明は、ステンレス鋼本来の金属光沢を有し、加熱された際にテンパーカラーと呼ばれる着色が生じにくい耐テンパーカラー性と加工性に優れた高純度フェライト系ステンレス鋼板およびその製造方法に関する。本鋼板は、ポット、炊飯器、鍋、レンジ、ヒータ等の調理機器や暖房機器等での使用に好適である。   The present invention relates to a high-purity ferritic stainless steel plate having a metallic luster inherent to stainless steel and excellent in temper color resistance and workability, which is difficult to cause coloration when heated, and a method for producing the same. This steel plate is suitable for use in cooking equipment such as pots, rice cookers, pans, ranges, and heaters, and heating equipment.

近年、精錬技術の向上によって、極低炭素・低窒素化され、更にPやSなど不純物元素が低減されてなる高純度フェライト系ステンレス鋼板は、近年価格高騰の著しいNiを多量に含有するオ−ステナイト系ステンレス鋼板の代替として、広範囲の用途へ適用されつつある。   In recent years, high purity ferritic stainless steel sheet, which has been made extremely low carbon and nitrogen reduced by refinement technology and further reduced impurity elements such as P and S, has a large amount of Ni, which has recently increased in price. As an alternative to the stainless steel plate, it is being applied to a wide range of applications.

上述した高純度フェライト系ステンレス鋼板は、調理機器や暖房機器のように、常温より高温(約200〜400℃)に曝される日用品へも使用されている。一般的に、ステンレス鋼は、大気中で200℃を超える場合、テンパーカラーと称する厚さ1μm未満の酸化物層を生成し、表面の変色・着色により製品の外観ならびに耐銹性を著しく損なうことが知られている。   The high-purity ferritic stainless steel plate described above is also used for daily necessities that are exposed to higher temperatures (about 200 to 400 ° C.) than room temperature, such as cooking appliances and heating appliances. In general, when the temperature exceeds 200 ° C. in the atmosphere, stainless steel forms an oxide layer with a thickness of less than 1 μm, called a temper color, and the appearance and weather resistance of the product are significantly impaired due to discoloration and coloring of the surface. It has been known.

テンパーカラーによる変色や着色を防止する方法として、SiOやAlなど耐酸化性に優れるコーティングを施す方法が古くから知られている。例えば、特許文献1や特許文献2には、シリカ系を主体とする化合物をステンレス表面へコーティングする技術が開示されている。このようなコーティング処理は、テンパーカラー防止に極めて効果的であるが、鋼板の製造後や製品の加工後に実施することになり、生産性の低下とコスト増大は避けられない課題である。 As a method for preventing discoloration or coloring due to a temper color, a method of applying a coating having excellent oxidation resistance such as SiO 2 or Al 2 O 3 has been known for a long time. For example, Patent Documents 1 and 2 disclose techniques for coating a stainless steel surface with a compound mainly composed of silica. Such a coating treatment is extremely effective for preventing temper color, but it is carried out after the production of the steel sheet and after the processing of the product, and the reduction in productivity and the increase in cost are unavoidable problems.

ステンレス鋼の耐酸化性は、高Cr化、多量のSiやAlの添加により向上する。テンパーカラーによる変色・着色を防止する手段として、耐酸化性に優れたステンレス鋼を使用することは有効である。しかしながら、20%を超える高Cr化や1%を超えるSiおよびAlの添加は、鋼板が硬質化して延性が低くなり、鋼板の加工性を損なう他、工業生産において鋼塊の靭性が低下して製造性を劣化させる課題もある。   The oxidation resistance of stainless steel is improved by increasing Cr and adding a large amount of Si or Al. It is effective to use stainless steel having excellent oxidation resistance as a means for preventing discoloration and coloring due to the temper color. However, high Cr content exceeding 20% and addition of Si and Al exceeding 1% harden the steel sheet, lower the ductility, impair the workability of the steel sheet, and reduce the toughness of the steel ingot in industrial production. There is also a problem that deteriorates manufacturability.

上述したステンレス鋼そのものの課題を克服する検討して、特許文献3には、C:0.02%以下、Cr:10〜25%、Si:0.1〜1.5%,Mn:1.0%以下、P:0.05%以下、S:0.01%以下、Nb:0.002〜0.02%、B:0.0003〜0.0025%、Ti:6×(C+N)〜0.5%を含有し、光輝焼鈍により表面の酸化皮膜にCr、Si、Bの濃化層を有するフェライト系ステンレス鋼が開示されており、このステンレス鋼は200〜400℃の高温酸化環境下での耐食性に優れるとされている。また、特許文献4には、表面から50Åまでの深さにおけるCr、Si、Al、Feの原子濃度比(Cr+Si+Al)/Feが0.6以上の表面酸化皮膜を有する耐テンパーカラー性に優れた研磨仕上げステンレス鋼板およびその製造方法が開示されている。これら特許文献3、4では、光輝焼鈍の条件を規定して意図する表面酸化皮膜を得ている。特許文献3では低Nbで微量添加したBの表面濃化を特徴とし、特許文献4では鋼板を冷間圧延して光輝焼鈍するに先立ち機械的に研磨することを特徴としている。   Examining overcoming the above-mentioned problems of stainless steel itself, Patent Document 3 includes C: 0.02% or less, Cr: 10-25%, Si: 0.1-1.5%, Mn: 1. 0% or less, P: 0.05% or less, S: 0.01% or less, Nb: 0.002 to 0.02%, B: 0.0003 to 0.0025%, Ti: 6 × (C + N) to Ferritic stainless steel containing 0.5% and having a concentrated layer of Cr, Si, B on the surface oxide film by bright annealing is disclosed, and this stainless steel is in a high temperature oxidizing environment of 200-400 ° C. It is said to be excellent in corrosion resistance. In Patent Document 4, the atomic concentration ratio of Cr, Si, Al, and Fe (Cr + Si + Al) / Fe having a surface oxide film with a depth of 50 or more from the surface is excellent in temper color resistance. A polished finish stainless steel sheet and a method for producing the same are disclosed. In these Patent Documents 3 and 4, the intended surface oxide film is obtained by defining the conditions of bright annealing. Patent Document 3 is characterized by the surface concentration of B added with a small amount of low Nb, and Patent Document 4 is characterized by mechanically polishing the steel sheet prior to cold rolling and bright annealing.

特許文献5および6には、省資源・経済性の観点から、CrやMoの高合金化によらず、Snの添加により耐銹性と加工性に優れた高純度フェライト系ステンレス鋼として、Cr:13〜22%,Sn:0.001〜1%でC,N,Si,Mn,Pを低減し、必要に応じてNbやTiの安定化元素を添加し、酸洗や光輝焼鈍により表面に生成する不働態皮膜へCrおよびSnを濃化させた高純度フェライト系ステンレス鋼が開示されている。   In Patent Documents 5 and 6, as a high-purity ferritic stainless steel having excellent weather resistance and workability by adding Sn, from the viewpoint of resource saving and economical efficiency, regardless of the alloying of Cr and Mo, Cr : 13-22%, Sn: 0.001-1%, C, N, Si, Mn, P is reduced, Nb and Ti stabilizing elements are added if necessary, the surface by pickling and bright annealing A high-purity ferritic stainless steel is disclosed in which Cr and Sn are concentrated in the passive state film formed on the surface.

特許第4786576号公報Japanese Patent No. 4786576 特開2006−63427号公報JP 2006-63427 A 特許第3477957号公報Japanese Patent No. 3477957 特開平8−295999号公報JP-A-8-295999 特許第4651682号公報Japanese Patent No. 4651682 特許第4624473号公報Japanese Patent No. 4624473

上述した通り、高Cr化や過度なSi,Alの添加に頼らずにステンレス鋼に耐テンパーカラー性を付与する方法は、光輝焼鈍条件を規定して表面皮膜組成を制御することに限定されている。他方、Sn添加を特徴とした省資源型の高純度フェライト系ステンレス鋼も開示されているが、耐テンパーカラー性は何ら考慮されていない。   As described above, the method of imparting temper color resistance to stainless steel without relying on high Cr and excessive addition of Si and Al is limited to controlling the surface film composition by defining bright annealing conditions. Yes. On the other hand, resource-saving high-purity ferritic stainless steel characterized by the addition of Sn is also disclosed, but no consideration is given to temper color resistance.

そこで本発明は、過度な合金添加に頼らず、更に光輝焼鈍による表面皮膜の生成に限定されることなく、Sn添加を活用した耐テンパーカラー性と加工性に優れた高純度フェライト系ステンレス鋼板を提供することを課題とする。   Therefore, the present invention does not rely on excessive alloy addition, and is not limited to the formation of a surface film by bright annealing, but a high-purity ferritic stainless steel sheet excellent in temper color resistance and workability utilizing Sn addition. The issue is to provide.

本発明者らは、前記した課題を解決するために、高純度フェライト系ステンレス鋼において、耐テンパーカラー性に及ぼすSn添加の影響について、耐テンパーカラー性を担う表面酸化皮膜の作用効果に着眼して鋭意実験と検討を重ね、本発明を完成させた。以下に本発明で得られた知見について説明する。   In order to solve the above-mentioned problems, the present inventors have focused on the effect of the surface oxide film that bears the temper color resistance on the effect of Sn addition on the temper color resistance in high purity ferritic stainless steel. The present invention was completed through extensive experiments and studies. The knowledge obtained by the present invention will be described below.

(a)Snは、高純度フェライト系ステンレス鋼の耐銹性向上に有効な元素であり、Snを添加することで高濃度のCrやMoの添加に頼らず、省合金化により加工性に優れた鋼板を得ることが出来る。本発明では、大気または不活性ガス中において、Sn添加ステンレス鋼を100℃以上に加熱した場合、表面酸化皮膜の改質効果により高Cr化やSi,Al添加に依らず、耐テンパーカラー性を顕著に向上できることが分かった。このような耐テンパーカラー性の向上作用については未だ不明なところも多いものの、以下に述べるような実験事実に基づいて、その作用機構を推察している。 (A) Sn is an element effective in improving the weather resistance of high-purity ferritic stainless steel, and by adding Sn, it does not rely on the addition of high-concentration Cr or Mo, and has excellent workability due to alloy saving. Steel plate can be obtained. In the present invention, when Sn-added stainless steel is heated to 100 ° C. or higher in the atmosphere or in an inert gas, the temper color resistance can be improved regardless of the high Cr and Si / Al addition due to the modification effect of the surface oxide film. It turned out that it can improve remarkably. Although there are still many unclear points regarding such an effect of improving the temper color resistance, the mechanism of its action is presumed based on experimental facts as described below.

(b)0.3%のSnを添加した16Cr鋼(以下、Sn添加鋼)と、比較材として高加工性SUS430LX(17Cr−0.3Ti)及び耐熱ステンレス鋼(18Cr−2.5Si)とを用いた。試験片形状は40mm角とし、表面状態は、通常の冷間圧延後酸洗仕上げしたもの(以下、2B仕上げという)とした。これらSn添加鋼と比較材とについて、2B仕上げの試験材と、それを150℃で大気中または窒素ガス中で30秒加熱する熱処理を施した試験材とを、評価に供した。これら試験材について、大気中200〜400℃で1時間加熱し、JIS準拠した色差測定(b値)を行うとともに塩水噴霧試験を行った。熱処理が施されたSn添加鋼は、SUS430LXに比べて、b値が上昇せず、塩水噴霧試験による発銹も抑制された。なお、熱処理を施さなかったSn添加鋼と、SUS430LXとは、大気中200〜400℃の加熱により表面の着色(金属光沢〜黄)が起こり、b値が上昇した。
また、塩水噴霧による発銹は、熱処理済みのSn添加鋼において大幅に抑制された。
(B) 16Cr steel added with 0.3% Sn (hereinafter referred to as Sn-added steel) and high workability SUS430LX (17Cr-0.3Ti) and heat-resistant stainless steel (18Cr-2.5Si) as comparative materials. Using. The shape of the test piece was 40 mm square, and the surface state was a normal cold-rolled and pickled finish (hereinafter referred to as 2B finish). For these Sn-added steels and comparative materials, 2B-finished test materials and test materials that were heat-treated by heating them at 150 ° C. in air or nitrogen gas for 30 seconds were used for evaluation. About these test materials, it heated at 200-400 degreeC in air | atmosphere for 1 hour, and performed the salt spray test while performing the color difference measurement (b value) based on JIS. Compared with SUS430LX, the Sn-added steel subjected to the heat treatment did not increase the b value, and the occurrence of wrinkling by the salt spray test was also suppressed. In addition, Sn addition steel which did not heat-process and SUS430LX had surface coloring (metallic luster-yellow) by heating at 200-400 degreeC in air | atmosphere, and b value raised.
Moreover, the fogging by salt water spray was suppressed significantly in the heat-treated Sn-added steel.

熱処理は、表面酸化皮膜の健全性に影響するものと推測され、熱処理済みのSn添加鋼は、着色がなく表面にCrが濃化した表面酸化膜を有しているものと推測される。このように、熱処理済みのSn添加鋼は、良好な加工性を損なうことなく、耐熱ステンレス鋼と遜色ない良好な耐テンパーカラー性を発現できることが判明した。   The heat treatment is presumed to affect the soundness of the surface oxide film, and the heat-treated Sn-added steel is presumed to have a surface oxide film that is not colored and has Cr concentrated on the surface. Thus, it was found that the heat-treated Sn-added steel can exhibit good temper color resistance comparable to heat-resistant stainless steel without impairing good workability.

(c)Sn添加鋼の詳細な表面分析から、2B仕上げ後に前記の熱処理を施すことで、(i)表面酸化皮膜の膜厚が20Åから50〜100Å程度まで成長することが確認された。また表面酸化皮膜の膜厚の成長に伴って、(ii)表面酸化皮膜中のCr濃度が上昇する。(iii)Snは金属と酸化物の混合状態から4価の酸化物へ変化する。(iv)前記(ii)及び(iii)の結果に伴い表面酸化皮膜中へのTiの濃化が抑制される。といった新たな知見を得た。すなわち、本発明者らは、Sn添加及び熱処理が、従来の表面皮膜を、上述の(i)〜(iv)の事項を特長とする表面皮膜に改質させる作用があり、その結果、その後の大気加熱によるテンパーカラーの生成を抑制する効果を奏することを見出した。このようなSn添加及び熱処理による皮膜改質効果は、Sn量が0.05%から発現し、特にNbと複合添加した場合にその効果が重畳することがわかった。 (C) From the detailed surface analysis of Sn-added steel, it was confirmed that (i) the thickness of the surface oxide film grows from 20 to 50 to about 100 to 100 by applying the heat treatment after 2B finishing. Further, as the film thickness of the surface oxide film grows, (ii) the Cr concentration in the surface oxide film increases. (Iii) Sn changes from a mixed state of metal and oxide to a tetravalent oxide. (Iv) Concentration of Ti in the surface oxide film is suppressed in accordance with the results of (ii) and (iii). New knowledge was obtained. That is, the present inventors have the effect that Sn addition and heat treatment have the effect of modifying the conventional surface film to the surface film characterized by the above-mentioned items (i) to (iv). It has been found that there is an effect of suppressing the generation of a temper color by atmospheric heating. It was found that the effect of film modification by such addition of Sn and heat treatment is manifested when the Sn amount is 0.05%, and the effect is superimposed particularly when combined with Nb.

(d)上述したSn添加の皮膜改質機構については未だ不明なところが多い。特許文献6において、Sn添加による不働態皮膜中へのCrとSnの濃化及びそれに伴う耐銹性向上効果が明らかになっている。本発明では、表面酸化皮膜中におけるCrやSnの濃化作用に加えて、Snの存在状態がコントロールされることにより、耐テンパーカラー性を阻害するTiの皮膜中への濃化が抑制されたためと推定される。 (D) There are still many unclear points regarding the above-described film modification mechanism of Sn addition. In Patent Document 6, the concentration of Cr and Sn in the passive film by addition of Sn and the effect of improving the weather resistance associated therewith are clarified. In the present invention, in addition to the thickening action of Cr and Sn in the surface oxide film, the presence of Sn is controlled, so that the concentration of Ti in the film that inhibits the temper color resistance is suppressed. It is estimated to be.

(e)前記した耐テンパーカラー性の向上効果を高めるには、C、N、P、Sの低減によりステンレス鋼の高純度化を図るとよい。更に、安定化元素としてNbを添加することも効果的である。 (E) In order to enhance the effect of improving the above-described temper color resistance, it is preferable to increase the purity of stainless steel by reducing C, N, P, and S. It is also effective to add Nb as a stabilizing element.

(f)上記(c)で述べた皮膜改質には、公知の焼鈍・酸洗で得られた鋼板を、大気中または不活性ガス中において100〜300℃に昇温させることが有効である。また、光輝焼鈍仕上げの鋼板の場合は、冷却途中において水素ガスを含まない不活性ガス中あるいは大気中で滞留させることが好ましい。 (F) For the film modification described in (c) above, it is effective to raise the temperature of a steel sheet obtained by known annealing and pickling to 100 to 300 ° C. in the air or in an inert gas. . Further, in the case of a bright annealed steel sheet, it is preferable that the steel sheet is retained in an inert gas not containing hydrogen gas or in the air during cooling.

上記(a)〜(f)の知見に基づいて成された本発明の要旨は、以下の通りである。   The gist of the present invention based on the above findings (a) to (f) is as follows.

(1) 質量%にて、C:0.001〜0.03%、Si:0.01〜0.7%、Mn:0.01〜1%、P:0.005〜0.05%、S:0.0001〜0.01%、Cr:12〜20%、N:0.001〜0.03%、Al:0.005〜0.5%、Sn:0.05〜1%、残部がFeおよび不可避的不純物からなる鋼板であって、500Å未満の表面酸化皮膜を有し、前記表面酸化皮膜内にSnが4価の酸化物の状態で存在し、かつ、C,OおよびNを除いたカチオンのみの割合で、表面から深さ20Åまでの範囲におけるCr濃度と鋼中のCr量との比(Cr濃度/鋼含有Cr量)が1.1以上であることを特徴とする耐テンパーカラー性と加工性に優れた高純度フェライト系ステンレス鋼板。 (1) In mass%, C: 0.001 to 0.03%, Si: 0.01 to 0.7%, Mn: 0.01 to 1%, P: 0.005 to 0.05%, S: 0.0001-0.01%, Cr: 12-20%, N: 0.001-0.03%, Al: 0.005-0.5%, Sn: 0.05-1%, balance Is a steel plate composed of Fe and inevitable impurities, having a surface oxide film of less than 500 mm, Sn present in the state of tetravalent oxide in the surface oxide film, and C, O and N The ratio of the Cr concentration in the range from the surface to a depth of 20 mm to the Cr content in the steel (Cr concentration / steel content Cr content) is 1.1 or more in the proportion of only cations removed. High purity ferritic stainless steel sheet with excellent temper color and workability.

(2) 前記鋼には、さらに質量%にて、Nb:1%以下、Ti:0.3%以下、Ni:1%以下、Cu:1%以下、Mo:1%以下、V:0.5%以下、Zr:0.5%以下、Co:0.5%以下、Mg:0.005%以下、B:0.005%以下、Ca:0.005%以下のいずれか1種または2種以上が含有されていることを特徴とする(1)に記載の耐テンパーカラー性と加工性に優れた高純度フェライト系ステンレス鋼板。 (2) The steel further includes, in mass%, Nb: 1% or less, Ti: 0.3% or less, Ni: 1% or less, Cu: 1% or less, Mo: 1% or less, V: 0.00. 5% or less, Zr: 0.5% or less, Co: 0.5% or less, Mg: 0.005% or less, B: 0.005% or less, Ca: 0.005% or less The high-purity ferritic stainless steel sheet excellent in temper color resistance and workability as described in (1), characterized in that it contains at least seeds.

(3) 前記鋼には、さらに質量%にて、La:0.1%以下,Y:0.1%以下,Hf:0.1%以下,REM:0.1%以下のいずれか1種または2種以上が含有されていることを特徴とする(1)または(2)に記載の耐テンパーカラー性と加工性に優れた高純度フェライト系ステンレス鋼板。 (3) In the steel, any one of La: 0.1% or less, Y: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less in mass% Alternatively, the high purity ferritic stainless steel sheet having excellent temper color resistance and workability according to (1) or (2), wherein two or more types are contained.

(4) (1)〜(3)の何れか一項に記載の鋼成分を有する冷間圧延後の鋼板に対して焼鈍温度800〜1000℃での仕上げ焼鈍と酸洗とを連続して行い、その後大気または不活性ガス中において100〜300℃で10秒以上滞留する熱処理を行うことを特徴とする耐テンパーカラー性と加工性に優れた高純度フェライト系ステンレス鋼板の製造方法。 (4) Finish annealing and pickling at an annealing temperature of 800 to 1000 ° C. are continuously performed on the cold-rolled steel sheet having the steel component according to any one of (1) to (3). Then, a method for producing a high-purity ferritic stainless steel sheet excellent in temper color resistance and workability, characterized by performing a heat treatment that stays at 100 to 300 ° C. for 10 seconds or more in air or an inert gas.

(5) (1)〜(3)の何れか一項に記載の鋼成分を有する冷間圧延後の鋼板に対して焼鈍温度800〜1000℃での光輝焼鈍を行い、光輝焼鈍後の冷却途中あるいは冷却後に、大気または不活性ガス中において100〜300℃で10秒以上滞留する熱処理を行うことを特徴とする耐テンパーカラー性と加工性に優れた高純度フェライト系ステンレス鋼板の製造方法。 (5) Bright annealing is performed at an annealing temperature of 800 to 1000 ° C. on the steel sheet after cold rolling having the steel component according to any one of (1) to (3), and cooling is performed after the bright annealing. Alternatively, a method for producing a high-purity ferritic stainless steel sheet excellent in temper color resistance and workability, characterized in that after cooling, a heat treatment is carried out at 100 to 300 ° C. for 10 seconds or more in air or an inert gas.

本発明によれば、高Cr化や過度なSi,Alの添加に頼らず,更に光輝焼鈍による表面皮膜の生成に限定されることなく、Sn添加の作用効果により耐テンパーカラー性と加工性に優れた高純度フェライト系ステンレス鋼板を得ることができるという顕著な効果を奏する。   According to the present invention, it does not depend on high Cr, excessive addition of Si or Al, and is not limited to the formation of a surface film by bright annealing. There is a remarkable effect that an excellent high purity ferritic stainless steel sheet can be obtained.

以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".

(I)鋼成分
鋼成分の限定理由を以下に説明する。
Cは、耐食性に加えて本発明の目的とする耐テンパーカラー性を劣化させる。従ってCの含有量は少ないほどよく、上限を0.03%とする。但し、Cの過度の低減は精錬コストの増加に繋がるため、下限を0.001%とする。好ましくは、特性や製造コストを考慮して0.002〜0.02%とする。
(I) Steel component The reason for limiting the steel component will be described below.
C deteriorates the temper color resistance which is the object of the present invention in addition to the corrosion resistance. Therefore, the lower the content of C, the better. The upper limit is made 0.03%. However, excessive reduction of C leads to an increase in refining costs, so the lower limit is made 0.001%. Preferably, considering the characteristics and manufacturing cost, 0.002 to 0.02%.

Siは、脱酸元素でかつ耐テンパーカラー性に有効な元素である。しかしながら、Siの添加は、本発明の目的とする加工性の低下を招くため、Siは少ないほどよい。そのため上限を0.7%とする。但し、Siの過度な低減は脱酸能力の低下や精錬コストの増加に繋がるため、下限を0.01%とする。好ましくは、特性や製造性を考慮して0.05〜0.5%とする。より好ましい範囲は0.1〜0.3%である。   Si is a deoxidizing element and an element effective for temper color resistance. However, the addition of Si leads to a decrease in the workability that is the object of the present invention, so the less Si, the better. Therefore, the upper limit is made 0.7%. However, excessive reduction of Si leads to a decrease in deoxidizing ability and an increase in refining cost, so the lower limit is made 0.01%. Preferably, considering the characteristics and manufacturability, the content is made 0.05 to 0.5%. A more preferable range is 0.1 to 0.3%.

Mnは、硫化物を形成して耐銹性を阻害する元素であるため、その含有量は少ないほどよい。耐食性の低下抑制からMnの上限を1%とする。但し、Mnの過度の低減は精錬コストの増加に繋がるため、下限を0.01%とする。好ましくは、耐食性と製造性を考慮して0.05〜0.5%とする。   Since Mn is an element that forms sulfides and hinders weather resistance, the smaller the content, the better. The upper limit of Mn is made 1% in order to suppress the decrease in corrosion resistance. However, excessive reduction of Mn leads to an increase in refining costs, so the lower limit is made 0.01%. Preferably, considering the corrosion resistance and manufacturability, the content is made 0.05 to 0.5%.

Pは、製造性や溶接性を阻害する元素であるため、その含有量は少ないほどよい。製造性や溶接性の低下抑制からPの上限を0.05%とする。但し、Pの過度の低減は精錬コストの増加に繋がるため、下限を0.005%とする。好ましくは、製造コストを考慮して0.01〜0.04%とする。   Since P is an element that hinders manufacturability and weldability, the smaller the content, the better. The upper limit of P is set to 0.05% in order to suppress a decrease in manufacturability and weldability. However, excessive reduction of P leads to an increase in refining costs, so the lower limit is made 0.005%. Preferably, considering the manufacturing cost, the content is made 0.01 to 0.04%.

Sは、耐テンパーカラー性や熱間加工性を劣化させるため、その含有量は少ないほどよい。そのため、Sの上限は0.01%とする。但し、Sの過度の低減は精錬コストの増加に繋がるため、下限を0.0001%とする。好ましくは、耐テンパーカラー性や製造コストを考慮して0.0002〜0.002%とする。   Since S deteriorates temper color resistance and hot workability, the smaller the content, the better. Therefore, the upper limit of S is set to 0.01%. However, excessive reduction of S leads to an increase in refining costs, so the lower limit is made 0.0001%. Preferably, considering the temper color resistance and the manufacturing cost, 0.0002 to 0.002%.

Crは、本発明の高純度フェライト系ステンレス鋼の構成元素であり、Sn添加により本発明の目標とする耐テンパーカラー性を向上させる必須の元素である。耐テンパーカラー性向上の作用を得るためにCrの下限は12%とする。Crの上限は、本発明の目的とする加工性に加えて、製造性の観点から20%とする。好ましくは、特性と製造性および合金コストの経済性を考慮して13〜18%とする。   Cr is a constituent element of the high purity ferritic stainless steel of the present invention, and is an essential element that improves the temper color resistance targeted by the present invention by adding Sn. In order to obtain the effect of improving the temper color resistance, the lower limit of Cr is made 12%. The upper limit of Cr is set to 20% from the viewpoint of manufacturability in addition to the workability targeted by the present invention. Preferably, considering the characteristics, manufacturability and economics of the alloy cost, it is made 13 to 18%.

Nは、Cと同様に耐テンパーカラー性を劣化させるため、その含有量は少ないほどよく、上限を0.03%とする。但し、Nの過度の低減は精錬コストの増加に繋がるため、下限を0.001%とする。好ましくは、特性や製造コストを考慮して0.005〜0.015%とする。   N, like C, deteriorates the temper color resistance, so the content is preferably as small as possible, and the upper limit is made 0.03%. However, excessive reduction of N leads to an increase in refining costs, so the lower limit is made 0.001%. Preferably, considering the characteristics and manufacturing cost, 0.005 to 0.015%.

Alは、脱酸元素として有効な元素であることに加え、本発明の目標とする耐テンパーカラー性を高める元素である。Alの下限は、Siを低減した際の脱酸効果を得るために0.005%とする。Alの上限は、加工性や製造性の観点から0.5%とする。好ましくは、特性と製造性を考慮して0.02〜0.2%とする。より好ましくは0.03〜0.1%とする。   In addition to being an effective element as a deoxidizing element, Al is an element that improves the temper color resistance targeted by the present invention. The lower limit of Al is set to 0.005% in order to obtain a deoxidation effect when Si is reduced. The upper limit of Al is 0.5% from the viewpoint of workability and manufacturability. Preferably, considering the characteristics and manufacturability, the content is made 0.02 to 0.2%. More preferably, it is 0.03 to 0.1%.

Snは、Cr、SiまたはAlの合金化による加工性低下や光輝焼鈍による皮膜制御に頼ることなく、本発明の目的とする耐テンパーカラー性を発現するために必須の元素である。本発明の目標とする耐テンパーカラー性の向上の作用を得るために、Snの下限は0.05%とする。Snの上限は、加工性と製造性の観点から1%とする。好ましくは、特性と製造性および合金コストの経済性を考慮して0.1〜0.5%とする。より好ましくは、0.1〜0.3%とする。   Sn is an essential element for exhibiting the temper color resistance aimed at by the present invention without depending on the workability degradation due to alloying of Cr, Si or Al or the film control by bright annealing. In order to obtain the effect of improving the temper color resistance which is the target of the present invention, the lower limit of Sn is set to 0.05%. The upper limit of Sn is 1% from the viewpoints of workability and manufacturability. Preferably, considering the characteristics and manufacturability and the economics of the alloy cost, the content is made 0.1 to 0.5%. More preferably, it is 0.1 to 0.3%.

また、本発明の高純度フェライト系ステンレス鋼板においては、上記成分の他に、Nb、Ti、Ni、Cu、Mo、V、Zr、Co、Mg、B、Caのいずれか1種または2種以上を含有してもよい。更に、本発明の高純度フェライト系ステンレス鋼板は、La、Y、Hf、REMのいずれか1種または2種以上を含有してもよい。   Moreover, in the high purity ferritic stainless steel sheet of the present invention, in addition to the above components, any one or more of Nb, Ti, Ni, Cu, Mo, V, Zr, Co, Mg, B, and Ca are used. It may contain. Furthermore, the high purity ferritic stainless steel sheet of the present invention may contain one or more of La, Y, Hf, and REM.

Nbは、C,Nを固定する安定化元素の作用に加えて、Snと重畳して耐テンパーカラー性を向上させる元素であり、必要に応じて添加する。Nbを添加する場合は、その効果が発現する0.03%以上とする。但し、過度な添加は合金コストの上昇や再結晶温度上昇に伴う製造性の低下に繋がるため、上限を1%とする。Nbの好ましい範囲は、効果と合金コストおよび製造性を考慮して、0.05〜0.5%とする。より好ましい範囲は0.1〜0.3%である。   Nb is an element that overlaps with Sn to improve the temper color resistance in addition to the action of a stabilizing element that fixes C and N, and is added as necessary. When adding Nb, it is made into 0.03% or more which the effect expresses. However, excessive addition leads to a decrease in manufacturability accompanying an increase in alloy cost and a recrystallization temperature, so the upper limit is made 1%. A preferable range of Nb is 0.05 to 0.5% in consideration of the effect, the alloy cost, and the manufacturability. A more preferable range is 0.1 to 0.3%.

Tiは、C,Nを固定する安定化元素の作用による鋼の高純度化を通じて、耐テンパーカラー性を高める作用を持つ。その一方で、表面酸化皮膜中に選択的に濃化して着色の原因となり、耐テンパーカラー性を低下させる作用をも有している。Tiを添加する場合は、前者の効果が発現する0.01%以上とする。但し、過度な添加は後者の作用に繋がるため、上限を0.3%とする。Tiの好ましい範囲は、効果と合金コストを考慮して、0.02〜0.2%とする。より好ましい範囲は0.05〜0.15%である。   Ti has the effect of increasing the temper color resistance through the purification of steel by the action of a stabilizing element that fixes C and N. On the other hand, it selectively concentrates in the surface oxide film to cause coloring, and has an effect of reducing the temper color resistance. When adding Ti, the content of the former is 0.01% or more. However, excessive addition leads to the latter action, so the upper limit is made 0.3%. The preferable range of Ti is 0.02 to 0.2% in consideration of the effect and the alloy cost. A more preferable range is 0.05 to 0.15%.

Ni、Cu、Mo、V、Zr、Coは、Snとの相乗効果により耐テンパーカラー性を高めるのに有効な元素であり、必要に応じて添加する。Ni、Cu、Moを添加する場合は、それぞれその効果が発現する0.1%以上とする。V、Zr、Coを添加する場合は、それぞれその効果が発現する0.01%以上とする。但し、過度な添加は合金コストの上昇や製造性の低下に繋がるため、Ni、Cu、Moの上限は1%とし、好ましい範囲は0.1〜0.5%とする。同様にV、Zr、Coの上限は0.5%とし、好ましい範囲は0.01〜0.3とする。   Ni, Cu, Mo, V, Zr, and Co are effective elements for enhancing the temper color resistance by a synergistic effect with Sn, and are added as necessary. When adding Ni, Cu, and Mo, it is set as 0.1% or more which the effect expresses, respectively. When V, Zr, and Co are added, the content is set to 0.01% or more where the effect is exhibited. However, excessive addition leads to an increase in alloy costs and a decrease in manufacturability, so the upper limit of Ni, Cu, and Mo is 1%, and the preferred range is 0.1 to 0.5%. Similarly, the upper limit of V, Zr, and Co is 0.5%, and the preferred range is 0.01 to 0.3.

Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する他に、TiNの晶出核として作用する。TiNは凝固過程においてフェライト相の凝固核となり、TiNの晶出を促進させることで、凝固時にフェライト相を微細生成させることができる。凝固組織を微細化させることにより、製品のリジングやロ−ピングなどの粗大凝固組織に起因した表面欠陥を防止できる他、加工性の向上をもたらすため、必要に応じて添加する。Mgを添加する場合は、これら効果を発現する0.0001%とする。但し、0.005%を超えると製造性が劣化するため、上限を0.005%とする。好ましくは、製造性を考慮して0.0003〜0.002%とする。   In addition to forming Mg oxide together with Al in molten steel and acting as a deoxidizer, Mg acts as a crystallization nucleus of TiN. TiN becomes a solidification nucleus of the ferrite phase in the solidification process, and by facilitating crystallization of TiN, the ferrite phase can be finely formed during solidification. By making the solidified structure fine, it is possible to prevent surface defects due to coarse solidified structure such as ridging and roping of the product, and to improve workability. When adding Mg, it is made 0.0001% which expresses these effects. However, if it exceeds 0.005%, manufacturability deteriorates, so the upper limit is made 0.005%. Preferably, considering the manufacturability, the content is made 0.0003 to 0.002%.

Bは、熱間加工性や2次加工性を向上させる元素であり、高純度フェライト系ステンレス鋼への添加は有効である。添加する場合は、これら効果を発現する0.0003%以上とする。しかし、Bの過度の添加は伸びの低下をもたらすため、上限を0.005%とする。好ましくは、加工性や製造性を考慮して0.0005〜0.002%とする。   B is an element that improves hot workability and secondary workability, and addition to high purity ferritic stainless steel is effective. When adding, it is made 0.0003% or more to express these effects. However, excessive addition of B causes a decrease in elongation, so the upper limit is made 0.005%. Preferably, considering the workability and manufacturability, the content is made 0.0005 to 0.002%.

Caは、熱間加工性や鋼の清浄度を向上させる元素であり、必要に応じて添加する。Caを添加する場合は、これら効果を発現する0.0003%以上とする。しかし、Caの過度の添加は、製造性の低下やCaSなどの水溶性介在物による耐食性の低下に繋がるため、上限を0.005%とする。好ましくは、製造性や耐食性を考慮して0.0003〜0.0015%とする。   Ca is an element that improves hot workability and steel cleanliness, and is added as necessary. When adding Ca, it is made 0.0003% or more which expresses these effects. However, excessive addition of Ca leads to a decrease in manufacturability and a decrease in corrosion resistance due to water-soluble inclusions such as CaS, so the upper limit is made 0.005%. Preferably, considering the manufacturability and corrosion resistance, the content is made 0.0003 to 0.0015%.

La、Y、Hf、REMは、熱間加工性や鋼の清浄度を向上させ、本発明の耐テンパーカラー性の向上に有効な元素であり、必要に応じて添加してもよい。添加する場合は、それぞれその効果が発現する0.001%以上とする。しかし、過度の添加は、合金コストの上昇と製造性の低下に繋がるため、上限をそれぞれ0.1%とする。好ましくは、効果と経済性および製造性を考慮して、1種または2種以上で0.001〜0.05%とする。REMは、原子番号57〜71に帰属する元素であり、例えば、La,Ce,Ndを例示できる。   La, Y, Hf, and REM are effective elements for improving the hot workability and the cleanliness of steel and improving the temper color resistance of the present invention, and may be added as necessary. When added, the content is set to 0.001% or more where the effect is exhibited. However, excessive addition leads to an increase in alloy cost and a decrease in manufacturability, so the upper limit is made 0.1%. Preferably, considering the effect, economic efficiency, and manufacturability, one or two or more is 0.001 to 0.05%. REM is an element belonging to atomic numbers 57 to 71, and examples thereof include La, Ce, and Nd.

(II)表面酸化膜
前記(I)項に記載の成分の鋼において、耐テンパーカラー性を発現させる表面酸化皮膜について以下に説明する。
本発明の高純度フェライト系ステンレス鋼板における表面酸化皮膜の厚さは、20Å以上とするのがよい。表面酸化皮膜の厚みの上限は、着色の観点から500Åとする。好ましい膜厚は着色と耐テンパーカラー性を考慮して30〜300Åの範囲である。より好ましい範囲は50〜100Åである。
(II) Surface oxide film In the steel of the component described in the above item (I), a surface oxide film that exhibits temper color resistance will be described below.
The thickness of the surface oxide film in the high purity ferritic stainless steel sheet of the present invention is preferably 20 mm or more. The upper limit of the thickness of the surface oxide film is 500 mm from the viewpoint of coloring. A preferable film thickness is in the range of 30 to 300 mm in consideration of coloring and temper color resistance. A more preferable range is 50 to 100 mm.

また、従来のSn添加ステンレス鋼におけるSnは、表面酸化皮膜中において、金属と酸化物の混合状態で存在している。一方、本発明の高純度フェライト系ステンレス鋼板では、Snの存在状態が4価の酸化物となっている。Snの存在状態が4価の安定なSn酸化物になっているため、耐テンパーカラー性を阻害するTi等微量元素の表面富化を抑制することができる。   Moreover, Sn in the conventional Sn-added stainless steel exists in a mixed state of metal and oxide in the surface oxide film. On the other hand, in the high purity ferritic stainless steel sheet of the present invention, Sn is present as a tetravalent oxide. Since the presence state of Sn is a tetravalent stable Sn oxide, it is possible to suppress the surface enrichment of trace elements such as Ti which inhibits the temper color resistance.

更に、耐テンパーカラー性を発現させるには、表面から深さ20ÅまでのCr濃度を、母材の1.1倍以上に高めることが有効である。好ましくは、表面から20ÅまでのCr濃度が母材の1.2倍以上であるとよい。   Furthermore, in order to develop temper color resistance, it is effective to increase the Cr concentration from the surface to a depth of 20 mm to 1.1 times or more that of the base material. Preferably, the Cr concentration from the surface to 20% is 1.2 times or more that of the base material.

上述した酸化皮膜のCr濃度やSnの存在状態は、X線光電子分光法により調べることができる。X線源mono−AlKα線、入射X線エネルギー=1486.6eVの場合、Fe、Cr、Snの状態は、下記の結合エネルギーでのピークの検出により確認することができる。それら以外の検出元素としては、Ti、Si、Mn、Alなどである。   The Cr concentration of the above-described oxide film and the presence state of Sn can be examined by X-ray photoelectron spectroscopy. In the case of X-ray source mono-AlKα ray and incident X-ray energy = 1486.6 eV, the states of Fe, Cr, and Sn can be confirmed by detecting peaks with the following binding energies. Other detection elements include Ti, Si, Mn, Al, and the like.

Fe2p:705〜714eV、Cr2p:570〜580eV、
Sn3d:480〜500eV
Fe2p: 705 to 714 eV, Cr2p: 570 to 580 eV,
Sn3d: 480 to 500 eV

ここで、Cr濃度は、酸化物の検出スペクトルについて積分強度を測定し、CやO、Nの軽元素を除くカチオンイオン換算で求める。 Here, the Cr concentration is determined in terms of cation ions excluding C, O, and N light elements by measuring the integrated intensity of the oxide detection spectrum.

Snの存在状態は、放射光を用いた入射エネルギー7939eVの硬X線光電子分光法により感度良く分析することもできる。このような高エネルギーX線を使用する場合、O、Fe、Cr等の干渉を受けない内核準位の電子軌道を分析することが有用である。Snの状態分析には、次の結合エネルギーでピークを検出することが有効である。   The presence state of Sn can also be analyzed with high sensitivity by hard X-ray photoelectron spectroscopy with an incident energy of 7939 eV using synchrotron radiation. When such high energy X-rays are used, it is useful to analyze the inner core level electron orbits that are not subject to interference such as O, Fe, and Cr. For the Sn state analysis, it is effective to detect a peak with the following binding energy.

Sn2s:4460〜4470eV、Sn2p3/2:3925〜3935eV Sn2s: 4460-4470 eV, Sn2p3 / 2: 3925-3935 eV

表面酸化皮膜の厚さは、オージェ電子分光法のArスパッター法により測定できる。酸化皮膜の厚さは、O(酸素)の深さ方向プロファイルにおいてその半価幅に相当する領域として求めることができる。   The thickness of the surface oxide film can be measured by the Ar sputtering method of Auger electron spectroscopy. The thickness of the oxide film can be obtained as a region corresponding to the half-value width in the depth profile of O (oxygen).

(III)製造方法
次に、本発明の高純度フェライト系ステンレス鋼板の製造方法について説明する。
前記(II)項において説明した表面酸化皮膜を形成して耐テンパーカラー性を発現させるために、冷間圧延した鋼板に対し、以下の諸条件を経ることにより、本発明の高純度フェライト系ステンレス鋼板を製造する。なお、冷延鋼板を得るまでの製造方法は特に限定されるものでない。
(III) Manufacturing method Next, the manufacturing method of the high purity ferritic stainless steel sheet of this invention is demonstrated.
The high purity ferritic stainless steel of the present invention is subjected to the following conditions for the cold-rolled steel sheet in order to form the surface oxide film described in the section (II) and to exhibit the temper color resistance. Manufacture steel sheets. In addition, the manufacturing method until obtaining a cold-rolled steel plate is not specifically limited.

本発明の製造方法では、冷間圧延後の冷延鋼板に対して仕上げ焼鈍と酸洗とを連続して行い、その後大気または不活性ガス中において100〜300℃で10秒以上滞留する熱処理を行うか、あるいは、冷間圧延後の冷延鋼板に対して光輝焼鈍を行い、光輝焼鈍後の冷却途中あるいは冷却後に、大気または不活性ガス中において100〜300℃で10秒以上滞留する熱処理を行う。   In the production method of the present invention, finish annealing and pickling are continuously performed on the cold-rolled steel sheet after cold rolling, and then heat treatment is performed for 10 seconds or more at 100 to 300 ° C. in air or an inert gas. Or performing a bright annealing on the cold-rolled steel sheet after the cold rolling, and performing a heat treatment that stays at 100 to 300 ° C. for 10 seconds or more in the air or an inert gas during or after the cooling after the bright annealing. Do.

(仕上げ焼鈍と酸洗とを連続して行う場合)
冷延鋼板に対して仕上げ焼鈍と酸洗とを連続して行う場合の焼鈍温度は、鋼板の再結晶を目的として800℃以上とする。仕上げ焼鈍の焼鈍温度の上限は、結晶粒の粗粒化を抑制するために1000℃とする。細粒再結晶組織を形成して良好な加工性を得るために好ましい温度は850〜950℃の範囲である。
(When finishing annealing and pickling are performed continuously)
The annealing temperature in the case of continuously performing finish annealing and pickling on a cold-rolled steel sheet is set to 800 ° C. or more for the purpose of recrystallization of the steel sheet. The upper limit of the annealing temperature of finish annealing is set to 1000 ° C. in order to suppress coarsening of crystal grains. A preferable temperature is in the range of 850 to 950 ° C. in order to form a fine grain recrystallized structure and obtain good processability.

仕上げ焼鈍後の酸洗方法は特に規定するものではなく,工業的に常用されている方法で実施できる。例えば、アルカリソルトバス浸漬後に電解酸洗して硝弗酸浸漬する工程を例示できる。電解酸洗は中性塩電解や硝酸電解等を行うものとする。   The pickling method after finish annealing is not particularly specified, and can be carried out by a method commonly used in industry. For example, a process of electrolytic pickling after immersion in an alkali salt bath and immersion in nitric hydrofluoric acid can be exemplified. In the electrolytic pickling, neutral salt electrolysis or nitric acid electrolysis is performed.

次に、酸洗で仕上げた鋼板に対し、前記した表面酸化皮膜を形成するために、大気または不活性ガス中において100℃以上300℃以下で10秒以上の熱処理を行う。不活性ガスは、窒素あるいはアルゴンガスを主成分とし、その他にO、H、CO等を含有しても構わない。O、H、CO等を含有する場合のこれらの含有率は合計で3%以下がよい。熱処理温度が100℃未満の場合、表面酸化皮膜中へのCr濃化およびSn酸化物の形成が困難になる。また、熱処理温度が300℃を超えると、表面酸化皮膜の過度の成長により着色が危惧される。熱処理の保持時間は、熱処理の安定性を考慮して10秒以上とすることが好ましい。保持時間の上限は特に規定するものでないが、酸化皮膜の成長による着色を考慮して24時間以下が好ましい。 Next, in order to form the above-described surface oxide film on the steel plate finished by pickling, heat treatment is performed at 100 ° C. or higher and 300 ° C. or lower for 10 seconds or longer in the air or an inert gas. The inert gas contains nitrogen or argon gas as a main component and may contain O 2 , H 2 , CO 2 or the like. In the case where O 2 , H 2 , CO 2 and the like are contained, the total content is preferably 3% or less. When the heat treatment temperature is less than 100 ° C., Cr concentration and Sn oxide formation in the surface oxide film become difficult. On the other hand, if the heat treatment temperature exceeds 300 ° C., coloring is feared due to excessive growth of the surface oxide film. The heat treatment holding time is preferably 10 seconds or longer in consideration of the stability of the heat treatment. The upper limit of the holding time is not particularly specified, but is preferably 24 hours or less in consideration of coloring due to the growth of the oxide film.

(光輝焼鈍の場合)
また、冷延鋼板に対して光輝焼鈍を行う場合の焼鈍温度は、仕上げ焼鈍・酸洗を連続して行う場合と同様に、鋼板の再結晶を目的として800℃以上とする。光輝焼鈍の焼鈍温度の上限は、結晶粒の粗粒化を抑制するために1000℃とする。細粒再結晶組織を形成して良好な加工性を得るために好ましい温度は850〜950℃の範囲である。
(In case of bright annealing)
In addition, the annealing temperature when performing bright annealing on a cold-rolled steel sheet is set to 800 ° C. or more for the purpose of recrystallization of the steel sheet, as in the case of performing continuous annealing and pickling. The upper limit of the annealing temperature for bright annealing is set to 1000 ° C. in order to suppress coarsening of crystal grains. A preferable temperature is in the range of 850 to 950 ° C. in order to form a fine grain recrystallized structure and obtain good processability.

光輝焼鈍後の熱処理は、光輝焼鈍後の冷却途中に実施してもよく、光輝焼鈍及び冷却が終了後に、再加熱して熱処理してもよい。光輝焼鈍後の冷却途中に熱処理を実施する場合は、300℃以下の温度域において、雰囲気ガスを、光輝焼鈍の雰囲気ガス(例えば水素ガス)から不活性ガスまたは大気中に変更する。そして、変更した雰囲気中(不活性ガスまたは大気)に鋼板を通過させながら、鋼板温度が100〜300℃の範囲で10秒以上滞留させるようにする。この場合の不活性ガスは、窒素あるいはアルゴンガスを主成分とし、その他にO、H、CO等を含有しても構わない。O、H、CO等を含有する場合のこれらの含有率は合計で3%以下がよい。 The heat treatment after the bright annealing may be performed during the cooling after the bright annealing, or after the bright annealing and cooling are completed, the heat treatment may be performed by reheating. When the heat treatment is performed during the cooling after the bright annealing, the atmospheric gas is changed from the bright annealing atmospheric gas (for example, hydrogen gas) to an inert gas or air in a temperature range of 300 ° C. or lower. And while letting a steel plate pass in the changed atmosphere (inert gas or air), the steel plate temperature is made to stay for 10 seconds or more in the range of 100-300 degreeC. The inert gas in this case is mainly composed of nitrogen or argon gas, and may contain O 2 , H 2 , CO 2 or the like. In the case where O 2 , H 2 , CO 2 and the like are contained, the total content is preferably 3% or less.

また、光輝焼鈍及び冷却が終了後に、再加熱して熱処理する場合は、大気または不活性ガス中において100℃以上300℃以下で10秒以上の熱処理を行うことが好ましい。不活性ガスは、窒素あるいはアルゴンガスを主成分とし、その他にO、H、CO等を含有しても構わない。O、H、CO等を含有する場合のこれらの含有率は合計で3%以下がよい。熱処理温度が100℃未満の場合、表面酸化皮膜中へのCr濃化およびSn酸化物の形成が困難である。また、熱処理温度が300℃を超えると、表面酸化皮膜の過度の成長により着色が危惧される。熱処理の保持時間は、熱処理の安定性を考慮して10秒以上とする。保持時間の上限は特に規定するものでないが、酸化皮膜の成長による着色を考慮して24時間以下が好ましい。 In addition, when the heat treatment is performed by reheating after completion of the bright annealing and cooling, it is preferable to perform the heat treatment at 100 ° C. or higher and 300 ° C. or lower for 10 seconds or longer in the air or an inert gas. The inert gas contains nitrogen or argon gas as a main component and may contain O 2 , H 2 , CO 2 or the like. In the case where O 2 , H 2 , CO 2 and the like are contained, the total content is preferably 3% or less. When the heat treatment temperature is less than 100 ° C., it is difficult to concentrate Cr and form Sn oxide in the surface oxide film. On the other hand, if the heat treatment temperature exceeds 300 ° C., coloring is feared due to excessive growth of the surface oxide film. The heat treatment holding time is set to 10 seconds or more in consideration of the heat treatment stability. The upper limit of the holding time is not particularly specified, but is preferably 24 hours or less in consideration of coloring due to the growth of the oxide film.

また、光輝焼鈍した鋼板は、表面酸化皮膜中のCr濃度を高めるために、必要に応じて硝酸電解などを付与してもよい。   Further, the brightly annealed steel sheet may be subjected to nitric acid electrolysis or the like as necessary in order to increase the Cr concentration in the surface oxide film.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

表1の成分を有するフェライト系ステンレス鋼を溶製し、熱間圧延と焼鈍を実施した後、冷間圧延を経て板厚0.4〜1.0mmの冷延鋼板とした。冷延鋼板は、いずれも再結晶が完了する850〜1000℃の範囲で仕上げ焼鈍を行った。仕上げ焼鈍は、酸化性雰囲気焼鈍あるいは光輝焼鈍を実施した。酸化性雰囲気焼鈍後の酸洗条件は、アルカリソルトバス浸漬+中性塩電解+硝弗酸浸漬とした。仕上げ焼鈍・酸洗あるいは光輝焼鈍して得られた鋼板は、適時、大気または不活性ガス中において100〜300℃で滞留する熱処理を実施した。
また、鋼の成分は、本発明で規定する範囲とそれ以外でも実施した。比較鋼は、高加工性高純度フェライト系であるSUS430LX(17Cr−Ti)を使用した。また、本発明の目標特性として基準となる耐熱用SUS(18Cr−2.5Si)を参考例として使用した。なお、鋼GのLa及びYはそれぞれ0.1%であり、鋼IのLa及びHfはそれぞれ0.05%であり、鋼JのB及びMgはそれぞれ7ppmであり、鋼KのZr及びCoはそれぞれ0.05%である。
After ferritic stainless steel having the components shown in Table 1 was melted and subjected to hot rolling and annealing, a cold rolled steel sheet having a thickness of 0.4 to 1.0 mm was obtained through cold rolling. All the cold-rolled steel sheets were finish-annealed in the range of 850 to 1000 ° C. where recrystallization was completed. As the final annealing, oxidizing atmosphere annealing or bright annealing was performed. The pickling conditions after oxidizing atmosphere annealing were alkali salt bath immersion + neutral salt electrolysis + nitric hydrofluoric acid immersion. The steel sheet obtained by finish annealing / pickling or bright annealing was subjected to heat treatment that stayed at 100 to 300 ° C. in the atmosphere or in an inert gas in a timely manner.
Moreover, the steel component was also carried out in the range specified in the present invention and other ranges. As the comparative steel, SUS430LX (17Cr-Ti), which is a high workability and high purity ferrite, was used. Further, heat resistant SUS (18Cr-2.5Si), which serves as a reference as a target characteristic of the present invention, was used as a reference example. In addition, La and Y of steel G are 0.1%, La and Hf of steel I are 0.05%, B and Mg of steel J are 7 ppm, Zr and Co of steel K, respectively. Is 0.05% respectively.

表面酸化皮膜は、X線光電子分光法により、Cr濃度とSnの存在状態および膜厚を評価した。耐テンパーカラー性は、大気中300℃、1時間の条件で加熱した鋼板表面において、色差測定でb値を求めた。また、外観観察により表面の質感(金属光沢、着色)を判定した。さらに、JIS準拠の塩水噴霧試験(24hr噴霧)による発銹(有:×、無:○)を確認した。本発明例は、前記試験で、比較材とした430LXよりb値が小さく、耐熱SUSと同様に金属光沢の質感を有し、かつSST試験で発銹の無いものとした。   The surface oxide film was evaluated for the Cr concentration, the presence state of Sn, and the film thickness by X-ray photoelectron spectroscopy. For the temper color resistance, b value was determined by color difference measurement on the surface of a steel sheet heated at 300 ° C. for 1 hour in air. Also, the surface texture (metallic luster, coloring) was determined by appearance observation. Furthermore, the mist generation (existence: x, absence: o) by the salt water spray test (24hr spraying) based on JIS was confirmed. The inventive example had a b value smaller than that of the comparative material 430LX in the above test, had a metallic luster texture similar to the heat-resistant SUS, and had no rust in the SST test.

Figure 2014152368
Figure 2014152368

表2に製造方法と各試験結果をまとめて示す。
表2から、試験番号7〜12、13〜16は、本発明で規定する好ましい成分と製造方法を満足する高純度フェライト系ステンレス鋼板である。これら鋼板は、本発明で規定する表面酸化皮膜の膜厚、Cr濃度、Sn存在状態が確認され,耐熱SUSと同様に優れた耐テンパーカラー性が得られた。
Table 2 summarizes the manufacturing method and each test result.
From Table 2, test numbers 7 to 12 and 13 to 16 are high-purity ferritic stainless steel sheets that satisfy the preferred components and production methods defined in the present invention. In these steel sheets, the film thickness of the surface oxide film, the Cr concentration, and the presence of Sn as defined in the present invention were confirmed, and excellent temper color resistance was obtained in the same manner as heat resistant SUS.

Figure 2014152368
Figure 2014152368

試験番号1、2、4は、本発明で規定する成分と製造方法を実施した高純度フェライト系ステンレス鋼板である。これら鋼板は本発明の目標とする耐熱SUSと同等の優れた耐テンパーカラー性が得られた。   Test numbers 1, 2, and 4 are high-purity ferritic stainless steel plates that have been subjected to the components and manufacturing methods defined in the present invention. These steel sheets obtained excellent temper color resistance equivalent to the heat resistant SUS targeted by the present invention.

試験番号3、5、6は、本発明で規定する成分を有するものの,本発明で規定する製造方法から外れるものである。これら鋼板は、本発明で目標とする耐テンパーカラー性が得られなかった。   Test Nos. 3, 5, and 6 have components specified by the present invention, but deviate from the manufacturing method specified by the present invention. These steel sheets did not have the temper color resistance targeted in the present invention.

試験番号17〜20、22は、本発明で規定する成分から外れるものである。これら鋼板は、本発明で規定する好ましい製造方法を実施しているものの、本発明で目標とする耐テンパーカラー性が得られなかった。   Test numbers 17 to 20 and 22 deviate from the components defined in the present invention. Although these steel plates were subjected to the preferred production method defined in the present invention, the temper color resistance targeted by the present invention was not obtained.

試験番号21は、本発明で規定する成分から外れるもので、本発明で規定する好ましい製造方法も実施しなかったものである。これら鋼板は、本発明で目標とする耐テンパーカラー性が得られなかった。   Test number 21 deviates from the components defined in the present invention, and the preferred production method defined in the present invention was not carried out. These steel sheets did not have the temper color resistance targeted in the present invention.

本結果から、Sn添加高純度フェライト系ステンレス鋼板において、良好な加工性に加えて、表面皮膜の膜厚、Cr濃度、Snの存在状態をコントロールして耐テンパーカラー性を発現させるには、本発明で規定する成分あるいは好ましい成分に調整し、更に、好ましい製造方法を実施することが有効である。   From this result, in addition to good workability in Sn-added high-purity ferritic stainless steel sheet, it is necessary to control the film thickness of the surface film, Cr concentration, and the presence of Sn to exhibit temper color resistance. It is effective to adjust to the components specified in the invention or preferable components and to carry out a preferable manufacturing method.

本発明によれば、高Cr化や過度なSi、Alの添加に頼らず,更に光輝焼鈍による表面皮膜の生成に限定されることなく、Sn添加の作用効果により耐テンパーカラー性と加工性に優れた省合金型の高純度フェライト系ステンレス鋼板を得ることができる。   According to the present invention, it does not depend on high Cr, excessive addition of Si or Al, and is not limited to the formation of a surface film by bright annealing, but the effect of Sn addition improves the temper color resistance and workability. An excellent alloy-saving high-purity ferritic stainless steel sheet can be obtained.

Claims (5)

質量%にて、C:0.001〜0.03%、Si:0.01〜0.7%、Mn:0.01〜1%、P:0.005〜0.05%、S:0.0001〜0.01%、Cr:12〜20%、N:0.001〜0.03%、Al:0.005〜0.5%、Sn:0.05〜1%、残部がFeおよび不可避的不純物からなる鋼板であって、500Å未満の表面酸化皮膜を有し、前記表面酸化皮膜内にSnが4価の酸化物の状態で存在し、かつ、C,OおよびNを除いたカチオンのみの割合で、表面から深さ20Åまでの範囲におけるCr濃度と鋼中のCr量との比(Cr濃度/鋼含有Cr量)が1.1以上であることを特徴とする耐テンパーカラー性と加工性に優れた高純度フェライト系ステンレス鋼板。   In mass%, C: 0.001 to 0.03%, Si: 0.01 to 0.7%, Mn: 0.01 to 1%, P: 0.005 to 0.05%, S: 0 0.0001-0.01%, Cr: 12-20%, N: 0.001-0.03%, Al: 0.005-0.5%, Sn: 0.05-1%, the balance being Fe and A steel plate comprising inevitable impurities, having a surface oxide film of less than 500 mm, Sn present in the state of a tetravalent oxide in the surface oxide film, and a cation excluding C, O and N The ratio of the Cr concentration to the amount of Cr in the steel in the range from the surface to a depth of 20 mm (Cr concentration / the amount of Cr contained in the steel) is 1.1 or more. And high purity ferritic stainless steel sheet with excellent workability. 前記鋼には、さらに質量%にて、Nb:1%以下、Ti:0.3%以下、Ni:1%以下、Cu:1%以下、Mo:1%以下、V:0.5%以下、Zr:0.5%以下、Co:0.5%以下、Mg:0.005%以下、B:0.005%以下、Ca:0.005%以下のいずれか1種または2種以上が含有されていることを特徴とする請求項1に記載の耐テンパーカラー性と加工性に優れた高純度フェライト系ステンレス鋼板。   The steel further includes, in mass%, Nb: 1% or less, Ti: 0.3% or less, Ni: 1% or less, Cu: 1% or less, Mo: 1% or less, V: 0.5% or less Zr: 0.5% or less, Co: 0.5% or less, Mg: 0.005% or less, B: 0.005% or less, Ca: 0.005% or less The high-purity ferritic stainless steel sheet excellent in temper color resistance and workability according to claim 1, which is contained. 前記鋼には、さらに質量%にて、La:0.1%以下,Y:0.1%以下,Hf:0.1%以下,REM:0.1%以下のいずれか1種または2種以上が含有されていることを特徴とする請求項1または2に記載の耐テンパーカラー性と加工性に優れた高純度フェライト系ステンレス鋼板。   The steel further includes one or two of La: 0.1% or less, Y: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less in mass%. The high purity ferritic stainless steel sheet excellent in temper color resistance and workability according to claim 1 or 2, wherein the above is contained. 請求項1〜3の何れか一項に記載の鋼成分を有する冷間圧延後の鋼板に対して焼鈍温度800〜1000℃での仕上げ焼鈍と酸洗とを連続して行い、その後大気または不活性ガス中において100〜300℃で10秒以上滞留する熱処理を行うことを特徴とする耐テンパーカラー性と加工性に優れた高純度フェライト系ステンレス鋼板の製造方法。   Finished annealing and pickling at an annealing temperature of 800 to 1000 ° C are continuously performed on the cold-rolled steel sheet having the steel component according to any one of claims 1 to 3, and then the atmosphere or non-washing is performed. A method for producing a high-purity ferritic stainless steel sheet excellent in temper color resistance and workability, characterized by performing a heat treatment that retains at 100 to 300 ° C. for 10 seconds or longer in an active gas. 請求項1〜3の何れか一項に記載の鋼成分を有する冷間圧延後の鋼板に対して焼鈍温度800〜1000℃での光輝焼鈍を行い、光輝焼鈍後の冷却途中あるいは冷却後に、大気または不活性ガス中において100〜300℃で10秒以上滞留する熱処理を行うことを特徴とする耐テンパーカラー性と加工性に優れた高純度フェライト系ステンレス鋼板の製造方法。   Bright annealing at an annealing temperature of 800 to 1000 ° C. is performed on the steel sheet after cold rolling having the steel component according to any one of claims 1 to 3, and during or after cooling after the bright annealing, the atmosphere Or the manufacturing method of the high purity ferritic stainless steel plate excellent in temper color resistance and workability characterized by performing the heat processing which retains for 10 second or more at 100-300 degreeC in inert gas.
JP2013024310A 2013-02-12 2013-02-12 High purity ferritic stainless steel sheet excellent in temper color resistance and workability and method for producing the same Active JP6106450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013024310A JP6106450B2 (en) 2013-02-12 2013-02-12 High purity ferritic stainless steel sheet excellent in temper color resistance and workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013024310A JP6106450B2 (en) 2013-02-12 2013-02-12 High purity ferritic stainless steel sheet excellent in temper color resistance and workability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014152368A true JP2014152368A (en) 2014-08-25
JP6106450B2 JP6106450B2 (en) 2017-03-29

Family

ID=51574533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013024310A Active JP6106450B2 (en) 2013-02-12 2013-02-12 High purity ferritic stainless steel sheet excellent in temper color resistance and workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP6106450B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844577B1 (en) 2016-12-13 2018-04-03 주식회사 포스코 Ferritic stainless steel for automotive exhaust system with improved heat resistance and corrosion resistance for water condensation and method of manufacturing the same
CN108179360A (en) * 2018-01-30 2018-06-19 东北大学 A kind of super-purity ferrite stainless steel of tin copper synergistic effect and preparation method thereof
WO2018117469A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 Stainless steel for polymer fuel cell separation plate, having excellent contact resistance, and manufacturing method therefor
JP2020100866A (en) * 2018-12-21 2020-07-02 日鉄ステンレス株式会社 Cr-BASED STAINLESS STEEL HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND LOW-TEMPERATURE EMBRITTLEMENT RESISTANCE
EP3872218A4 (en) * 2018-11-29 2021-11-24 Posco Ferritic stainless steel having improved corrosion resistance, and manufacturing method therefor
JP7458902B2 (en) 2020-05-21 2024-04-01 日鉄ステンレス株式会社 Ferritic Stainless Steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195053A (en) * 1992-01-21 1993-08-03 Nippon Yakin Kogyo Co Ltd Production of polished ferritic stainless steel sheet excellent in oxidation resistance
JPH08295999A (en) * 1995-04-21 1996-11-12 Nippon Steel Corp Polishing-finished stainless steel sheet excellent in temper color resistance and its production
JP2010159487A (en) * 2008-12-09 2010-07-22 Nippon Steel & Sumikin Stainless Steel Corp High-purity ferritic stainless steel having excellent corrosion resistance, and method for producing the same
JP2012188736A (en) * 2011-02-25 2012-10-04 Jfe Steel Corp Steel with rust layer excellent in chloride ion interception property
JP2012214881A (en) * 2011-03-29 2012-11-08 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel for biofuel supply system parts, and biofuel supply system parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195053A (en) * 1992-01-21 1993-08-03 Nippon Yakin Kogyo Co Ltd Production of polished ferritic stainless steel sheet excellent in oxidation resistance
JPH08295999A (en) * 1995-04-21 1996-11-12 Nippon Steel Corp Polishing-finished stainless steel sheet excellent in temper color resistance and its production
JP2010159487A (en) * 2008-12-09 2010-07-22 Nippon Steel & Sumikin Stainless Steel Corp High-purity ferritic stainless steel having excellent corrosion resistance, and method for producing the same
JP2012188736A (en) * 2011-02-25 2012-10-04 Jfe Steel Corp Steel with rust layer excellent in chloride ion interception property
JP2012214881A (en) * 2011-03-29 2012-11-08 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel for biofuel supply system parts, and biofuel supply system parts

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844577B1 (en) 2016-12-13 2018-04-03 주식회사 포스코 Ferritic stainless steel for automotive exhaust system with improved heat resistance and corrosion resistance for water condensation and method of manufacturing the same
WO2018110858A1 (en) * 2016-12-13 2018-06-21 주식회사 포스코 Automotive exhaust system ferritic stainless steel having improved heat resistance and condensed water corrosion resistance, and manufacturing method therefor
US11414732B2 (en) 2016-12-13 2022-08-16 Posco Ferritic stainless steel for automotive exhaust system with improved heat resistance and condensate corrosion resistance, and method for manufacturing the same
WO2018117469A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 Stainless steel for polymer fuel cell separation plate, having excellent contact resistance, and manufacturing method therefor
CN108179360A (en) * 2018-01-30 2018-06-19 东北大学 A kind of super-purity ferrite stainless steel of tin copper synergistic effect and preparation method thereof
EP3872218A4 (en) * 2018-11-29 2021-11-24 Posco Ferritic stainless steel having improved corrosion resistance, and manufacturing method therefor
JP2020100866A (en) * 2018-12-21 2020-07-02 日鉄ステンレス株式会社 Cr-BASED STAINLESS STEEL HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND LOW-TEMPERATURE EMBRITTLEMENT RESISTANCE
JP7458902B2 (en) 2020-05-21 2024-04-01 日鉄ステンレス株式会社 Ferritic Stainless Steel

Also Published As

Publication number Publication date
JP6106450B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP4624473B2 (en) High purity ferritic stainless steel with excellent weather resistance and method for producing the same
US9289964B2 (en) High purity ferritic stainless steel sheet excellent in corrosion resistance and anti-glare property
JP4963043B2 (en) Bright annealed ferritic stainless steel sheet with excellent rust resistance and workability and method for producing the same
TWI467032B (en) High-purity fat iron-based stainless steel plate with excellent oxidation resistance and high temperature strength and manufacturing method thereof
JP6106450B2 (en) High purity ferritic stainless steel sheet excellent in temper color resistance and workability and method for producing the same
KR101536291B1 (en) Ferritic stainless steel sheet superior in surface glossiness and corrosion resistance and method for producing same
JP6653606B2 (en) Al-containing ferritic stainless steel and method for producing the same
TWI638055B (en) Ferrous iron series stainless steel plate
JP5709571B2 (en) High purity ferritic stainless steel sheet excellent in oxidation resistance and high temperature strength and method for producing the same
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP5655381B2 (en) Method for producing high-tensile hot-dip galvanized steel sheet
JP7341016B2 (en) Ferritic stainless cold rolled steel sheet
JP5989162B2 (en) High purity ferritic stainless steel sheet excellent in oxidation resistance and high temperature strength and method for producing the same
JP5709570B2 (en) High purity ferritic stainless steel sheet excellent in oxidation resistance and high temperature strength and method for producing the same
KR101940427B1 (en) Ferritic stainless steel sheet
JP6504973B2 (en) Al-containing ferritic stainless steel excellent in sulfide corrosion resistance and method for producing the same
WO2020241861A1 (en) Galvanized steel sheet for hot stamping
JP2022513747A (en) Low Cr ferrite stainless steel with excellent formability and high temperature characteristics and its manufacturing method
WO2022168167A1 (en) Thin steel sheet
JP2014185359A (en) High strength steel sheet
TW202006154A (en) Steel plate
WO2016024370A1 (en) Ferritic stainless steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6106450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250