JP2014151679A - Vehicle running control device - Google Patents

Vehicle running control device Download PDF

Info

Publication number
JP2014151679A
JP2014151679A JP2013020729A JP2013020729A JP2014151679A JP 2014151679 A JP2014151679 A JP 2014151679A JP 2013020729 A JP2013020729 A JP 2013020729A JP 2013020729 A JP2013020729 A JP 2013020729A JP 2014151679 A JP2014151679 A JP 2014151679A
Authority
JP
Japan
Prior art keywords
vehicle
engine
torque
vehicle speed
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013020729A
Other languages
Japanese (ja)
Other versions
JP6068173B2 (en
Inventor
Takayoshi Nakai
隆良 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2013020729A priority Critical patent/JP6068173B2/en
Publication of JP2014151679A publication Critical patent/JP2014151679A/en
Application granted granted Critical
Publication of JP6068173B2 publication Critical patent/JP6068173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To obtain the same sense of acceleration as that to be perceived during normal driving by shortening a turbo lag of an engine with a supercharger occurring during cruise-controlled run.SOLUTION: A required torque calculation part 25c obtains a required torque Td on the basis of a target driving force Ft which is set in order to attain a target acceleration αt during cruise-controlled run, and a vehicle speed V. An instruction torque calculation part 25d references an engine instruction torque map on the basis of the required torque Td and a boost pressure of a turbo supercharger 5, and obtains an engine instruction torque TE/G for setting an instruction throttle angle THd. The engine instruction torque TE/G stored in the engine instruction torque map is set to a value nearly identical to the required torque Td, however the engine instruction torque TE/G in a domain in which a turbo lag is outstandingly manifested is set to a value higher than the required torque Td. As a result, the same sense of acceleration as that to be perceived during normal driving can be obtained during cruise-controlled run.

Description

本発明は、クルーズ走行においても通常の運転と同等の加速感を得ることのできる車両の走行制御装置に関する。   The present invention relates to a vehicle travel control device capable of obtaining an acceleration feeling equivalent to that of normal driving even in cruise traveling.

従来、例えば、車間距離制御付クルーズ制御(ACC:Adaptive Cruise Control)装置は、車両に搭載したミリ波レーダ、赤外線レーザレーダ、ステレオカメラや単眼カメラ等で取得した自車両前方の走行環境(先行車、障害物等)を認識して、自車両の走行制御を行う技術が種々提案されている。   Conventionally, for example, an ACC (Adaptive Cruise Control) device with an inter-vehicle distance control is a traveling environment in front of the host vehicle (preceding vehicle) acquired by a millimeter wave radar, an infrared laser radar, a stereo camera, a monocular camera or the like mounted on the vehicle. Various techniques for recognizing obstacles, etc., and controlling the traveling of the host vehicle have been proposed.

このようなACC装置では、自車両前方に車両(先行車)を捕捉していない場合は、運転者が設定した車速(セット車速)を目標車速として定速走行し、先行車を捕捉し、しかも、この先行車の車速がセット車速以下のときは、先行車に対し所定の車間距離を開けた状態で追従する追従走行制御が行われる。   In such an ACC device, when the vehicle (preceding vehicle) is not captured in front of the host vehicle, the vehicle travels at a constant speed with the vehicle speed (set vehicle speed) set by the driver as the target vehicle speed, captures the preceding vehicle, and When the vehicle speed of the preceding vehicle is equal to or lower than the set vehicle speed, follow-up running control is performed to follow the preceding vehicle with a predetermined distance between the vehicles.

そして、自車両の車速(自車速)が目標車速(セット車速或いは先行車速)よりも遅い場合、その差分に応じた目標加速度を設定し、所定に加速させることで自車速を目標車速に速やかに到達させるようにしている。   When the vehicle speed of the host vehicle (host vehicle speed) is slower than the target vehicle speed (set vehicle speed or preceding vehicle speed), a target acceleration is set according to the difference, and the host vehicle speed is quickly increased to the target vehicle speed by accelerating to a predetermined level. I try to make it reach.

ところで、自然吸気エンジンは、スロットル弁の開度(スロットル開度)に対しエンジン出力がほぼ直線的に変化するため、クルーズ走行(以下「ACC走行」と称する)においてはスロットル開度を制御することで所望のエンジン出力を容易に得ることができる。   By the way, in a naturally aspirated engine, the engine output changes almost linearly with respect to the opening degree of the throttle valve (throttle opening degree), so that the throttle opening degree is controlled in cruise driving (hereinafter referred to as “ACC driving”). Thus, a desired engine output can be easily obtained.

しかし、過給機付エンジンでは、スロットル開度に対するエンジンの出力特性が強い非線形を有しているため、自然吸気エンジンと同じ制御を行っても安定したエンジン出力特性を得ることは困難である。   However, in the supercharged engine, the engine output characteristic with respect to the throttle opening has a strong non-linearity, so that it is difficult to obtain a stable engine output characteristic even if the same control as that of the naturally aspirated engine is performed.

そのため、例えば特許文献1(特許第4474326号公報)には、ACC走行時は、ターボ過給機の過給圧を一定の低圧に固定することで、スロットル開度の変化に対するエンジン出力変動を抑制し、良好な走行安定性を得るようにした技術が開示されている。   Therefore, for example, in Patent Document 1 (Japanese Patent No. 4474326), during ACC running, the turbocharger supercharging pressure is fixed at a constant low pressure, thereby suppressing engine output fluctuations due to changes in throttle opening. In addition, a technique for obtaining good running stability is disclosed.

特許第4474326号公報Japanese Patent No. 4474326 特開平6−26351号公報JP-A-6-26351

しかし、上述した文献に開示されている技術では、ACC走行においてターボ過給機が一定の低圧に固定されるため、通常の運転では得られる筈の加速感を得ることができなくなり、運転者の期待感を損なうことになる。   However, in the technique disclosed in the above-described document, the turbocharger is fixed at a constant low pressure during ACC travel, so that it is impossible to obtain the feeling of acceleration of soot that is obtained in normal driving. It will undermine expectations.

又、通常の運転では、運転者がターボ過給機の有するターボラグ(過給圧の立上がり遅れ)を経験的に把握しているため、トルクの落ち込みを予測してアクセルペダルを踏み足す操作を行っている。しかし、ACC走行時の加速度はほぼ一定に設定されるため、特に低速域での加速走行では、上述したターボラグによりトルク不足が発生し、運転者に物足りなさを感じさせてしまう不都合がある。   In normal operation, the driver knows the turbo lag (superior pressure rise delay) of the turbocharger empirically. Therefore, the driver expects a drop in torque and depresses the accelerator pedal. ing. However, since the acceleration during ACC traveling is set to be almost constant, particularly in acceleration traveling in a low speed region, there is a disadvantage that torque shortage occurs due to the turbo lag described above, which makes the driver feel unsatisfactory.

この対策として、例えば特許文献2(特開平6−26351号公報)には、プライマリターボとセカンダリターボとを備えたシーケンシャルターボにおいて、ACC走行時、自車速が目標車速よりも所定以上低い場合、ブライマリターボのみを稼働させることで、良好な応答性を得るようにした技術が開示されている。   As a countermeasure, for example, in Patent Document 2 (Japanese Patent Laid-Open No. 6-26351), in a sequential turbo equipped with a primary turbo and a secondary turbo, when the host vehicle speed is lower than a target vehicle speed by a predetermined value or more during ACC travel, A technique is disclosed in which only the mari turbo is operated to obtain good responsiveness.

しかし、特許文献2は、シーケンシャルターボエンジンを搭載する車両にのみに適用可能であり、シングルターボエンジン搭載車には適用できず、汎用性に欠ける問題がある。   However, Patent Document 2 is applicable only to a vehicle equipped with a sequential turbo engine, cannot be applied to a vehicle equipped with a single turbo engine, and has a problem of lack of versatility.

本発明は、上記事情に鑑み、過給機付エンジンであっても、クルーズ走行時は通常の運転と同様の加速感を得ることができて、運転者の期待感を損なうことがなく、しかも、ターボ過給機の種別に影響することなく適用できて、良好な汎用性を得ることのできる車両の走行制御装置を提供することを目的とする。   In view of the above circumstances, the present invention is able to obtain the same acceleration feeling as in normal driving during cruise driving, even with a supercharged engine, without impairing the driver's expectation. An object of the present invention is to provide a vehicle travel control device that can be applied without affecting the type of turbocharger and can obtain good versatility.

本発明は、エンジンに供給すると共に過給機にて過給された吸気の過給圧を検出する過給圧検出手段と、スロットル弁を開閉動作させるスロットルアクチュエータと、予め設定したクルーズ走行用目標車速、或いは先行車と自車両との相対車速に基づいて設定したクルーズ走行用目標車速の一方に基づき、自車両の車速を前記一方の目標車速に収束させる目標加速度を求める目標加速度演算手段と、前記目標加速度を得るための要求トルクを求める要求トルク演算手段と、前記要求トルクと前記過給圧検出手段で検出した過給圧とに基づいて記憶手段に記憶されているエンジン指示トルクマップを検索してエンジン指示トルクを求める指示トルク演算手段と、前記エンジン指示トルクに対応する指示スロットル開度を求めると共に、該指示スロットル開度に対応する駆動信号にて前記スロットルアクチュエータを動作させるスロットル開度演算手段とを備える車両の走行制御装置において、前記エンジン指示トルクマップは、ターボラグが顕著に現れる領域に格納されている前記エンジン指示トルクが、該ターボラグを短縮させる高い値に設定されている。   The present invention provides a supercharging pressure detecting means for detecting a supercharging pressure of intake air supplied to an engine and supercharged by a supercharger, a throttle actuator for opening and closing a throttle valve, and a preset cruise driving target Target acceleration calculation means for obtaining a target acceleration for converging the vehicle speed of the host vehicle to the one target vehicle speed based on one of the vehicle speed or the target vehicle speed for cruise traveling set based on the relative vehicle speed between the preceding vehicle and the host vehicle; Based on the required torque calculating means for obtaining the required torque for obtaining the target acceleration, and the engine instruction torque map stored in the storage means based on the required torque and the boost pressure detected by the boost pressure detecting means. A command torque calculating means for obtaining an engine command torque, a command throttle opening corresponding to the engine command torque, and a command torque. In a vehicle travel control device comprising a throttle opening calculation means for operating the throttle actuator with a drive signal corresponding to a throttle opening, the engine command torque map is stored in a region where turbo lag appears prominently. The engine command torque is set to a high value that shortens the turbo lag.

本発明によれば、クルーズ走行において検索するエンジン指示トルクマップの、ターボラグが顕著に現れる領域に格納されているエンジン指示トルクを、ターボラグを短縮させる高い値に設定したので、過給機付エンジンであっても、クルーズ走行時は通常の運転と同様の加速感を得ることができ、運転者の加速に対する期待感を損なうことがなくなる。又、エンジン指示トルクマップに格納されているエンジン指示トルクの値を変更するだけであるため、ターボ過給機の種別に影響することなく個別に適用することができ、良好な汎用性を得ることができる。   According to the present invention, the engine instruction torque stored in the area where the turbo lag appears prominently in the engine instruction torque map searched for cruise traveling is set to a high value for shortening the turbo lag. Even in such a case, it is possible to obtain the same acceleration feeling as in normal driving during cruise driving, and the driver's expectation for acceleration is not impaired. Moreover, since only the value of the engine command torque stored in the engine command torque map is changed, it can be applied individually without affecting the type of turbocharger, and good versatility can be obtained. Can do.

エンジン制御ユニットとクルーズ制御ユニットとを有する走行制御装置の概略構成図Schematic configuration diagram of a travel control device having an engine control unit and a cruise control unit クルーズ制御時のエンジン制御ユニットとクルーズ制御ユニットとの構成を示す機能ブロック図Functional block diagram showing the configuration of the engine control unit and cruise control unit during cruise control エンジン指示トルクマップの概念図Conceptual diagram of engine command torque map 指示トルクとスロットル開度と過給圧と実際のトルクとの関係を示すタイムチャートTime chart showing the relationship between command torque, throttle opening, boost pressure and actual torque

以下、図面に基づいて本発明の一実施形態を説明する。図1の符号1はターボ過給機付エンジン(以下単に「エンジン」と称する)であり、このエンジン1の吸気側に吸気管2が連通され、排気側に排気管3が連通されている。又、吸気管2の中途に、スロットル弁4が介装され、その更に上流側にターボ過給機5を構成するコンプレッサ5aが介装されている。尚、図示しないが吸気管2の吸気取り入れ口にはエアクリーナが介装されている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Reference numeral 1 in FIG. 1 denotes an engine with a turbocharger (hereinafter simply referred to as “engine”). An intake pipe 2 communicates with the intake side of the engine 1 and an exhaust pipe 3 communicates with the exhaust side. A throttle valve 4 is interposed in the middle of the intake pipe 2, and a compressor 5 a constituting the turbocharger 5 is interposed further upstream of the throttle valve 4. Although not shown, an air cleaner is interposed in the intake intake port of the intake pipe 2.

又、スロットル弁4は電子制御スロットルを構成しており、このスロットル弁4にスロットルアクチュエータ6が連設されている。尚、スロットルアクチュエータ6は、ステップモータ或いはサーボモータ等のスロットルモータであり、このスロットルモータによりスロットル弁4が直接開閉動作される。更に、排気管3の中途にターボ過給機5を構成するタービン5bが介装され、更に、その下流にマフラ(図示せず)が介装されている。   The throttle valve 4 constitutes an electronically controlled throttle, and a throttle actuator 6 is connected to the throttle valve 4. The throttle actuator 6 is a throttle motor such as a step motor or a servo motor, and the throttle valve 4 is directly opened and closed by the throttle motor. Further, a turbine 5b constituting the turbocharger 5 is interposed in the middle of the exhaust pipe 3, and further, a muffler (not shown) is interposed downstream thereof.

又、スロットル弁4には、このスロットル弁4のスロットル開度TH[%]を検出する、ポテンショメータ等のスロットル開度センサ10が配設されており、更に、吸気管2のスロットル弁4下流に、このスロットル弁4下流の圧力(吸気管圧力)を絶対圧で検出する過給圧検出手段としての圧力センサ11が連通されている。尚、本実施例では、ターボ過給機5のコンプレッサ5aで過給された吸気の過給圧を圧力センサ11で検出しているため、以下においては吸気管圧力を過給圧Ptと読み替えて説明する。   The throttle valve 4 is provided with a throttle opening sensor 10 such as a potentiometer for detecting the throttle opening TH [%] of the throttle valve 4, and further downstream of the throttle valve 4 of the intake pipe 2. A pressure sensor 11 is connected as supercharging pressure detection means for detecting the pressure (intake pipe pressure) downstream of the throttle valve 4 as an absolute pressure. In the present embodiment, the supercharging pressure of the intake air supercharged by the compressor 5a of the turbocharger 5 is detected by the pressure sensor 11, so that the intake pipe pressure will be read as the supercharging pressure Pt in the following. explain.

この各センサ10,11はエンジン1の運転状態を制御するエンジン制御ユニット(E/G_ECU)21の入力側に接続されている。このE/G_ECU21には、上述した各センサ10,11以外に、自車速Vを検出する車速センサ12、エンジン回転数Neを検出するエンジン回転数センサ13等、エンジン1の運転状態を検出するセンサ類が接続されている。E/G_ECU21は、ROM,RAM等のメモリ及びCPUを有するマイクロコンピュータ等のコンピュータで構成されており、ROMには制御プログラムや各種マップ等の固定データが記憶されている。E/G_ECU21は、制御プログラムに従い、入力された各センサ類の信号に基づき空燃比制御、点火時期制御等の通常のエンジン制御を実行する。   The sensors 10 and 11 are connected to the input side of an engine control unit (E / G_ECU) 21 that controls the operating state of the engine 1. In addition to the sensors 10 and 11 described above, the E / G_ECU 21 includes a vehicle speed sensor 12 that detects the vehicle speed V, an engine speed sensor 13 that detects the engine speed Ne, and other sensors that detect the operating state of the engine 1. Is connected. The E / G_ECU 21 is configured by a computer such as a microcomputer having a memory such as a ROM and a RAM and a CPU, and the ROM stores fixed data such as a control program and various maps. The E / G_ECU 21 executes normal engine control such as air-fuel ratio control and ignition timing control based on the signals of the input sensors according to the control program.

一方、符号22は前方認識手段としての前方認識部であり、車載カメラ23と、この車載カメラ23で撮影した自車両前方の画像等を処理する画像認識ユニット(IPU)24とが設けられている。車載カメラ23はメインカメラ23aとサブカメラ23bとを有するステレオカメラであり、この両カメラ23a,23bは車室内前部の上部(例えば、ルームミラの両側)に一定の間隔を保持した状態で固設されている。又、IPU24は、両カメラ23a,23bで撮影した自車前方の走行環境の画像信号を所定に画像処理すると共に、処理後の画像に基づいて、自車両直前を走行する先行車、自車両前方のカーブ等の道路形状等の前方情報を認識する。このIPU24で認識した情報は、車間距離制御付クルーズ制御ユニット(ACC_ECU)25に前方認識情報として出力される。   On the other hand, reference numeral 22 denotes a forward recognition unit as forward recognition means, which includes an in-vehicle camera 23 and an image recognition unit (IPU) 24 that processes an image in front of the host vehicle taken by the in-vehicle camera 23. . The in-vehicle camera 23 is a stereo camera having a main camera 23a and a sub camera 23b, and both the cameras 23a and 23b are fixed to the upper part of the front part of the vehicle interior (for example, on both sides of the room mirror) with a certain distance therebetween. Has been. In addition, the IPU 24 performs predetermined image processing on the image signal of the traveling environment in front of the host vehicle photographed by both the cameras 23a and 23b, and based on the processed image, the preceding vehicle that travels immediately before the host vehicle, the front of the host vehicle. Recognize forward information such as road shapes such as curves. The information recognized by the IPU 24 is output to the cruise control unit with inter-vehicle distance control (ACC_ECU) 25 as front recognition information.

ACC_ECU25は、上述したE/G_ECU21と同様、ROM,RAM等のメモリ及びCPUを有するマイクロコンピュータ等のコンピュータで構成されており、ROMには制御プログラムや各種マップ等の固定データが記憶されている。このACC_ECU25は、制御プログラムに従い、入力された各センサ類の信号に基づき、車両走行に必要な指示トルクを演算する。尚、この両ECU21,25は、CAN(Controller Area Network)等、周知の車内通信回線26を通じて相互通信可能に接続されている。   The ACC_ECU 25 is configured by a computer such as a microcomputer having a memory and a CPU such as a ROM and a RAM, like the above-described E / G_ECU 21, and the ROM stores fixed data such as a control program and various maps. The ACC_ECU 25 calculates an instruction torque necessary for vehicle travel based on the signals of the input sensors according to the control program. The ECUs 21 and 25 are connected to each other through a known in-vehicle communication line 26 such as a CAN (Controller Area Network).

又、このACC_ECU25の入力側には、IPU24以外に、運転者が操作するステアリングホイール(ハンドル)等に併設されてACC走行時の目標車速Vt(=セット車速Vset)を設定するセット車速スイッチ16が接続されている。   In addition to the IPU 24, a set vehicle speed switch 16 that sets a target vehicle speed Vt (= set vehicle speed Vset) at the time of ACC travel is provided on the input side of the ACC_ECU 25 in addition to the steering wheel (handle) operated by the driver. It is connected.

このACC_ECU25では、入力されたパラメータに基づいて目標駆動力Ftを求め、この目標駆動力Ftを実現するために要求するクルコン要求トルク(以下、単に「要求トルク」と称する)Tdを求め、この要求トルクTdと過給圧Ptに基づいて、エンジン指示トルクTE/Gを設定する。又、自車走路の前方に先行車が認識され、この先行車の車速がセット車速Vsetよりも遅い場合、現在の車間距離の変化から相対車速が求められ、この相対車速に基づいて、実際の車間距離を予め設定した目標車間距離に維持させるための目標車速(追従目標車速)Vtが設定される。   The ACC_ECU 25 obtains a target driving force Ft based on the input parameters, obtains a cruise control required torque (hereinafter simply referred to as “requested torque”) Td required to realize the target driving force Ft, Based on the torque Td and the boost pressure Pt, the engine command torque TE / G is set. Further, when a preceding vehicle is recognized in front of the own vehicle runway and the vehicle speed of the preceding vehicle is slower than the set vehicle speed Vset, the relative vehicle speed is obtained from the change in the current inter-vehicle distance, and the actual vehicle speed is calculated based on the relative vehicle speed. A target vehicle speed (following target vehicle speed) Vt for maintaining the inter-vehicle distance at a preset target inter-vehicle distance is set.

図2に示すように、ACC_ECU25には、エンジン指示トルクTE/Gを求める機能として、目標加速度演手段としての目標加速度演算部25a、駆動力演算部25b、要求トルク演算手段としての要求トルク演算部25c、及び指示トルク演算手段としての指示トルク演算部25dを備えている。   As shown in FIG. 2, the ACC_ECU 25 includes a target acceleration calculating unit 25a as a target acceleration deriving unit, a driving force calculating unit 25b, and a required torque calculating unit as a required torque calculating unit as functions for obtaining the engine instruction torque TE / G. 25c, and an instruction torque calculation unit 25d as instruction torque calculation means.

このACC_ECU25で求めたエンジン指示トルクTE/Gは、E/G_ECU21で読込まれる。このE/G_ECU21は、指示スロットル開度THd[%]を求める機能として、スロットル開度演算手段であるスロットル開度演算部21aを備えている。   The engine command torque TE / G obtained by the ACC_ECU 25 is read by the E / G_ECU 21. The E / G_ECU 21 includes a throttle opening calculation unit 21a, which is a throttle opening calculation means, as a function for obtaining the indicated throttle opening THd [%].

次に、上述したACC_ECU25、E/G_ECU21で実行されるACC走行時のエンジン制御について説明する。   Next, engine control during ACC travel executed by the above-described ACC_ECU 25 and E / G_ECU 21 will be described.

ACC_ECU25の目標加速度演算部25aは、IPU24で求めた前方認識情報に基づいて先行車が認識されている場合は、先行車と自車両との車間距離を時間微分することで相対車速を求め、この相対車速に基づいて上述した追従目標車速Vtを設定し、この追従目標速度Vtを時間微分することで、目標車間距離を維持した状態で追従走行させるための目標加速度αtを設定する。一方、先行車が認識されていない場合は、セット車速Vsetと自車速Vとの差を時間微分することで、自車速Vをセット車速Vsetに収束させるための目標加速度αtを設定する。   When the preceding vehicle is recognized based on the forward recognition information obtained by the IPU 24, the target acceleration calculating unit 25a of the ACC_ECU 25 obtains the relative vehicle speed by differentiating the inter-vehicle distance between the preceding vehicle and the host vehicle. The following target vehicle speed Vt described above is set based on the relative vehicle speed, and the target acceleration αt for following the vehicle while maintaining the target inter-vehicle distance is set by differentiating the following target speed Vt with respect to time. On the other hand, when the preceding vehicle is not recognized, the target acceleration αt for converging the own vehicle speed V to the set vehicle speed Vset is set by differentiating the difference between the set vehicle speed Vset and the own vehicle speed V over time.

駆動力演算部25bは、走行抵抗(空気抵抗、加速抵抗、転がり抵抗、勾配抵抗)を求める。この中で、加速抵抗は自車速Vを時間微分して求めた加速度αを重力加速度gで除算することで求める(α/g)。尚、勾配抵抗は、既存のセンサ(例えば、前後加速度センサ)を用いて検出した路面勾配θと自車両の総重量Wとに基づいて求める(W・sinθ)。又、路面勾配θは、前後加速度Gxからα/g(g:重力加速度)を減算することで求める(θ=Gx−α/g)。尚、本実施形態では、空気抵抗、及び転がり抵抗を一定値としている。   The driving force calculation unit 25b calculates a running resistance (air resistance, acceleration resistance, rolling resistance, gradient resistance). Among these, the acceleration resistance is obtained by dividing the acceleration α obtained by differentiating the own vehicle speed V with time by the gravitational acceleration g (α / g). The gradient resistance is obtained based on the road surface gradient θ detected using an existing sensor (for example, a longitudinal acceleration sensor) and the total weight W of the host vehicle (W · sin θ). Further, the road surface gradient θ is obtained by subtracting α / g (g: gravitational acceleration) from the longitudinal acceleration Gx (θ = Gx−α / g). In this embodiment, air resistance and rolling resistance are set to constant values.

そして、この各抵抗成分を加算して走行抵抗Rを求め、この走行抵抗Rと目標加速度αtとに基づき、目標加速度αtを得るための目標駆動力Ftを、
Ft=W・αt+R
から求める。
Then, the resistance component is added to obtain the running resistance R, and based on the running resistance R and the target acceleration αt, a target driving force Ft for obtaining the target acceleration αt is obtained.
Ft = W · αt + R
Ask from.

そして、要求トルク演算部25cにおいて、目標駆動力Ftに対応する要求トルクTdを求める。具体的には、先ず、目標駆動力Ftと車速Vとに基づいて目標出力Pwを設定する。次いで、この目標出力Pwと総減速比σiとに基づいて要求トルクTdを、
Td=Pw・r/σi
から求める。ここで、rは駆動輪の半径である。又、総減速比σiは、例えば、自動変速機が無段変速機(CVT)である場合、プライマリ回転数Npとセカンダリ回転数Nsとの変速比i(=Np/Ns)に、減速歯車列、デファレンシャル装置等、CVT以降の減速比(固定値)を乗算して算出する。
Then, in the required torque calculation unit 25c, a required torque Td corresponding to the target driving force Ft is obtained. Specifically, first, the target output Pw is set based on the target driving force Ft and the vehicle speed V. Next, the required torque Td is calculated based on the target output Pw and the total reduction ratio σi.
Td = Pw · r / σi
Ask from. Here, r is the radius of the drive wheel. For example, when the automatic transmission is a continuously variable transmission (CVT), the total reduction ratio σi is equal to the speed ratio i (= Np / Ns) between the primary rotation speed Np and the secondary rotation speed Ns. This is calculated by multiplying the reduction ratio (fixed value) after CVT, such as a differential device.

指示トルク演算部25dは、要求トルクTdと過給圧Ptとに基づき、図3に示すエンジン指示トルクマップを補間計算付きで参照し、エンジン指示トルクTE/Gを求める。このエンジン指示トルクTE/Gは、ROM(記憶手段)に記憶されている固定データであり、その特性は、過給圧Pt毎に設定される要求トルクTdと殆ど同じ値であるが、ターボラグ(過給圧の立上り遅れ)が顕著に現れる領域のエンジン指示トルクTE/Gを、要求トルクTdよりも高く設定して、全体としてターボラグの短縮を図るようにしている。   Based on the required torque Td and the supercharging pressure Pt, the command torque calculation unit 25d refers to the engine command torque map shown in FIG. 3 with interpolation calculation to obtain the engine command torque TE / G. The engine command torque TE / G is fixed data stored in a ROM (storage means), and its characteristics are almost the same as the required torque Td set for each boost pressure Pt. The engine command torque TE / G in the region where the rise of the boost pressure is noticeable appears higher than the required torque Td so that the turbo lag can be shortened as a whole.

すなわち、図4に太線で示す要求トルクTdと破線で示す過給圧Ptとはほぼ比例しており、従って、スロットル弁4の開度により過給圧Ptを制御することで、要求トルクTdに対応するエンジントルクを得ることができる。しかし、一般に、ターボ過給機5は特有のターボラグ(過給圧の立上り遅れ)を有しており、要求トルクTdに対応するスロットル開度でスロットル弁4を開弁させても、図4に一点鎖線で示すように、過給圧Ptの立ち上がり遅れにより、エンジントルクに一時的な落ち込みが発生する。このターボラグは、過給圧Ptが低く、且つ要求トルクTdが高い領域で顕著に発生する。   That is, the required torque Td indicated by the thick line in FIG. 4 and the supercharging pressure Pt indicated by the broken line are substantially proportional. Therefore, by controlling the supercharging pressure Pt by the opening degree of the throttle valve 4, the required torque Td is obtained. A corresponding engine torque can be obtained. However, in general, the turbocharger 5 has a unique turbo lag (a delay in rising of the boost pressure), and even if the throttle valve 4 is opened at a throttle opening corresponding to the required torque Td, FIG. As indicated by the alternate long and short dash line, the engine torque temporarily falls due to the delay in the rise of the supercharging pressure Pt. This turbo lag is remarkably generated in a region where the supercharging pressure Pt is low and the required torque Td is high.

そのため、本実施形態では、図3のエンジン指示トルクマップに示すように、ターボラグが顕著に現れる領域(本実施形態では、過給圧Ptが低く、且つ要求トルクTdが高い領域)に格納されているエンジン指示トルクTE/Gを、同図に一点鎖線で示す従来の値よりも、高く設定している。ターボラグが顕著に現れる領域のエンジン指示トルクTE/Gを、どの程度高くするかは、実験などから最適な値を求めて決定する。尚、このターボラグが顕著に現れる領域は、ターボ過給機毎に個体差を有しているので、エンジン指示トルクTE/Gの特性はターボ過給機毎に設定されている。   Therefore, in this embodiment, as shown in the engine instruction torque map of FIG. 3, the turbo lag is stored in a region where the turbo lag appears significantly (in this embodiment, the region where the boost pressure Pt is low and the required torque Td is high). The engine command torque TE / G is set higher than the conventional value indicated by the alternate long and short dash line in FIG. The extent to which the engine command torque TE / G in the region where the turbo lag appears noticeably is determined by obtaining an optimum value from an experiment or the like. Note that the region in which the turbo lag appears remarkably has individual differences for each turbocharger, and therefore the characteristics of the engine command torque TE / G are set for each turbocharger.

この指示トルク演算部25dで求めたエンジン指示トルクTE/Gは、E/G_ECU21のスロットル開度演算部21aで読込まれる。スロットル開度演算部21aは、指示トルク演算部25dで求めたエンジン指示トルクTE/Gに基づきスロットルマップ(図示せず)を参照して、指示スロットル開度THd[%]を設定する。このスロットルマップは、エンジン指示トルクTE/Gを、指示スロットル開度THd[%]に変換するもののであり、エンジントルクとスロットル開度との関係を予め実験などで求めてマップ化したものである。   The engine command torque TE / G obtained by the command torque calculator 25d is read by the throttle opening calculator 21a of the E / G_ECU 21. The throttle opening calculation unit 21a sets a command throttle opening THd [%] by referring to a throttle map (not shown) based on the engine command torque TE / G obtained by the command torque calculation unit 25d. This throttle map is for converting the engine command torque TE / G into the command throttle opening THd [%]. The relationship between the engine torque and the throttle opening is obtained in advance through experiments or the like and mapped. .

そして、スロットル開度演算部21aは、設定した指示スロットル開度THdに対応する駆動信号をスロットルアクチュエータ6へ出力し、スロットル弁4を所定に開閉動作させる。尚、上述したACC_ECU25の目標加速度演算部25aで設定する目標加速度αtが、先行車との相対車速、或いはセット車速Vsetと自車速Vとの差に基づいて設定されるため、結果的に、この目標加速度αtによってスロットル弁4の開度はフィードバック制御される。   Then, the throttle opening calculation unit 21a outputs a drive signal corresponding to the set instruction throttle opening THd to the throttle actuator 6 to open / close the throttle valve 4 in a predetermined manner. Since the target acceleration αt set by the target acceleration calculation unit 25a of the ACC_ECU 25 described above is set based on the relative vehicle speed with the preceding vehicle or the difference between the set vehicle speed Vset and the host vehicle speed V, as a result, The opening degree of the throttle valve 4 is feedback controlled by the target acceleration αt.

スロットル開度演算部21aで設定される指示スロットル開度THdは、スロットルマップを参照して設定されたエンジン指示トルクTE/Gに基づいて設定されており、このスロットルマップに格納されているエンジン指示トルクTE/Gの特性は、ターボラグの著しい領域のエンジン指示トルクTE/Gが高い値に設定されているため、図4に示すように、過給圧Ptの落ち込みが著しい領域の指示スロットル開度THdが大きな値に設定される。   The command throttle opening THd set by the throttle opening calculation unit 21a is set based on the engine command torque TE / G set by referring to the throttle map, and the engine command stored in the throttle map is set. The characteristic of the torque TE / G is set to a high value of the engine command torque TE / G in the region where the turbo lag is remarkable, so that as shown in FIG. 4, the command throttle opening in the region where the drop in the supercharging pressure Pt is significant. THd is set to a large value.

すると、その領域ではスロットル開度THが大きく開弁し、吸入空気量の増加に伴い、排気圧が高くなり、その分、ターボ過給機5のタービン5bの回転数が促進され、コンプレッサ5aの回転数が急増する。その結果、ターボラグが短縮され、図4の破線で示すように、ほぼ要求トルクTdに沿った特性となり、ACC走行時の目標加速度αtと実際の加速度とがほぼ一致し、通常の運転と同様の加速感を得ることができ、運転者の期待感に沿った特性を得ることができる。   Then, in that region, the throttle opening TH is greatly opened, the exhaust pressure increases as the intake air amount increases, and accordingly, the rotational speed of the turbine 5b of the turbocharger 5 is promoted, and the compressor 5a The number of revolutions increases rapidly. As a result, the turbo lag is shortened, and as shown by the broken line in FIG. 4, the characteristic substantially follows the required torque Td, and the target acceleration αt during ACC traveling substantially matches the actual acceleration, which is the same as in normal driving. A feeling of acceleration can be obtained, and characteristics in line with the driver's expectation can be obtained.

又、スロットルマップに格納されているエンジン指示トルクTE/Gの特性を変更するだけで対応しているので、ターボ過給機に対して個別に対応することができ、良好な汎用性を得ることができる。   In addition, since it is possible to respond by simply changing the characteristics of the engine command torque TE / G stored in the throttle map, the turbocharger can be individually handled and good versatility can be obtained. Can do.

尚、本発明は、上述した実施形態に限るものではなく、例えば、スポーツモード、ノーマルモード、エコモード等、複数のエンジンモードを有する車両では、ターボラグがエンジンモード毎に相違するため、ACC走行においては、上述したエンジン指示トルクマップをエンジンモード毎に備えるようにし、ターボラグをエンジンモード毎に短縮できるようにしても良い。   The present invention is not limited to the above-described embodiment. For example, in a vehicle having a plurality of engine modes such as a sports mode, a normal mode, and an eco mode, the turbo lag is different for each engine mode. The engine instruction torque map described above may be provided for each engine mode, and the turbo lag may be shortened for each engine mode.

1…エンジン、
5…ターボ過給機、
6…スロットルアクチュエータ、
11…圧力センサ、
16…セット車速スイッチ、
21a…スロットル開度演算部、
25a…目標加速度演算部、
25b…駆動力演算部、
25c…要求トルク演算部、
25d…指示トルク演算部、
Ft…目標駆動力、
Pt…過給圧、
Pw…目標出力、
Td…要求トルク、
TE/G…エンジン指示トルク、
TH…スロットル開度、
THd…指示スロットル開度、
V…自車速、
Vset…セット車速、
Vt…目標車速、
α…加速度、
αt…目標加速度
1 ... Engine,
5 ... Turbocharger,
6 ... Throttle actuator,
11 ... Pressure sensor,
16 ... Set vehicle speed switch,
21a: throttle opening calculation unit,
25a ... Target acceleration calculation unit,
25b ... Driving force calculation unit,
25c ... required torque calculation unit,
25d: Instruction torque calculation unit,
Ft: Target driving force,
Pt ... supercharging pressure,
Pw… Target output,
Td: Required torque,
TE / G: Engine command torque,
TH: throttle opening,
THd: Instruction throttle opening,
V ... Vehicle speed,
Vset ... set vehicle speed,
Vt ... Target vehicle speed,
α ... acceleration,
αt ... Target acceleration

Claims (3)

エンジンに供給すると共に過給機にて過給された吸気の過給圧を検出する過給圧検出手段と、
スロットル弁を開閉動作させるスロットルアクチュエータと、
予め設定したクルーズ走行用目標車速、或いは先行車と自車両との相対車速に基づいて設定したクルーズ走行用目標車速の一方に基づき、自車両の車速を前記一方の目標車速に収束させる目標加速度を求める目標加速度演算手段と、
前記目標加速度を得るための要求トルクを求める要求トルク演算手段と、
前記要求トルクと前記過給圧検出手段で検出した過給圧とに基づいて記憶手段に記憶されているエンジン指示トルクマップを検索してエンジン指示トルクを求める指示トルク演算手段と、
前記エンジン指示トルクに対応する指示スロットル開度を求めると共に、該指示スロットル開度に対応する駆動信号にて前記スロットルアクチュエータを動作させるスロットル開度演算手段と
を備える車両の走行制御装置において、
前記エンジン指示トルクマップは、ターボラグが顕著に現れる領域に格納されている前記エンジン指示トルクが、該ターボラグを短縮させる高い値に設定されている
ことを特徴とする車両の走行制御装置。
A supercharging pressure detecting means for detecting the supercharging pressure of the intake air supplied to the engine and supercharged by the supercharger;
A throttle actuator for opening and closing the throttle valve;
Based on one of the target vehicle speed for cruise driving set in advance or the target vehicle speed for cruise driving set based on the relative vehicle speed between the preceding vehicle and the host vehicle, the target acceleration for converging the vehicle speed of the host vehicle to the one target vehicle speed is Target acceleration calculation means to be obtained;
Required torque calculating means for determining a required torque for obtaining the target acceleration;
Instruction torque calculation means for retrieving an engine instruction torque by searching an engine instruction torque map stored in a storage means based on the required torque and a boost pressure detected by the boost pressure detection means;
In a travel control device for a vehicle, comprising a throttle opening degree calculation means for obtaining an indicated throttle opening degree corresponding to the engine instruction torque and operating the throttle actuator with a drive signal corresponding to the indicated throttle opening degree,
In the engine command torque map, the engine command torque stored in a region where the turbo lag appears prominently is set to a high value for shortening the turbo lag.
前記ターボラグが顕著に現れる領域は、前記過給圧が低く且つ前記要求トルクが高い領域である
ことを特徴とする請求項1記載の車両の走行制御装置。
The vehicle travel control apparatus according to claim 1, wherein the region in which the turbo lag appears significantly is a region in which the supercharging pressure is low and the required torque is high.
前記先行車は前記自車両に搭載されている前方認識手段に設けられた車載カメラで撮影した自車両前方の画像に基づいて認識され、
前記目標加速度演算手段は、前記相対車速に基づき前記先行車と前記自車両との車間距離を予め設定した目標車間距離に維持させるための前記目標車速を求める
ことを特徴とする請求項1或いは2記載の車両の走行制御装置。
The preceding vehicle is recognized based on an image in front of the host vehicle taken by an in-vehicle camera provided in a front recognition unit mounted on the host vehicle,
The target acceleration calculating means obtains the target vehicle speed for maintaining the inter-vehicle distance between the preceding vehicle and the host vehicle at a preset target inter-vehicle distance based on the relative vehicle speed. The vehicle travel control apparatus described.
JP2013020729A 2013-02-05 2013-02-05 Vehicle travel control device Active JP6068173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013020729A JP6068173B2 (en) 2013-02-05 2013-02-05 Vehicle travel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013020729A JP6068173B2 (en) 2013-02-05 2013-02-05 Vehicle travel control device

Publications (2)

Publication Number Publication Date
JP2014151679A true JP2014151679A (en) 2014-08-25
JP6068173B2 JP6068173B2 (en) 2017-01-25

Family

ID=51573991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013020729A Active JP6068173B2 (en) 2013-02-05 2013-02-05 Vehicle travel control device

Country Status (1)

Country Link
JP (1) JP6068173B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071736B2 (en) 2015-07-22 2018-09-11 Toyota Jidosha Kabushiki Kaisha Driving assistance apparatus for vehicle
JP7393293B2 (en) 2020-05-01 2023-12-06 株式会社Subaru Vehicle control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240042850A1 (en) * 2022-08-04 2024-02-08 International Engine Intellectual Property Company, Llc Systems and methods for managing gas-powered vehicle following distance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240436A (en) * 1986-04-11 1987-10-21 Mazda Motor Corp Throttle valve control device for engine
JPH04176737A (en) * 1990-11-08 1992-06-24 Mitsubishi Electric Corp Constant velocity traveling controller
JP2000280781A (en) * 1999-03-30 2000-10-10 Toyota Motor Corp Constant speed travel controller
JP2004114906A (en) * 2002-09-27 2004-04-15 Nissan Motor Co Ltd Follow-up drive control device
JP2012025353A (en) * 2010-07-27 2012-02-09 Toyota Motor Corp Other vehicle recognition system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240436A (en) * 1986-04-11 1987-10-21 Mazda Motor Corp Throttle valve control device for engine
JPH04176737A (en) * 1990-11-08 1992-06-24 Mitsubishi Electric Corp Constant velocity traveling controller
JP2000280781A (en) * 1999-03-30 2000-10-10 Toyota Motor Corp Constant speed travel controller
JP2004114906A (en) * 2002-09-27 2004-04-15 Nissan Motor Co Ltd Follow-up drive control device
JP2012025353A (en) * 2010-07-27 2012-02-09 Toyota Motor Corp Other vehicle recognition system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071736B2 (en) 2015-07-22 2018-09-11 Toyota Jidosha Kabushiki Kaisha Driving assistance apparatus for vehicle
JP7393293B2 (en) 2020-05-01 2023-12-06 株式会社Subaru Vehicle control device

Also Published As

Publication number Publication date
JP6068173B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6365481B2 (en) Vehicle travel control device
JP6580108B2 (en) Driving control device for autonomous driving vehicle
US7582041B2 (en) Controller for continuously variable transmission
US7561955B2 (en) Preceding-vehicle following control system
US10071736B2 (en) Driving assistance apparatus for vehicle
JP6408971B2 (en) Driving assistance device that provides assistance according to the characteristics and skills of the driver
JP2013203341A (en) Travel control device
KR20160050540A (en) System and method for controllng acceleration torque of vehicle
JP6068173B2 (en) Vehicle travel control device
JP6628818B2 (en) Vehicle travel control device
JPH10338055A (en) Vehicular follow-up running control device
JP6229701B2 (en) Driving force control device
JP6871744B2 (en) Cruise control device
JP2006088771A (en) Travel controller
JP6536430B2 (en) Driving force control device
JP6380311B2 (en) Driving force control device
JP2018188015A (en) Vehicle control apparatus
JPH1029445A (en) Follow-up traveling controller of vehicle
JP6693289B2 (en) Vehicle control device
JP2006142963A (en) Driving force control device for vehicle
JP4622414B2 (en) Travel control device
JP3719346B2 (en) Engine control device
JP3835389B2 (en) Preceding vehicle tracking control device
JP2006291870A (en) Vehicle speed control device
JP2005125894A (en) Vehicular speed control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161222

R150 Certificate of patent or registration of utility model

Ref document number: 6068173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250