JP2014150194A - Electromagnetic wave absorber - Google Patents

Electromagnetic wave absorber Download PDF

Info

Publication number
JP2014150194A
JP2014150194A JP2013018853A JP2013018853A JP2014150194A JP 2014150194 A JP2014150194 A JP 2014150194A JP 2013018853 A JP2013018853 A JP 2013018853A JP 2013018853 A JP2013018853 A JP 2013018853A JP 2014150194 A JP2014150194 A JP 2014150194A
Authority
JP
Japan
Prior art keywords
dielectric loss
radio wave
wave absorber
dielectric constant
loss body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013018853A
Other languages
Japanese (ja)
Inventor
Kazuo Ishizuka
一男 石塚
Teruo Hasunuma
輝男 蓮沼
Toshifumi Kuoka
利文 九岡
Yoshinobu Okano
好伸 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Riken Environmental System Co Ltd
Original Assignee
Riken Corp
Riken Environmental System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Riken Environmental System Co Ltd filed Critical Riken Corp
Priority to JP2013018853A priority Critical patent/JP2014150194A/en
Publication of JP2014150194A publication Critical patent/JP2014150194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact electromagnetic wave absorber capable of effectively absorbing electromagnetic waves in a frequency band from 30 MHz to 1,000 MHz.SOLUTION: An electromagnetic wave absorber of the present invention includes a dielectric loss body layer 20 including dielectric loss bodies 11 each of which has a bottom face placed on a plane. The distribution in a direction vertical to the plane of an average dielectric constant in each cross section of the dielectric loss body layer 20 in parallel with the plane has two or more minimum points, and the average dielectric constant at the minimum points is 0.5 times or less of the average dielectric constant of the entire of the dielectric loss body layer 20.

Description

本発明は電波吸収体に関し、特に、30MHzから1000MHzの周波数帯域の電磁波を効果的に吸収する電波吸収体に関する。   The present invention relates to a radio wave absorber, and more particularly to a radio wave absorber that effectively absorbs electromagnetic waves in a frequency band of 30 MHz to 1000 MHz.

従来、電波暗室用の電波吸収体としては、図1に示すように磁性吸収体板10の前面にピラミッド形状またはウエッジ(くさび)形状の誘電損失体11を設置した複合型電波吸収体が用いられてきた。一般に、磁性吸収体板としては、フェライトタイルが使用され、誘電損失体としては、発泡ウレタン、発泡スチレン、発泡ポリプロピレン等の合成樹脂にカーボン等の導電材料を混入した材料が使用されてきた。この複合型電波吸収体では、100MHz以上の高周波領域の電磁波を誘電損失体により吸収し、低周波領域の電磁波を磁性吸収体板により吸収するため、誘電損失体の高さを低くしても良好な電波吸収特性が得られることが知られている。   Conventionally, as a radio wave absorber for an anechoic chamber, a composite radio wave absorber in which a pyramid-shaped or wedge-shaped dielectric loss body 11 is installed on the front surface of a magnetic absorber plate 10 as shown in FIG. 1 is used. I came. In general, ferrite tiles are used as the magnetic absorber plate, and materials obtained by mixing conductive materials such as carbon in synthetic resins such as foamed urethane, foamed styrene, and foamed polypropylene have been used as dielectric loss bodies. In this composite type wave absorber, electromagnetic waves in a high frequency region of 100 MHz or higher are absorbed by a dielectric loss material, and electromagnetic waves in a low frequency region are absorbed by a magnetic absorber plate. It is known that excellent radio wave absorption characteristics can be obtained.

しかしながら、近年、より小型で、高性能の電波暗室が求められており、このような電波暗室に適用できる電波吸収体が必要とされている。従来の複合型電波吸収体の電波吸収性能は、磁性吸収体板と誘電損失体の相互作用により決定され、特に誘電損失体の形状の設計が重要であることが知られている。そのため、複合型電波吸収体の誘電損失体の形状に関しては、多くの検討がなされている。   However, in recent years, there has been a demand for a more compact and high-performance anechoic chamber, and there is a need for an electromagnetic wave absorber that can be applied to such an anechoic chamber. It is known that the radio wave absorption performance of a conventional composite wave absorber is determined by the interaction between the magnetic absorber plate and the dielectric loss body, and in particular, the design of the shape of the dielectric loss body is important. For this reason, many studies have been made on the shape of the dielectric loss body of the composite wave absorber.

例えば、特許文献1には、磁性吸収体と、磁性吸収体の前面に設けられ誘電損失材料から構成されるテーパ構造体を備え、テーパ構造体は、電波吸収体として動作する誘電性損失材料の断面積比がテーパ構造体の先端から底面方向への長さに対して対数関数的に変化する形状である複合型電波吸収体が開示されている。特許文献1には、本構成により、電波吸収体の長さを短くしても良好な特性を得る誘電率変化が得られ、電波吸収体の小型化、電波暗室の小型化および低コスト化が可能となることが記載されている。   For example, Patent Document 1 includes a magnetic absorber and a tapered structure formed of a dielectric loss material provided in front of the magnetic absorber, and the tapered structure is a dielectric loss material that operates as a radio wave absorber. A composite electromagnetic wave absorber having a shape in which the cross-sectional area ratio changes logarithmically with respect to the length from the front end to the bottom surface of the tapered structure is disclosed. In Patent Document 1, this configuration allows a change in dielectric constant to obtain good characteristics even when the length of the radio wave absorber is shortened, thereby reducing the size of the radio wave absorber, the size of the anechoic chamber, and reducing the cost. It is described that it becomes possible.

また、特許文献2には、電波吸収材料と導体とから形成される電波吸収体において、空間から導体で裏打ちした電波吸収材料へ電波を入射させた時、該電波吸収材料中の複素誘電率の大きさが、空間側から導体側に向かって一旦減少して極小となり、ここから導体に向かって増大している電波吸収体が開示されている。そして、このような構成の電波吸収体では、比較的広い周波数範囲で、従来のピラミッド型などよりも薄型の電波吸収体が実現できることが記載されている。   Further, in Patent Document 2, in a radio wave absorber formed of a radio wave absorbing material and a conductor, when radio waves are incident on the radio wave absorbing material backed by a conductor from a space, the complex dielectric constant in the radio wave absorbing material is There has been disclosed a radio wave absorber whose size is once reduced from the space side toward the conductor side to become a minimum, and increases from here toward the conductor. It is described that the radio wave absorber having such a configuration can realize a radio wave absorber thinner than a conventional pyramid type in a relatively wide frequency range.

特許第3291851号公報Japanese Patent No. 3291855 特開2000−261240号公報JP 2000-261240 A

しかしながら、100MHz以下の低周波数帯域および1GHz以上の高周波帯域の両方で優れた電波吸収特性を有することが求められているにもかかわらず、特許文献1の構成では、50MHz以下の低周波帯域では十分な電波吸収特性は得られず、電波吸収体の小型化にも限界がある。一方、特許文献2の構成により、電波吸収体の薄型化は可能であるが、低周波数帯域の電波吸収特性は十分とはいえない。   However, in spite of being required to have excellent radio wave absorption characteristics in both a low frequency band of 100 MHz or lower and a high frequency band of 1 GHz or higher, the low frequency band of 50 MHz or lower is sufficient in the configuration of Patent Document 1. Radio wave absorption characteristics cannot be obtained, and there is a limit to miniaturization of the radio wave absorber. On the other hand, the configuration of Patent Document 2 can reduce the thickness of the radio wave absorber, but it cannot be said that the radio wave absorption characteristics in the low frequency band are sufficient.

本発明は上記課題に鑑み、30MHzから1000MHzの周波数帯域の電磁波を効果的に吸収し得る小型の電波吸収体を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a small wave absorber that can effectively absorb electromagnetic waves in a frequency band from 30 MHz to 1000 MHz.

上記目的に鑑み鋭意研究の結果、本発明者らは、底面が平面上に設置された誘電損失体を含む誘電損失体層を有する電波吸収体において、誘電損失体層の底面から頂部に向かう方向(つまり、誘電損失体層の厚み方向)に、平均比誘電率が、誘電損失体全体の平均比誘電率の0.5倍以下となる極小箇所を2カ所以上設けることにより、30MHzから1000MHzの周波数帯域における電波吸収特性が大幅に増加することを見出し、本発明を完成するに至った。   As a result of earnest research in view of the above object, the present inventors have found that in a radio wave absorber having a dielectric loss body layer including a dielectric loss body whose bottom surface is set on a plane, the direction from the bottom surface to the top of the dielectric loss body layer (Ie, in the thickness direction of the dielectric loss body layer), by providing two or more minimum locations where the average relative dielectric constant is 0.5 times or less of the average relative dielectric constant of the entire dielectric loss body, 30 MHz to 1000 MHz The inventors have found that the radio wave absorption characteristics in the frequency band are greatly increased, and have completed the present invention.

すなわち、本発明の電波吸収体は、底面が平面上に設置された誘電損失体を含む誘電損失体層を有し、前記平面に平行な前記誘電損失体層の断面における平均比誘電率の、前記平面に垂直な方向の分布が、2箇所以上の極小点を有し、該極小点における平均比誘電率が、前記誘電損失体層の全体の平均比誘電率の0.5倍以下となることを特徴とする。   That is, the radio wave absorber of the present invention has a dielectric loss body layer including a dielectric loss body whose bottom surface is set on a plane, and has an average relative dielectric constant in a cross section of the dielectric loss body layer parallel to the plane. The distribution in the direction perpendicular to the plane has two or more local minimum points, and the average relative dielectric constant at the local minimum points is 0.5 times or less of the entire average relative dielectric constant of the dielectric loss layer. It is characterized by that.

このような分布を実現する一実施形態として、前記誘電損失体層は、前記平面に垂直な方向に、前記断面の形状が異なるものとすることができる。また、他の実施形態として、前記誘電損失体層は、比誘電率が互いに異なる材料からなる層を前記平面に垂直な方向に積層してなるものとすることができる。   As one embodiment for realizing such a distribution, the dielectric loss layer may have a different cross-sectional shape in a direction perpendicular to the plane. As another embodiment, the dielectric loss layer may be formed by stacking layers made of materials having different relative dielectric constants in a direction perpendicular to the plane.

本発明によれば、30MHzから1000MHzの周波数帯域で優れた電波吸収特性を有する小型の電波吸収体が得られ、小型で、高性能な電波暗室が実現できる。   According to the present invention, a small wave absorber having excellent radio wave absorption characteristics in a frequency band of 30 MHz to 1000 MHz can be obtained, and a small and high performance anechoic chamber can be realized.

従来の電波吸収体の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the conventional electromagnetic wave absorber. 本発明の一実施形態による電波吸収体100の構造を示す断面図である。It is sectional drawing which shows the structure of the electromagnetic wave absorber 100 by one Embodiment of this invention. (A)〜(C)は、本発明の他の実施形態による電波吸収体の構造を示す断面図である。(A)-(C) are sectional drawings which show the structure of the electromagnetic wave absorber by other embodiment of this invention. 実施例で作製した電波吸収体(本発明例1)を示す図面であり、(A)は電波吸収体の側面図、(B)はその上面図、(C)は写真である。BRIEF DESCRIPTION OF THE DRAWINGS It is drawing which shows the electromagnetic wave absorber produced in the Example (Example 1 of this invention), (A) is a side view of a radio wave absorber, (B) is the top view, (C) is a photograph. 本発明例1および比較例における、電波吸収体の電波吸収特性を測定した結果を示すグラフである。It is a graph which shows the result of having measured the electromagnetic wave absorption characteristic of the electromagnetic wave absorber in this invention example 1 and a comparative example. 本発明例1および比較例における、誘電損失体層の断面の平均比誘電率を誘電損失体層全体の平均比誘電率で除した値Xの、厚み方向分布を示すグラフである。It is a graph which shows the thickness direction distribution of the value X which remove | divided the average relative dielectric constant of the cross section of the dielectric loss body layer by the average relative dielectric constant of the whole dielectric loss body layer in this invention example 1 and a comparative example. 磁性吸収体板からの距離が35cmの位置におけるXを変化させた場合(本発明例2,3)と本発明例1における、Xの厚み方向分布を示すグラフである。It is a graph which shows the thickness direction distribution of X in the case where X in the position whose distance from a magnetic absorber board is 35 cm is changed (Examples 2 and 3 of the present invention) and Example 1 of the present invention. 本発明例1の反射減衰量(dB)を基準とした、本発明例2,3の反射減衰量の増大を示すグラフである。It is a graph which shows the increase in the return loss of this invention example 2 and 3 on the basis of the return loss (dB) of the example 1 of this invention.

以下、本発明の電波吸収体の実施形態について説明する。   Hereinafter, embodiments of the radio wave absorber of the present invention will be described.

図2に、本発明の一実施形態による電波吸収体100の構造を示す断面図を示す。この電波吸収体100は、磁性吸収体板10と、磁性吸収体板10上に形成された誘電損失体層20とから構成される。誘電損失体層20は、複数(図中では3個)の柱状の誘電損失体11と、その間の空間(空気)とからなる。誘電損失体11の底面は、磁性吸収体板10の平面上に設置されている。柱状の各誘電損失体11は、底面から頂部までの間に肉厚が薄くなる部分が2箇所設けられている。   FIG. 2 is a cross-sectional view showing the structure of the radio wave absorber 100 according to one embodiment of the present invention. The radio wave absorber 100 includes a magnetic absorber plate 10 and a dielectric loss body layer 20 formed on the magnetic absorber plate 10. The dielectric loss body layer 20 includes a plurality of (three in the figure) columnar dielectric loss bodies 11 and spaces (air) therebetween. The bottom surface of the dielectric loss body 11 is installed on the plane of the magnetic absorber plate 10. Each of the columnar dielectric loss bodies 11 is provided with two portions where the thickness is reduced from the bottom surface to the top portion.

そのため、この誘電損失体層20は、磁性吸収体板10の上記平面に平行な、誘電損失体層20の断面における平均比誘電率X1が、上記平面に垂直な方向(以後、「誘電損失体層の厚み方向」または単に「厚み方向」という。)に変化する構造となっている。上記平均比誘電率X1は、厚み方向において、薄肉部(図2中の符号12の位置)にて極小値をとる。よって、平均比誘電率X1の厚み方向分布は、2箇所の極小点を有する。さらに、本実施形態では、極小点における平均比誘電率X1lminが、誘電損失体層20の全体の平均比誘電率X2の0.5倍以下となることを特徴とする。なお、平均比誘電率X1を誘電損失体層20の全体の平均比誘電率X2で除した値を「比率X」と称する。本実施形態では、比率X≦0.5となる。 Therefore, this dielectric loss body layer 20 has an average relative dielectric constant X1 in the cross section of the dielectric loss body layer 20 parallel to the plane of the magnetic absorber plate 10 and a direction perpendicular to the plane (hereinafter referred to as “dielectric loss body”). It is a structure that changes to “the thickness direction of the layer” or simply “the thickness direction”. The average relative dielectric constant X1 takes a minimum value in the thin portion (position 12 in FIG. 2) in the thickness direction. Therefore, the thickness direction distribution of the average relative dielectric constant X1 has two local minimum points. Furthermore, the present embodiment is characterized in that the average relative dielectric constant X1 lmin at the minimum point is 0.5 times or less of the entire average relative dielectric constant X2 of the dielectric loss layer 20. A value obtained by dividing the average relative permittivity X1 by the average relative permittivity X2 of the entire dielectric loss layer 20 is referred to as “ratio X”. In this embodiment, the ratio X ≦ 0.5.

このように、平均比誘電率X1の厚み方向分布において2箇所以上で極小値をとるように、誘電損失体層20を構成することによって、周波数の異なる多数の電磁波間での共振現象が発生し、広い周波数帯域において優れた電波吸収特性が得られることを本発明者らは見出した。極小値をとるのが2箇所未満の場合、局所的な周波数帯域においてしか十分な吸収性能が得られない。また、比率Xが0.5超えの場合、上記共振作用が小さくなり、十分な電波吸収性能が得られないこともわかった。   As described above, by configuring the dielectric loss body layer 20 so as to have a minimum value at two or more locations in the thickness direction distribution of the average relative dielectric constant X1, a resonance phenomenon occurs between a large number of electromagnetic waves having different frequencies. The present inventors have found that excellent radio wave absorption characteristics can be obtained in a wide frequency band. When the minimum value is less than two places, sufficient absorption performance can be obtained only in the local frequency band. Further, it was also found that when the ratio X exceeds 0.5, the resonance effect is reduced, and sufficient radio wave absorption performance cannot be obtained.

ここで、各断面における平均比誘電率X1は以下のように定義される。すなわち、断面の全てが誘電損失体11で占められる場合には、当該誘電損失体11の比誘電率が平均比誘電率X1となる。一方、図2のように、断面の一部を誘電損失体11が占め、残部は空間(即ち、空気)である場合には、「誘電損失体の比誘電率と誘電損失体が占める面積率との積」および「空気の比誘電率(1.0)と空間が占める面積率との積」の和が、平均比誘電率X1となる。   Here, the average relative dielectric constant X1 in each cross section is defined as follows. That is, when the entire cross section is occupied by the dielectric loss body 11, the relative dielectric constant of the dielectric loss body 11 is the average relative dielectric constant X1. On the other hand, as shown in FIG. 2, when the dielectric loss body 11 occupies a part of the cross section and the remainder is a space (ie, air), “the relative dielectric constant of the dielectric loss body and the area ratio occupied by the dielectric loss body” The sum of “the product of” and “the product of the relative dielectric constant of air (1.0) and the area ratio occupied by the space” is the average relative dielectric constant X1.

また、誘電損失体層20の全体の平均比誘電率X2は以下のように定義される。すなわち、誘電損失体層20中に空間が存在しない場合には、誘電損失体11の比誘電率が平均比誘電率X2となる。一方、図2のように、誘電損失体層20中に部分的に誘電損失体が配置され、残部が空間(即ち、空気)である場合には、「誘電損失体の比誘電率とそれが占める体積率との積」および「空気の非誘電率(1.0)とそれが占める体積率との積」の和が、平均比誘電率X2となる。なお、複数種類の材料の誘電体からなる場合は、それぞれの比誘電率とその体積率との積を順次加算すればよい。   The average relative dielectric constant X2 of the entire dielectric loss layer 20 is defined as follows. That is, when there is no space in the dielectric loss body layer 20, the relative dielectric constant of the dielectric loss body 11 becomes the average relative dielectric constant X2. On the other hand, as shown in FIG. 2, when the dielectric loss body is partially disposed in the dielectric loss body layer 20 and the remainder is a space (ie, air), “the relative dielectric constant of the dielectric loss body and The sum of “the product of the volume ratio occupied” and “the product of the air non-dielectric constant (1.0) and the volume ratio occupied by it” is the average relative dielectric constant X2. In addition, when it consists of a dielectric material of multiple types of materials, what is necessary is just to add sequentially the product of each dielectric constant and its volume ratio.

磁性吸収体板10としては、一般にフェライトタイルが用いられる。誘電損失体11の材料は、特に限定されず、カーボン含有発泡ウレタン、カーボン含有発泡スチレン、カーボン含有発泡ポリプロピレン、または、カーボンを含有し、もしくはカーボン層を塗布したプラスチック、シリカ、アルミナ等の無機材料を挙げることができる。誘電損失体11の構造としては、シート構造体、段ボール構造体、ハニカム構造体等が挙げられる。   As the magnetic absorber plate 10, a ferrite tile is generally used. The material of the dielectric loss body 11 is not particularly limited. Carbon-containing foamed urethane, carbon-containing foamed styrene, carbon-containing foamed polypropylene, or inorganic material such as plastic containing silica or coated with a carbon layer, silica, alumina, or the like. Can be mentioned. Examples of the structure of the dielectric loss body 11 include a sheet structure, a cardboard structure, and a honeycomb structure.

図3(A)〜(C)を参照して、誘電損失体層20の他の態様を示す。   With reference to FIG. 3 (A)-(C), the other aspect of the dielectric loss body layer 20 is shown.

図3(A)の電波吸収体200において、誘電損失体層20は、磁性吸収体板10上に、比誘電率が互いに異なる材料からなる複数の誘電損失体11を、厚み方向に層状に積層してなる。例えば、図中符号12で示した位置の誘電損失体11については、カーボン等を添加しない樹脂層としてもよいし、カーボン含有率の低い層としてもよく、一方でそれ以外の位置の誘電損失体11は、カーボン等の導電材料を分散した樹脂材料とすることができる。この誘電損失体層20も、平均比誘電率X1の厚み方向分布において2箇所(図中符号12で示した位置)で極小値をとり、極小点における平均比誘電率X1lminが、誘電損失体層20の全体の平均比誘電率X2の0.5倍以下となるように設計することができる。このように、誘電損失体層20の厚み方向に比誘電率が互いに異なる材料からなる層を積層することにより、平均比誘電率X1の厚み方向分布を所望に設計することができる。 In the radio wave absorber 200 of FIG. 3A, the dielectric loss body layer 20 is formed by laminating a plurality of dielectric loss bodies 11 made of materials having different relative dielectric constants on the magnetic absorber plate 10 in the thickness direction. Do it. For example, the dielectric loss body 11 at the position indicated by reference numeral 12 in the figure may be a resin layer to which carbon or the like is not added, or may be a layer having a low carbon content, while the dielectric loss body at other positions. 11 can be a resin material in which a conductive material such as carbon is dispersed. This dielectric loss body layer 20 also has local minimum values at two locations (positions indicated by reference numeral 12 in the figure) in the thickness direction distribution of the average relative dielectric constant X1, and the average relative dielectric constant X1 lmin at the minimum point is the dielectric loss body. It can be designed to be 0.5 times or less of the overall average dielectric constant X2 of the layer 20. Thus, by stacking layers made of materials having different relative dielectric constants in the thickness direction of the dielectric loss body layer 20, the thickness direction distribution of the average relative dielectric constant X1 can be designed as desired.

図3(B)の電波吸収体300において、誘電損失体層20は、磁性吸収体板10上に、複数の誘電体損失体11を厚み方向に層状に積層してなり、一部の層(図中では磁性吸収体板10側から3層目および6層目)で、一部に空間を設けて、誘電損失体11の体積が小さくなるような形状とし、その層における平均比誘電率X1を小さくした。この誘電損失体層20も、平均比誘電率X1の厚み方向分布において2箇所(図中符号12で示した位置)で極小値をとり、極小点における平均比誘電率X1lminが、誘電損失体層20の全体の平均比誘電率X2の0.5倍以下となるように設計することができる。このような設計の範囲内であれば誘電損失体層20の形状特に限定されず、階段状に変化させても良いし、連続的に変化させても良い。また、図3中の空間には導電性を持たない誘電体を挿入しても良い。 In the radio wave absorber 300 of FIG. 3B, the dielectric loss body layer 20 is formed by laminating a plurality of dielectric loss bodies 11 in the thickness direction on the magnetic absorber plate 10, and some layers ( In the figure, the third layer and the sixth layer from the side of the magnetic absorber plate 10 are provided with a space in a part so that the volume of the dielectric loss body 11 is reduced, and the average relative dielectric constant X1 in that layer. Was made smaller. This dielectric loss body layer 20 also has local minimum values at two locations (positions indicated by reference numeral 12 in the figure) in the thickness direction distribution of the average relative dielectric constant X1, and the average relative dielectric constant X1 lmin at the minimum point is the dielectric loss body. It can be designed to be 0.5 times or less of the overall average dielectric constant X2 of the layer 20. The shape of the dielectric loss layer 20 is not particularly limited as long as it is within such a design range, and may be changed stepwise or continuously. Further, a dielectric having no conductivity may be inserted in the space in FIG.

図3(C)の電波吸収体400において、誘電損失体層20は、厚み方向の2箇所で誘電損失体11に孔が設けられており、その厚み位置での平均比誘電率X1を小さくした。この誘電損失体層20も、平均比誘電率X1の厚み方向分布において2箇所(図中符号12で示した位置)で極小値をとり、極小点における平均比誘電率X1lminが、誘電損失体層20の全体の平均比誘電率X2の0.5倍以下となるように設計することができる。このような設計の範囲内であれば孔の設け方は特に限定されず、孔の大きさや個数を変えることにより、所望の平均比誘電率X1の厚み方向分布を設計することができる。 In the radio wave absorber 400 of FIG. 3C, the dielectric loss body layer 20 has holes in the dielectric loss body 11 at two locations in the thickness direction, and the average relative permittivity X1 at the thickness position is reduced. . This dielectric loss body layer 20 also has local minimum values at two locations (positions indicated by reference numeral 12 in the figure) in the thickness direction distribution of the average relative dielectric constant X1, and the average relative dielectric constant X1 lmin at the minimum point is the dielectric loss body. It can be designed to be 0.5 times or less of the overall average dielectric constant X2 of the layer 20. If it is in the range of such a design, the method of providing a hole will not be specifically limited, The thickness direction distribution of the desired average dielectric constant X1 can be designed by changing the magnitude | size and number of holes.

図3(B)および図3(C)のように、誘電損失体層20の厚み方向に断面の形状が異なるようにして、平均比誘電率X1の厚み方向分布を所望に設計することができる。ただし、図3(B)における誘電損失体のブロックの幅(図中の符号W)や、図3(C)における孔の直径は、電波の波長に対して十分に小さい必要があり、波長の1/2以下が望ましい。周波数を1000MHzとすると15cmとなる。この大きさ以上になると、等価的な平均比誘電率とする仮定が成り立たなくなる。   As shown in FIGS. 3B and 3C, the distribution of the average relative dielectric constant X1 in the thickness direction can be designed as desired by making the cross-sectional shape different in the thickness direction of the dielectric loss layer 20. . However, the width of the block of the dielectric loss body in FIG. 3B (symbol W in the figure) and the diameter of the hole in FIG. 3C must be sufficiently small with respect to the wavelength of the radio wave. 1/2 or less is desirable. If the frequency is 1000 MHz, it becomes 15 cm. If this size is exceeded, the assumption of an equivalent average relative dielectric constant is not valid.

なお、電波の伝搬方向が斜めの場合には、誘電損失体層20の厚み方向ではなく、電波の伝搬方向に合わせて、本発明の条件を満たす構造を形成しても良い。その場合には、斜め入射の特性が良い電波吸収体が得られる。   When the propagation direction of the radio wave is oblique, a structure that satisfies the conditions of the present invention may be formed according to the propagation direction of the radio wave instead of the thickness direction of the dielectric loss layer 20. In that case, a radio wave absorber having good oblique incidence characteristics can be obtained.

(本発明例1)
図4(A)〜(C)に示す電波吸収体を作製した。具体的には、図4(A),(B)に示すように、電波吸収体断面を100mm×100mmのセルに分割し、そのセル毎に8層に積層した誘電損失体を塔林立させた形となっている。各層の厚みは一律50mmとし、誘電損失体が各セル内で占有する断面積比率を図4(A),(B)のように変化させた。なお、図4(B)に示すように、電波吸収体の中央部は開口となっており、これは、後述する反射減衰率の測定のためである。磁性吸収板10としては、フェライトタイルを用いた。誘電損失体11は、カーボンを含有した発泡ポリプロピレンとした。ただし、誘電損失体の下から1層目および7層目では、カーボンを含有しない発泡ポリプロピレンを用いた。
(Invention Example 1)
The radio wave absorber shown in FIGS. 4A to 4C was produced. Specifically, as shown in FIGS. 4A and 4B, the cross section of the radio wave absorber is divided into cells of 100 mm × 100 mm, and dielectric loss bodies stacked in 8 layers for each of the cells are towered. It is in shape. The thickness of each layer was uniformly 50 mm, and the ratio of the cross-sectional area occupied by the dielectric loss body in each cell was changed as shown in FIGS. 4 (A) and 4 (B). Note that, as shown in FIG. 4B, the central portion of the radio wave absorber is an opening, which is for measuring the return loss rate described later. As the magnetic absorption plate 10, a ferrite tile was used. The dielectric loss body 11 was made of foamed polypropylene containing carbon. However, foamed polypropylene not containing carbon was used for the first and seventh layers from the bottom of the dielectric loss body.

(比較例)
比較として、図1に示す従来のピラミッド形状の電波吸収体を作製した。
(Comparative example)
For comparison, a conventional pyramid shaped wave absorber shown in FIG. 1 was produced.

本発明例1および比較例の電波吸収体を、それぞれ断面積が300mm角の同軸管にセットして、その反射減衰量をネットワークアナライザにて測定した、この測定方法は、IEEE Electromagnetic Compatibility Society: "IEEE Recommended Practice for RF Absorber Evaluation in the Range of 30 MHz to 5 GHz", IEEE Std. 1128 (1998)にて推奨された方法である。測定結果を図5に示す。本発明例1では、比較例よりも30MHzから1000MHzの周波数帯域で優れた電波吸収特性を有することがわかる。   The electromagnetic wave absorbers of the inventive example 1 and the comparative example were set in coaxial tubes each having a cross-sectional area of 300 mm square, and the return loss was measured with a network analyzer. IEEE Recommended Practice for RF Absorber Evaluation in the Range of 30 MHz to 5 GHz ", IEEE Std. 1128 (1998). The measurement results are shown in FIG. It can be seen that Example 1 of the present invention has better radio wave absorption characteristics in the frequency band of 30 MHz to 1000 MHz than the comparative example.

また、本発明例1および比較例において、厚み方向に垂直な各断面における平均比誘電率X1を誘電損失体層の全体の平均比誘電率X2で除した値である「比率X」の厚み方向分布を図6に示す。このように、本発明例1では、比率Xが0.5以下となる極小点が3箇所(磁性吸収体板からの距離がそれぞれ5cm、25cm、および35cmとなる箇所)ある。   Further, in the present invention example 1 and the comparative example, the thickness direction of “ratio X” which is a value obtained by dividing the average relative dielectric constant X1 in each cross section perpendicular to the thickness direction by the overall average relative dielectric constant X2 of the dielectric loss layer. The distribution is shown in FIG. Thus, in Example 1 of the present invention, there are three minimum points where the ratio X is 0.5 or less (locations where the distance from the magnetic absorber plate is 5 cm, 25 cm, and 35 cm, respectively).

このように、誘電損失体層において、比率Xが0.5以下となる極小点を2箇所以上設けることにより、良好な電波吸収特性が得られることが確認できた。さらに、この実験結果から、極小点間の間隔は10〜20cmが望ましいことがわかる。   As described above, it was confirmed that good radio wave absorption characteristics can be obtained by providing two or more minimum points where the ratio X is 0.5 or less in the dielectric loss layer. Furthermore, it can be seen from this experimental result that the distance between the minimum points is preferably 10 to 20 cm.

(本発明例2,3)
また、図4の電波吸収体における7層目のカーボン含有発泡ポリプロピレンの占有面積を調整することによって、図7に示すように、磁性吸収体板10からの距離35cmでの比率Xを0.1から0.8(本発明例2)および1.6(本発明例3)に変更した電波吸収体を作製した。
(Invention Examples 2 and 3)
Further, by adjusting the area occupied by the seventh layer of the carbon-containing foamed polypropylene in the radio wave absorber of FIG. 4, the ratio X at a distance of 35 cm from the magnetic absorber plate 10 is 0.1 as shown in FIG. To 0.8 (Invention Example 2) and 1.6 (Invention Example 3) were prepared.

本発明例2,3の電波吸収体も、同様にして反射減衰量を測定した。図8は、本発明例1の反射減衰量(dB)を基準とした、本発明例2,3の反射減衰量の増大を示すグラフである。反射減衰量は、30〜1000MHzの平均値である。
このように、比率Xを0.5超えとすると、反射減衰量の増大が1dB近くなる。したがって、比率Xは0.5以下とすることが望ましい。
The return loss of the radio wave absorbers of Invention Examples 2 and 3 was measured in the same manner. FIG. 8 is a graph showing an increase in the return loss of Invention Examples 2 and 3 based on the return loss (dB) of Example 1 of the present invention. The return loss is an average value of 30 to 1000 MHz.
Thus, when the ratio X exceeds 0.5, the increase in the return loss becomes close to 1 dB. Therefore, the ratio X is desirably 0.5 or less.

本発明によれば、30MHzから1000MHzの周波数帯域で優れた電波吸収特性を有する小型の電波吸収体が得られ、小型で、高性能な電波暗室が実現できる。   According to the present invention, a small wave absorber having excellent radio wave absorption characteristics in a frequency band of 30 MHz to 1000 MHz can be obtained, and a small and high performance anechoic chamber can be realized.

100,200,300,400 電波吸収体
10 磁性吸収体板(フェライトタイル)
11 誘電損失体
12 断面の平均比誘電率の厚さ方向分布が極小となる位置
20 誘電損失体層
100, 200, 300, 400 Radio wave absorber 10 Magnetic absorber plate (ferrite tile)
11 Dielectric Loss Body 12 Position where Distribution of Average Relative Permittivity in Thickness Direction is Minimal 20 Dielectric Loss Layer

Claims (3)

底面が平面上に設置された誘電損失体を含む誘電損失体層を有する電波吸収体であって、
前記平面に平行な前記誘電損失体層の断面における平均比誘電率の、前記平面に垂直な方向の分布が、2箇所以上の極小点を有し、
該極小点における平均比誘電率が、前記誘電損失体層の全体の平均比誘電率の0.5倍以下となることを特徴とする電波吸収体。
A radio wave absorber having a dielectric loss body layer including a dielectric loss body whose bottom surface is set on a plane,
The distribution of the average relative dielectric constant in the cross section of the dielectric loss layer parallel to the plane, in the direction perpendicular to the plane, has two or more minimum points,
The radio wave absorber according to claim 1, wherein an average relative dielectric constant at the minimum point is 0.5 times or less of an entire average relative dielectric constant of the dielectric loss layer.
前記誘電損失体層は、前記平面に垂直な方向に、前記断面の形状が異なる請求項1に記載の電波吸収体。   The radio wave absorber according to claim 1, wherein the dielectric loss body layer has a shape of the cross section that is different in a direction perpendicular to the plane. 前記誘電損失体層は、比誘電率が互いに異なる材料からなる層を前記平面に垂直な方向に積層してなる請求項1に記載の電波吸収体。
The radio wave absorber according to claim 1, wherein the dielectric loss body layer is formed by stacking layers made of materials having different relative dielectric constants in a direction perpendicular to the plane.
JP2013018853A 2013-02-01 2013-02-01 Electromagnetic wave absorber Pending JP2014150194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013018853A JP2014150194A (en) 2013-02-01 2013-02-01 Electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013018853A JP2014150194A (en) 2013-02-01 2013-02-01 Electromagnetic wave absorber

Publications (1)

Publication Number Publication Date
JP2014150194A true JP2014150194A (en) 2014-08-21

Family

ID=51572939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013018853A Pending JP2014150194A (en) 2013-02-01 2013-02-01 Electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP2014150194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112237057A (en) * 2018-06-04 2021-01-15 麦克赛尔控股株式会社 Electromagnetic wave absorber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112237057A (en) * 2018-06-04 2021-01-15 麦克赛尔控股株式会社 Electromagnetic wave absorber
CN112237057B (en) * 2018-06-04 2023-09-12 麦克赛尔株式会社 electromagnetic wave absorber

Similar Documents

Publication Publication Date Title
Yu et al. Dual-polarized band-absorptive frequency selective rasorber using meander-line and lumped resistors
US9035817B2 (en) Electromagnetic wave reverberation chamber
CN104993249A (en) Single-passband bilateral wave-absorbing composite metamaterial and radome and antenna system including same
WO2012093603A1 (en) Electromagnetic wave transmission sheet
CN107317108B (en) Radar radome absorber based on helical structure
CN106450795A (en) Wave-absorbing structure of double-frequency polarized insensitive monolayer metamaterial
WO2007080368A1 (en) Absorber
EP2293661A1 (en) Composite radio wave absorber
WO2012126256A1 (en) Impedance matching component and hybrid wave-absorbing material
CN113381194B (en) Frequency selective wave absorber
CN113871885A (en) Broadband wave-absorbing metamaterial
US6359581B2 (en) Electromagnetic wave abosrber
Shi et al. A low-profile and ultrawideband capacitive circuit absorber empowered by enlarged unit periodicity
CN110429389B (en) Wave-absorbing structure
Zhang et al. Design and measurement of microwave absorbers comprising resistive frequency selective surfaces
KR102213841B1 (en) Electro-magnetic wave absorber and manufacturing method thereof
CN108682963A (en) It is a kind of with ultra-high frequency than multi-band frequency select construction design method
CN113314850A (en) 2.5D multilayer frequency selective surface
Yang et al. Compound frequency selective surface with quasi-elliptic bandpass response
JP2014150194A (en) Electromagnetic wave absorber
CN111029788B (en) Broadband metamaterial wave-absorbing structure with angle and polarization insensitivity
Yu et al. Dual-Polarized Band-Absorptive Frequency-Selective Rasorber with Narrow Transition Band Based on Multilayer Open Circular Cavity Truncated Cone
CN113131223A (en) Electromagnetic wave absorber with dual polarization and double absorption bands
Huang et al. Ultra-broadband 3-D absorptive frequency-selective transmission structure using commercial absorber
GB2434251A (en) Absorber