JP2014149483A - Zoom lens and imaging device including the same - Google Patents

Zoom lens and imaging device including the same Download PDF

Info

Publication number
JP2014149483A
JP2014149483A JP2013019230A JP2013019230A JP2014149483A JP 2014149483 A JP2014149483 A JP 2014149483A JP 2013019230 A JP2013019230 A JP 2013019230A JP 2013019230 A JP2013019230 A JP 2013019230A JP 2014149483 A JP2014149483 A JP 2014149483A
Authority
JP
Japan
Prior art keywords
lens
group
refractive power
focus
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013019230A
Other languages
Japanese (ja)
Other versions
JP2014149483A5 (en
JP6207164B2 (en
Inventor
Keiko Taki
慶行 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013019230A priority Critical patent/JP6207164B2/en
Publication of JP2014149483A publication Critical patent/JP2014149483A/en
Publication of JP2014149483A5 publication Critical patent/JP2014149483A5/ja
Application granted granted Critical
Publication of JP6207164B2 publication Critical patent/JP6207164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zoom lens which has a wide angle of view, facilitates high speed focusing, and has small aberration fluctuation at the time of focusing.SOLUTION: The zoom lens comprises, in order from the object side to the image side, first to fourth lens groups having negative, positive, negative, and positive refractive power, respectively. Four or more lens groups move so that the distances between the adjacent lens groups change. First and second focus groups positioned on the image side of an aperture stop move along loci different from each other. The second focus group is arranged on the object side of the first focus group. The maximum amounts of movement of the first and second focus groups are represented by Df1, Df2, respectively; the maximum distance from the aperture stop to the lens surface closest to the object side in the second focus group is represented by Dmax; the minimum distance from the aperture stop to the lens surface closest to the object side in the second focus group is represented by Dmin; the focal distance of the entire system at the wide angle end is represented by Fw; the focal distance of the second focus group is represented by Ff2; and these values are set appropriately.

Description

本発明は、ズームレンズに関し、デジタルカメラ、ビデオカメラ、TVカメラ、監視用カメラ、銀塩フィルム用カメラ等の撮像装置に好適なものである。   The present invention relates to a zoom lens and is suitable for an imaging apparatus such as a digital camera, a video camera, a TV camera, a surveillance camera, and a silver salt film camera.

ビデオカメラ、デジタルスチルカメラ等の撮像装置(カメラ)に用いる撮像光学系には、広画角で全ズーム範囲にわたり高い光学性能を有したズームレンズであることが求められている。また自動焦点検出装置を有する撮像装置ではフォーカシングが高速に行えるズームレンズであることが求められている。   An imaging optical system used in an imaging apparatus (camera) such as a video camera or a digital still camera is required to be a zoom lens having a wide angle of view and high optical performance over the entire zoom range. An imaging apparatus having an automatic focus detection device is required to be a zoom lens that can perform focusing at high speed.

従来、広画角化が容易なズームレンズとして、物体側に負の屈折力のレンズ群が位置するネガティブリード型のズームレンズが知られている。またフォーカシングを高速に行うため、最も物体側のレンズ群より像側の小型・軽量のレンズ群でフォーカシングを行うインナーフォーカス方式を用いたズームレンズが知られている。ネガティブリード型で、インナーフォーカス方式を用いた広画角のズームレンズが知られている(特許文献1)。   2. Description of the Related Art Conventionally, a negative lead type zoom lens in which a lens group having a negative refractive power is positioned on the object side is known as a zoom lens that can easily widen the angle of view. In order to perform focusing at high speed, there is known a zoom lens using an inner focus method in which focusing is performed with a lens group that is smaller and lighter on the image side than the lens group on the most object side. A wide-angle zoom lens using a negative lead type and an inner focus method is known (Patent Document 1).

またフォーカシングに際して2つのレンズ群を互いに異なった軌跡で移動させるフローティング方式を用いてフォーカスの際の収差変動を軽減したズームレンズが知られている(特許文献2)。   In addition, a zoom lens is known that reduces aberration fluctuations during focusing by using a floating method in which two lens groups are moved along different trajectories during focusing (Patent Document 2).

特許文献1では物体側より像側へ順に、負、正、負、正、負、正の屈折力の第1レンズ群乃至第6レンズ群よりなり、第5レンズ群にてフォーカスを行う所謂リヤフォーカスのズームレンズを開示している。特許文献2では物体側から像側へ順に、負、正、負、正、負、正の屈折力の第1〜第6レンズ群からなり、各レンズ群間隔を変化させてズーミングを行う6群ズームレンズを開示している。そしてフォーカスに際して2つのレンズ群を移動させてフローティングを行ったズームレンズを開示している。   In Patent Document 1, a so-called rear lens is composed of first to sixth lens units having negative, positive, negative, positive, negative, and positive refractive powers in order from the object side to the image side, and focusing is performed by the fifth lens unit. A focus zoom lens is disclosed. In Patent Document 2, the first to sixth lens groups having negative, positive, negative, positive, negative, and positive refractive powers are sequentially arranged from the object side to the image side, and the six groups perform zooming by changing the distance between the lens groups. A zoom lens is disclosed. A zoom lens is disclosed in which two lens groups are moved during focusing to perform floating.

特開2004−198529号公報JP 2004-198529 A 特開2009−169051号公報JP 2009-169051 A

負の屈折力のレンズ群が先行するネガティブリード型のズームレンズは、広画角化が比較的容易であるという特徴がある。またフォーカスに際してフローティング方式を用いるとフォーカスに際して収差変動を少なくし、物体距離全般にわたり高い光学性能を得るのが容易になるという特徴がある。   A negative lead type zoom lens preceded by a lens unit having a negative refractive power is characterized in that a wide angle of view is relatively easy. Further, when the floating method is used for focusing, there is a feature that aberration variation is reduced during focusing, and it becomes easy to obtain high optical performance over the entire object distance.

しかしながらネガティブリード型のズームレンズにおいて広画角化を図りつつ、フローティング方式を用い高速なフォーカシングを行い、かつ物体距離全般にわたり高い光学性能を得るには、レンズ構成を適切に設定することが重要になってくる。特にフローティングで移動させる2つのフォーカスレンズ群の屈折力(焦点距離の逆数)や各レンズ群のレンズ構成等を適切に設定することが重要になってくる。フローティングで移動させる2つのフォーカスレンズ群の屈折力や移動量等を適切に設定しないと広画角でフォーカシング時に高い光学性能を得ることが困難になってくる。   However, it is important to set the lens configuration appropriately in order to achieve high optical performance over the entire object distance while using the floating method and achieving high-speed focusing while widening the angle of view in a negative lead type zoom lens. It becomes. In particular, it is important to appropriately set the refractive power (the reciprocal of the focal length) of the two focus lens groups moved in a floating manner, the lens configuration of each lens group, and the like. If the refractive power and the amount of movement of the two focus lens groups moved in a floating state are not set appropriately, it becomes difficult to obtain high optical performance at the time of focusing at a wide angle of view.

本発明は広画角で、高速なフォーカシングが容易で、しかもフォーカシングに際しての収差変動が少ないズームレンズの提供を目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a zoom lens that has a wide angle of view, facilitates high-speed focusing, and has little aberration fluctuation during focusing.

本発明のズームレンズは、物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有し、ズーミングに際して隣り合うレンズ群の間隔が変化するように4つ以上のレンズ群が移動し、フォーカシングに際して開口絞りの像側に位置する第1のフォーカス群と第2のフォーカス群が互いに異なる軌跡で移動するズームレンズであって、前記第2のフォーカス群は前記第1のフォーカス群の物体側に配置されており、フォーカシングにおける前記第1のフォーカス群と前記第2のフォーカス群の最大移動量を各々Df1,Df2、フォーカシングにおける前記開口絞りから前記第2のフォーカス群の最も物体側のレンズ面までの最大距離をDmax、フォーカシングにおける前記開口絞りから前記第2のフォーカス群の最も物体側のレンズ面までの最小距離をDmin、広角端における全系の焦点距離をFw、前記第2のフォーカス群の焦点距離をFf2とするとき、
Df2<Df1
1.5<Dmax/Dmin<30.0
0.01<Fw/Ff2<0.14
なる条件式を満足することを特徴としている。
The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a positive lens having a positive refractive power. The fourth lens group has four or more lens groups so that the distance between adjacent lens groups changes during zooming, and the first focus group and the second focus group located on the image side of the aperture stop during focusing. A zoom lens in which focus groups move along different paths, wherein the second focus group is disposed on the object side of the first focus group, and the first focus group and the second focus group in focusing The maximum movement amount of the focus group is Df1 and Df2, respectively, and the maximum distance from the aperture stop to the lens surface closest to the object of the second focus group is Dmax, The minimum distance from the aperture stop to the most object side lens surface of the second focus group is Dmin, the focal length of the entire system at the wide angle end is Fw, and the focal length of the second focus group is Ff2. When
Df2 <Df1
1.5 <Dmax / Dmin <30.0
0.01 <Fw / Ff2 <0.14
It satisfies the following conditional expression.

本発明によれば、広画角で、高速なフォーカシングが容易で、しかもフォーカシングに際しての収差変動が少ないズームレンズが得られる。   According to the present invention, it is possible to obtain a zoom lens that has a wide angle of view, can be easily focused at high speed, and has little aberration fluctuation during focusing.

(A),(B),(C) 本発明の数値実施例1の広角端(短焦点距離端),中間焦点距離,望遠端(長焦点距離端)におけるレンズ断面図(A), (B), (C) Lens cross-sectional views at the wide-angle end (short focal length end), the intermediate focal length, and the telephoto end (long focal length end) of Numerical Embodiment 1 of the present invention. (A),(B),(C) 本発明の数値実施例1の無限遠物体における広角端,中間焦点距離,望遠端における収差図(A), (B), (C) Aberration diagrams at the wide-angle end, the intermediate focal length, and the telephoto end of an object at infinity according to Numerical Example 1 of the present invention. (A),(B),(C) 本発明の数値実施例1の至近距離物体における広角端,中間焦点距離,望遠端における収差図(A), (B), (C) Aberration diagrams at the wide-angle end, the intermediate focal length, and the telephoto end of a close-range object according to Numerical Example 1 of the present invention. (A),(B),(C) 本発明の数値実施例2の広角端,中間焦点距離,望遠端におけるレンズ断面図(A), (B), (C) Lens cross-sectional views at the wide-angle end, intermediate focal length, and telephoto end according to Numerical Example 2 of the present invention. (A),(B),(C) 本発明の数値実施例2の無限遠物体における広角端,中間焦点距離,望遠端における収差図(A), (B), (C) Aberration diagrams at the wide-angle end, the intermediate focal length, and the telephoto end of an object at infinity according to Numerical Example 2 of the present invention. (A),(B),(C) 本発明の数値実施例2の至近距離物体における広角端,中間焦点距離,望遠端における収差図(A), (B), (C) Aberration diagrams at the wide-angle end, the intermediate focal length, and the telephoto end for a close-range object according to Numerical Example 2 of the present invention. (A),(B),(C) 本発明の数値実施例3の広角端,中間焦点距離,望遠端におけるレンズ断面図(A), (B), (C) Lens cross-sectional views at the wide-angle end, intermediate focal length, and telephoto end according to Numerical Example 3 of the present invention (A),(B),(C) 本発明の数値実施例3の無限遠物体における広角端,中間焦点距離,望遠端における収差図(A), (B), (C) Aberration diagrams at the wide-angle end, intermediate focal length, and telephoto end of an infinitely distant object according to Numerical Example 3 of the present invention. (A),(B),(C) 本発明の数値実施例3の至近距離物体における広角端,中間焦点距離,望遠端における収差図(A), (B), (C) Aberration diagrams at the wide-angle end, intermediate focal length, and telephoto end of a close-range object according to Numerical Example 3 of the present invention. 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

以下に、本発明のズームレンズ及びそれを有する撮像装置の実施の形態を添付の図面に基づいて説明する。本発明のズームレンズは、物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有する。そしてズーミングに際して4つ以上のレンズ群が移動し、フォーカシングに際して開口絞りよりも像側に位置する第1のフォーカス群と第2のフォーカス群が互いに異なった軌跡で移動する。   Embodiments of a zoom lens and an image pickup apparatus having the same according to the present invention will be described below with reference to the accompanying drawings. The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a positive lens having a positive refractive power. A fourth lens group is included. During zooming, four or more lens groups move, and during focusing, the first focus group and the second focus group located on the image side of the aperture stop move along different paths.

ここで第2のフォーカス群は、第1のフォーカス群よりも物体側に位置する。第1のフォーカス群は負の屈折力であり、第2のフォーカス群は正の屈折力である。   Here, the second focus group is located closer to the object side than the first focus group. The first focus group has a negative refractive power, and the second focus group has a positive refractive power.

図1(A)、(B)、(C)はそれぞれ本発明の実施例1のズームレンズの広角端、中間のズーム位置、望遠端におけるレンズ断面図である。図2(A)、(B)、(C)はそれぞれ本発明の実施例1のズームレンズの広角端、中間のズーム位置、望遠端における無限遠物体に合焦したときの収差図である。図3(A)、(B)、(C)はそれぞれ本発明の実施例1のズームレンズの広角端、中間のズーム位置、望遠端において至近距離物体0.38mに合焦したときの収差図である。   FIGS. 1A, 1B, and 1C are lens cross-sectional views at the wide-angle end, the intermediate zoom position, and the telephoto end of the zoom lens according to Embodiment 1 of the present invention, respectively. FIGS. 2A, 2B, and 2C are aberration diagrams when the zoom lens of Example 1 of the present invention is focused on an object at infinity at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. FIGS. 3A, 3B, and 3C are aberration diagrams when the zoom lens of Example 1 of the present invention is focused on a close object 0.38m at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. is there.

図4(A)、(B)、(C)はそれぞれ本発明の実施例2のズームレンズの広角端、中間のズーム位置、望遠端におけるレンズ断面図である。図5(A)、(B)、(C)はそれぞれ本発明の実施例2のズームレンズの広角端、中間のズーム位置、望遠端における無限遠物体に合焦したときの収差図である。図6(A)、(B)、(C)はそれぞれ本発明の実施例2のズームレンズの広角端、中間のズーム位置、望遠端において至近距離物体0.5mに合焦したときの収差図である。   4A, 4B, and 4C are lens cross-sectional views at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively, of the zoom lens according to the second exemplary embodiment of the present invention. FIGS. 5A, 5B, and 5C are aberration diagrams when the zoom lens of Example 2 of the present invention is focused on an object at infinity at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. FIGS. 6A, 6B, and 6C are aberration diagrams when the zoom lens of Example 2 of the present invention is focused on an object at a close distance of 0.5 m at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. is there.

図7(A)、(B)、(C)はそれぞれ本発明の実施例3のズームレンズの広角端、中間のズーム位置、望遠端におけるレンズ断面図である。図8(A)、(B)、(C)はそれぞれ本発明の実施例3のズームレンズの広角端、中間のズーム位置、望遠端における無限遠物体に合焦したときの収差図である。図9(A)、(B)、(C)はそれぞれ本発明の実施例3のズームレンズの広角端、中間のズーム位置、望遠端において至近距離物体0.5mに合焦したときの収差図である。   FIGS. 7A, 7B, and 7C are lens cross-sectional views at the wide-angle end, the intermediate zoom position, and the telephoto end of the zoom lens according to Embodiment 3 of the present invention, respectively. 8A, 8B, and 8C are aberration diagrams when the zoom lens of Example 3 of the present invention is focused on an object at infinity at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. FIGS. 9A, 9B, and 9C are aberration diagrams when the zoom lens according to Embodiment 3 of the present invention is focused on a close object 0.5 m at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. is there.

図10は本発明のズームレンズを備える一眼レフカメラ(撮像装置)の要部概略図である。   FIG. 10 is a schematic diagram of a main part of a single-lens reflex camera (imaging device) including the zoom lens of the present invention.

各実施例のズームレンズはビデオカメラやデジタルビデオカメラそして銀塩フィルムカメラ等の撮像装置に用いられる撮影レンズ系(光学系)である。レンズ断面図において、左方が物体側(前方)で、右方が像側(後方)である。レンズ断面図においてiは物体側からのレンズ群の順番を示し、Liは第iレンズ群である。SPは開口絞りである。SP2はFナンバー絞り(Fno絞り)である。Fナンバー絞りSP2は開口径が一定又はズーミングに際して開口径を変えて各ズーム位置におけるFナンバーの値を調整している。   The zoom lens of each embodiment is a photographing lens system (optical system) used in an imaging apparatus such as a video camera, a digital video camera, or a silver salt film camera. In the lens cross-sectional view, the left side is the object side (front), and the right side is the image side (rear). In the lens cross-sectional view, i indicates the order of the lens groups from the object side, and Li is the i-th lens group. SP is an aperture stop. SP2 is an F number aperture (Fno aperture). The F number stop SP2 has a constant aperture diameter or changes the aperture diameter during zooming to adjust the F number value at each zoom position.

IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に、銀塩フィルム用カメラのときはフィルム面に相当する。矢印は広角端から望遠端へのズーミングにおける各レンズ群の移動軌跡を示している。   IP is an image plane, and when used as a photographing optical system for a video camera or a digital still camera, on the imaging surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor, Corresponds to the film surface. The arrows indicate the movement trajectory of each lens unit during zooming from the wide-angle end to the telephoto end.

球面収差図はd線について示している。非点収差図においてM、Sはd線でのメリディオナル像面、サジタル像面である。FnoはFナンバー、ωは半画角(度)である。尚、以下の各実施例において広角端と望遠端は変倍用レンズ群が機構上、光軸上を移動可能な範囲の両端に位置したときのズーム位置をいう。   The spherical aberration diagram shows the d-line. In the astigmatism diagram, M and S are a meridional image surface and a sagittal image surface at the d-line. Fno is an F number, and ω is a half angle of view (degrees). In each of the following embodiments, the wide-angle end and the telephoto end refer to zoom positions when the zoom lens unit is positioned at both ends of a range in which the zoom lens group can move on the optical axis.

各実施例のズームレンズは、物体側より像側へ順に(連続して)、負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、負の屈折力の第3レンズ群L3、正の屈折力の第4レンズ群L4を有している。ズーミングに際して4つ以上のレンズ群が移動する。開口絞りSPは第3レンズ群L3の像側に位置し、広角端から望遠端へのズーミングに際して第3レンズ群L3と一体で移動する。第3レンズ群L3はズーミングに際して一体的に移動する開放Fno絞りSP2を有する。   The zoom lens according to each exemplary embodiment sequentially (continuously) from the object side to the image side, the first lens unit L1 having a negative refractive power, the second lens unit L2 having a positive refractive power, and the third lens unit having a negative refractive power. The lens unit L3 includes a fourth lens unit L4 having a positive refractive power. Four or more lens groups move during zooming. The aperture stop SP is located on the image side of the third lens unit L3, and moves together with the third lens unit L3 during zooming from the wide-angle end to the telephoto end. The third lens unit L3 has an open Fno stop SP2 that moves integrally during zooming.

各実施例は開口絞りSPより像側にフォーカシングに際して互いに異なった軌跡で移動する第1フォーカス群(第1フォーカスレンズ群)LF1と第2フォーカス群(第2フォーカスレンズ群)LF2を有している。無限遠物体から至近距離物体へのフォーカシングにおける第1のフォーカス群LF1と第2のフォーカス群LF2の最大移動量を各々Df1,Df2とする。   Each embodiment has a first focus group (first focus lens group) LF1 and a second focus group (second focus lens group) LF2 that move along different paths during focusing from the aperture stop SP to the image side. . Let Df1 and Df2 be the maximum movement amounts of the first focus group LF1 and the second focus group LF2 in focusing from an infinitely distant object to a very close object, respectively.

フォーカシングにおける開口絞りSPから第2のフォーカス群LF2の最も物体側のレンズの物体側のレンズ面までの最大距離をDmaxとする。フォーカシングにおける開口絞りSPから第2のフォーカス群LF2の最も物体側のレンズの物体側のレンズ面までの最小距離をDminとする。広角端における全系の焦点距離をFw、第2のフォーカス群LF2の焦点距離をFf2とする。このとき、
Df2<Df1 ・・・(1)
1.5<Dmax/Dmin<30.0 ・・・(2)
0.01<Fw/Ff2<0.14 ・・・(3)
なる条件式を満足している。
Let Dmax be the maximum distance from the aperture stop SP in focusing to the lens surface on the object side of the most object side lens in the second focus group LF2. Let Dmin be the minimum distance from the aperture stop SP during focusing to the lens surface on the object side of the lens on the most object side in the second focus group LF2. The focal length of the entire system at the wide angle end is Fw, and the focal length of the second focus group LF2 is Ff2. At this time,
Df2 <Df1 (1)
1.5 <Dmax / Dmin <30.0 (2)
0.01 <Fw / Ff2 <0.14 (3)
The following conditional expression is satisfied.

一般に、光学系の収差に関しては、軸外光線の光軸からの高さが高い方が、像面湾曲等の軸外収差への寄与が高いことが知られている。またフォーカスの際の収差変動が少なく、迅速なフォーカスを行うためには、フォーカスレンズ群の重量が軽くなる開口絞りより後方の複数のレンズ群を移動させる所謂フローティングを利用することが望ましい。   In general, with respect to aberrations of an optical system, it is known that the higher the height of off-axis rays from the optical axis, the higher the contribution to off-axis aberrations such as field curvature. Further, in order to perform quick focusing with little aberration fluctuation during focusing, it is desirable to use a so-called floating that moves a plurality of lens groups behind an aperture stop that reduces the weight of the focus lens group.

本発明者は、開口絞りよりも像側の複数のレンズ群を用いてフローティングを行うとき、負の屈折力のフォーカスレンズ群を用いることにより、像面湾曲等の諸収差の変動を抑制し、フォーカスによる収差変動を低減できることを見出した。   The present inventor suppresses fluctuations in various aberrations such as curvature of field by using a focus lens group having negative refractive power when performing floating using a plurality of lens groups on the image side of the aperture stop, It has been found that aberration fluctuation due to focus can be reduced.

各実施例ではフォーカシングに際して互いに独立に(異なった軌跡で)移動する2つのレンズ群を用いている。2つのレンズ群は開口絞りより像側へ順に正の屈折力の第2のフォーカス群LF2と負の屈折力の第1のフォーカス群LF1である。ここでフォーカスに際して移動量が大きい方が第1のフォーカス群LF1である。フォーカスに際しての第1のフォーカス群LF1と第2のフォーカス群LF2の最大移動量Df1,Df2を条件式(1)の如く設定してフォーカスに際しての像面湾曲の変動を軽減している。   Each embodiment uses two lens groups that move independently (with different trajectories) during focusing. The two lens groups are a second focus group LF2 having a positive refractive power and a first focus group LF1 having a negative refractive power in order from the aperture stop toward the image side. Here, the first focus group LF1 has a larger movement amount in focusing. The maximum movement amounts Df1 and Df2 of the first focus group LF1 and the second focus group LF2 at the time of focusing are set as in the conditional expression (1) to reduce the variation in field curvature at the time of focusing.

条件式(2)は、第2のフォーカス群LF2の光軸方向の位置に関し、主に広角端において像面湾曲を改善するためのものである。条件式(2)の上限値を超えるほど、広角端において第2のフォーカス群LF2と開口絞りSPが離れると、全系が大型化してくる。条件式(2)の下限を超えるほど広角端において第2のフォーカス群LF2と開口絞りSPが近くなると像面湾曲の補正が困難になる。   Conditional expression (2) relates to the position of the second focus group LF2 in the optical axis direction and is for improving the field curvature mainly at the wide angle end. As the upper limit of conditional expression (2) is exceeded, the entire system becomes larger when the second focus group LF2 and the aperture stop SP are separated at the wide-angle end. If the second focus group LF2 and the aperture stop SP become closer at the wide angle end as the lower limit of conditional expression (2) is exceeded, it becomes difficult to correct field curvature.

条件式(3)は、第2のフォーカス群Lf2の屈折力に関する。条件式(3)の上限を超えるほど第2のフォーカス群Lf2の屈折力が強くなると、フローティングによるフォーカスの際の収差変動の抑制と、ズーミングによる収差変動をバランス良く補正するのが困難になる。条件式(3)の下限を超えるほど第2のフォーカス群Lf2の屈折力が弱くなると、フォーカスの際の収差変動を軽減するのが困難になる。更に好ましくは条件式(2),(3)の数値範囲を次の如く設定するのが良い。   Conditional expression (3) relates to the refractive power of the second focus group Lf2. If the refractive power of the second focus group Lf2 becomes stronger as the upper limit of conditional expression (3) is exceeded, it becomes difficult to suppress aberration fluctuation during focusing due to floating and correct aberration fluctuation due to zooming in a balanced manner. If the refractive power of the second focus group Lf2 becomes weaker as the lower limit of conditional expression (3) is exceeded, it becomes difficult to reduce aberration fluctuations during focusing. More preferably, the numerical ranges of conditional expressions (2) and (3) are set as follows.

10<Dmax/Dmin<25 ・・・(2a)
0.02<Fw/Ff2<0.12 ・・・(3a)
尚、本発明において更に好ましくは次の条件式を満足するのが良い。第2のフォーカス群LF2は1つの正レンズと1つの負レンズより構成される。
10 <Dmax / Dmin <25 (2a)
0.02 <Fw / Ff2 <0.12 (3a)
In the present invention, it is more preferable that the following conditional expression is satisfied. The second focus group LF2 is composed of one positive lens and one negative lens.

各実施例において、第2のフォーカス群LF2は、正レンズと負レンズの接合レンズより構成される。第2のフォーカス群LF2の正レンズの焦点距離をFf2P、第2のフォーカス群LF2の負レンズの焦点距離をFf2Nとする。このとき、
0.01<|1−|Ff2P/Ff2N||<0.50 ・・・(4)
なる条件式を満足するのが良い。
In each embodiment, the second focus group LF2 includes a cemented lens of a positive lens and a negative lens. The focal length of the positive lens of the second focus group LF2 is Ff2P, and the focal length of the negative lens of the second focus group LF2 is Ff2N. At this time,
0.01 <| 1- | Ff2P / Ff2N || <0.50 (4)
It is good to satisfy the following conditional expression.

条件式(4)は、第2のフォーカス群LF2を構成する正レンズと負レンズの屈折力の比に関する。第2のフォーカス群LF2は、ズーミングに際して移動する第4レンズ群L4の一部分のレンズ群を利用している。従って、ズーミングとフォーカシングに際しての動きを構成するメカ部品の製造誤差に対するレンズ群の偏芯量が大きくなる。従って良好な光学性能を保つためには、偏芯による光学性能への影響がなるべく小さいことが良い。   Conditional expression (4) relates to the ratio of the refractive powers of the positive lens and the negative lens constituting the second focus group LF2. The second focus group LF2 uses a part of the lens group of the fourth lens group L4 that moves during zooming. Therefore, the amount of decentering of the lens group with respect to the manufacturing error of the mechanical parts constituting the movement during zooming and focusing increases. Therefore, in order to maintain good optical performance, it is preferable that the influence on the optical performance due to eccentricity is as small as possible.

条件式(4)の上限を超えるほど第2のフォーカス群LF2中の正レンズと負レンズの屈折力に差があると、正レンズと負レンズの境界において偏芯による収差の変化が大きくなり、製造誤差による光学性能の劣化が大きくなる。条件式(4)の下限を超えるほど正レンズと負レンズの屈折力の差が小さいと、フローティングによる光学性能の改善が少なくなる。条件式(4)は、さらに望ましくは以下の数値範囲にあることが望ましい。
0.01<|1−|Ff2P/Ff2N||<0.25 ・・・(4a)
If there is a difference in refractive power between the positive lens and the negative lens in the second focus group LF2 that exceeds the upper limit of conditional expression (4), the change in aberration due to decentering at the boundary between the positive lens and the negative lens increases. Degradation of optical performance due to manufacturing errors increases. If the difference in refractive power between the positive lens and the negative lens is so small that the lower limit of conditional expression (4) is exceeded, the improvement in optical performance due to floating is reduced. Conditional expression (4) is more desirably in the following numerical range.
0.01 <| 1- | Ff2P / Ff2N || <0.25 (4a)

以上のように各実施例によれば、ズーム比3、Fナンバー2.8程度で、フォーカスによる像面湾曲、特に広角端において像面湾曲の変動を良好に補正し、物体距離全域において良好な光学性能を有するズームレンズが容易に得られる。   As described above, according to each embodiment, with a zoom ratio of 3 and an F number of about 2.8, the field curvature due to focusing, particularly the variation in field curvature at the wide-angle end is corrected well, and the entire object distance is excellent. A zoom lens having optical performance can be easily obtained.

次に各実施例のレンズ構成について説明する。図1の実施例1において、L1は負の屈折力の第1レンズ群、L2は正の屈折力の第2レンズ群、L3は負の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群、L5は負の屈折力を持つ第5レンズ群、L6は正の屈折力の第6レンズ群である。   Next, the lens configuration of each example will be described. In Example 1 of FIG. 1, L1 is a first lens group having a negative refractive power, L2 is a second lens group having a positive refractive power, L3 is a third lens group having a negative refractive power, and L4 is a positive refractive power. The fourth lens group, L5 is a fifth lens group having negative refractive power, and L6 is a sixth lens group having positive refractive power.

広角端から望遠端へのズーミングに際して、第1レンズ群L1は像側へ、第2レンズ群L2は物体側へ、第3レンズ群L3は開口絞りSP、開放Fno絞りSP2と一体(同一の移動)で物体側に凸状の軌跡で移動する。更に第4レンズ群L4は物体側へ、第5レンズ群L5は物体側へ移動する。第6レンズ群L6はズーミング及びフォーカシングに際して不動である。   During zooming from the wide-angle end to the telephoto end, the first lens unit L1 is moved to the image side, the second lens unit L2 is moved to the object side, and the third lens unit L3 is integrated with the aperture stop SP and the open Fno stop SP2. ) To move along a convex locus toward the object side. Further, the fourth lens unit L4 moves to the object side, and the fifth lens unit L5 moves to the object side. The sixth lens unit L6 does not move during zooming and focusing.

第1レンズ群L1、第2レンズ群L2、第4レンズ群L4、第5レンズ群L5によって変倍を行い、変倍によって変動する像面を、第3レンズ群L3の移動によって補正している。実施例1はズーミングに際して5つのレンズ群が移動することで、必要なズーム比を得るとともに、ズーミングに伴う諸収差の変動を軽減している。無限遠物体から至近距離物体へのフォーカシングに際して、第1のフォーカス群LF1としての第5レンズ群L5を像側に移動させている。   The first lens unit L1, the second lens unit L2, the fourth lens unit L4, and the fifth lens unit L5 perform zooming, and the image plane that changes due to zooming is corrected by the movement of the third lens unit L3. . In the first embodiment, five lens groups move during zooming to obtain a necessary zoom ratio and reduce fluctuations in various aberrations accompanying zooming. At the time of focusing from an object at infinity to a close object, the fifth lens unit L5 as the first focus unit LF1 is moved to the image side.

さらに、第4レンズ群L4中の一部分のレンズ群を第1フォーカス群LF1とは別に移動する第2のフォーカス群Lf2として物体側へ移動させている。これによって、フォーカシングによる収差の変動を軽減している。   Further, a part of the lens group in the fourth lens group L4 is moved to the object side as a second focus group Lf2 that moves separately from the first focus group LF1. As a result, fluctuations in aberration due to focusing are reduced.

以上のように、実施例1ではズーミングに際して第1レンズ群L1乃至第5レンズ群L5が移動する。第2のフォーカス群LF2は第4レンズ群L4の一部分よりなり、第1のフォーカス群LF1は第5レンズ群L5よりなっている。また、実施例1は、第1レンズ群に2つの非球面を配している。これにより、広角端における画角周辺のサジタル像面湾曲の改善によって急激な補正不足となるメリディオナル像面の補正及び歪曲の補正を容易にしている。また、実施例1は、第6レンズ群L6に2つの非球面を配している。これにより、広角端において像面湾曲の補正を容易にしている。   As described above, in Example 1, the first lens unit L1 to the fifth lens unit L5 move during zooming. The second focus group LF2 is composed of a part of the fourth lens group L4, and the first focus group LF1 is composed of the fifth lens group L5. In Example 1, two aspheric surfaces are arranged in the first lens group. This facilitates the correction of the meridional image plane and the correction of the distortion, which are suddenly insufficiently corrected by improving the sagittal image plane curvature around the angle of view at the wide angle end. In Example 1, two aspheric surfaces are arranged in the sixth lens unit L6. This facilitates correction of field curvature at the wide-angle end.

図4の実施例2において、L1は負の屈折力の第1レンズ群、L2は正の屈折力の第2レンズ群、L3は負の屈折力の第3レンズ群、L4は正の屈折力の第4aレンズ群、L5は負の屈折力の第5レンズ群である。広角端から望遠端へのズーミングに際して、第1レンズ群L1は像側へ、第2レンズ群L2は物体側へ移動する。第3レンズ群L3は開口絞りSP、開放Fno絞りSP2と一体で物体側に凸状の軌跡で移動する。更に第4レンズ群L4は物体側へ、第5レンズ群L5は物体側へ移動する。   In Example 2 of FIG. 4, L1 is a first lens group having a negative refractive power, L2 is a second lens group having a positive refractive power, L3 is a third lens group having a negative refractive power, and L4 is a positive refractive power. 4a lens group, L5 is a fifth lens group having negative refractive power. During zooming from the wide-angle end to the telephoto end, the first lens unit L1 moves to the image side, and the second lens unit L2 moves to the object side. The third lens unit L3 moves together with the aperture stop SP and the open Fno stop SP2 along a locus that is convex toward the object side. Further, the fourth lens unit L4 moves to the object side, and the fifth lens unit L5 moves to the object side.

第1レンズ群L1、第2レンズ群L2、第4レンズ群L4、第5レンズ群L5によって変倍を行い、変倍によって変動する像面を、第3レンズ群L3の移動によって補正している。実施例2はズーミングに際して5つのレンズ群が移動することで、必要なズーム比を得るとともに、ズーミングに伴う諸収差の変動を軽減している。無限遠物体から至近距離物体へのフォーカシングに際して第1のフォーカシングレンズ群LF1としての第5レンズ群L5を像側に移動させている。   The first lens unit L1, the second lens unit L2, the fourth lens unit L4, and the fifth lens unit L5 perform zooming, and the image plane that changes due to zooming is corrected by the movement of the third lens unit L3. . In Example 2, the five lens groups move during zooming to obtain a necessary zoom ratio and to reduce fluctuations in various aberrations accompanying zooming. During focusing from an object at infinity to a close object, the fifth lens unit L5 as the first focusing lens unit LF1 is moved to the image side.

さらに、第4レンズ群L4中の一部分のレンズ群を第1のフォーカス群LF1とは別に移動する第2のフォーカス群Lf2として物体側へ移動させている。これによりフォーカシングによる収差の変動を軽減している。   Further, a part of the lens group in the fourth lens group L4 is moved to the object side as a second focus group Lf2 that moves separately from the first focus group LF1. This reduces fluctuations in aberration due to focusing.

以上のように実施例2ではズーミングに際して第1レンズ群L1乃至第5レンズ群L5が移動する。第2のフォーカス群LF2は第4レンズ群L4の一部分よりなり、第1のフォーカス群LF1は第5レンズ群L5よりなっている。また実施例2は、第1レンズ群に2つの非球面を配している。これにより広角端において画角周辺のサジタル像面湾曲の改善によって急激な補正不足となるメリディオナル像面の補正及び歪曲の補正を容易にしている。   As described above, in Example 2, the first lens unit L1 to the fifth lens unit L5 move during zooming. The second focus group LF2 is composed of a part of the fourth lens group L4, and the first focus group LF1 is composed of the fifth lens group L5. In Example 2, two aspheric surfaces are disposed in the first lens group. This facilitates the correction of the meridional image plane and the correction of distortion, which are suddenly insufficiently corrected by improving the sagittal image plane curvature around the angle of view at the wide angle end.

また、実施例2は、第2レンズ群に1つの非球面を配している。これにより、望遠端において球面収差の補正を容易にしている。また、実施例2は、第5レンズ群に2つの非球面を配している。これにより、広角端において像面湾曲の補正を容易にしている。   In Example 2, one aspherical surface is arranged in the second lens group. This facilitates correction of spherical aberration at the telephoto end. In Example 2, two aspheric surfaces are arranged in the fifth lens group. This facilitates correction of field curvature at the wide-angle end.

図7の実施例3において、L1は負の屈折力の第1レンズ群、L2は正の屈折力の第2レンズ群、L3は負の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群である。広角端から望遠端へのズーミングに際して、第1レンズ群L1は像側へ、第2レンズ群L2は物体側へ、第3レンズ群L3は開口絞りSP、開放Fno絞りSP2と一体で物体側に凸状の軌跡で移動する。更に第4レンズ群L4は物体側へ移動する。   In Example 3 of FIG. 7, L1 is a first lens unit having a negative refractive power, L2 is a second lens unit having a positive refractive power, L3 is a third lens unit having a negative refractive power, and L4 is a positive refractive power. 4th lens group. During zooming from the wide-angle end to the telephoto end, the first lens unit L1 is on the image side, the second lens unit L2 is on the object side, and the third lens unit L3 is on the object side together with the aperture stop SP and the open Fno stop SP2. Move along a convex trajectory. Further, the fourth lens unit L4 moves to the object side.

第1レンズ群L1、第2レンズ群L2、第4レンズ群L4によって変倍を行い、変倍によって変動する像面を、第3レンズ群L3の移動によって補正している。実施例3はズーミングに際して4つのレンズ群が移動することで、必要なズーム比を得るとともに、ズーミングに伴う諸収差の変動を軽減している。   The first lens unit L1, the second lens unit L2, and the fourth lens unit L4 perform zooming, and the image plane that fluctuates due to zooming is corrected by the movement of the third lens unit L3. In Example 3, four lens groups move during zooming to obtain a necessary zoom ratio and to reduce fluctuations in various aberrations accompanying zooming.

無限遠物体から至近距離物体へのフォーカシングに際して第1のフォーカス群LF1としての第4レンズ群L1の一部分を像側に移動させている。さらに、第4レンズ群L4中の一部分のレンズ群を第1のフォーカス群LF1とは別に移動する第2のフォーカス群Lf2として物体側へ移動させることで、フォーカスによる収差の変動を軽減している。   A part of the fourth lens unit L1 as the first focus unit LF1 is moved to the image side during focusing from an infinitely distant object to a close object. Further, by moving a part of the lens group in the fourth lens group L4 to the object side as the second focus group Lf2 that moves separately from the first focus group LF1, fluctuation of aberration due to focus is reduced. .

実施例3ではズーミングに際して各レンズ群が移動する。第2のフォーカス群LF2は第4レンズ群L4の一部分のレンズ群よりなり、第1のフォーカス群LF1は第2のフォーカス群LF2よりも像側の一部のレンズ群よりなっている。また、実施例3は、第1レンズ群に2つの非球面を配している。これにより広角端において画角周辺のサジタル像面湾曲の改善によって急激な補正不足となるメリディオナル像面の補正、及び歪曲の補正を容易にしている。   In Example 3, each lens unit moves during zooming. The second focus group LF2 includes a part of the lens group of the fourth lens group L4, and the first focus group LF1 includes a part of the lens group on the image side of the second focus group LF2. In Example 3, two aspheric surfaces are arranged in the first lens group. This facilitates the correction of the meridional image plane and the correction of the distortion, which are suddenly insufficiently corrected by improving the sagittal image plane curvature around the angle of view at the wide angle end.

また、実施例3は、第2レンズ群に1つの非球面を配している。これにより、望遠端において球面収差の補正を容易にしている。また、実施例3は、第4レンズ群に2つの非球面を配している。これにより、広角端において像面湾曲の補正を容易にしている。   In Example 3, one aspherical surface is disposed in the second lens group. This facilitates correction of spherical aberration at the telephoto end. In Example 3, two aspheric surfaces are arranged in the fourth lens group. This facilitates correction of field curvature at the wide-angle end.

次に実施例1〜3に示したズームレンズを撮像装置に適用した実施例を図10を用いて説明する。図10は一眼レフカメラの要部概略図である。図10において、10は実施例1〜3のズームレンズ1を有する撮影レンズである。ズームレンズ1は保持部材である鏡筒2に保持されている。20はカメラ本体であり、撮影レンズ10からの光束を上方に反射するクイックリターンミラー3、撮影レンズ10の像形成位置に配置された焦点板4より構成されている。更に焦点板4に形成された逆像を正立像に変換するペンタダハプリズム5、その正立像を観察するための接眼レンズ6などによって構成されている。   Next, an embodiment in which the zoom lens shown in Embodiments 1 to 3 is applied to an imaging apparatus will be described with reference to FIG. FIG. 10 is a schematic view of the main part of a single-lens reflex camera. In FIG. 10, reference numeral 10 denotes a photographic lens having the zoom lens 1 of Examples 1 to 3. The zoom lens 1 is held by a lens barrel 2 that is a holding member. Reference numeral 20 denotes a camera body, which includes a quick return mirror 3 that reflects the light beam from the photographing lens 10 upward, and a focusing screen 4 that is disposed at an image forming position of the photographing lens 10. Further, it is constituted by a penta roof prism 5 for converting an inverted image formed on the focusing screen 4 into an erect image, an eyepiece 6 for observing the erect image, and the like.

7は感光面であり、CCDセンサやCMOSセンサ等のズームレンズによって形成される像を受光する固体撮像素子(光電変換素子)や銀塩フィルムが配置される。撮影時にはクイックリターンミラー3が光路から退避して、感光面7上に撮影レンズ10によって像が形成される。   Reference numeral 7 denotes a photosensitive surface, on which a solid-state imaging device (photoelectric conversion device) or a silver salt film that receives an image formed by a zoom lens such as a CCD sensor or a CMOS sensor is arranged. At the time of photographing, the quick return mirror 3 is retracted from the optical path, and an image is formed on the photosensitive surface 7 by the photographing lens 10.

本発明のズームレンズはクイックリターンミラーのない所謂ミラーレスのカメラにも同様に適用することができる。   The zoom lens of the present invention can be similarly applied to a so-called mirrorless camera having no quick return mirror.

以下に実施例1〜3に対応する数値実施例1〜3を示す。各数値実施例においてiは物体側からの面の順番を示す。数値実施例においてriは物体側より順に第i番目のレンズ面の曲率半径、diは物体側より順に第i番目のレンズ厚及び空気間隔、ndiとνdiは各々物体側より順に第i番目のレンズの材料の屈折率とアッベ数である。BFはバックフォーカスである。非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正とし、rを近軸曲率半径、kを円錐定数、各非球面係数をA4、A6、A8、A10、A12としたとき、   Numerical Examples 1 to 3 corresponding to Examples 1 to 3 are shown below. In each numerical example, i indicates the order of the surfaces from the object side. In numerical examples, ri is the radius of curvature of the i-th lens surface in order from the object side, di is the i-th lens thickness and air spacing in order from the object side, and ndi and νdi are the i-th lens in order from the object side. The refractive index and Abbe number of the material. BF is a back focus. The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, r is the paraxial radius of curvature, k is the conic constant, and each aspheric coefficient is A4, A6, A8. , A10, A12,

で与えるものとする。各非球面係数における「E±xx」は「×10±xx」を意味している。また前述の条件式(2),(3),(4)と数値実施例の関係を表1に示す。
Shall be given in “E ± xx” in each aspheric coefficient means “× 10 ± xx ”. Table 1 shows the relationship between the conditional expressions (2), (3), (4) and the numerical examples.

[数値実施例1]
単位 mm

面データ
面番号 r d nd νd 有効径
1* 263.552 2.08 1.7725 49.6 63.63
2 34.5 16.68 51.55
3 -78.411 2.5 1.804 46.6 51.03
4 -1642.17 0.1 51
5* 147.491 4.18 1.7495 35.3 50.92
6 -486.702 (可変) 50.69
7 -1026.21 3 1.618 63.4 40.4
8 -116.115 0.5 40.62
9 82.197 2 1.84666 23.9 40.73
10 47.711 7.07 1.59282 68.6 39.89
11 -188.861 0.15 39.71
12 57.999 4.44 1.883 40.8 38.33
13 1191.271 (可変) 37.68
14(Fno絞り) ∞ 2.25 25.91
15 -97.536 1.3 1.8061 40.9 25.21
16 56.152 2.87 24.7
17 -94.524 1.3 1.7432 49.3 24.77
18 40.268 4.09 1.84666 23.9 25.48
19 -156.617 1.69 25.66
20(絞り) ∞ (可変) 25.85
21 119.789 1.39 1.80809 22.8 26.14
22 34.608 6.1 1.43875 94.9 25.98
23 -53.323 (可変) 26.26
24 56.617 3.28 1.59282 68.6 26.22
25 -177.495 0.97 25.98
26 57.209 3.07 1.43875 94.9 26.65
27 -450.614 (可変) 26.65
28 -498.043 3.8 1.80518 25.4 26.61
29 -35.865 0.15 26.63
30 -35.888 1.5 1.72047 34.7 26.5
31 30.102 (可変) 26.3
32* 55.891 5.1 1.58313 59.4 36
33* -1801.29 36.22
像面 ∞

非球面データ
第1面
K =0.00E+00 A 4=2.63451E-06 A 6=-1.13606E-09 A 8=1.57408E-13
A10=2.10327E-16 A12=-7.19037E-20
第5面
K =0.00E+00 A 4=-8.16931E-07 A 6=2.32636E-10 A 8=1.72998E-12
A10=-2.09561E-15 A12=5.99777E-19
第32面
K =0.00E+00 A 4=8.24588E-07 A 6=-3.80587E-09 A 8=6.11912E-12
A10=1.37029E-14 A12=-2.07864E-18
第33面
K =0.00E+00 A 4=7.31749E-07 A 6=-6.39483E-09 A 8=2.10283E-12
A10=4.36987E-14 A12=-4.03388E-17

各種データ
ズーム比 2.75

焦点距離 24.69 34.99 67.9
Fナンバー 2.9 2.9 2.9
半画角(度) 41.23 31.73 17.67
像高 21.64 21.64 21.64
レンズ全長 211.75 196.67 173.34
BF 38.38 38.38 38.38

d6 59.6 35.77 2.17
d13 3.33 7.61 23.14
d20 21.81 16.92 2.74
d23 0.7 0.7 0.7
d27 2.08 2.12 6.38
d31 4.29 13.61 18.26

物体距離至近時
d20 20.938 16.048 1.868
d23 1.572 1.572 1.572
d27 3.469 4.378 13.978
d31 2.903 11.359 10.661

入射瞳位置 34.43 34.01 45.22
射出瞳位置 -65.14 -77.47 -58.93
前側主点位置 53.24 58.44 65.74
後側主点位置 13.68 3.38 -29.53

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 -43.3 25.55 2.9 -18.59
2 7 37.94 17.16 5.82 -4.8
3 14 -45.33 13.49 1.86 -8.8
4 21 37.72 15.51 7.29 -3.59
5 28 -43.3 5.45 3.14 0.02
6 32 93.06 5.1 0.1 -3.13


単レンズデータ
レンズ 始面 焦点距離
1 1 -51.59
2 3 -102.49
3 5 151.45
4 7 211.59
5 9 -137.99
6 10 64.97
7 12 68.92
8 15 -44.04
9 17 -37.84
10 18 38.2
11 21 -60.67
12 22 48.87
13 24 72.79
14 26 115.91
15 28 47.82
16 30 -22.51
17 32 93.06
[Numerical Example 1]
Unit mm

Surface data surface number rd nd νd Effective diameter
1 * 263.552 2.08 1.7725 49.6 63.63
2 34.5 16.68 51.55
3 -78.411 2.5 1.804 46.6 51.03
4 -1642.17 0.1 51
5 * 147.491 4.18 1.7495 35.3 50.92
6 -486.702 (variable) 50.69
7 -1026.21 3 1.618 63.4 40.4
8 -116.115 0.5 40.62
9 82.197 2 1.84666 23.9 40.73
10 47.711 7.07 1.59282 68.6 39.89
11 -188.861 0.15 39.71
12 57.999 4.44 1.883 40.8 38.33
13 1191.271 (variable) 37.68
14 (Fno aperture) ∞ 2.25 25.91
15 -97.536 1.3 1.8061 40.9 25.21
16 56.152 2.87 24.7
17 -94.524 1.3 1.7432 49.3 24.77
18 40.268 4.09 1.84666 23.9 25.48
19 -156.617 1.69 25.66
20 (Aperture) ∞ (Variable) 25.85
21 119.789 1.39 1.80809 22.8 26.14
22 34.608 6.1 1.43875 94.9 25.98
23 -53.323 (variable) 26.26
24 56.617 3.28 1.59282 68.6 26.22
25 -177.495 0.97 25.98
26 57.209 3.07 1.43875 94.9 26.65
27 -450.614 (variable) 26.65
28 -498.043 3.8 1.80518 25.4 26.61
29 -35.865 0.15 26.63
30 -35.888 1.5 1.72047 34.7 26.5
31 30.102 (variable) 26.3
32 * 55.891 5.1 1.58313 59.4 36
33 * -1801.29 36.22
Image plane ∞

Aspheric data 1st surface
K = 0.00E + 00 A 4 = 2.63451E-06 A 6 = -1.13606E-09 A 8 = 1.57408E-13
A10 = 2.10327E-16 A12 = -7.19037E-20
5th page
K = 0.00E + 00 A 4 = -8.16931E-07 A 6 = 2.32636E-10 A 8 = 1.72998E-12
A10 = -2.09561E-15 A12 = 5.99777E-19
32nd page
K = 0.00E + 00 A 4 = 8.24588E-07 A 6 = -3.80587E-09 A 8 = 6.11912E-12
A10 = 1.37029E-14 A12 = -2.07864E-18
Side 33
K = 0.00E + 00 A 4 = 7.31749E-07 A 6 = -6.39483E-09 A 8 = 2.10283E-12
A10 = 4.36987E-14 A12 = -4.03388E-17

Various data
Zoom ratio 2.75

Focal length 24.69 34.99 67.9
F number 2.9 2.9 2.9
Half angle of view (degrees) 41.23 31.73 17.67
Image height 21.64 21.64 21.64
Total lens length 211.75 196.67 173.34
BF 38.38 38.38 38.38

d6 59.6 35.77 2.17
d13 3.33 7.61 23.14
d20 21.81 16.92 2.74
d23 0.7 0.7 0.7
d27 2.08 2.12 6.38
d31 4.29 13.61 18.26

Near object distance
d20 20.938 16.048 1.868
d23 1.572 1.572 1.572
d27 3.469 4.378 13.978
d31 2.903 11.359 10.661

Entrance pupil position 34.43 34.01 45.22
Exit pupil position -65.14 -77.47 -58.93
Front principal point position 53.24 58.44 65.74
Rear principal point position 13.68 3.38 -29.53

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 -43.3 25.55 2.9 -18.59
2 7 37.94 17.16 5.82 -4.8
3 14 -45.33 13.49 1.86 -8.8
4 21 37.72 15.51 7.29 -3.59
5 28 -43.3 5.45 3.14 0.02
6 32 93.06 5.1 0.1 -3.13


Single lens Data lens Start surface Focal length
1 1 -51.59
2 3 -102.49
3 5 151.45
4 7 211.59
5 9 -137.99
6 10 64.97
7 12 68.92
8 15 -44.04
9 17 -37.84
10 18 38.2
11 21 -60.67
12 22 48.87
13 24 72.79
14 26 115.91
15 28 47.82
16 30 -22.51
17 32 93.06

[数値実施例2]
単位 mm

面データ
面番号 r d nd νd 有効径
1* 638.428 2.08 1.7725 49.6 65.19
2 35.152 16.12 52.72
3 -110.645 2.5 1.804 46.6 52.21
4 569.675 0.1 52.06
5* 149.5 4.73 1.7495 35.3 52.12
6 -367.969 (可変) 51.88
7 1110.9 3 1.618 63.4 40.69
8 -139.527 0.5 40.84
9 79.949 2 1.84666 23.9 40.85
10 45.706 6.94 1.59282 68.6 39.91
11 -281.166 0.15 39.7
12* 54.598 4.44 1.883 40.8 38.44
13 467.363 (可変) 37.77
14(Fno絞り)∞ 2.4 25.83
15 -92.618 1.3 1.8061 40.9 25.12
16 61.026 2.87 24.69
17 -88.584 1.3 1.7432 49.3 24.77
18 34.325 4.49 1.84666 23.9 25.62
19 -140.325 1.29 25.8
20(絞り) ∞ (可変) 25.94
21 107.005 1.39 1.80809 22.8 26.09
22 29.467 6.16 1.43875 94.9 25.85
23 -71.134 (可変) 26.18
24 76.42 3.37 1.59282 68.6 26.41
25 -86.921 0.5 26.31
26 82.433 3 1.43875 94.9 25.56
27 -92.126 (可変) 25.7
28 -133.927 3.15 1.80518 25.4 25.95
29 -35.47 0.15 26.1
30 -36.938 1.5 1.7495 35.3 25.97
31 47.531 4.29 26.4
32* 118.072 2.39 1.7859 44.2 28.3
33* -669.031 (可変) 28.71
像面 ∞

非球面データ
第1面
K = 0.00E+00 A 4= 2.98785E-06 A 6= -1.39501E-09
A 8= 1.78892E-13 A10= 2.08249E-16 A12= -1.05452E-19
第5面
K = 0.00E+00 A 4= -5.75137E-07 A 6= -1.89268E-10
A 8= 2.94024E-12 A10= -3.24708E-15 A12= 1.52626E-18
第12面
K = 0.00E+00 A 4= -1.55150E-08 A 6= -4.11437E-11
A 8= 4.03702E-14 A10= 2.36907E-17 A12= -6.67811E-19
第32面
K = 0.00E+00 A 4= -1.86353E-06 A 6= -1.79792E-08
A 8= 7.18781E-11 A10= -4.43174E-13 A12= 6.90523E-16
第33面
K = 0.00E+00 A 4= -1.62531E-06 A 6= -1.57734E-08
A 8= 4.25444E-11 A10= -2.89266E-13 A12= 3.91402E-16

各種データ
ズーム比 2.75

焦点距離 24.7 34.87 67.9
Fナンバー 2.9 2.9 2.9
画角 41.22 31.82 17.67
像高 21.64 21.64 21.64
レンズ全長 209.13 192.53 168.6
BF 39.38 50.68 53.89

d6 59.6 34.89 1.44
d13 2.75 6.48 24.32
d20 19.88 15.61 1.33
d23 0.66 0.66 0.66
d27 4.75 2.1 4.86
d33 39.38 50.68 53.89

物体距離至近時
d20 18.968 14.698 0.418
d23 1.569 1.569 1.569
d27 6.131 4.169 12.124
d33 37.999 48.607 46.616

入射瞳位置 33.8 32.93 45.55
射出瞳位置 -59.41 -47.9 -25.32
前側主点位置 52.33 55.46 55.24
後側主点位置 14.68 15.81 -14.02

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 -44.44 25.54 1.72 -19.87
2 7 39.18 17.03 5.43 -5.1
3 14 -48.36 13.65 1.68 -9.01
4 21 38.87 15.72 8.73 -2.27
5 28 -91.94 11.49 -1.48 -10.19


単レンズデータ
レンズ 始面 焦点距離
1 1 -48.23
2 3 -115.05
3 5 142.4
4 7 200.76
5 9 -129.51
6 10 66.85
7 12 69.66
8 15 -45.46
9 17 -33.14
10 18 32.96
11 21 -50.73
12 22 48.39
13 24 69.13
14 26 99.68
15 28 59.08
16 30 -27.52
17 32 127.87
[Numerical Example 2]
Unit mm

Surface data surface number rd nd νd Effective diameter
1 * 638.428 2.08 1.7725 49.6 65.19
2 35.152 16.12 52.72
3 -110.645 2.5 1.804 46.6 52.21
4 569.675 0.1 52.06
5 * 149.5 4.73 1.7495 35.3 52.12
6 -367.969 (variable) 51.88
7 1110.9 3 1.618 63.4 40.69
8 -139.527 0.5 40.84
9 79.949 2 1.84666 23.9 40.85
10 45.706 6.94 1.59282 68.6 39.91
11 -281.166 0.15 39.7
12 * 54.598 4.44 1.883 40.8 38.44
13 467.363 (variable) 37.77
14 (Fno aperture) ∞ 2.4 25.83
15 -92.618 1.3 1.8061 40.9 25.12
16 61.026 2.87 24.69
17 -88.584 1.3 1.7432 49.3 24.77
18 34.325 4.49 1.84666 23.9 25.62
19 -140.325 1.29 25.8
20 (Aperture) ∞ (Variable) 25.94
21 107.005 1.39 1.80809 22.8 26.09
22 29.467 6.16 1.43875 94.9 25.85
23 -71.134 (variable) 26.18
24 76.42 3.37 1.59282 68.6 26.41
25 -86.921 0.5 26.31
26 82.433 3 1.43875 94.9 25.56
27 -92.126 (variable) 25.7
28 -133.927 3.15 1.80518 25.4 25.95
29 -35.47 0.15 26.1
30 -36.938 1.5 1.7495 35.3 25.97
31 47.531 4.29 26.4
32 * 118.072 2.39 1.7859 44.2 28.3
33 * -669.031 (variable) 28.71
Image plane ∞

Aspheric data 1st surface
K = 0.00E + 00 A 4 = 2.98785E-06 A 6 = -1.39501E-09
A 8 = 1.78892E-13 A10 = 2.08249E-16 A12 = -1.05452E-19
5th page
K = 0.00E + 00 A 4 = -5.75137E-07 A 6 = -1.89268E-10
A 8 = 2.94024E-12 A10 = -3.24708E-15 A12 = 1.52626E-18
12th page
K = 0.00E + 00 A 4 = -1.55 150E-08 A 6 = -4.11437E-11
A 8 = 4.03702E-14 A10 = 2.36907E-17 A12 = -6.67811E-19
32nd page
K = 0.00E + 00 A 4 = -1.86353E-06 A 6 = -1.79792E-08
A 8 = 7.18781E-11 A10 = -4.43174E-13 A12 = 6.90523E-16
Side 33
K = 0.00E + 00 A 4 = -1.62531E-06 A 6 = -1.57734E-08
A 8 = 4.25444E-11 A10 = -2.89266E-13 A12 = 3.91402E-16

Various data Zoom ratio 2.75

Focal length 24.7 34.87 67.9
F number 2.9 2.9 2.9
Angle of view 41.22 31.82 17.67
Image height 21.64 21.64 21.64
Total lens length 209.13 192.53 168.6
BF 39.38 50.68 53.89

d6 59.6 34.89 1.44
d13 2.75 6.48 24.32
d20 19.88 15.61 1.33
d23 0.66 0.66 0.66
d27 4.75 2.1 4.86
d33 39.38 50.68 53.89

Near object distance
d20 18.968 14.698 0.418
d23 1.569 1.569 1.569
d27 6.131 4.169 12.124
d33 37.999 48.607 46.616

Entrance pupil position 33.8 32.93 45.55
Exit pupil position -59.41 -47.9 -25.32
Front principal point position 52.33 55.46 55.24
Rear principal point position 14.68 15.81 -14.02

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 -44.44 25.54 1.72 -19.87
2 7 39.18 17.03 5.43 -5.1
3 14 -48.36 13.65 1.68 -9.01
4 21 38.87 15.72 8.73 -2.27
5 28 -91.94 11.49 -1.48 -10.19


Single lens Data lens Start surface Focal length
1 1 -48.23
2 3 -115.05
3 5 142.4
4 7 200.76
5 9 -129.51
6 10 66.85
7 12 69.66
8 15 -45.46
9 17 -33.14
10 18 32.96
11 21 -50.73
12 22 48.39
13 24 69.13
14 26 99.68
15 28 59.08
16 30 -27.52
17 32 127.87

[数値実施例3]
単位 mm

面データ
面番号 r d nd νd 有効径
1* 291.444 2.08 1.7725 49.6 63.9
2 31.991 16.98 51
3 -121.328 2.5 1.804 46.6 50.45
4 343.168 0.1 50.51
5* 139.24 5.02 1.7495 35.3 50.75
6 -445.88 (可変) 50.49
7 1015.43 3 1.618 63.4 41.23
8 -127.839 0.5 41.38
9 78.593 2 1.84666 23.9 41.45
10 44.823 8 1.59282 68.6 40.48
11 -241.531 0.15 40.19
12* 55.226 4.44 1.883 40.8 38.84
13 613.437 (可変) 38.24
14(Fno絞り) ∞ 3.02 26.34
15 -97.447 1.3 1.8061 40.9 25.23
16 52.972 2.87 24.68
17 -89.406 1.3 1.7432 49.3 24.74
18 39.118 5 1.84666 23.9 25.53
19 -122.993 1.06 25.81
20(絞り) ∞ (可変) 25.93
21 108.329 1.39 1.80809 22.8 26.09
22 31.354 5.34 1.43875 94.9 25.85
23 -71.379 (可変) 26.04
24 76.655 3.14 1.59282 68.6 26.16
25 -90.475 0.5 26.05
26 82.589 3 1.43875 94.9 25.82
27 -102.454 2.63 25.94
28 -127.703 2.74 1.80518 25.4 26.03
29 -36.112 0.15 26.13
30 -37.596 1.5 1.7495 35.3 26.01
31 47.648 8.13 26.41
32* 90.394 2.39 1.7859 44.2 30.79
33* -8046.92 (可変) 31.14
像面 ∞

非球面データ
第1面
K = 0.00000E+00 A 4= 3.19133E-06 A 6= -1.55329E-09
A 8= -2.72390E-14 A10= 1.88906E-16 A12= -1.13810E-20
第5面
K = 0.00000E+00 A 4= -4.91496E-07 A 6= 7.41072E-11
A 8= 3.74404E-12 A10= -2.48251E-15 A12= 3.09080E-19
第12面
K = 0.00000E+00 A 4= 1.97927E-07 A 6= -4.15353E-10
A 8= 5.63712E-13 A10= -1.05891E-15 A12= -4.18498E-19
第32面
K = 0.00000E+00 A 4= -2.12962E-06 A 6= -1.56417E-09
A 8= -2.16331E-11 A10= -3.11391E-13 A12= 3.24771E-16
第33面
K = 0.00000E+00 A 4= -1.48869E-06 A 6= -8.33440E-09
A 8= 4.28439E-11 A10= -5.86017E-13 A12= 7.40622E-16

各種データ
ズーム比 2.75

焦点距離 24.7 35.75 67.9
Fナンバー 2.9 2.9 2.9
半画角(度) 41.22 31.18 17.67
像高 21.64 21.64 21.64
レンズ全長 215.39 192.52 172.54
BF 40.3 47.04 55.41

d6 60.11 29.89 1.29
d13 2.38 6.7 23.35
d20 21.87 18.16 1.77
d23 0.48 0.48 0.48
d33 40.3 47.04 55.41

物体距離至近時
d20 20.414 16.704 0.314
d23 1.934 1.934 1.934
d27 3.943 4.956 9.844
d33 38.993 44.718 48.200

入射瞳位置 33.33 32.52 45.33
射出瞳位置 -73.05 -61.36 -28.9
前側主点位置 52.65 56.48 58.54
後側主点位置 15.6 11.29 -12.49

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 -42.26 26.69 2.12 -20.34
2 7 37.84 18.09 5.91 -5.37
3 14 -46.53 14.55 2.09 -9.35
4 21 63.42 31.39 7.64 -17.85

単レンズデータ
レンズ 始面 焦点距離
1 1 -46.68
2 3 -111.22
3 5 142.09
4 7 183.91
5 9 -126.65
6 10 64.44
7 12 68.48
8 15 -42.41
9 17 -36.46
10 18 35.56
11 21 -55.05
12 22 50.45
13 24 70.49
14 26 104.74
15 28 61.71
16 30 -27.83
17 32 113.76
[Numerical Example 3]
Unit mm

Surface data surface number rd nd νd Effective diameter
1 * 291.444 2.08 1.7725 49.6 63.9
2 31.991 16.98 51
3 -121.328 2.5 1.804 46.6 50.45
4 343.168 0.1 50.51
5 * 139.24 5.02 1.7495 35.3 50.75
6 -445.88 (variable) 50.49
7 1015.43 3 1.618 63.4 41.23
8 -127.839 0.5 41.38
9 78.593 2 1.84666 23.9 41.45
10 44.823 8 1.59282 68.6 40.48
11 -241.531 0.15 40.19
12 * 55.226 4.44 1.883 40.8 38.84
13 613.437 (variable) 38.24
14 (Fno aperture) ∞ 3.02 26.34
15 -97.447 1.3 1.8061 40.9 25.23
16 52.972 2.87 24.68
17 -89.406 1.3 1.7432 49.3 24.74
18 39.118 5 1.84666 23.9 25.53
19 -122.993 1.06 25.81
20 (Aperture) ∞ (Variable) 25.93
21 108.329 1.39 1.80809 22.8 26.09
22 31.354 5.34 1.43875 94.9 25.85
23 -71.379 (variable) 26.04
24 76.655 3.14 1.59282 68.6 26.16
25 -90.475 0.5 26.05
26 82.589 3 1.43875 94.9 25.82
27 -102.454 2.63 25.94
28 -127.703 2.74 1.80518 25.4 26.03
29 -36.112 0.15 26.13
30 -37.596 1.5 1.7495 35.3 26.01
31 47.648 8.13 26.41
32 * 90.394 2.39 1.7859 44.2 30.79
33 * -8046.92 (variable) 31.14
Image plane ∞

Aspheric data 1st surface
K = 0.00000E + 00 A 4 = 3.19133E-06 A 6 = -1.55329E-09
A 8 = -2.72390E-14 A10 = 1.88906E-16 A12 = -1.13810E-20
5th page
K = 0.00000E + 00 A 4 = -4.91496E-07 A 6 = 7.41072E-11
A 8 = 3.74404E-12 A10 = -2.48251E-15 A12 = 3.09080E-19
12th page
K = 0.00000E + 00 A 4 = 1.97927E-07 A 6 = -4.15353E-10
A 8 = 5.63712E-13 A10 = -1.05891E-15 A12 = -4.18498E-19
32nd page
K = 0.00000E + 00 A 4 = -2.12962E-06 A 6 = -1.56417E-09
A 8 = -2.16331E-11 A10 = -3.11391E-13 A12 = 3.24771E-16
Side 33
K = 0.00000E + 00 A 4 = -1.48869E-06 A 6 = -8.33440E-09
A 8 = 4.28439E-11 A10 = -5.86017E-13 A12 = 7.40622E-16

Various data Zoom ratio 2.75

Focal length 24.7 35.75 67.9
F number 2.9 2.9 2.9
Half angle of view (degrees) 41.22 31.18 17.67
Image height 21.64 21.64 21.64
Total lens length 215.39 192.52 172.54
BF 40.3 47.04 55.41

d6 60.11 29.89 1.29
d13 2.38 6.7 23.35
d20 21.87 18.16 1.77
d23 0.48 0.48 0.48
d33 40.3 47.04 55.41

Near object distance
d20 20.414 16.704 0.314
d23 1.934 1.934 1.934
d27 3.943 4.956 9.844
d33 38.993 44.718 48.200

Entrance pupil position 33.33 32.52 45.33
Exit pupil position -73.05 -61.36 -28.9
Front principal point position 52.65 56.48 58.54
Rear principal point position 15.6 11.29 -12.49

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 -42.26 26.69 2.12 -20.34
2 7 37.84 18.09 5.91 -5.37
3 14 -46.53 14.55 2.09 -9.35
4 21 63.42 31.39 7.64 -17.85

Single lens Data lens Start surface Focal length
1 1 -46.68
2 3 -111.22
3 5 142.09
4 7 183.91
5 9 -126.65
6 10 64.44
7 12 68.48
8 15 -42.41
9 17 -36.46
10 18 35.56
11 21 -55.05
12 22 50.45
13 24 70.49
14 26 104.74
15 28 61.71
16 30 -27.83
17 32 113.76

L1 第1レンズ群 L2 第2レンズ群 L3 第3レンズ群
L3 第3レンズ群 L4 第4レンズ群 L5 第5レンズ群
L6 第6レンズ群 Lf2 第2のフォーカス群
Lf1 第1のフォーカス群 SP 開口絞り
SP2 開放Fno絞り
L1 1st lens group L2 2nd lens group L3 3rd lens group L3 3rd lens group L4 4th lens group L5 5th lens group L6 6th lens group Lf2 2nd focus group Lf1 1st focus group SP Aperture stop SP2 Open Fno aperture

Claims (9)

物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有し、ズーミングに際して隣り合うレンズ群の間隔が変化するように4つ以上のレンズ群が移動し、フォーカシングに際して開口絞りの像側に位置する第1のフォーカス群と第2のフォーカス群が互いに異なる軌跡で移動するズームレンズであって、前記第2のフォーカス群は前記第1のフォーカス群の物体側に配置されており、フォーカシングにおける前記第1のフォーカス群と前記第2のフォーカス群の最大移動量を各々Df1,Df2、フォーカシングにおける前記開口絞りから前記第2のフォーカス群の最も物体側のレンズ面までの最大距離をDmax、フォーカシングにおける前記開口絞りから前記第2のフォーカス群の最も物体側のレンズ面までの最小距離をDmin、広角端における全系の焦点距離をFw、前記第2のフォーカス群の焦点距離をFf2とするとき、
Df2<Df1
1.5<Dmax/Dmin<30.0
0.01<Fw/Ff2<0.14
なる条件式を満足することを特徴とするズームレンズ。
In order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens group having a positive refractive power are provided. Four or more lens groups move so that the distance between adjacent lens groups changes during zooming, and the first focus group and the second focus group located on the image side of the aperture stop follow different trajectories during focusing. A zoom lens that moves, wherein the second focus group is disposed on the object side of the first focus group, and the maximum amount of movement of the first focus group and the second focus group during focusing is determined. Df1, Df2, and Dmax are the maximum distances from the aperture stop in focusing to the lens surface closest to the object in the second focus group, respectively. When the minimum distance al to the most object side lens surface of the second focusing unit Dmin, Fw is a focal length of the entire system at the wide angle end, the focal length of the second focusing unit and Ff2,
Df2 <Df1
1.5 <Dmax / Dmin <30.0
0.01 <Fw / Ff2 <0.14
A zoom lens satisfying the following conditional expression:
前記第2のフォーカス群は1つの正レンズと1つの負レンズより構成され、前記第2のフォーカス群の正レンズの焦点距離をFf2P、前記第2のフォーカス群の負レンズの焦点距離をFf2Nとするとき、
0.01<|1−|Ff2P/Ff2N||<0.50
なる条件式を満足することを特徴とする請求項1のズームレンズ。
The second focus group includes one positive lens and one negative lens, the focal length of the positive lens of the second focus group is Ff2P, and the focal length of the negative lens of the second focus group is Ff2N. and when,
0.01 <| 1- | Ff2P / Ff2N || <0.50
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
前記第2のフォーカス群は、正レンズと負レンズの接合レンズより構成されることを特徴とする請求項1または2のズームレンズ。   The zoom lens according to claim 1, wherein the second focus group includes a cemented lens of a positive lens and a negative lens. 前記開口絞りは前記第3レンズ群の像側に配置されており、ズーミングに際して前記第3レンズ群と一体で移動することを特徴とする請求項1乃至3のいずれか1項のズームレンズ。   4. The zoom lens according to claim 1, wherein the aperture stop is disposed on an image side of the third lens group, and moves together with the third lens group during zooming. 5. 前記第3レンズ群とズーミングに際して一体的に移動する開放Fno絞りを有することを特徴とする請求項1乃至4のいずれか1項のズームレンズ。   5. The zoom lens according to claim 1, further comprising an open Fno aperture that moves integrally with the third lens unit during zooming. 6. 物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群より構成され、ズーミングに際して各レンズ群が移動し、前記第1のフォーカス群と前記第2のフォーカス群は、それぞれ前記第4レンズ群の一部であることを特徴とする請求項1乃至5のいずれか1項のズームレンズ。   In order from the object side to the image side, the lens unit includes a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens group having a positive refractive power. 6. Each lens group is moved during zooming, and the first focus group and the second focus group are part of the fourth lens group, respectively. Zoom lens of the term. 物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群より構成され、ズーミングに際して前記第1レンズ群ないし前記第5レンズ群が移動し、前記第2のフォーカス群は前記第4レンズ群の一部であり、前記第1のフォーカス群は前記第5レンズ群よりなることを特徴とする請求項1乃至5のいずれか1項のズームレンズ。   In order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, a fourth lens group having a positive refractive power, and a negative lens group The first lens group to the fifth lens group move during zooming, and the second focus group is a part of the fourth lens group. 6. The zoom lens according to claim 1, wherein the focus group includes the fifth lens group. 物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ、負の屈折力の第5レンズ群、正の屈折力の第6レンズ群より構成され、ズーミングに際して前記第1レンズ群ないし前記第5レンズ群が移動し、前記第2のフォーカス群は前記第4レンズ群の一部であり、前記第1のフォーカス群は前記第5レンズ群よりなることを特徴とする請求項1乃至5のいずれか1項のズームレンズ。   In order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, a fourth lens having a positive refractive power, and a negative refraction. A fifth lens group having a positive power and a sixth lens group having a positive refractive power, and the first lens group to the fifth lens group move during zooming, and the second focus group is the same as that of the fourth lens group. 6. The zoom lens according to claim 1, wherein the zoom lens is a part of the zoom lens, and the first focus group includes the fifth lens group. 請求項1乃至8のいずれか1項に記載のズームレンズと、該ズームレンズによって形成される像を受光する光電変換素子を有することを特徴とする撮像装置。   An image pickup apparatus comprising: the zoom lens according to claim 1; and a photoelectric conversion element that receives an image formed by the zoom lens.
JP2013019230A 2013-02-04 2013-02-04 Zoom lens and imaging apparatus having the same Active JP6207164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013019230A JP6207164B2 (en) 2013-02-04 2013-02-04 Zoom lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013019230A JP6207164B2 (en) 2013-02-04 2013-02-04 Zoom lens and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2014149483A true JP2014149483A (en) 2014-08-21
JP2014149483A5 JP2014149483A5 (en) 2016-03-17
JP6207164B2 JP6207164B2 (en) 2017-10-04

Family

ID=51572487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013019230A Active JP6207164B2 (en) 2013-02-04 2013-02-04 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP6207164B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121944A1 (en) * 2015-01-30 2016-08-04 株式会社ニコン Zoom lens, optical apparatus, and zoom lens production method
WO2018135000A1 (en) * 2017-01-23 2018-07-26 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Lens system, imaging device, moving body, and system
WO2018185868A1 (en) * 2017-04-05 2018-10-11 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2018185869A1 (en) * 2017-04-05 2018-10-11 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2018185867A1 (en) * 2017-04-05 2018-10-11 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
JPWO2021039696A1 (en) * 2019-08-29 2021-03-04
JP2021063966A (en) * 2019-10-17 2021-04-22 キヤノン株式会社 Optical system, image capturing device having the same, and image capturing system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235514A (en) * 1991-01-11 1992-08-24 Nikon Corp Super-wide angle zoom lens
EP0601337A2 (en) * 1992-12-11 1994-06-15 Nikon Corporation Zoom lens system
JPH06175023A (en) * 1992-12-11 1994-06-24 Nikon Corp Zoom lens system
US5329401A (en) * 1991-01-11 1994-07-12 Nikon Corporation Super wide angle zoom lens
JPH1172705A (en) * 1997-08-29 1999-03-16 Tochigi Nikon:Kk Zoom lens provided with two and more focusing lens groups
US20040125462A1 (en) * 2002-12-16 2004-07-01 Makoto Misaka Zoom lens system and camera incorporating the same
JP2007328162A (en) * 2006-06-08 2007-12-20 Canon Inc Zoom lens and imaging apparatus having the same
US20090180199A1 (en) * 2008-01-16 2009-07-16 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235514A (en) * 1991-01-11 1992-08-24 Nikon Corp Super-wide angle zoom lens
US5329401A (en) * 1991-01-11 1994-07-12 Nikon Corporation Super wide angle zoom lens
EP0601337A2 (en) * 1992-12-11 1994-06-15 Nikon Corporation Zoom lens system
JPH06175023A (en) * 1992-12-11 1994-06-24 Nikon Corp Zoom lens system
JPH1172705A (en) * 1997-08-29 1999-03-16 Tochigi Nikon:Kk Zoom lens provided with two and more focusing lens groups
US20040125462A1 (en) * 2002-12-16 2004-07-01 Makoto Misaka Zoom lens system and camera incorporating the same
JP2004198529A (en) * 2002-12-16 2004-07-15 Canon Inc Zoom lens and optical equipment having the same
JP2007328162A (en) * 2006-06-08 2007-12-20 Canon Inc Zoom lens and imaging apparatus having the same
US20090180199A1 (en) * 2008-01-16 2009-07-16 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP2009169051A (en) * 2008-01-16 2009-07-30 Canon Inc Zoom lens and imaging apparatus having the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016121944A1 (en) * 2015-01-30 2017-11-02 株式会社ニコン Zoom lens, optical device, and method of manufacturing zoom lens
WO2016121944A1 (en) * 2015-01-30 2016-08-04 株式会社ニコン Zoom lens, optical apparatus, and zoom lens production method
JP2019070827A (en) * 2015-01-30 2019-05-09 株式会社ニコン Zoom lens
JPWO2018135000A1 (en) * 2017-01-23 2019-01-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Lens system, imaging device, moving body and system
WO2018135000A1 (en) * 2017-01-23 2018-07-26 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Lens system, imaging device, moving body, and system
JPWO2018185868A1 (en) * 2017-04-05 2020-02-06 株式会社ニコン Magnification optical system, optical device, and method of manufacturing magnification optical system
CN110494786B (en) * 2017-04-05 2022-03-01 株式会社尼康 Variable magnification optical system, optical device, and method of manufacturing variable magnification optical system
WO2018185869A1 (en) * 2017-04-05 2018-10-11 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
CN110494786A (en) * 2017-04-05 2019-11-22 株式会社尼康 Variable-power optical system, Optical devices and the method for manufacturing variable-power optical system
CN110546544A (en) * 2017-04-05 2019-12-06 株式会社尼康 Variable magnification optical system, optical device, and method of manufacturing variable magnification optical system
CN110573924A (en) * 2017-04-05 2019-12-13 株式会社尼康 Variable magnification optical system, optical device, and method of manufacturing variable magnification optical system
JPWO2018185867A1 (en) * 2017-04-05 2020-02-06 株式会社ニコン Magnification optical system, optical device, and method of manufacturing magnification optical system
WO2018185868A1 (en) * 2017-04-05 2018-10-11 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
JPWO2018185869A1 (en) * 2017-04-05 2020-02-06 株式会社ニコン Magnification optical system, optical device, and method of manufacturing magnification optical system
US11796776B2 (en) 2017-04-05 2023-10-24 Nikon Corporation Variable magnification optical system, optical apparatus, and method for producing variable magnification optical system
US11347035B2 (en) 2017-04-05 2022-05-31 Nikon Corporation Variable magnification optical system, optical apparatus, and method for producing variable magnification optical system
US11079577B2 (en) 2017-04-05 2021-08-03 Nikon Corporation Variable magnification optical system, optical apparatus, and method for producing variable magnification optical system
US11143851B2 (en) 2017-04-05 2021-10-12 Nikon Corporation Variable magnification optical system, optical apparatus, and method for producing variable magnification optical system
WO2018185867A1 (en) * 2017-04-05 2018-10-11 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
CN110573924B (en) * 2017-04-05 2022-05-10 株式会社尼康 Variable magnification optical system, optical device, and method of manufacturing variable magnification optical system
JP7218813B2 (en) 2019-08-29 2023-02-07 株式会社ニコン Variable magnification optical system and optical equipment
JPWO2021039696A1 (en) * 2019-08-29 2021-03-04
JP2021063966A (en) * 2019-10-17 2021-04-22 キヤノン株式会社 Optical system, image capturing device having the same, and image capturing system
JP7379073B2 (en) 2019-10-17 2023-11-14 キヤノン株式会社 Optical system, imaging device having the same, and imaging system
US12007538B2 (en) 2019-10-17 2024-06-11 Canon Kabushiki Kaisha Optical system, image pickup apparatus, and image pickup system

Also Published As

Publication number Publication date
JP6207164B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
US7639430B2 (en) Zoom lens and image pickup apparatus having the same
US9291804B2 (en) Zoom lens and image pickup apparatus having the same
JP6289219B2 (en) Zoom lens and imaging apparatus having the same
JP6422231B2 (en) Zoom lens and imaging apparatus having the same
JP5975773B2 (en) Zoom lens and imaging apparatus having the same
JP6207164B2 (en) Zoom lens and imaging apparatus having the same
JP5414205B2 (en) Zoom lens and imaging apparatus having the same
US20150146085A1 (en) Optical system and image pickup apparatus including the same
JP6314471B2 (en) Zoom lens system
JP2014089300A (en) Zoom lens and image capturing device having the same
JP2001033703A (en) Rear focus type zoom lens
JP2000338397A (en) Zoom lens
CN107121768B (en) Zoom lens and image pickup apparatus including the same
US7075730B2 (en) Zoom lens system and image pickup apparatus including the same
JP2005092056A (en) Zoom lens and image pickup device having same
JP5465018B2 (en) Zoom lens and optical apparatus having the same
JP2014029375A (en) Zoom lens and imaging apparatus including the same
JP2014021258A5 (en)
JP6460711B2 (en) Zoom lens and imaging apparatus having the same
JP2018106021A (en) Zoom lens and image capturing device having the same
JP5582918B2 (en) Zoom lens and imaging apparatus having the same
JP6367707B2 (en) Zoom lens
JP2017219649A (en) Imaging optical system and optical apparatus including the same
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP4817551B2 (en) Zoom lens

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170905

R151 Written notification of patent or utility model registration

Ref document number: 6207164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03